
Approximation Schemes for Steiner Forest on
Planar Graphs and Graphs of Bounded Treewidth∗

MohammadHossein Bateni
†

Department of Computer Science
Princeton University
Princeton, NJ, USA

mbateni@cs.princeton.edu

MohammadTaghi Hajiaghayi
‡

AT&T Labs–Research
Florham Park, NJ, USA

hajiagha@research.att.com

Dániel Marx
§

School of Computer Science
Tel Aviv University

Tel Aviv, Israel
dmarx@cs.bme.hu

ABSTRACT
We give the first polynomial-time approximation scheme (PTAS)
for the Steiner forest problem on planar graphs and, more generally,
on graphs of bounded genus. As a first step, we show how to build
a Steiner forest spanner for such graphs. The crux of the process is
a clustering procedure called prize-collecting clustering that breaks
down the input instance into separate subinstances which are eas-
ier to handle; moreover, the terminals in different subinstances are
far from each other. Each subinstance has a relatively inexpensive
Steiner tree connecting all its terminals, and the subinstances can
be solved (almost) separately. Another building block is a PTAS for
Steiner forest on graphs of bounded treewidth. Surprisingly, Steiner
forest is NP-hard even on graphs of treewidth 3. Therefore, our
PTAS for bounded treewidth graphs needs a nontrivial combination
of approximation arguments and dynamic programming on the tree
decomposition. We further show that Steiner forest can be solved
in polynomial time for series-parallel graphs (graphs of treewidth
at most two) by a novel combination of dynamic programming and
minimum cut computations, completing our thorough complexity
study of Steiner forest in the range of bounded treewidth graphs,
planar graphs, and bounded genus graphs.

∗For the omitted proofs and further discussion, refer to the full ver-
sion of the paper [6].
†The author was supported by NSF ITR grants CCF-0205594,
CCF-0426582 and NSF CCF 0832797, NSF CAREER award CCF-
0237113, MSPA-MCS award 0528414, NSF expeditions award
0832797, as well as a Gordon Wu fellowship.
‡He is also with the Department of Computer Science, University
of Maryland, College Park, MD, USA.
§He is supported by ERC Advanced Grant DMMCA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Categories and Subject Descriptors
F.2.2 [ANALYSIS OF ALGORITHMS AND PROBLEM COM-
PLEXITY]: Nonnumerical Algorithms and Problems—Computa-
tion on Discrete Structures; G.1 [NUMERICAL ANALYSIS]; G.2
[DISCRETE MATHEMATICS]

General Terms
Algorithms, Design, Performance, Theory

1. INTRODUCTION
One of the most fundamental problems in combinatorial opti-

mization and network design with both practical and theoretical
significance is the Steiner forest problem, in which given a weighted
graph G = (V,E) and a set consisting of pairs of terminals, called
demands, D = {(s1, t1),(s2, t2), . . . ,(sk, tk)}, the goal is to find a
minimum-cost forest F of G such that every pair of terminals in D
is connected by a path in F . The first and the best approximation
factor for this problem is 2 due to Agrawal, Klein and Ravi [1] (see
also Goemans and Williamson [17]). The conference version of the
Agrawal, Klein and Ravi [2] appeared in 1991, and there have been
no improved approximation algorithms invented for Steiner forest.
Recently Borradaile, Klein and Mathieu [11] obtain a Polynomial
Time Approximation Scheme (PTAS) for Euclidean Steiner forest
where the terminals are in the Euclidean plane. They pose obtain-
ing a PTAS for Steiner forest in planar graphs, the natural general-
ization of Euclidean Steiner forest, as the main open problem. We
note that in network design, planarity is a natural restriction, since
in practical scenarios of physical networking, with cable or fiber
embedded in the ground, crossings are rare or nonexistent. In this
paper, we settle this open problem by obtaining a PTAS for planar
graphs (and more generally, for bounded genus graphs) via a novel
technique of prize-collecting clustering with potential use to obtain
other PTASs in planar graphs.

The special case of the Steiner forest problem when all pairs have
a common terminal is the classical Steiner tree problem, one of the
first problems shown NP-hard by Karp [19]. The problem remains
hard even on planar graphs [15]. In contrast to Steiner forest, a
long sequence of papers give approximation factors better than 2
for this problem [29, 30, 7, 31, 25, 20, 18, 27]; the current best
approximation ratio is 1.55 [27]. Since the problem is APX-hard in
general graphs [8, 28], we do not expect to obtain a PTAS for this
problem in general graphs. However, for the Euclidean Steiner tree

problem, the classic works of Arora [5] and Mitchell [24] present
a PTAS. Obtaining a PTAS for Steiner tree on planar graphs, the
natural generalization of Euclidean Steiner tree, remained a major
open problem since the conference version of Arora [4] in 1996.
Only in 2007, Borradaile, Mathieu, and Klein [12] settle this prob-
lem with a nice technique of constructing light spanners for Seiner
trees in planar graphs. In this paper, we also generalize this result
to obtain light spanners for Steiner forests.

Most approximation schemes for planar graph problems use (im-
plicitly or explicitly) the fact that the problem is easy to solve on
bounded-treewidth graphs (in fact, Demaine et al. [13] provide a
general method of reducing many optimization problems on pla-
nar graphs to bounded-treewidth graphs). In particular, a keystone
blackbox in the algorithm of Borradaile et al. [12] for Steiner tree is
the result that, for every fixed value of k, the problem is polynomial-
time solvable on graphs having treewidth at most k. There is a
vast literature on algorithms for bounded-treewidth graphs and in
most cases polynomial-time (or even linear-time) solvability fol-
lows from the well-understood standard technique of dynamic pro-
gramming on tree decompositions. However, for Steiner forest,
the obvious way of using dynamic programming does not give a
polynomial-time algorithm. The difficulty is that, unlike in Steiner
tree, a solution of Steiner forest induces a partition on the set of
terminals and a dynamic programming algorithm needs to keep
track of exponentially many such partitions. In fact, this approach
seems to fail even for series-parallel graphs (that have treewidth at
most 2); the complexity of the problem for series-parallel graphs
was stated as an open question by Richey and Parker [26] in 1986.
We resolve this question by giving a polynomial-time algorithm for
Steiner forest on series-parallel graphs. The main idea is that even
though algorithms based on dynamic programming have to eval-
uate subproblems corresponding to exponentially many partitions,
the function describing these exponentially many values turn out to
be submodular and it can be represented in a compact way by the
cut function of a directed graph. On the other hand, Steiner for-
est becomes NP-hard on graphs of treewidth at most 3 [16]. Thus
perhaps this is the first example when the complexity of a natu-
ral problem changes as treewidth increases from 2 to 3. In light of
this hardness result, we investigate the approximability of the prob-
lem on bounded-treewidth graphs and show that, for every fixed k,
Steiner forest admits a PTAS on graphs of treewidth at most k. The
main idea of the PTAS is that if the dynamic programming algo-
rithm considers only an appropriately constructed polynomial-size
subset of the set of all partitions, then this produces a solution close
to the optimum. Very roughly, the partitions in this subset are con-
structed by choosing a set of center points and classifying the ter-
minals according to the distance to the center points. Our PTAS
for planar graphs (and more generally, for bounded genus graphs)
uses this PTAS for bounded-treewidth graphs. This completes our
thorough study of Steiner forest in the range of bounded treewidth
graphs, planar graphs and bounded genus graphs.

1.1 Our results and techniques
Our main result in this paper is a PTAS for the planar Steiner

forest problem.

THEOREM 1. For any constant ε̄ > 0, there is a polynomial-
time (1+ ε̄)-approximation algorithm for the Steiner forest problem
on planar graphs and, more generally, on graphs of bounded genus.

To this end, we build a Steiner forest spanner for the input graph
and the set of demands; this is done in two steps. Roughly speak-
ing, a Steiner forest spanner is a subgraph of the given graph whose
cost is no more than a constant factor times the cost of the optimal
Steiner forest, and furthermore, it contains a nearly optimal Steiner
forest. Denote by OPTD(G) the minimum cost of a Steiner forest
of G satisfying (connecting) all the demands in D . We sometimes

use OPT instead of OPTD(G). A subgraph H of G is a Steiner
forest spanner with respect to demand set D if it has the following
two properties:
Spanning Property: There is a forest in H that connects all de-

mands in D and has length at most (1+ε)OPTD(G), namely,
OPTD(H)≤ (1+ ε)OPTD(G).

Shortness Property: The total length of H is not more than f (ε) ·
OPTD(G).

THEOREM 2. Given any fixed ε > 0, a bounded genus graph
Gin(Vin,Ein) and demand pairs D , we can compute in polynomial
time a Steiner forest spanner H for Gin with respect to demand set
D .

The algorithm that we propose achieves this in time O(n2 logn).
The entire algorithm for Steiner forest runs in polynomial time but
the exponent of the polynomial depends on ε and the genus of the
input graph.

