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—— Abstract

It is an old open question in algorithmic graph theory to determine the complexity of the MAX-
IMUM INDEPENDENT SET problem on P;-free graphs, that is, on graphs not containing any
induced path on ¢ vertices. So far, polynomial-time algorithms are known only for ¢ < 5 [Lok-
shtanov et al., SODA 2014, pp. 570-581, 2014]. Here we study the existence of subexponential-
time algorithms for the problem: by generalizing an earlier result of Randerath and Schiermeyer
for t = 5 [Discrete Appl. Math., 158 (2010), pp. 1041-1044], we show that for any ¢ > 5, there is
an algorithm for MAXIMUM INDEPENDENT SET on Pi-free graphs whose running time is subex-
ponential in the number of vertices.

SCATTERED SET is the generalization of MAXIMUM INDEPENDENT SET where the vertices
of the solution are required to be at distance at least d from each other. We give a complete
characterization of those graphs H for which d-SCATTERED SET on H-free graphs can be solved
in time subexponential in the size of the input (that is, in the number of vertices plus number of

edges):
If every component of H is a path, then d-SCATTERED SET on H-free graphs with n vertices
and m edges can be solved in time 2(”“”)170(1”‘/“{”), even if d is part of the input.
Otherwise, assuming ETH, there is no 2°("*+™)_time algorithm for d-SCATTERED SET for any

fixed d > 3 on H-free graphs with n-vertices and m-edges.
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1 Introduction

The MAXIMUM INDEPENDENT SET problem (MIS, for short) is one of the fundamental
problems in discrete optimization. It takes a graph G as input, and asks for the maximum
number a(G) of mutually nonadjacent (i.e., independent) vertices in G. On unrestricted
input, it is not only NP-hard (its decision version “Is a(G) > k?” being NP-complete), but
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APX-hard as well, and, in fact, even not approximable within O(n!~¢) in polynomial time
for any & > 0 unless P=NP, as proved by Zuckerman [21]. For this reason, classes of graphs
are of definite interest on which MIS becomes tractable. One direction of this area is to
study the complexity of MIS on H -free graphs, that means graphs not containing any induced
subgraph isomorphic to a given graph H.

What do we know about the complexity of MIS on H-free graphs? One the hardness
side, it is easy to see that if G’ is obtained from G by subdividing each edge with 2t new
vertices, then «(G’) = a(G) + t|E(G)| holds. This can be used to show that MIS is NP-hard
on H-free graphs whenever H is not a forest, and also if H contains a tree component with
at least two vertices of degree larger than 2 (first observed in [2], see, e.g., [11]). As MIS is
known to be NP-hard on graphs of maximum degree at most 3, the case when H contains a
vertex of degree at least 4 is also NP-hard.

The only case not covered by the above observations is when every component of H is
either a path, or a tree with exactly one degree-3 vertex ¢ with three paths of arbitrary
lengths starting from c. Even this collection means infinitely many cases. For decades, on
these graphs H only partial results have been obtained, proving polynomial-time solvability
in some cases. A classical algorithm of Minty [16] and its corrected form by Sbihi [19] solved
the problem when H is a claw (3 paths of length 1 in the model above). This happened
in 1980. Much later, in 2004, Alekseev [3] generalized this result by an algorithm for H
isomorphic to a fork (2 paths of length 1 and one path of length 2).

Somewhat embarrassingly, even the seemingly easy case of P;-free graphs is poorly
understood (where P; is the path on ¢ vertices). MIS on P;-free graphs is not known to be
NP-hard for any t; for all we know, it could be polynomial-time solvable for every fixed ¢ > 1.
Py-free graphs (also known as cographs) have very simple structure, which can be used to
solve MIS in way that is very simple, but does not generalize to P;-free graphs for larger t.
In 2010, it was a breakthrough when Randerath and Schiermeyer [17] stated that MIS was
solvable in subexponential time, more precisely within O(C"H) for any constants C' > 1
and € < 1/4, on Ps-free graphs. Designing an algorithm based on deep results, Lokshtanov
[11] finally proved that MIS is polynomial-time solvable on Ps-free graphs. More recently, a
quasipolynomial (nl(’go(l) "-time) algorithm was found for Ps-free graphs [13].

