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Main message
Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions.
Algorithmic applications: FPT algorithm for

Multiway cut,
Directed Feedback Vertex Set, and
(p, q)-Clustering.

Random selection of important separators: a new tool with
many applications.
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Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Theorem
A minimum (X ,Y )-cut can be found in polynomial time.

Theorem
The size of a minimum (X ,Y )-cut equals the maximum size of a
pairwise edge-disjoint collection of X − Y paths.
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There is a long list of algorithms for finding disjoint paths and
minimum cuts.

Edmonds-Karp: O(|V (G )| · |E (G )|2)
Dinitz: O(|V (G )|2 · |E (G )|)
Push-relabel: O(|V (G )|3)
Orlin-King-Rao-Tarjan: O(|V (G )| · |E (G )|)
. . .

But we need only the following result:

Theorem
An (X ,Y )-cut of size at most k (if exists) can be found in time
O(k · (|V (G )|+ |E (G )|)).
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Theorem
An (X ,Y )-cut of size at most k (if exists) can be found in time
O(k · (|V (G )|+ |E (G )|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.
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Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.
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Lemma
Let λ be the minimum (X ,Y )-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y )-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y )-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.
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Lemma
Given a graph G and sets X ,Y ⊆ V (G ), the sets Rmin and Rmax
can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the
minimum X − Y cut size. When the process stops, X = Rmax.
Similar for Rmin.

But we can do better!

Finding Rmin and Rmax 8



Lemma
Given a graph G and sets X ,Y ⊆ V (G ), the sets Rmin and Rmax
can be found in O(λ · (|V (G )|+ |E (G )|)) time, where λ is the
minimum X − Y cut size.

Proof: Look at the residual graph.

X Y X Y

original graph residual graph

Rmin Rmax Rmin Rmax

Rmin: vertices reachable from X .
Rmax: vertices from which Y is not reachable.
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Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).
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The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y )-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .
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Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y )-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax,Y )-cuts are the same.
⇒ We can assume X = Rmax.

Important cuts 12
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(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y )-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y )-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .
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We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y )-cut
in G

S \ uv is an important
(X ,Y )-cut in G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y )-cut in
G \ xb, but {xb, ab, ay} is not an impor-
tant (X ,Y )-cut in G .

Branch 2: If S is an (X ∪ v ,Y )-cut, then

S is an important (X ,Y )-cut
in G

S is an important (X∪v ,Y )-
cut in G

Converse is true!

Important cuts — some details 14
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Theorem
There are at most 4k important (X ,Y )-cuts of size at most k and
they can be enumerated in time O(4k · k · (|V (G )|+ |E (G )|)).

Algorithm for enumerating important cuts:
1 Handle trivial cases (k = 0, λ = 0, k < λ)
2 Find Rmax.
3 Choose an edge uv of δ(Rmax).

Recurse on (G − uv ,Rmax,Y , k − 1).
Recurse on (G ,Rmax ∪ v ,Y , k).

4 Check if the returned cuts are important and throw away those
that are not.

Important cuts — algorithm 15



Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y )-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

Important cuts 16
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Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus
et al. 1994].

Multiway Cut 17



Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · k3 · (|V (G )|+ |E (G )|).

Multiway Cut 17



Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

Multiway Cut 18
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Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19
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1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times: 4k2 · nO(1)

running time.

Next: Better analysis gives 4k bound on the size of the search tree.

Algorithm for Multiway Cut 20



We have seen: at most 4k important cut of size at most k .

Better bound:

Lemma
If S is the set of all important (X ,Y )-cuts, then

∑
S∈S 4

−|S | ≤ 1
holds.

Proof: We show the stronger statement
∑

S∈S 4
−|S | ≤ 2−λ, where

λ is the minimum (X ,Y )-cut size.
Branch 1: removing uv .
λ increases by at most one and we add the edge uv to each
separator, increasing the cut by one. Thus the total contribution is∑

S∈S1

4−(|S |+1) =
∑
S∈S1

4−|S |/4 ≤ 2−(λ−1)/4 = 2−λ/2.

Branch 2: replacing X with X ∪ v .
λ increases by at least one. Thus the total contribution is∑

S∈S2

4−|S | ≤ 2−(λ+1) = 2−λ/2.

A refined bound 21
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Lemma
The search tree for the Multiway Cut algorithm has 4k leaves.

Proof: Let Lk be the maximum number of leaves with parameter
k . We prove Lk ≤ 4k by induction. After enumerating the set Sk of
important separators of size ≤ k , we branch into |Sk | directions.∑

S∈Sk

4k−|S | = 4k ·
∑
S∈Sk

4−|S | ≤ 4k

Still need: bound the work at each node.

Refined analysis for Multiway Cut 22



We have seen:

Lemma
We can enumerate every important (X ,Y )-cut of size at most k in
time O(4k · k · (|V (G )|+ |E (G )|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Refined enumeration algorithms 23



We have seen:

Lemma
We can enumerate every important (X ,Y )-cut of size at most k in
time O(4k · k · (|V (G )|+ |E (G )|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Easily follows:

Lemma
We can enumerate a superset S ′k of every important (X ,Y )-cut of
size at most k in time O(|S ′k | · k2 · (|V (G )|+ |E (G )|)) such that∑

S∈S′k
4−|S | ≤ 1 holds.
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We have seen:

Lemma
We can enumerate every important (X ,Y )-cut of size at most k in
time O(4k · k · (|V (G )|+ |E (G )|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Needs more work:

Lemma
We can enumerate the set Sk of every important (X ,Y )-cut of size
at most k in time O(|Sk | · k2 · (|V (G )|+ |E (G )|)).
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Theorem
Multiway Cut can be solved in time
O(4k · k3 · (|V (G )|+ |E (G )|)).

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

Algorithm for Multiway Cut 24



Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 25
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Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26
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