The proof of Theorem 2 heavily relies on a novel clustering
method presented in Theorem 3 that allows us to (almost) sepa-
rately build the spanners for smaller and far apart sets of demands.
The rest of the spanner construction—done separately for each of
the sets—uses ideas of Borradaile et al. [12], although there are
still several technical differences. The clustering technique works
for general graphs as opposed to the rest of the construction which
requires the graphs to have bounded genus.

THEOREM 3. Given an ε > 0, a graph Gin(Vin,Ein), and a set
D of pairs of vertices, we can compute in polynomial time a set of
trees {T1, . . . ,Tk}, and a partition of demands {D1, . . . ,Dk}, with
the following properties.

1. All the demands are covered, i.e., D =
Sk

i=1 Di.
2. All the terminals in Di are spanned by the tree Ti.
3. The sum of the costs of all the trees Ti is no more than (4

ε
+

2)OPTD(Gin).
4. The sum of the costs of minimum Steiner forests of all demand

sets Di is no more than 1 + ε times the cost of a minimum
Steiner forest of Gin; i.e., ∑i OPTDi(Gin)≤ (1+ε)OPTD(Gin).

The last condition implies that (up to a small factor) it is possible
to solve the demands Di separately. Notice that this may lead to
paying for portions of the solution more than once.

We will prove Theorem 3 in Section 3. Roughly speaking, the
algorithm here first recognizes some connected components by run-
ning a 2-approximation Steiner forest algorithm. Clearly, this con-
struction satisfies all but the last condition of the theorem. How-
ever, at this point, these connected components might not be suf-
ficiently far from each other such that we can consider them sep-
arately. To fix this, we contract each connected component into a
“super vertex” to which we assign a prize (potential) that is propor-
tional to the sum of the edge weights of the corresponding compo-
nent. Now we run an algorithm that we call prize-collecting cluster-
ing. The algorithm as well as some parts of its analysis bears simi-
larities to a primal-dual method due to Agrawal, Klein and Ravi [2]
and Goemans and Williamson [17]. Indeed our analysis strength-
ens these previous approaches by proving some local guarantees
(instead of the global guarantee provided in these algorithms). In
some sense, this clustering algorithm can also be seen as a gen-
eralization of an implicit clustering algorithm of Archer, Bateni,
Hajiaghayi, and Karloff [3] who improve the best approximation
factor for prize-collecting Steiner tree to 2− ε, for some constant
ε > 0. In this clustering, we consider a topological structure of the
graph in which each edge is a curve connecting its endpoints whose
length is equal to its weight. We color (portions of) edges by differ-
ent colors each corresponding to a super vertex. These colors form
a laminar family and the “depth” of each color is at most the prize

given to its corresponding super vertex. Using this coloring scheme
we further connect some of these super vertices to each other with
a cost proportional to the sum of their prizes. At the end, we show
that now we can consider these combined connected components as
separate clusters and, roughly speaking, an optimum solution need
not connect two different clusters because of the concept of depth.
We believe the prize-collecting clustering presented in this paper
might have applications for other problems (esp. to obtain PTASs).

To obtain a PTAS as promised in Theorem 1, we first construct
a spanner Steiner forest based on Theorem 2. On this spanner, we
utilize a technique due to Klein [21], and Demaine, Hajiaghayi and
Mohar [13] that reduces the problem of obtaining a PTAS in a pla-
nar (and more generally, bounded genus) graph whose total edge
weight is within a constant factor of the optimum solution to that
of finding an optimal solution in a graph of bounded treewidth (see
the proof of Theorem 1 in Section 4 for more details.) However,
there are no known polynomial-time algorithms in the literature for
Steiner forest on bounded-treewidth graphs, so we cannot plug in
such an algorithm to complete our PTAS. Therefore, we need to
investigate Steiner forest on bounded-treewidth graphs.

Resolving an open question of Richey and Parker [26] from 1986,
we design a polynomial-time algorithm for Steiner forest on series-
parallel graphs. Very recently, using completely different tech-
niques, a polynomial-time algorithm was presented for the special
case of outerplanar graphs [16].

THEOREM 4. The Steiner forest problem can be solved in poly-
nomial time for subgraphs of series-parallel graphs (i.e., graphs of
treewidth at most 2).

Surprisingly, it turns out that the problem becomes NP-hard on
graphs of treewidth at most 3 [16]. In the full version [6] we give
a (different) NP-hardness proof, that highlights how submodularity
(and hence the approach of Theorem 4) breaks if treewidth is 3.
There exist a few known problems that are polynomial-time solv-
able for trees but NP-hard for graphs of treewidth 2 [32, 22, 23, 26],
but to our knowledge, this is the first natural example where there
is a complexity difference between treewidth 2 and 3.

Not being able to solve Steiner forest optimally on bounded-
treewidth graphs is not an unavoidable obstacle for obtaining a
PTAS on planar graphs: the technique of Klein [21], and Demaine,
Hajiaghayi and Mohar [13] can still be applied when we have a
PTAS for graphs of bounded treewidth. In Section 5, we demon-
strate such a PTAS:

THEOREM 5. For every fixed w≥ 1 and ε > 0, there is a poly-
nomial-time (1+ ε)-approximation algorithm for Steiner Forest on
graphs with treewidth at most w.

Note that the exponent of the polynomial in Theorem 5 depends
on both ε and w; it remains an interesting question for future re-
search whether this dependence can be removed.

The main idea of the PTAS of Theorem 5 is to reduce the set of
partitions considered in the dynamic programming algorithm to a
polynomially bounded subset, in a way that an (1+ε)-approximate
solution using only these partitions is guaranteed to exist. The im-
plementation of this idea consists of three components. First, we
have to define which partitions belong to the polynomially bounded
subset. These partitions are defined by choosing a bounded number
of center points and a radius for each center. A terminal is classi-
fied into a class of the partition based on which center points cover
it. Second, we need an algorithm that finds the best solution using
only the allowed subset of partitions. This can be done following
the standard dynamic programming paradigm, but the technical de-
tails are somewhat tedious. Third, we have to argue that there is a
(1+ε)-approximate solution using only the allowed partitions. We
show this by proving that if there is a solution that uses partitions

that are not allowed, then it can be modified, incurring only a small
increase in the cost, such that it uses only allowed partitions. The
main argument here is that for each partition appearing in the solu-
tion, we try to select suitable center points. If these center points do
not generate the required partition, then this means that a terminal
is misclassified, which is only possible if the terminal is close to a
center point. In this case, we observe that two components of the
solution are close to each other and we can join them with only a
small increase in the cost. The crucial point of the proof is a del-
icate charging argument, making use of the structure of bounded-
treewidth graphs, which shows that repeated applications of this
step results in a total increase that is not too large.

2. BASIC DEFINITIONS
Let G(V,E) be a graph. As is customary, let δ(V ′) denote the set

of edges having one endpoint in a subset V ′ ⊆ V of vertices. For
a subset of vertices V ′ ⊆ V , the subgraph of G induced by V ′ is
denoted by G[V ′]. With slight abuse of notation, we sometimes use
the edge set to refer to the graph itself. Hence, the above-mentioned
subgraph may also be referred to by E[V ′] for simplicity. We denote
the length of a shortest x-to-y path in G as distG(x,y). For an edge
set E, we denote by `(E) := ∑e∈E ce the total length of edges in E.

A collection S is said to be laminar if and only if for any two sets
C1,C2 ∈ S , we have C1 ⊆C2, C2 ⊆C1, or C1∩C2 = /0. Suppose C
is a partition of a ground set V . Then, C (v) denotes for each v ∈V
the set C ∈ C that contains v.

Given an edge e = (u,v) in a graph G, the contraction of e in G
denoted by G/e is the result of unifying vertices u and v in G, and
removing all loops and multiple edges except the shortest edge. The
contraction G/E ′ is defined as the result of iteratively contracting
all the edges of E ′ in G, i.e., G/E ′ := G/e1/e2/. . ./ek if E ′ =
{e1,e2, . . . ,ek}. Clearly, the planarity of G is preserved after the
contraction. Similarly, contracting edges does not increase the cost
of an optimal Steiner forest.

Finally we often use well-known concepts of treewidth, nice
tree-decomposition and 2-cell embedding in this paper. Due to lack
of space, we refer the reader to the full version of the paper or stan-
dard graph theory texts such as [14] to see the exact definitions of
these terms.

3. PRIZE-COLLECTING CLUSTERING
In this section, we describe an algorithm PC-CLUSTERING that

is used to prove Theorem 3. The algorithm as well as its analysis
bears similarities to the primal-dual method due to Agrawal, Klein
and Ravi [1] and Goemans and Williamson [17]. It uses a technique
that we call prize-collecting clustering and our analysis strengthens
the previous approaches by proving some local guarantees (instead
of the global guarantee provided in previous algorithms). We build
a forest F2 each of whose components correspond to one Ti sought
in Theorem 3. Along the way, we also come up with a vector y
satisfying the sets of constraints (1)-(3) below. During the process,
we maintain a vector y satisfying all these constraints, and at the
end, it will be true that all the constraints (2) hold with equality.
The analysis takes advantage of the connection between F2 and y.