In this paper, we explore MIS and some variants on H-free graphs from the viewpoint of
subexponential-time algorithms. That is, instead of aiming for algorithms with running time
nPM on n-vertex graphs, we ask if 2°(") algorithms are possible. Our first result shows that
there is indeed such an algorithm for P;-free graphs.

» Theorem 1. For cvery fized t > 5, MIS on n-vertex P;-free graphs is subexponential,
namely, it can be solved by a 90(n! VLT e algorithm.

In particular, for ¢ = 5, this improves the result of Randerath and Schiermeyer [17]. The
algorithm is based on the obsevation that a connected P;-free graph always has a high-degree
vertex, which can be used for efficient branching. However, the algorithm does not seem to
be extendable to H-free graphs where H is the subdivision of a K 3, hence the existence of
subexponential-time algorithms on such graphs remains an open question.

SCATTERED SET (also known under other names such as dispersion or distance-d in-
dependent set [14, 20, 1, 18, 6, 9]) is the natural generalization of MIS where the vertices
of the solution are required to be at distance at least d from each other; the size of the
largest such set will be denoted by aq(G). We can consider with d being part of the input,
or assume that d > 2 is a fixed constant, in which case we call it d-SCATTERED SET.
Clearly, MIS is exactly the same as 2-SCATTERED SET. Despite its similarity to MIS, the
branching algorithm of Theorem 1 cannot be generalized: we give evidence that there is
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no subexponential-time algorithm for 3-SCATTERED SET on Ps-free graphs. For the lower
bound, we assume the Exponential-Time Hypothesis (ETH) of Impagliazzo, Paturi, and
Zane, which can be informally stated as n-variable 3SAT cannot be solved in 2°(™) time (see
[7, 12, 10]).

» Theorem 2. Assuming ETH, there is no 2°™ -time algorithm for d-SCATTERED SET with
d = 3 on Ps-free graphs with n vertices.

In light of the negative result of Theorem 2, we slightly change our objective by aiming
for an algorithm that is subexponential in the size of the input, that is, in the total number of
vertices and edge of the graph G. As the number of edges of G can be up to quadratic in the
number of vertices, this is a weaker goal: an algorithm that is subexponential in the number
of edges is not necessarily subexponential in the number of vertices. We give a complete
characterization when such algorithms are possible for SCATTERED SET.

» Theorem 3. For every fized graph H, the following holds.

1. If every component of H is a path, then d-SCATTERED SET on H-free graphs with n
vertices and m edges can be solved in time 2("+m)170(1/‘v(m|), even if d is part of the
mput.

2. Otherwise, assuming ETH, there is no 2°"t™) _time algorithm for d-SCATTERED SET
for any fixed d > 3 on H-free graphs with n-vertices and m-edges.

The algorithmic side of Theorem 3 is based on the combinatorial observation that the
treewidth of P;-free graphs is sublinear in the number of edges, which means that standard
algorithms on bounded-treewidth graphs can be invoked to solve the problem in time
subexponential in the number of edges. It has not escaped our notice that this approach is
completely generic and could be used for many other problems (e.g., HAMILTONIAN CYCLE,
3-COLORING, ... ) where 20() . nO() or even 2t10e”" ¢ . O()_time algorithms are known on
graphs of treewidth ¢. For the lower bound part of Theorem 3, we need to examine only two
cases: claw-free graphs and Cy-free graphs (where C; is the cycle on ¢ vertices); the other
cases then follow immediately.

The algorithm described in Section 3 implies Theorem 1, while Theorems 2 and 3 are
implied by Sections 4 and 5.

