
Important separators and parameterized
algorithms

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

School on Parameterized Algorithms and Complexity
Będlewo, Poland
August 19, 2014 1

Main message
Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

Bounding the number of “important” cuts.
Edge/vertex versions, directed/undirected versions.
Algorithmic applications: FPT algorithm for

Multiway cut,
Directed Feedback Vertex Set, and
(p, q)-Clustering.

Random selection of important separators: a new tool with
many applications.

Overview 2

Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

Minimum cuts 3

Theorem
A minimum (X ,Y)-cut can be found in polynomial time.

Theorem
The size of a minimum (X ,Y)-cut equals the maximum size of a
pairwise edge-disjoint collection of X − Y paths.

R

δ(R)

Y
X

Minimum cuts 3

There is a long list of algorithms for finding disjoint paths and
minimum cuts.

Edmonds-Karp: O(|V (G)| · |E (G)|2)
Dinitz: O(|V (G)|2 · |E (G)|)
Push-relabel: O(|V (G)|3)
Orlin-King-Rao-Tarjan: O(|V (G)| · |E (G)|)
. . .

But we need only the following result:

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

Finding minimum cuts 4

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.

Finding minimum cuts 5

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.

Finding minimum cuts 5

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.

Finding minimum cuts 5

Theorem
An (X ,Y)-cut of size at most k (if exists) can be found in time
O(k · (|V (G)|+ |E (G)|)).

We try to grow a collection P of edge-disjoint X − Y paths.

Residual graph:
not used by P: bidirected,
used by P: directed in the opposite direction.

X Y X Y

original graph residual graph

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.

Finding minimum cuts 5

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|

Proof: Determine separately the contribution of the different types
of edges.

A B

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 1 0

Proof: Determine separately the contribution of the different types
of edges.

BA

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 1 0

Proof: Determine separately the contribution of the different types
of edges.

A B

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
0 1 0 1

Proof: Determine separately the contribution of the different types
of edges.

A B

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 0 0 1

Proof: Determine separately the contribution of the different types
of edges.

BA

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 1 1

Proof: Determine separately the contribution of the different types
of edges.

BA

Submodularity 6

Fact: The function δ is submodular: for arbitrary sets A,B ,

|δ(A)| + |δ(B)| ≥ |δ(A ∩ B)| + |δ(A ∪ B)|
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.

BA

Submodularity 6

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

Submodularity 7

Lemma
Let λ be the minimum (X ,Y)-cut size. There is a unique maximal
Rmax ⊇ X such that δ(Rmax) is an (X ,Y)-cut of size λ.

Proof: Let R1,R2 ⊇ X be two sets such that δ(R1), δ(R2) are
(X ,Y)-cuts of size λ.

|δ(R1)| + |δ(R2)| ≥ |δ(R1 ∩ R2)| + |δ(R1 ∪ R2)|
λ λ ≥ λ

⇒ |δ(R1 ∪ R2)| ≤ λ
R2R1

Y

X

Note: Analogous result holds for a unique minimal Rmin.

Submodularity 7

Lemma
Given a graph G and sets X ,Y ⊆ V (G), the sets Rmin and Rmax
can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the
minimum X − Y cut size. When the process stops, X = Rmax.
Similar for Rmin.

But we can do better!

Finding Rmin and Rmax 8

Lemma
Given a graph G and sets X ,Y ⊆ V (G), the sets Rmin and Rmax
can be found in O(λ · (|V (G)|+ |E (G)|)) time, where λ is the
minimum X − Y cut size.

Proof: Look at the residual graph.

X Y X Y

original graph residual graph

Rmin Rmax Rmin Rmax

Rmin: vertices reachable from X .
Rmax: vertices from which Y is not reachable.

Finding Rmin and Rmax 9

Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

Important cuts 10

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

Y
X

Important cuts 10

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R ′

δ(R)

R

δ(R ′)
X

Y

Important cuts 10

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

X
Y

Important cuts 10

The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Important cuts 11

The number of important cuts can be exponentially large.