We start with a 2-approximate1 solution F∗ satisfying all the de-
mands in D; the cost of F∗ is at most 2OPT. The forest F∗ consists
of tree components T ∗i . In the following, we connect some of these
components to make the trees Ti. It is easy to see that this construc-
tion guarantees the first two conditions of Theorem 3. We work on
a graph G(V,E) formed from Gin by contracting each tree compo-
nent of F∗. A potential φv is associated with each vertex v of G,
which is 1

ε
times the cost of the tree component of F∗ correspond-

ing to v in case v is the contraction of a tree component, and zero
1Such a solution can be found via Goemans-Williamson’s Steiner
forest algorithm, for instance.

otherwise. We produce a solution to the following system of linear
equations, where yS,v is defined for any v ∈ S ⊆ V , and ce denotes
the length of the edge e.

∑
S:e∈δ(S)

∑
v∈S

yS,v ≤ ce ∀e ∈ E, (1)

∑
S3v

yS,v ≤ φv ∀v ∈V, (2)

yS,v ≥ 0 ∀v ∈ S⊆V. (3)

These constraints are very similar to the dual LP for the prize-
collecting Steiner tree problem when φv are thought of as penalty
values corresponding to the vertices. In the standard linear program
for the prize-collecting Steiner tree problem, there is a special root
vertex to which all the terminals are to be connected. Then, no set
containing the root appears in the formulation.

The solution is built up in two stages. First we perform an un-
rooted growth to find a forest F1 and a corresponding y vector. In
the second stage, we prune some of the edges of F1 to get another
forest F2. Uncontracting the trees T ∗i turns F2 into the Steiner trees
Ti in the statement of Theorem 3. Below we describe the two phases
of Algorithm 1 (PC-CLUSTERING).

Growth.
We begin with a zero vector y, and an empty set F1. We main-

tain a partition C of vertices V into clusters; it initially consists of
singleton sets. Each cluster is either active or inactive; the clus-
ter C ∈ C is active if and only if ∑C′⊆C ∑v∈C′ yC′,v < ∑v∈C φv. A
vertex v is live if and only if ∑C3v yC,v < φv. Equivalently, a clus-
ter C ∈ C is active if and only if there is a live vertex v ∈ C. We
simultaneously grow all the active clusters by η. In particular, if
there are κ(C) > 0 live vertices in an active cluster C, we increase
yC,v by η/κ(C) for each live vertex v ∈ C. Hence, yC defined as
∑v∈C yC,v is increased by η for an active cluster C. We pick the
largest value for η that does not violate any of the constraints in (1)
or (2). Obviously, η is finite in each iteration because the values
of these variables cannot be larger than ∑v φv. Hence, at least one
such constraint goes tight after the growth step. If this happens for
an edge constraint for e = (u,v), then there are two clusters Cu 3 u
and Cv 3 v in C ; at least one of the two is growing. We merge the
two clusters into C = Cu ∪Cv by adding the edge e to F1, remove
the old clusters and add the new one to C . Nothing needs to be
done if a constraint (2) becomes tight. The number of iterations is
at most 2|V |, because at each event either a vertex dies, or the size
of C decreases.

We can think of the growth stage as a process that colors por-
tions of the edges of the graph. This gives a better intuition to
the algorithm, and makes several of the following lemmas intu-
itively simple. Consider a topological structure in which vertices
of the graph are represented by points, and each edge is a curve
connecting its endpoints whose length is equal to the weight of the
edge. Suppose a cluster C is growing by an amount η. This is dis-
tributed among all the live vertices v∈C, where yC,v is increased by
η′ := η/κ(C). As a result, we color by color v a connected portion
with length η′ of all the edges in δ(C). Finally, each edge e gets
exactly ∑C:e∈δ(C) yC,v units of color v. We can perform a clean-
up process, such that all the portions of color v are consecutive on
an edge.2 Hence, as a cluster expands, it colors its boundary by
the amount of growth. At the time when two clusters merge, their
2 We can do without the clean-up if we perform the coloring in a
lazy manner. That is, we do not do the actual color assignment until
the edge goes tight or the algorithm terminates. At this point, we
go about putting colors on the edges, and we make sure the color
corresponding to any pair (S,v) forms a consecutive portion of the
edge. This property is not needed as part of our algorithm, though,
and is merely for the sake of having a nice coloring which is of
independent interest.

colors barely touch each other. At each point in time, the colors
associated with the vertices of a cluster form a connected region.

Pruning.
Let S contain every set that is a cluster at some point during the

execution of the growth step. It can be easily observed that the
clusters S are laminar and the maximal clusters are the clusters of
C . In addition, notice that F1[C] is connected for each C ∈ S .

Let B ⊆ S be the set of all such clusters that are tight, namely,
for each S ∈B , we have ∑S′⊆S ∑v∈S′ yS′,v = ∑v∈S φv. In the pruning
stage, we iteratively remove some edges from F1 to obtain F2. More
specifically, we first initialize F2 with F1. Then, as long as there is
a cluster S ∈ B such that F2 ∩ δ(S) = {e}, we remove the edge e
from F2.

A cluster C is called a pruned cluster if it is pruned in the sec-
ond stage in which case, δ(C)∩F2 = /0. Hence, a pruned cluster
cannot have non-empty and proper intersection with a connected
component of F2.

Algorithm 1 PC-CLUSTERING

Input: planar graph Gin(Vin,Ein), and set of demands D .
Output: set of trees Ti with associated Di.
1: Use the algorithm of Goemans and Williamson [17] to find a

2-approximate Steiner forest F∗ of D , consisting of tree com-
ponents T ∗1 , . . . ,T ∗k .

2: Contract each tree T ∗i to build a new graph G(V,E).
3: For any v ∈ V , let φv be 1

ε
times the cost of the tree T ∗i corre-

sponding to v, and zero if there is no such tree.
4: Let F1← /0.
5: Let yS,v← 0 for any v ∈ S⊆V .
6: Let S ← C ←{{v} : v ∈V}.
7: while there is a live vertex do
8: Let η be the largest possible value such that simultaneously

increasing yC by η for all active clusters C does not violate
Constraints (1)-(3).

9: Let yC (v),v← yC (v),v + η

κ(C (v)) ∀ live vertices v.
10: if ∃e ∈ E that is tight and connects two clusters then
11: Pick one such edge e = (u,v).
12: Let F1← F1∪{e}.
13: Let C← C (u)∪C (v).
14: Let C ← C ∪{C}\{C (u),C (v)}.
15: Let S ← S ∪{C}.
16: Let F2← F1.
17: Let B be the set of all clusters S ∈ S such that ∑v∈S yS,v =

∑v∈S φv.
18: while ∃S ∈ B such that F2∩δ(S) = {e} for an edge e do
19: Let F2← F2 \{e}.
20: Construct F from F2 by uncontracting all trees T ∗i .
21: Let F consist of tree components Ti.
22: Output the set of trees {Ti}, along with Di := {(s, t)∈D : s, t ∈

V (Ti)}.

We first bound the cost of the forest F2. The following lemma
is similar to the analysis of the algorithm in [17]. However, we do
not have a primal LP to give a bound on the dual. Rather, the upper
bound for the cost is the sum of all the potential values ∑v φv. In
addition, we bound the cost of a forest F2 that may have more than
one connected component, whereas the prize-collecting Steiner tree
algorithm of [17] finds a connected graph at the end.

LEMMA 6. The cost of F2 is at most 2∑v∈V φv.

PROOF. The strategy is to prove that the cost of this forest is at
most 2∑v∈S⊆V yS,v ≤ 2∑v∈V φv. The equality follows from Equa-
tion (2). Recall that the growth phase has several events corre-
sponding to an edge or set constraint going tight. We first break

apart y variables by epoch. Let t j be the time at which the jth event
point occurs in the growth phase (0 = t0 ≤ t1 ≤ t2 ≤ ·· ·), so the jth
epoch is the interval of time from t j−1 to t j. For each cluster C, let

y(j)
C be the amount by which yC := ∑v∈C yC,v grew during epoch j,

which is t j− t j−1 if it was active during this epoch, and zero oth-

erwise. Thus, yC = ∑ j y(j)
C . Because each edge e of F2 was added

at some point by the growth stage when its edge packing constraint
(1) became tight, we can exactly apportion the cost ce amongst
the collection of clusters {C : e ∈ δ(C)} whose variables “pay for”
the edge, and can divide this up further by epoch. In other words,
ce = ∑ j ∑C:e∈δ(C) y(j)

C . We will now prove that the total edge cost

from F2 that is apportioned to epoch j is at most 2∑C y(j)
C . In other

words, during each epoch, the total rate at which edges of F2 are
paid for by all active clusters is at most twice the number of active
clusters. Summing over the epochs yields the desired conclusion.