2 Preliminaries

This work investigates simple undirected graphs throughout. The vertex set of graph G will
be denoted by V(G), the edge set by E(G). When we deal with a fixed graph, we write
simply V' and F respectively.

A graph is H-free if it does not contain H as an induced subgraph.

A distance-d set (d-scattered) set) in a graph G is a vertex set S C V(@) such that for
every pair of vertices in S, the distance between them is at least d in the graph. For d = 2,
we obtain the traditional notion of independent set (stable set). For d > ¢, a distance-d set
is a distance-c set as well, for example, any distance-d set is independent for d > 2.

The algorithmic problem WEIGHTED INDEPENDENT SET is the problem of maximizing
the sum of weights in a graph with nonnegative vertex weights w. The maximum is denoted
by ., (G). For a weight w everywhere 1, we obtain the usual problem Independent Set (MIS)
with maximum «(G).

Several definitions are used in the literature under the name subexponential function.
Each of them means some condition: this function (with variable p > 1, called the parameter)
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may not be larger than some bound, depending on p. Here we use two versions, where the
bound is of type exp(o(p)) and exp(p'~¢) respectively, with some € > 0. (Clearly, the second
one is the more strict.) Throughout the paper, we state our results emphasizing, which
version we mean.

An algorithm A is subexponential in parameter p > 1 if the number of steps executed by
A is a subexponential function of the parameter p. We will use here this notion for graphs,
mostly in the following cases: p is the number n of vertices, the number m of edges, or
p =n + m (which is considered to be the size of the input generally).

A problem II is subexponential if there exists some suberponential algorithm solving II.

The notation dg(z,y) and diam(G) will have the usual meaning. For a vertex z of
G, its radius rg(z) is max{dg(z,y)ly € V(G)} and for the radius of graph G, r(G) :=
min{rg(z)|xz € V(G))}. A(G) is the maximal degree in G.

P, (C}) is the chordless path (cycle) on ¢ vertices.

3 Algorithm for MIS on P;-free graphs

The method used here will be similar to that of [17]. There a special dominating set is found
(applying [5]), here a vertex of small radius will help. More precisely, the algorithm is based
on the observation that a connected P;-free graph always has a high-degree vertex. The
following definition formalizes this property.

» Definition 4. For a fixed real § > 0 and a natural number ng, let C := C(ng,d) be the
class of graphs G with the following property: For every connected induced subgraph G’ of
G with k := |V(G")| > no, A(G") > k°.

Clearly, each class C := C(ng, d) is contained in the class of P-free graphs for ¢ = ng. But if
we extend C, the result below will be stronger than a statement merely for graphs without
some long induced path.

» Definition 5. For a fixed real 6 > 0 and a natural number ng, let G := G(ng, d) be the
class of graphs G with the following property: For every connected induced subgraph G’ of
G having maximum degree at least 3, with k := |V(G’)| > ng, A(G') > k°.

The following result presents the connection of Pifree graphs with the classes above.

» Lemma 6. For every t > 5, every Pi-free graph is in C(Ny,d) (and thus in G(Np,d) as
well) with § = [t/2]™" and an appropriate No = Ny(t).

Proof. Every connected P;-free graph has radius at most diam(G) < t — 2. To obtain
stronger constants, we use a result of Erdés, Saks, and Sés [8, Theorem 2.1], which states, in
an alternative formulation, that every connected Pi-free graph has radius at most [¢/2].!