Example:

X

Y

1 2 k/2

This graph has 2k/2 important (X ,Y)-cuts of size at most k .

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Important cuts 11

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

Important cuts 12

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

Important cuts 12

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Proof: Let λ be the minimum (X ,Y)-cut size and let δ(Rmax) be
the unique important cut of size λ such that Rmax is maximal.

(1) We show that Rmax ⊆ R for every important cut δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|
λ ≥ λ

⇓
|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓
If R 6= Rmax ∪ R , then δ(R) is not important.

Thus the important (X ,Y)- and (Rmax,Y)-cuts are the same.
⇒ We can assume X = Rmax.

Important cuts 12

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

Important cuts 13

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

Important cuts 13

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

Important cuts 13

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rmax is either in the cut or not.

Y
vu

X = Rmax

Branch 1: If uv ∈ S , then S \ uv is an important (X ,Y)-cut of
size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.
Branch 2: If uv 6∈ S , then S is an important
(X ∪ v ,Y)-cut of size at most k in G .

⇒ k remains the same, λ increases by 1.

The measure 2k − λ decreases in each step.
⇒ Height of the search tree ≤ 2k
⇒ ≤ 22k = 4k important cuts of size at most k .

Important cuts 13

We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut
in G

S \ uv is an important
(X ,Y)-cut in G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in
G \ xb, but {xb, ab, ay} is not an impor-
tant (X ,Y)-cut in G .

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut
in G

S is an important (X∪v ,Y)-
cut in G

Converse is true!

Important cuts — some details 14

We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut
in G

S \ uv is an important
(X ,Y)-cut in G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in
G \ xb, but {xb, ab, ay} is not an impor-
tant (X ,Y)-cut in G . X Y

a

c

bx y

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut
in G

S is an important (X∪v ,Y)-
cut in G

Converse is true!

Important cuts — some details 14

We are using the following two statements:

Branch 1: If uv ∈ S , then

S is an important (X ,Y)-cut
in G

S \ uv is an important
(X ,Y)-cut in G \ uv

Converse is not true:
Set {ab, ay} is important (X ,Y)-cut in
G \ xb, but {xb, ab, ay} is not an impor-
tant (X ,Y)-cut in G . X Y

a

c

bx y

Branch 2: If S is an (X ∪ v ,Y)-cut, then

S is an important (X ,Y)-cut
in G

S is an important (X∪v ,Y)-
cut in G

Converse is true!

Important cuts — some details 14

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k and
they can be enumerated in time O(4k · k · (|V (G)|+ |E (G)|)).

Algorithm for enumerating important cuts:
1 Handle trivial cases (k = 0, λ = 0, k < λ)
2 Find Rmax.
3 Choose an edge uv of δ(Rmax).

Recurse on (G − uv ,Rmax,Y , k − 1).
Recurse on (G ,Rmax ∪ v ,Y , k).

4 Check if the returned cuts are important and throw away those
that are not.

Important cuts — algorithm 15

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

Important cuts 16

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

Important cuts 16

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

Important cuts 16

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X ,Y)-cut of size k .
The number of subtrees with k leaves is the Catalan number

Ck−1 =
1
k

(
2k − 2
k − 1

)
≥ 4k/poly(k).

Important cuts 16

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus
et al. 1994].

Multiway Cut 17

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · k3 · (|V (G)|+ |E (G)|).

Multiway Cut 17

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

Multiway Cut 18

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

Multiway Cut 18

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

Multiway Cut 18

Intuition: Consider a t ∈ T . A subset of the solution S is a
(t,T \ t)-cut.

t

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

Multiway Cut 18

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

R ′

R

t
u

v

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Proof: Let R be the vertices reachable from t in G \ S for a
solution S .

t
u

vR

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
S ′ is a multiway cut: (1) There is no t-u path in G \ S ′ and (2) a
u-v path in G \ S ′ implies a t-u path, a contradiction.