We now analyze an arbitrary epoch j. Let C j denote the set of
clusters that existed during epoch j. Consider the graph F2, and
then collapse each cluster C ∈ C j into a supernode. Call the result-
ing graph H. Although the nodes of H are identified with clusters
in C j, we will continue to refer to them as clusters, in order to to
avoid confusion with the nodes of the original graph. Some of the
clusters are active and some may be inactive. Let us denote the
active and inactive clusters in C j by Cact and Cdead , respectively.
The edges of F2 that are being partially paid for during epoch j
are exactly those edges of H that are incident to an active cluster,
and the total amount of these edges that is paid off during epoch
j is (t j − t j−1)∑C∈Cact

degH(C). Since every active cluster grows

by exactly t j − t j−1 in epoch j, we have ∑C y(j)
C ≥ ∑C∈C j

y(j)
C =

(t j− t j−1)|Cact |. Thus, it suffices to show that ∑C∈Cact
degH(C) ≤

2|Cact |.
First we must make some simple observations about H. Since F2

is a subset of the edges in F1, and each cluster represents a disjoint
induced connected subtree of F1, the contraction to H introduces
no cycles. Thus, H is a forest. All the leaves of H must be alive,
because otherwise the corresponding cluster C would be in B and
hence would have been pruned away.

With this information about H, it is easy to bound ∑C∈Cact
degH(C).

The total degree in H is at most 2(|Cact |+ |Cdead |). Noticing that
the degree of dead clusters is at least two, we get ∑C∈Cact

degH(C)≤
2(|Cact |+ |Cdead |)−2|Cdead |= 2|Cact | as desired.

The following lemma gives a sufficient condition for two ver-
tices that end up in the same component of F2. This is a corollary
of our pruning rule which has a major difference from other prun-
ing rules. Unlike the previous work, we do not prune the entire
subgraph; rather, we only remove some edges, increasing the num-
ber of connected components.

LEMMA 7. Two vertices u and v of V are connected via F2 if
there exist sets S,S′ both containing u,v such that yS,v > 0 and
yS′,u > 0.

PROOF. The growth stage connects u and v since yS,v > 0 and
u,v ∈ S. Consider the path p connecting u and v in F1. All the ver-
tices of p are in S and S′. For the sake of reaching a contradiction,
suppose some edges of p are pruned. Let e be the first edge being
pruned on the path p. Thus, there must be a cluster C ∈B cutting e;
furthermore, δ(C)∩ p = {e}, since e is the first edge pruned from
p. The laminarity of the clusters S gives C⊂ S,S′, since C contains
exactly one endpoint of e. If C contains both or no endpoints of
p, it cannot cut p at only one edge. Thus, C contains exactly one
endpoint of p, say v. We then have ∑C′⊆C yC′,v = φv, because C is
tight. However, as C is a proper subset of S, this contradicts with
yS,v > 0, proving the supposition is false. The case C contains u is
symmetric.

Consider a pair (v,S) with yS,v > 0. If subgraph G′ of G has an
edge that goes through the cut (S, S̄), at least a portion of length yS,v
of G′ is colored with the color v due to the set S. Thus, if G′ cuts
all the sets S for which yS,v > 0, we can charge part of the length
of G′ to the potential of v. Later in Lemma 10, we are going to use
potentials as a lower bound on the optimal solution. More formally,
we say a graph G′(V,E ′) exhausts a color u if and only if E ′ ∩
δ(S) 6= /0 for any S : yS,u > 0. The proof of the following corollary
is omitted here, however, it is implicit in the proof of Lemma 10
below. We do not use this corollary explicitly. Nevertheless, it
gives insight into the analysis below.

COROLLARY 8. If a subgraph H of G connects two vertices
u1,u2 from different components of F2 (which are contracted ver-
sions of the components in the initial 2-approximate solution), then
H exhausts the color corresponding to at least one of u1 and u2.

We can relate the cost of a subgraph to the potential value of the
colors it exhausts.

LEMMA 9. Let L be the set of colors exhausted by subgraph G′
of G. The cost of G′(V,E ′) is at least ∑v∈L φv.

This is quite intuitive. Recall that the y variables color the edges of
the graph. Consider a segment on edges corresponding to cluster S
with color v. At least one edge of G′ passes through the cut (S, S̄).
Thus, a portion of the cost of G′ can be charged to yS,v. Hence, the
total cost of the graph G′ is at least as large as the total amount of
colors paid for by L. Here is the formal proof.

PROOF. The cost of G′(V,E) is

∑
e∈E ′

ce ≥ ∑
e∈E ′

∑
S:e∈δ(S)

yS by (1)

= ∑
S
|E ′∩δ(S)|yS

≥ ∑
S:E ′∩δ(S)6= /0

yS

= ∑
S:E ′∩δ(S)6= /0

∑
v∈S

yS,v

= ∑
v

∑
S3v:E ′∩δ(S)6= /0

yS,v

≥ ∑
v∈L

∑
S3v:E ′∩δ(S)6= /0

yS,v

= ∑
v∈L

∑
S3v

yS,v,

because yS,v = 0 if v ∈ L and E ′∩δ(S) = /0,

= ∑
v∈L

φv by a tight version of (2).

Recall that the trees T ∗i of the 2-approximate solution F∗ are
contracted in F2. Construct F from F2 by uncontracting all these
trees. Let F consist of tree components Ti. It is not difficult to
verify that F is indeed a forest, but we do not need this condition
since we can always remove cycles to find a forest. Define Di :=
{(s, t) ∈ D : s, t ∈ V (Ti)}, and let OPTi denote (the cost of) the
optimal Steiner forest satisfying the demands Di.

LEMMA 10. ∑i OPTi ≤ (1+ ε)OPT.

PROOF. If each tree component of OPT only satisfies demands
from a single Di, we are done. Otherwise, we build a solution
OPT′ consisting of forests OPT′i for each Di, such that ∑i OPT′i ≤
(1+ ε)OPT. Then, OPTi ≤ OPT′i finishes the argument. Instead of
explicitly identifying the forests OPT′i, we construct an inexpensive
set of trees T where each T ∈ T is associated with a subset DT ⊆D
of demands, such that

• T ∈ T connects all the demands in DT ,
• all the demands are satisfied, namely, ∪T∈T DT = D , and
• for each T ∈ T , there exists a Di where DT ⊆Di.

Then, each OPT′i above is merely a collection of several trees in
T . We now describe how T is constructed. Start with the optimal
solution OPT. Contract the trees T ∗i of the 2-approximate solution
F∗ to build a graph ˆOPT. Initially, the set DT̂ associated with each
connected component T̂ of ˆOPT specifies the set of demands con-
nected via T̂ ; notice that the endpoints of any demand are both part
of one super-node because F∗ is feasible. If the color u correspond-
ing to a component T ∗i is exhausted by ˆOPT, add T ∗i to T , and let
DT ∗i be the set of demands satisfied via T ∗i . Then, for every compo-
nent T̂i of ˆOPT, remove ∪T∈T DT from DT̂i

. Finally, construct the
uncontracted version of all the components T̂i, and add them to T .

The first condition above clearly holds by the construction. For
the second condition, note that at the beginning all the demands
are satisfied by the trees T̂i, and we only remove demands from
DT̂i

when they are satisfied elsewhere. The last condition is proved
by contradiction. Suppose a tree T ∈ T satisfies demands from
two different groups D1 and D2. Clearly, T cannot be one of the
contracted trees T ∗i , since those trees only serve a subset of one
Di. Hence, T must be a tree component of OPT. Let u,v ∈ V be
two vertices from different components of F2 that are connected
in T . Since u and v are not connected in F2, Lemma 7 ensures
that for at least one of these vertices, say u, we have yS,u = 0 ∀S 3
u,v. Thus, yS,u > 0 implies v 6∈ S. As T connects u and v, this
means T exhausts the color u. We reach a contradiction, because
the demands corresponding to u are still in DT .

Finally, we show that the cost of T is small. Recall that T con-
sists of two kinds of trees: tree components of OPT as well as trees
corresponding to exhausted colors of OPT. We claim the cost of
the latter is at most εOPT. Let L be the set of exhausted colors of
OPT. The cost of the corresponding trees is ε∑v∈L φv by definition
of φv. Lemma 9, however, gives OPT ≥ ∑v∈L φv. Therefore, the
total cost of T is at most (1+ ε)OPT.

Now, we are ready to prove the main theorem of this section.
PROOF OF THEOREM 3. The first condition of the lemma fol-

lows directly from our construction: we start with a solution, and
never disconnect one of the tree components in the process. The
construction immediately implies the second condition. By Lemma 6,
the cost of F2 is at most 2∑v∈V φv ≤ 4

ε
OPT. Thus, F costs no more

than (4/ε + 2)OPT, giving the third condition. Finally, Lemma 10
establishes the last condition.