Assuming that G is connected and has maximum degree A, the number of vertices at
distance i from a vertex ¢ with minimal radius is at most A - (A — 1)1, Thus, if G is
connected, P;-free, moreover it has n vertices and maximum degree A = A(G), then for any
t > 6, we have

n<14+A) (A-1)7h <Al (1)
=1

1A subset of the present authors [4] established a stronger property which is equivalent to being P;-free.
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Algorithm 1 Algorithm DEGALPHA
Input: a graph G
1. If |V(G)| =1 then a(G) = 1.
2. If [V(G)| > 1 and G is disconnected:
a. Determine a connected component G’ of G, and set G = G — G'.
b. Determine a(G’) and a(G"), calling Algorithm DEGALPHA for G’ and G” separately,
and write a(G) = a(G’) + a(G").
3. If [V(G)| > 1 and G is connected:
a. Determine a vertex v of maximum degree, dg(v) = A(G).

b. A(G) < 2 then «(G) is the maximal size of independent set in the corresponding path
or cycle respectively.

c. Determine a(G — v) and (G — N[v]) where N[v] is the closed neighborhood of v,
calling Algorithm DEGALPHA for G — v and G — N|[v] separately, and write a(G) =
max(a(G —v), a(G — N[v]) + 1).

which corresponds to the standard Moore bound (see, e.g., inequality (1) on page 8 of [15]).
As a consequence, for ¢t > 6, we obtain

A(G) > nlt/2™ (2)

For t = 5, we get the slightly weaker bound n < 1+ A + A(A — 1) = A% + 1. However, with
additional arguments, we can show that n < A? holds if A > 2, thus the statement is true if
n > 5. (Sketch of the proof: the only way that n = A% + 1 can hold is when ¢ has exactly A
neighbors, each of which has exactly A — 1 neighbors at distance two from ¢, and they do
not share any of these neighbors. Let u and v be two neighbors of c. If a neighbor v’ # ¢
of u is nonadjacent to a neighbor v’ # ¢ of v, then v, u, ¢, v, v’ form an induced Ps. This
shows that u’ has degree at least 1+ (A — 1)?, which is more than A if A > 2.) <

Next we show that subexponential-time algorithms exists for the class G(ng, 9).

» Remark. The class G(ng,d) with appropriate parameters contains non-P;-free graphs for
any t.

» Lemma 7. For any fized real 0 < 6 < 1 and a natural number ng, the independent set
problem is subexponential (in the strong sense) for the class G(ng,d), namely, it can be solved
by an algorithm executing at most O(exp(c(8) - n'=% -1Inn)) steps, where c¢(8) is any real
constant greater than 1%6.
Proof. The conditions lead to a simple exact algorithm solving MIS (see Algorithm 1),
which is also the basis for the analysis in [17] (except that here we need not deal with
isolated vertices separately) and whose variants also appear in enumeration algorithms for
independent sets.

It is a direct consequence of the definitions that Algorithm DEGALPHA properly de-
termines the independence number of G.

Time analysis. We may and will assume that the number n of vertices is larger than a
suitably fixed threshold value ng = ng(d). Connectivity test and separation of a connected
component — as well as the determination of a maximum-degree vertex — can be performed
in O(n?) steps. Therefore, a non-decreasing integer function f(n) surely is a valid upper
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bound on the running time of Algorithm 1 on any input graph G on n vertices whenever, for
any n > ng and all integers n’ in the range n/2 < n’ < n, we have

fn) = kn®+ f(n')+ f(n—n') (3)
f(n) > kn®+ f(n—1)+ f(n—[n]) (4)

where k is a suitably chosen (not large) constant. Throughout this proof, square brackets | ]
will be used as parentheses, with the same meaning as ( ), for making some expressions more
transparent.

Note that the time bound in Lemma 7 is superpolynomial, therefore writing f in the form

f(n) =g(n) +kn*/3
requires the same growth order for f and g. Let us define
9(x) = exp(h(z))
where
h(z) = c(d) - 2'7° - Inx.
By the observations above, (3) and (4) will follow if we prove the inequalities
g9(x) = g(@") +glx -2 ()
g(x) > glz —1)+g(z —2°) (6)

for every real x large enough and every o’ with 2/2 < 2/ < z — 1. We can immediately
observe that (5) is a consequence of (6) as

g(z) — g(a') > g(a) — gz — 1) > g(z — 2°) > g(x/2) > g(z — 2/)

