Important separators and parameterized algorithms

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

School on Parameterized Algorithms and Complexity Będlewo, Poland August 19, 2014

1

Main message

Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of "important" cuts.
- Edge/vertex versions, directed/undirected versions.
- Algorithmic applications: FPT algorithm for
 - Multiway cut,
 - \bullet DIRECTED FEEDBACK VERTEX SET, and
 - (p, q)-CLUSTERING.
- Random selection of important separators: a new tool with many applications.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut *S* can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

A minimum (X, Y)-cut can be found in polynomial time.

Theorem

The size of a minimum (X, Y)-cut equals the maximum size of a pairwise edge-disjoint collection of X - Y paths.

Minimum cuts

There is a long list of algorithms for finding disjoint paths and minimum cuts.

- Edmonds-Karp: $O(|V(G)| \cdot |E(G)|^2)$
- Dinitz: $O(|V(G)|^2 \cdot |E(G)|)$
- Push-relabel: $O(|V(G)|^3)$
- Orlin-King-Rao-Tarjan: $O(|V(G)| \cdot |E(G)|)$

• . . .

But we need only the following result:

```
Theorem
An (X, Y)-cut of size at most k (if exists) can be found in time
O(k \cdot (|V(G)| + |E(G)|)).
```

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

Residual graph:

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

Fact: The function δ is **submodular**: for arbitrary sets *A*, *B*, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Fact: The function δ is **submodular:** for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ 0 1 1 0

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 1 \qquad 0$

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ 0 1 0 1

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 0 \qquad 1$

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 1 \qquad 1$

Proof: Determine separately the contribution of the different types of edges.

Fact: The function δ is submodular: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 0 \qquad 0$

Proof: Determine separately the contribution of the different types of edges.

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Proof: Let $R_1, R_2 \supseteq X$ be two sets such that $\delta(R_1), \delta(R_2)$ are (X, Y)-cuts of size λ .

 $egin{aligned} |\delta(R_1)| + |\delta(R_2)| &\geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)| \ \lambda & \lambda &\geq \lambda \ &\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda \end{aligned}$

Note: Analogous result holds for a unique minimal R_{\min} .

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{\min} and R_{\max} can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the minimum X - Y cut size. When the process stops, $X = R_{max}$. Similar for R_{min} .

But we can do better!

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{\min} and R_{\max} can be found in $O(\lambda \cdot (|V(G)| + |E(G)|))$ time, where λ is the minimum X - Y cut size.

Proof: Look at the residual graph.

 R_{\min} : vertices reachable from X. R_{\max} : vertices from which Y is **not** reachable.

Finding *R_{min}* and *R_{max}*

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut *S* can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

The number of important cuts can be exponentially large. **Example:**

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

The number of important cuts can be exponentially large. **Example:**

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\max})$ be the unique important cut of size λ such that R_{\max} is maximal.

(1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$.

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\max})$ be the unique important cut of size λ such that R_{\max} is maximal.

(1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ :

$$\begin{split} |\delta(R_{\max})| + |\delta(R)| &\geq |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)| \\ \lambda &\geq \lambda \\ & \downarrow \\ |\delta(R_{\max} \cup R)| \leq |\delta(R)| \\ & \downarrow \\ & \text{If } R \neq R_{\max} \cup R, \text{ then } \delta(R) \text{ is not important.} \end{split}$$

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\max})$ be the unique important cut of size λ such that R_{\max} is maximal.

(1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$.

By the submodularity of δ :

$$\begin{split} |\delta(R_{\max})| + |\delta(R)| &\geq |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)| \\ \lambda &\geq \lambda \\ & \downarrow \\ |\delta(R_{\max} \cup R)| \leq |\delta(R)| \\ & \downarrow \\ & \text{If } R \neq R_{\max} \cup R, \text{ then } \delta(R) \text{ is not important.} \end{split}$$

Thus the important (X, Y)- and (R_{\max}, Y) -cuts are the same. \Rightarrow We can assume $X = R_{\max}$. Important cuts

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

⇒ k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow *k* remains the same, λ increases by 1.

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

 \Rightarrow *k* decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step. \Rightarrow Height of the search tree $\leq 2k$ $\Rightarrow \leq 2^{2k} = 4^k$ important cuts of size at most k. Important cuts We are using the following two statements:

Branch 1: If $uv \in S$, then

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

 $S \text{ is an important } (X, Y) \text{-cut} \implies S \text{ is an important } (X \cup v, Y) \text{-cut in } G$

Important cuts — some details

We are using the following two statements:

Branch 1: If $uv \in S$, then

S is an important (X, Y)-cut in G

*

$$\begin{array}{c|c} S \setminus uv & \text{is an important} \\ \hline (X, Y) - \text{cut in } G \setminus uv \end{array}$$

Converse is not true:

Set $\{ab, ay\}$ is important (X, Y)-cut in $G \setminus xb$, but $\{xb, ab, ay\}$ is not an important (X, Y)-cut in G.