4. PTAS FOR PLANAR STEINER FOREST
The full version of the paper [6] shows how to build a spanner

for the input graph Gin(Vin,Ein) with respect to the demand set D .
From Theorem 3, we obtain a set of trees {T1, . . . ,Tk}, associated
with a partition of demands {D1, . . . ,Dk}: tree Ti connects all the
demands Di, and the total cost of trees Ti is in O(OPT). The con-
struction goes along the same lines as that of Borradaile et al. [12],
yet there are certain differences, especially in the analysis. We sep-
arately build a graph Hi for each Ti, and finally let H be the union
of all graphs Hi.

Having proved the spanner result, we can present our main PTAS
for Steiner forest on planar graphs in this section. We first mention
two main ingredients of the algorithm. We invoke the following
result due to Demaine, Hajiaghayi and Mohar [13].

THEOREM 11 ([13]). For a fixed genus g, and any integer
k≥ 2, and for every graph G of Euler genus at most g, the edges of
G can be partitioned into k sets such that contracting any one of the
sets results in a graph of treewidth at most O(g2k). Furthermore,
such a partition can be found in O(g5/2n3/2 logn) time.

As a corollary, this holds for a planar graph (which has genus zero).
We can now prove the main theorem of this paper. Algorithm 2

(PSF-PTAS) shows the steps of the PTAS.

Algorithm 2 PSF-PTAS
Input: planar graph Gin(Vin,Ein), and set of demands D .
Output: Steiner forest F satisfying D .
1: Construct the Steiner forest spanner H.
2: Let k← 2 f (ε)/ε̄.
3: Let ε←min(1, ε̄/6).
4: Using Theorem 11, partition the edges of H into E1, . . . ,Ek.
5: Let i∗← argmini `(Ei).
6: Find a (1+ε)-approximate Steiner forest F∗ of D in H/Ei∗ via

Theorem 5.
7: Output F∗∪Ei∗ .

PROOF OF THEOREM 1. Given are planar graph Gin, and the
set of demand pairs D . We build a Steiner forest spanner H us-
ing Theorem 2. For a suitable value of k whose precise value will
be fixed below, we apply Theorem 11 to partition the edges of H
into E1,E2, . . . ,Ek. Let Ei∗ be the set having the least total length.
The total length of edges in Ei∗ is at most `(H)/k. Contracting Ei∗

produces a graph H∗ of treewidth O(k).
Theorem 5 allows us to find a solution OPT∗ corresponding to

H∗. Adding the edges Ei∗ clearly gives a solution for H whose
value is at most (1+ε)OPTD(H)+`(H)/k. Letting ε = min(1, ε̄/6)
and k = 2 f (ε)/ε̄ guarantees that the cost of this solution is

≤ (1+ ε)2OPTD(Gin)+ `(H)/k

≤ (1+ ε)2OPTD(Gin)+
ε̄

2
OPTD(Gin)

(1+ ε̄)OPTD(Gin).

The running time of all the algorithm except for the bounded-
treewidth PTAS is bounded by O(n2 logn). The parameter k above
has a singly exponential dependence on ε. Yet, the running time of
the current procedure for solving the bounded-treewidth instances
is not bounded by a low-degree polynomial; rather, k and ε appear
in the exponent in the polynomial. Were we able to improve the
running time of this procedure, we would obtain a PTAS that runs
in time O(n2 logn).

4.1 Extension to bounded-genus graphs
We can generalize this result to the case of bounded-genus graphs.

Theorem 3 does not assume any special structure for the input
graph. To construct a spanner in this case, we use the general-
ized ideas of Borradaile et al. [10]. This process does not increase
the Euler genus of the graph, since the resulting graph has a subset
of original edges. Theorem 11 works for such graphs as well, and
hence, as in Theorem 1, we can reduce the problem to a bounded-
treewidth graph on which we apply Theorem 5.

THEOREM 12. For any constant ε > 0, there is a polynomial-
time (1+ε)-approximation algorithm for the graphs of Euler genus
at most g.

5. PTAS FOR GRAPHS OF BOUNDED
TREEWIDTH

The purpose of this section is to sketch the proof of Theorem 5.
For definitions concerning tree decompositions, we refer the reader
to the full version [6]. We define a notion of group that will be
crucial in the algorithm. A group is defined by a set S of center
vertices, a set X of “interesting” vertices, and a maximum distance
r; the group GG(X ,S,r) contains S and those vertices of X that are
at distance at most r from some vertex in S.

LEMMA 13. Let T be a Steiner tree of X ⊆ V (G) with cost W.
For every ε > 0, there is a set S ⊆ X of O(1 + 1/ε) vertices such
that X = GG(X ,S,εW).

Let B = (Bi)i=1...n be the bags of a rooted nice tree decomposi-
tion of width k. Let Vi be the set of vertices appearing in Bi or in a
descendant of Bi. Let Ai be the set of active vertices at bag Bi: those
vertices v ∈Vi for which there is a demand {v,w} ∈D with w 6∈Vi.
Let Gi := G[Vi]. A Steiner forest F induces a partition πi(F) of Ai
for every i = 1, . . . ,n: let two vertices of Ai be in the same class
of πi(F) if and only if they are in the same component of F . Note
that if F is restricted to Gi, then a component of F can be split into
up to k + 1 components, thus πi(F) is a coarser partition then the
partition defined by the components of the restriction of F to Gi.

Let Π = (Πi)i=1...n be a collection such that Πi is a set of parti-
tions of Ai. If πi(F) ∈Πi for every bag Bi, then we say that F con-
forms to Π. The following lemma gives an algorithm for finding a
solution whose cost is minimum among the solutions conforming
to a given Π. The proof follows the standard dynamic programming
approach, but is quite tedious and technical, see the full version [6].

LEMMA 14. For every fixed k, there is a polynomial time algo-
rithm that, given a graph G with treewidth at most k and a collec-
tion Π, finds the minimum cost Steiner forest conforming to Π.

Next we construct a polynomial-size collection Π such that there
is a (1 + ε)-approximate solution that conforms to Π. Putting to-
gether these two results, we get a PTAS for the Steiner forest prob-
lem on bounded treewidth graphs. Recall that the collection Π con-
tains a set of partitions Πi for each i ∈ I. Each partition in Πi is
defined by a sequence ((S1,r1), . . . ,(Sp,rp)) of at most k +1 pairs
and a partition ρ of {1, . . . , p}. The pair (S j,r j) consists of a set
S j of O((k + 1)(1 + 1/ε)) vertices of Gi and a nonnegative integer
r j, which equals the distance between two vertices of G. There
are at most |V (G)|O((k+1)(1+1/ε)) · |V (G)|2 possible pairs (S j,r j)
and hence at most |V (G)|O((k+1)2(1+1/ε)) different sequences. The
number of possible partitions ρ is O(kk). Thus if we construct Πi
by considering all possible sequences constructed from every pos-
sible choice of (S j,r j), the size of Πi is polynomial in |V (G)| for
every fixed k and ε.

We construct the partition π corresponding to a particular se-
quence and ρ the following way. Each pair (S j,r j) can be used to
define a group R j = GG(Ai,S j,r j) of Ai. Roughly speaking, for
each class P of ρ, there is a corresponding class of π that contains
the union of R j for every j ∈ P. However, the actual definition is
somewhat more complicated. We want π to be a partition, which
means that the subsets of Ai corresponding to the different classes
of ρ should be disjoint. In order to ensure disjointness, we define
R′j := R j \

S j−1
j′=1 R j′ . The partition π of Ai is constructed as fol-

lows: for each class P of ρ, we let
S

j∈P R′j be a class of π. Note
that these classes are disjoint by construction. If these classes fully
cover Ai, then we put the resulting partition π into Πi; otherwise,
the sequence does not define a partition. This finishes the construc-
tion of Πi.

Before showing that there is a good approximate solution con-
forming to the collection Π defined above, we need a further defi-
nition. For two vertices u and v, we denote by u < v the fact that the
topmost bag containing u is a proper descendant of the topmost bag
containing v. Note that each bag is the topmost bag of at most one
vertex in a nice tree decomposition (recall that we can assume that
the root bag contains only a single vertex). Thus if u and v appear
in the same bag, then u < v or v < u holds, i.e., this relation defines
an ordering of the vertices in a bag. We can extend this relation
to connected subset of vertices: for two disjoint connected sets K1,
K2, K1 < K2 means that K2 has a vertex v such that u < v for every

vertex u ∈ K1, in other words, K1 < K2 means that the topmost bag
where vertices from K1 appear is a proper descendant of the top-
most bag where vertices from K2 appear. If there is a bag contain-
ing vertices from both K1 and K2, then either K1 < K2 or K2 < K1
holds. The reason for this is that the bags containing vertices from
K1 ∪K2 form a connected subtree of the tree decomposition, and
if the topmost bag in this subtree contains vertex v ∈ K1∪K2, then
u < v for every other vertex u in K1∪K2.

LEMMA 15. There is a (1+kε)-approximate solution conform-
ing to Π.