Multiway Cut and important cuts 19

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We branch into at most 4k directions at most k times: 4k2 · nO(1)

running time.

Next: Better analysis gives 4k bound on the size of the search tree.

Algorithm for Multiway Cut 20

We have seen: at most 4k important cut of size at most k .

Better bound:

Lemma
If S is the set of all important (X ,Y)-cuts, then

∑
S∈S 4

−|S | ≤ 1
holds.

Proof: We show the stronger statement
∑

S∈S 4
−|S | ≤ 2−λ, where

λ is the minimum (X ,Y)-cut size.
Branch 1: removing uv .
λ increases by at most one and we add the edge uv to each
separator, increasing the cut by one. Thus the total contribution is∑

S∈S1

4−(|S |+1) =
∑
S∈S1

4−|S |/4 ≤ 2−(λ−1)/4 = 2−λ/2.

Branch 2: replacing X with X ∪ v .
λ increases by at least one. Thus the total contribution is∑

S∈S2

4−|S | ≤ 2−(λ+1) = 2−λ/2.

A refined bound 21

Lemma
If S is the set of all important (X ,Y)-cuts, then

∑
S∈S 4

−|S | ≤ 1
holds.

Proof: We show the stronger statement
∑

S∈S 4
−|S | ≤ 2−λ, where

λ is the minimum (X ,Y)-cut size.
Branch 1: removing uv .
λ increases by at most one and we add the edge uv to each
separator, increasing the cut by one. Thus the total contribution is∑

S∈S1

4−(|S |+1) =
∑
S∈S1

4−|S |/4 ≤ 2−(λ−1)/4 = 2−λ/2.

Branch 2: replacing X with X ∪ v .
λ increases by at least one. Thus the total contribution is∑

S∈S2

4−|S | ≤ 2−(λ+1) = 2−λ/2.

A refined bound 21

Lemma
The search tree for the Multiway Cut algorithm has 4k leaves.

Proof: Let Lk be the maximum number of leaves with parameter
k . We prove Lk ≤ 4k by induction. After enumerating the set Sk of
important separators of size ≤ k , we branch into |Sk | directions.∑

S∈Sk

4k−|S | = 4k ·
∑
S∈Sk

4−|S | ≤ 4k

Still need: bound the work at each node.

Refined analysis for Multiway Cut 22

We have seen:

Lemma
We can enumerate every important (X ,Y)-cut of size at most k in
time O(4k · k · (|V (G)|+ |E (G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Refined enumeration algorithms 23

We have seen:

Lemma
We can enumerate every important (X ,Y)-cut of size at most k in
time O(4k · k · (|V (G)|+ |E (G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Easily follows:

Lemma
We can enumerate a superset S ′k of every important (X ,Y)-cut of
size at most k in time O(|S ′k | · k2 · (|V (G)|+ |E (G)|)) such that∑

S∈S′k
4−|S | ≤ 1 holds.

Refined enumeration algorithms 23

We have seen:

Lemma
We can enumerate every important (X ,Y)-cut of size at most k in
time O(4k · k · (|V (G)|+ |E (G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Needs more work:

Lemma
We can enumerate the set Sk of every important (X ,Y)-cut of size
at most k in time O(|Sk | · k2 · (|V (G)|+ |E (G)|)).

Refined enumeration algorithms 23

Theorem
Multiway Cut can be solved in time
O(4k · k3 · (|V (G)|+ |E (G)|)).

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

Algorithm for Multiway Cut 24

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 25

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

v

R
ts

Suppose that vt ∈ δ(R) and |δ(R)| = k .

There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 25

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

v

R

R ′

s t

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 25

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

t1 t2 t3 t4 t5 t6

s

t

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

s

t6t5t4t3t2t1

t

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

s

t6t5t4t3t2t1

t

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 26