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

Converse is true!

Important cuts — some details
We are using the following two statements:

Branch 1: If $uv \in S$, then

S is an important (X, Y)-cut in G

$$\begin{array}{c|c} S \setminus uv & \text{is an important} \\ (X, Y) - \text{cut in } G \setminus uv \end{array}$$

Converse is not true:

Set $\{ab, ay\}$ is important (X, Y)-cut in $G \setminus xb$, but $\{xb, ab, ay\}$ is not an important (X, Y)-cut in G.

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

Converse is true!

Important cuts — some details

There are at most 4^k important (X, Y)-cuts of size at most k and they can be enumerated in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Algorithm for enumerating important cuts:

- Handle trivial cases ($k = 0, \lambda = 0, k < \lambda$)
- Find R_{max}.
- Choose an edge uv of $\delta(R_{max})$.
 - Recurse on $(G uv, R_{\max}, Y, k 1)$.
 - Recurse on $(G, R_{\max} \cup v, Y, k)$.
- Check if the returned cuts are important and throw away those that are not.

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = rac{1}{k} inom{2k-2}{k-1} \geq 4^k / \operatorname{poly}(k).$$

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$ [Dalhaus et al. 1994].

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

MULTIWAY CUT can be solved in time $4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)$.

There are many such cuts.

There are many such cuts.

There are many such cuts.

But a cut farther from t and closer to $T \setminus t$ seems to be more useful.

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

MULTIWAY CUT and important cuts

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $MULTIWAY\ CUT$ and important cuts

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

 $\operatorname{MULTIWAY}\,\operatorname{CUT}$ and important cuts

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction. MULTIWAY CUT and important cuts

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction. MULTIWAY CUT and important cuts

- If every vertex of *T* is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- Go to step 1.

We branch into at most 4^k directions at most k times: $4^{k^2} \cdot n^{O(1)}$ running time.

Next: Better analysis gives 4^k bound on the size of the search tree.

We have seen: at most 4^k important cut of size at most k. Better bound:

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \le 1$ holds.

A refined bound

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \le 1$ holds.

Proof: We show the stronger statement $\sum_{S \in S} 4^{-|S|} \le 2^{-\lambda}$, where λ is the minimum (X, Y)-cut size.

Branch 1: removing uv.

 λ increases by at most one and we add the edge uv to each separator, increasing the cut by one. Thus the total contribution is

$$\sum_{S \in \mathcal{S}_1} 4^{-(|S|+1)} = \sum_{S \in \mathcal{S}_1} 4^{-|S|} / 4 \le 2^{-(\lambda-1)} / 4 = 2^{-\lambda} / 2.$$

Branch 2: replacing X with $X \cup v$. λ increases by at least one. Thus the total contribution is

$$\sum_{S \in \mathcal{S}_2} 4^{-|S|} \le 2^{-(\lambda+1)} = 2^{-\lambda}/2.$$

A refined bound

Lemma

The search tree for the MULTIWAY CUT algorithm has 4^k leaves.

Proof: Let L_k be the maximum number of leaves with parameter k. We prove $L_k \leq 4^k$ by induction. After enumerating the set S_k of important separators of size $\leq k$, we branch into $|S_k|$ directions.

$$\sum_{S\in\mathcal{S}_k} 4^{k-|S|} = 4^k \cdot \sum_{S\in\mathcal{S}_k} 4^{-|S|} \leq 4^k$$

Still need: bound the work at each node.

Refined analysis for MULTIWAY CUT

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Refined enumeration algorithms

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Easily follows:

Lemma

We can enumerate a superset S'_k of every important (X, Y)-cut of size at most k in time $O(|S'_k| \cdot k^2 \cdot (|V(G)| + |E(G)|))$ such that $\sum_{S \in S'_k} 4^{-|S|} \leq 1$ holds.

Refined enumeration algorithms

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Needs more work:

Lemma

We can enumerate the set S_k of every important (X, Y)-cut of size at most k in time $O(|S_k| \cdot k^2 \cdot (|V(G)| + |E(G)|))$.

Refined enumeration algorithms

MULTIWAY CUT can be solved in time $O(4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)).$

- If every vertex of T is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- **6** Go to step 1.

Algorithm for MULTIWAY CUT

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

There is an important (s, t)-cut $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

Simple application

It is possible that n is "large" even if k is "small."

Anti isolation

It is possible that n is "large" even if k is "small."

Anti isolation

It is possible that n is "large" even if k is "small."

It is possible that n is "large" even if k is "small."

Anti isolation

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Anti isolation

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Anti isolation