PROOF. Let F be a minimum cost Steiner forest. We describe a
procedure that adds further edges to F to transform it into a Steiner
forest F ′ that conforms to Π and has cost at most (1+kε)`(F). We
need a delicate charging argument to show that the total increase
of the cost is at most kε · `(F) during the procedure. In each step,
we charge the increase of the cost to an ordered pair (K1,K2) of
components of F . We are charging only to pairs (K1,K2) having
the property that K1 < K2 and there is a bag containing vertices
from both K1 and K2. Observe that if Bi is the topmost bag where
vertices from K1 appear, then these properties imply that a vertex
of K2 appears in this bag as well. Otherwise, if every bag contain-
ing vertices of K2 appears above Bi, then there is no bag containing
vertices from both K1 and K2; if every bag containing vertices from
K2 appears below Bi, then K1 < K2 is not possible. Thus a compo-
nent K1 can be the first component of at most k such pairs (K1,K2):
since the components are disjoint, the topmost bag containing ver-
tices from K1 can intersect at most k other components. We will
charge a cost increase of at most ε · `(K1) on the pair (K1,K2), thus
the total increase is at most kε · `(F). It is a crucial point of the
proof that we charge on (pairs of) components of the original solu-
tion F , even after several modification steps, when the components
of F ′ can be larger than the original components of F . Actually, in
the proof to follow, we will refer to three different types of compo-
nents:

(a) Components of the current solution F ′.
(b) Each component of F ′ contains one or more components of

F .
(c) If a component of F is restricted to the subset Vi, then it can

split into up to k +1 components.
To emphasize the different meanings, and be clear as well, we use
the terms a-component, b-component, and c-component.

Initially, we set F ′ := F and it will be always true that F ′ is a
supergraph of F , thus F ′ defines a partition of the b-components of
F . Suppose that there is a bag Bi such that the partition πi(F ′)
of Ai induced by F ′ is not in Πi. Let K1 < K2 < · · · < Kp be
the b-components of F intersecting Bi, ordered by the relation <.
Some of these b-components might be in the same a-component
of F ′; let ρ be the partition of {1, . . . , p} defined by F ′ on these
b-components.

Let Ai, j be the subset of Ai contained in K j . The intersection of
b-component K j with Vi gives rise to at most k + 1 c-components,
each of cost at most `(K j). Thus by Lemma 13, there is a set
S j ⊆V (K j) of at most O((k+1)(1+1/ε)) vertices such that Ai, j =
GGi(Ai, j,S j,r j) for some r j ≤ ε · `(K j). If the sequence (S1,r1),
. . . , (Sp,rp) and the partition ρ give rise to the partition πi(F ′),
then πi(F ′) ∈ Πi. Otherwise, let us investigate the reason why
this sequence and ρ do not define the partition πi(F ′). Let R j,
R′j be defined as in the definition of Πi, i.e., R j = GG(Ai,S j,r j)

and R′j := R j \
S j−1

j′=1 R j′ . It is clear that Ai, j ⊆ R j. Therefore,
every vertex of Ai is contained in some R j and hence in some
R′j. Thus the sequence does define a partition π, but maybe a
partition different from πi(F ′). Let ρ(j) be the class of ρ con-
taining j. If for every 1 ≤ j ≤ p, every vertex of Ai, j is con-
tained in

S
j′∈ρ(j) R′j′ , then π and πi(F ′) are the same. So suppose

that some vertex v ∈ Ai, j is not in
S

j′∈ρ(j) R′j′ . As v ∈ R j, this
means that v ∈ R j∗ for some j∗ < j and j∗ 6∈ ρ(j). The fact that
R j∗ = GGi(Ai,S j∗ ,r j∗) contains v ∈ Ai, j means that there is a ver-
tex u ∈ S j∗ such that dGi(u,v) ≤ r j∗ ≤ ε · `(K j∗). Note that u is a
vertex of b-component K j∗ (as u ∈ S j∗ and by definition S j∗ is a
subset of V (K j∗)) and v is a vertex of b-component K j. We mod-
ify F ′ by adding a shortest path that connects u and v. Clearly,
this increases the cost of F ′ by at most ε · `(K j∗), which we charge
on the pair (K j∗ ,K j). Note that K j and K j∗ both intersect the bag
Bi and K j∗ < K j, as required in the beginning of the proof. Fur-
thermore, K j and K j∗ are in the same a-component of F ′ after the
modification, but not before. Thus we charge at most once on the
pair (K j∗ ,K j).

Since the modification always extends F ′, the procedure described
above terminates after a finite number of steps. At this point, ev-
ery partition πi(F ′) belongs to the corresponding set Πi, that is, the
solution F ′ conforms to Π.

6. ALGORITHM FOR SERIES-PARALLEL
GRAPHS

A series-parallel graph can be built form elementary blocks us-
ing two operations: parallel connection and series connection. The
algorithm of Theorem 4 uses dynamic programming on the con-
struction of the series-parallel graph. For each subgraph arising in
the construction, we find a minimum weight forest that connects
some of the terminal pairs, connects a subset of the terminals to the
“left exit point” of the subgraph, and connects the remaining ter-
minals to the “right exit point” of the subgraph. The minimum
weight depends on the subset of terminals connected to the left
exit point, thus it seems that we need to determine exponentially
many values (one for each subset). Fortunately, it turns out that
the minimum weight is a submodular function of the subset. Fur-
thermore, we show that this function can be represented by the cut
function of a directed graph and this directed graph can be eas-
ily constructed if the directed graphs corresponding to the building
blocks of the series-parallel subgraph are available. Thus, follow-
ing the construction of the series-parallel graph, we can build all
these directed graphs and determine the value of the optimum so-
lution by the computation of a minimum cut.

Formally, a series-parallel graph G(x,y) with distinguished ver-
tices x,y is an undirected graph that can be constructed using the
following rules:
• An edge xy is a series-parallel graph.
• If G1(x1,y1) and G2(x2,y2) are series-parallel graphs, then

the graph G(x,y) obtained by identifying x1 with x2 and y1
with y2 is a series-parallel graph with distinguished vertices
x := x1 = x2 and y := y1 = y2 (parallel connection).
• If G1(x1,y1) and G2(x2,y2) are series-parallel graphs, then

the graph G(x,y) obtained by identifying y1 with x2 is a
series-parallel graph with distinguished vertices x := x1 and
y := y2 (series connection).

We prove Theorem 4 in this section by constructing a polynomial-
time algorithm to solve Steiner forest on series-parallel graphs. It
is well-known that the treewidth of a graph is at most 2 if and only
if it is a subgraph of a series parallel graph [9]. Since setting the
length of an edge to ∞ is essentially the same as deleting the edge,
it follows that Steiner forest can be solved in polynomial time on
graphs with treewidth at most 2.

Let (G,D) be an instance of Steiner forest where G is series
parallel. For i = 1, . . . ,m, denote by Gi(xi,yi) all the intermediary
graphs appearing in the series-parallel construction of G. We as-
sume that these graphs are ordered such that G = Gm and if Gi is
obtained from G j1 and G j2 , then j1, j2 < i. Let Di ⊆ D contain
those pairs {u,v} where both vertices are in V (Gi). Let Ai be those

vertices v ∈ V (Gi) for which there exists a pair {v,u} ∈ D with
u 6∈V (Gi) (note that Am = /0 and Dm = D). For every Gi, we define
two integer values ai,bi and a function fi:
• Let ai be the minimum cost of a solution F of the instance

(Gi,Di) with the additional requirements that xi and yi are
connected in F and every vertex in Ai is in the same compo-
nent as xi and yi.

• Let G′i be the graph obtained from Gi by identifying vertices
xi and yi. Let bi be the minimum cost of a solution F of the
instance (G′i,Di) with the additional requirement that Ai is in
the same component as xi = yi.

• For every S⊆ Ai, let fi(S) be the minimum cost of a solution
F of the instance (Gi,Di) with the additional requirements
that xi and yi are not connected, every v ∈ S is in the same
component as xi, and every v ∈ Ai \S is in the same compo-
nent as yi. (If there is no such F , then fi(S) = ∞.)

The main combinatorial property that allows us to solve the prob-
lem in polynomial time is that the functions fi are submodular. We
prove something stronger: the functions fi can be represented in a
compact way as the cut function of certain directed graphs.

If D is a directed graph with lengths on the edges and X ⊆V (D),
then δD(X) denotes the total length of the edges leaving X . For
X ,Y ⊆ V (D), we denote by λD(A,B) the minimum length of a di-
rected cut that separates A from B, i.e., the minimum of δD(X),
taken over all A ⊆ X ⊆ V (D) \B (if A∩B 6= /0, then λD(A,B) is
defined to be ∞).

Definition 1. Let Di be a directed graph with nonnegative edge
lengths. Let si and ti be two distinguished vertices and let Ai be a
subset of vertices of Di. We say that (Di,si, ti,Ai) represents fi if
fi(S) = λDi(S∪{si},(Ai \S)∪{ti}) for every S⊆ Ai. If si, ti, Ai are
clear from the context, then we simply say that Di represents fi.