if x is large enough with respect to J, because g is an increasing function and ¢ is a constant
smaller than 1. Therefore only (6) remains to be proved.
We shall need the derivatives of g and h, which can be computed as

g'(x) = (exp[h(2)))" = exp[h(x)] - h'(2) = g(x) - I (x)
and
W(z) = (c(d) -z'° In x)/
= ¢(0) 270 [(1-08)Inz+1]. (7)
It is important to note for later use that
W(z—1)=(1+o0(1)) h'(z)

as z — oo. Moreover, g and h are increasing, while i’ is decreasing, except on a bounded
part of the domain.

Next, we apply Cauchy’s Mean value theorem in three steps, first for both g and h to
estimate g(z) — g(z — 1), and second for h to estimate g(x — z°), as follows. For some & and
& withz — 1 <&, <z we have

glx) =gz —=1) = ¢'(§) = exp(h(§))-1'(§)

> explh(z — 1) W (x)
= exp[h(z) = W' (£)] - M'(x)
> exp[h(x) — W (x —1)]-h'(x)

I
[¢]
»
e}
=
—~
&
|
—~
—_
+
2
—_
~—
~—
=
—
&
=
&
—~
X
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On the other hand, for some ¢ with z — 2° < ¢ < z we have h(z — 2°) = h(x) —2° - B/(£"),
therefore

gle—a’) = explh(z) —a’ - W'(")]
explh(z) — 2 1 ()] )

IN

Thus, to prove (6), it suffices to show that (8) is not smaller than (9). Taking logarithms
this means

h(z) — (14 o0(1)) - W (z) +Ink'(z) > h(z)—a2° K (z).

Or equivalently
[0 —1—0o(1)]-W(z) > —Inh'(z).

Using (7), we obtain that it is enough to prove
(c(d)+o0(1)-(1—=06)-Inxz > (6+0(1)) Inz.

This is implied by the condition on ¢(d) (even with strict inequality), completing the proof
of the lemma. |

Theorem 1 follows immediately from putting together Lemmas 6 and 7.

4  Algorithm for Scattered Set on P;-free graphs

The algorithm for SCATTERED SET for P;-free graphs hinges on the following combinatorial
bound.

» Lemma 8. For every t > 2 and for every P;-free graph with m edges, we have that G has
treewidth at most 3m*—1/(t+2),

Proof. Let n be the number of vertices of G. We may ignore components of G that are trees
or isolated vertices and hence we can assume that n < m. We consider two cases. Suppose
first that m > n!T/ @+ Then we have

A=V (42) > 1/ (D) A-1/(4+2) _ .

Obviously, n is an upper bound on the treewidth of G, and hence the claim follows.
Suppose now that m < n'T/+D  Let X be the subset of vertices of G with degree
at least n?/(#+1D The degree sum of the vertices in X is at most 2m, hence we have
|X| < 2m/n?/(tH1D) < 2p1=1/(+1) By the definition of X, the graph G' — X has maximum
degree less than n2/(t+1) . Thus each component of X is a P,-free graph with maximum degree
less than n?/(*+1) and hence Lemma 6 implies that each component of G — X has at most
n/@+HE/2] < p1=1/(t+1) vertices. In particular, this implies that G — X has treewidth at
most n'~1/ (1) As removing a vertex can decrease treewidth at most by one, it follows that
G has treewidth at most n!=1/(+1) 4| X| = 3p!~1/(H) < 31 -1/ (D) < gpl=1/(42) 1 4

It is known that SCATTERED SET can be solved in time d°®) . n®M) on graphs of
treewidth w using standard dynamic programming techniques (cf. [20, 14]). By Lemma 8, it
follows that SCATTERED SET on P;-free graphs can be solved in time

dgml—l/(t+2> 00 _ O(m!' =1/ (D) logm) _ om! 1/ (2o
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(taking into account that we may assume n = O(m) and d < n). Observe that if every
component of H is a path, then H is an induced subgraph of Py (g, which implies that
H-free graphs are Py () |-free. Thus the algorithm described here for P;-free graphs implies
the first part of Theorem 3.