A function f defined on the subsets of a ground set U is sub-
modular if f (X) + f (Y) ≥ f (X ∩Y) + f (X ∪Y) holds for every
X ,Y ⊆U . For example, it is well known that δG(X) is a submod-
ular function on the subsets of V (G). Submodularity is a powerful
unifying concept of combinatorial optimization: classical results
on flows, cuts, matchings, and matroids can be considered as con-
sequences of submodularity. The following (quite standard) propo-
sition shows that if a function can be represented in the sense of
Definition 1, then the function is submodular. In the proof of The-
orem 4, we show that every function fi can be represented by a di-
rected graph, thus it follows that every fi is submodular. Although
we do not use this observation directly in the paper, it explains in
some sense why the problem is polynomial-time solvable.

PROPOSITION 16. If a function fi : 2Ai → R+ can be repre-
sented by (Di,si, ti,Ai) (in the sense of Definition 1), then fi is sub-
modular.

PROOF OF THEOREM 4. We assume that in the given instance
of Steiner forest each vertex appears only in at most one pair of
D . To achieve this, if a vertex v appears in k > 1 pairs, then we
subdivide an arbitrary edge incident to v by k−1 new vertices such
that each of the k− 1 edges on the path formed by v and the new
vertices has length 0. Replacing vertex v in a pair by any of the new
vertices does not change the problem.

For every i = 1, . . . ,m, we compute the values ai, bi, and a rep-
resentation Di of fi. In the optimum solution F for the instance
(Gm,D), vertices xm and ym are either connected or not. Thus the
cost of the optimum solutions is the minimum of am and fm(/0) (re-
call that Am = /0). The value of fm(/0) can be easily determined by
computing the minimum cost s-t cut in Dm.

If Gi is a single edge e, then ai and bi are trivial to determine: ai
is the length of e and bi = 0. The directed graph Di representing fi

can be obtained from Gi by renaming xi to si, renaming yi to ti, and
either removing the edge e (if Di = /0) or replacing e with a directed
edge −→siti of length ∞ (if {u,v} ∈Di).

If Gi is not a single edge, then it is constructed from some G j1
and G j2 either by series or parallel connection. Suppose that a jp ,
b jp , and D jp for p = 1,2 are already known. We show how to
compute ai, bi, and Di in this case.

Parallel connection. Suppose that Gi is obtained from G j1 and
G j2 by parallel connection. It is easy to see that ai = min{a j1 +
b j2 ,b j1 + a j2} and bi = b j1 + b j2 . To obtain Di, we join D j1 and
D j2 by identifying s j1 with s j2 (call it si) and by identifying t j1 with
t j2 (call it ti). Furthermore, for every {u,v} ∈Di \{D j1 ∪D j2}, we
add directed edges −→uv and −→vu with length ∞.

To see that Di represents fi, suppose that F is the subgraph that
realizes the value fi(S) for some S ⊆ Ai. We have to show that
there is an appropriate X ⊆V (Di) certifying λDi(S∪{s},(Ai \S)∪
{t})≤ `(F). The graph F is the edge disjoint union of two graphs
F1 ⊆G j1 and F2 ⊆G j2 . For p = 1,2, let Sp ⊆ A jp be the set of those
vertices that are connected to x jp in Fp, it is clear that Fp connects
A jp \ Sp to y jp . Since Fp does not connect xi and yi, we have that
`(Fp) ≥ f jp(S

p). Since D jp represents f jp , there is a set Xp in D jp

with Sp∪{s jp}⊆Xp⊆V (Di)\((A jp \Sp)∪{t jp}), and δD jp
(Xp) =

f jp(S
p). We show that δDi(X1 ∪X2) = δD j1

(X1)+δD j2
(X2). Since

Di is obtained from joining D j1 and D j2 , the only thing that has
to be verified is that the edges with infinite length added after the
join cannot leave X1 ∪X2. Suppose that there is such an edge −→uv,
assume without loss of generality that u ∈ X1 and v ∈V (D j2)\X2.
This means that u ∈ S1 and v 6∈ S2. Thus F connects u with xi
and v with yi, implying that F does not connect u and v. However
{u,v} ∈ Di, a contradiction. Therefore, for the set X := X1 ∪X2,
we have

δDi(X) = δD j1
(X1)+δD j2

(X2) = f j1(S
1)+ f j2(S

2)

≤ `(F1)+ `(F2) = `(F) = fi(S),

proving the existence of the required X .
Suppose now that for some S⊆Ai, there is a set X with S∪{si}⊆

X ⊆V (Di)\ ((Ai \S)∪{ti}). We have to show that δDi(X)≥ fi(S).
For p = 1,2, let Xp = X ∩V (D jp) and Sp = A jp ∩Xp. Since D jp

represents f jp , we have that δD jp
(Xp) ≥ f jp(S

p). Let Fp be a sub-
graph of G jp realizing f jp(S

p). Let F = F1 ∪ F2; we show that
`(F) ≥ fi(Ai), since F satisfies all the requirements in the defini-
tion of fi(Ai). It is clear that F does not connect xi and yi. Con-
sider a pair {u,v} ∈ Di. If {u,v} ∈ D jp , then F connects u and v.
Otherwise, let {u,v} ∈ Di \{D j1 ∪D j2}. Suppose that F does not
connect u and v, without loss of generality, suppose that u ∈ X1 and
v 6∈ X2. This means that there is an edge −→uv of length ∞ in Di and
δDi(X) = ∞≥ fi(S) follows. Thus we proved `(F)≥ fi(Ai) and we
have

δDi(X) = δD j1
(X1)+δD j2

(X2)≥ f j1(S
1)+ f j2(S

2)

= `(F1)+ `(F2) = `(F)≥ fi(S),

what we had to show.
Series connection. Suppose that Gi is obtained from G j1 and

G j2 by series connection and let µ := y j1 = x j2 be the middle ver-
tex. It is easy to see that ai = a j1 +a j2 (vertex µ has to be connected
to both xi and yi). To compute bi, we argue as follows. Denote by
GR

j2 the graph obtained from G j2 by swapping the names of dis-
tinguished vertices x j2 and y j2 . Observe that the graph G′i in the
definition of bi arises as the parallel connection of G j1 and GR

j2 . It
is easy to see that aR

j2 , bR
j2 , and f R

j2 corresponding to GR
j2 can be

defined as aR
j2 = a j2 , bR

j2 = b j2 , and f R
j2(S) = f j2(A j2 \S). Further-

more, if D j2 represents f j2 , then the graph DR
j2 obtained from D j2

D j1 T1s j1
t j1

γ1

D j2T2 t j2
s j2

γ2

a j2
∞ ∞

0

a j1
∞∞∞

f j1 (A j1 \T1)+ f j2 (T2)

Figure 1: Construction of Di in a series connection.

by swapping the names of s j2 and t j2 represents f R
j2 . Thus we have

everything at our disposal to construct a directed graph D′i that rep-
resents the function f ′i corresponding to the parallel connection of
G j1 and GR

j2 . Now it is easy to see that bi = f ′i (Ai): graph G′i is
isomorphic to the parallel connection of G j1 and GR

j2 and the def-
inition of bi requires that Ai is connected to xi = yi. The value of
f ′i (Ai) can be determined by a simple minimum cut computation in
D′i.

Let T1 ⊆ A j1 contain those vertices v for which there exists a pair
{v,u} ∈ Di with u ∈ A j2 and let T2 ⊆ A j2 contain those vertices v
for which there exists a pair {v,u} ∈Di with u ∈ A j1 . Observe that
Ai = (A j1 \ T1)∪ (A j2 \ T2) (here we are using the fact that each
vertex is contained in at most one pair, thus a v ∈ T1 cannot be part
of any pair {v,u} with u 6∈ V (Di)). To construct Di, we connect
D j1 and D j2 with an edge −−→t j1 s j2 of length 0 and set si := s j1 and
ti := t j2 . Furthermore, we introduce two new vertices γ1,γ2 and add
the following edges (see Figure 1):
• −−→s j1 γ1 with length a j2 ,

• −−→γ1γ2 with length f j1(A j1 \T1)+ f j2(T2),

• −−→γ2t j2 with length a j1 ,

• −−→γ2γ1 with length ∞,
• −→γ1v with length ∞ for every v ∈V (D j1),

• −→vγ2 with length ∞ for every v ∈V (D j2),

• −→vγ1 with length ∞ for every v ∈ T1, and
• −→γ2v with length ∞ for every v ∈ T2.

Suppose that F is the subgraph that realizes the value fi(S) for
some S ⊆ Ai; we have to show that Di has an appropriate cut with
value fi(S). Subgraph F is the edge-disjoint union of subgraphs
F1 ⊆G j1 and F2 ⊆G j2 . We consider 3 cases: in subgraph F , vertex
µ is either connected to neither x j1 nor y j2 , connected only to x j1 ,
or connected only to y j2 .

Case 1: µ is connected to neither x j1 nor y j2 . In this case, vertices
of A j1 are not connected to yi and vertices of A j2 are not connected
to xi, hence S = Ai ∩A j1 = A j1 \ T1 is the only possibility. Fur-
thermore, F connects both T1 and T2 to µ. It follows that `(F) =
`(F1) + `(F2) ≥ f j1(A j1 \ T1) + f j2(T2). Set X = V (Di) ∪ {γ1}:
now we have δDi(X) = f j1(A j1 \T1)+ f j2(T2) ≤ `(F), X contains
(A j1 \T1)∪{si}, and is disjoint from (A j2 \T2)∪{ti}.

Case 2: µ is connected only to xi. This is only possible if A j1 \
T1 ⊆ S. Clearly, `(F1) ≥ a j1 . Subgraph F2 has to connect every
vertex in (S∩A j2)∪T2 to x j2 and every vertex Ai \S = A j2 \(S∪T2)
to y j2 . Hence `(F2) ≥ f j2((S∩A j2)∪T2) and let X2 ⊆ V (D j2) be
the corresponding cut in D j2 . Set X := X2 ∪V (D j1)∪{γ1,γ2}, we
have δDi(X) = f j2((S∩A j2)∪T2)+a j1 ≤ `(F2)+a j1 ≤ `(F) (note
that no edge with infinite length leaves X since T2 ⊆ X2). As X
contains S and contains none of the vertices in Ai \S, we proved the
existence of the required cut.

Case 3: µ is connected only to yi. Similar to case 2.

Suppose now that for some S ⊆ Ai, there is a set X ⊆ V (Di)
with S∪{si} ⊆ X ⊆V (Di)\ ((Ai \S)∪{ti}). We have to show that
δDi(X) ≥ fi(S). If δDi(X) = ∞, then there is nothing to show. In
particular, because of the edge −−→γ2γ1, we are trivially done if γ2 ∈ X
and γ1 6∈X . Thus we have to consider only 3 cases depending which
of γ1,γ2 are contained in X .

Case 1: γ1 ∈ X , γ2 6∈ X . In this case, the edges having length
∞ ensure that V (D j1) ⊆ X and V (D j2) ∩ X = /0, thus δDi(X) =
`(−−→γ1γ2) + `(−−→t j1 s j2) = f j1(A j1 \ T1) + f j2(Tj2). We also have S =
A j1 \T1. Now it is easy to see that fi(S)≤ f j1(A j1 \T1)+ f j2(Tj2):
taking the union of some F1 realizing f j1(A j1 \ T1) and some F2
realizing f j2(Tj2), we get a subset F realizing fi(S).

Case 2: γ1,γ2 ∈ X . The edges starting from γ1 and having length
∞ ensure that V (D j1) ⊆ X . Furthermore, γ2 ∈ X ensures that T2 ⊆
X . Let X2 := X ∩V (D j2), we have X2∩A j2 = T2∪ (S∩A j2), which
implies δD j2

(X2) ≥ f j2(T2 ∪ (S ∩ A j2)). Observe that δDi(X) =
a j1 + δD j2

(X2) (the term a j1 comes from the edge −→γ2ti). Let F1 be
a subset of G j1 realizing a j1 and let F2 be a subset of G j2 realizing
f j2(T2∪ (S∩A j2)). Let F := F1∪F2, note that F connects vertices
S with xi, vertices Ai \S with yi, and vertices in T1∪T2 with µ. Thus
fi(S)≤ `(F) = a j1 + f j2(T2∪ (S∩A j2)) = δDi(X), what we had to
show.

Case 3: γ1,γ2 6∈ X . Similar to Case 2.

7. REFERENCES
[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an

approximation algorithm for the generalized Steiner problem
on networks. SIAM J. Comput., 24(3):440–456, 1995.

[2] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An
approximation algorithm for the generalized Steiner problem
on networks. In STOC, pages 134–144, 1991.

[3] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff.
Improved approximation algorithms for prize-collecting
Steiner tree and TSP. In FOCS, 2009.

[4] S. Arora. Polynomial time approximation schemes for
Euclidean TSP and other geometric problems. In FOCS,
page 2, 1996.

[5] S. Arora. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems.
J. ACM, 45(5):753–782, 1998.

[6] M. Bateni, M. Hajiaghayi, and D. Marx. Approximation
schemes for Steiner forest on planar graphs and graphs of
bounded treewidth. CoRR, abs/0911.5143, 2009.

[7] P. Berman and V. Ramaiyer. Improved approximations for
the Steiner tree problem. In SODA, pages 325–334, 1992.

[8] M. Bern and P. Plassmann. The Steiner problem with edge
lengths 1 and 2. Information Processing Letters, 32:171–176,
1989.

[9] H. L. Bodlaender. A partial k-arboretum of graphs with
bounded treewidth. Theoretical Computer Science,
209(1-2):1–45, 1998.

[10] G. Borradaile, E. D. Demaine, and S. Tazari.
Polynomial-time approximation schemes for
subset-connectivity problems in bounded genus graphs. In
STACS, pages 171–182, 2009.

[11] G. Borradaile, P. N. Klein, and C. Mathieu. A
polynomial-time approximation scheme for Euclidean
Steiner forest. In FOCS, pages 115–124, 2008.

[12] G. Borradaile, C. Mathieu, and P. N. Klein. A
polynomial-time approximation scheme for Steiner tree in
planar graphs. In SODA, pages 1285–1294, 2007.

[13] E. D. Demaine, M. Hajiaghayi, and B. Mohar.
Approximation algorithms via contraction decomposition. In
SODA, pages 278–287, 2007.

[14] R. Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer, August 2005.

[15] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree
problem is NP-complete. SIAM J. Appl. Math.,
32(4):826–834, 1977.

[16] E. Gassner. The Steiner forest problem revisited. J. Disc.
Alg., In Press, Corrected Proof, 2009.

[17] M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest problems.
SIAM J. Comput., 24(2):296–317, 1995.

[18] S. Hougardy and H. J. Prömel. A 1.598 approximation
algorithm for the Steiner problem in graphs. In Proceedings
of the tenth annual ACM-SIAM symposium on Discrete
algorithms (SODA), pages 448–453, 1999.

[19] R. M. Karp. On the computational complexity of
combinatorial problems. Networks, 5:45–68, 1975.

[20] M. Karpinski and A. Zelikovsky. New approximation
algorithms for the Steiner tree problems. J. Comb. Opt.,
1(1):47–65, 1997.

[21] P. N. Klein. A linear-time approximation scheme for TSP in
undirected planar graphs with edge-weights. SIAM J.
Comput., 37(6):1926–1952, 2008.

[22] D. Marx. NP-completeness of list coloring and precoloring
extension on the edges of planar graphs. J. Graph Theory,
49(4):313–324, 2005.

[23] D. Marx. Complexity results for minimum sum edge
coloring. Discrete Applied Mathematics, 157(5):1034–1045,
2009.

[24] J. S. B. Mitchell. Guillotine subdivisions approximate
polygonal subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems. SIAM Journal on Computing,
28(4):1298–1309, 1999.

[25] H. J. Prömel and A. Steger. RNC-approximation algorithms
for the Steiner problem. In Proceedings of the 14th Annual
Symposium on Theoretical Aspects of Computer Science
(STACS), pages 559–570, 1997.

[26] M. B. Richey and R. G. Parker. On multiple Steiner subgraph
problems. Networks, 16(4):423–438, 1986.

[27] G. Robins and A. Zelikovsky. Tighter bounds for graph
Steiner tree approximation. SIAM J. Disc. Math.,
19(1):122–134, 2005.

[28] M. Thimm. On the approximability of the Steiner tree
problem. Theor. Comput. Sci., 295(1-3):387–402, 2003.

[29] A. Zelikovsky. An 11/6-approximation for the Steiner
problem on graphs. In Fourth Czechoslovakian Symp.
Combinatorics, Graphs, and Complexity (1990) in Annals of
Discrete Mathematics, volume 51, pages 351–354, 1992.

[30] A. Zelikovsky. An 11/6-approximation algorithm for the
network Steiner problem. Algorithmica, 9(5):463–470, 1993.

[31] A. Zelikovsky. Better approximation bounds for the network
and Euclidean Steiner tree problems. Technical report,
University of Virginia, Charlottesville, VA, USA, 1996.

[32] X. Zhou and T. Nishizeki. The edge-disjoint paths problem is
NP-complete for partial k-trees. In Algorithms and
computation (Taejon, 1998), pages 417–426. Springer,
Berlin, 1998.

	Introduction
	Our results and techniques

	Basic definitions
	Prize-collecting clustering
	PTAS for planar Steiner forest
	Extension to bounded-genus graphs

	PTAS for graphs of boundedtreewidth
	Algorithm for series-parallel graphs
	References