5 Lower bounds for Scattered Set

A standard consequence of ETH and the so-called Sparsification Lemma is that there is no
subexponential-time algorithm for MIS even on graphs of bounded degree (see, e.g., [7]):

» Theorem 9. Assuming ETH, there is no 2°0") -time algorithm for MIS on n-vertex graphs
of maximum degree 3.

A very simple reduction can reduce MIS to 3-SCATTERED SET for Ps-free graphs, showing
that, assuming ETH, there is no algorithm subexponential in the number of vertices for the
latter problem. This proves Theorem 2 stated in the Introduction.

Proof (Theorem 2). Given an n-vertex m-edge graph G with maximum degree 3 and an
integer k, we construct a graph G’ with n +m = O(n) vertices such that o(G) = a3(G’).
This reduction proves that a 2°(™)-time algorithm for 3-SCATTERED SET could be used to
obtain a 2°("-time algorithm for MIS on graphs of maximum degree 3, and this would violate
ETH by Theorem 9.

The graph G’ contains one vertex for each vertex of G and additionally one vertex for
each edge of G. The m vertices of G’ representing the edges of G' form a clique. Moreover,
if the endpoints of an edge e € E(G) are u,v € V(G), then the vertex of G’ representing e
is connected with the vertices of G’ representing u and v. This completes the construction
of G'. Tt is easy to see that G’ is Ps-free: an induced path of G’ can contain at most two
vertices of the clique corresponding to E(G) and the vertices of G’ corresponding to the
vertices of G form an independent set.

If S is an independent set of G, then we claim that the corresponding vertices of G’
are at distance at least 3 from each other. Indeed, no two such vertices have a common
neighbor: if u,v € S and the corresponding two vertices in G’ have a common neighbor, then
this common neighbor represents an edge e of G whose endpoints are u and v, violating the
assumption that S is independent. Conversely, suppose that S’ C V(G’) is a set of k vertices
with pairwise distance at least 3 in G'. If k > 2, then all these vertices represent vertices of
G: observe that for every edge e of G, the vertex of G’ representing e is at distance at most 2
from every other non-isolated vertex of G'. We claim that S’ corresponds to an independent
set of G. Indeed, if u,v € S’ and there is an edge ¢ in G’ with endpoints v and v, then the
vertex of G’ representing e is a common neighbor of v and v, a contradiction. |

Next we give negative results on the existence of algorithms for SCATTERED SET that
have running time subexponential in the number of edges. To rule out such algorithms, we
construct instances that have bounded degree: then being subexponential in the number
of vertices or the number of edges are the same. We consider first claw-free graphs. The
key insight here is that SCATTERED SET with d = 3 in line graphs (which are claw-free) is
essentially the INDUCED MATCHING problem, for which it is easy to prove hardness results.

» Theorem 10. Assuming ETH, d-SCATTERED SET does not have a 2°™ algorithm on
n-vertex claw-free graphs of maximum degree 4 for any fized d > 3.
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Proof. Given an n-vertex graph G with maximum degree 3, we construct a claw-free graph
G’ with O(dn) vertices and maximum degree 4 such that ag(G’) = a(G). Then by Theorem 9,
a 2°(")_time algorithm for d-SCATTERED SET for n-vertex claw-free graphs of maximum
degree 4 would violate ETH.

The construction is slightly different based on the parity of d; let us first consider the case
when d is odd. Let us construct the graph G by attaching a path @, of £ = (d —1)/2 edges
to each vertex v € V(G); let us denote by €41, ..., €, the edges of this path such that e, 1
is incident with v. The graph G’ is defined as the line graph of GT, that is, each vertex of
G’ represents an edge of G and two vertices of G/ are adjacent if the corresponding two
vertices share an endpoint. It is well known that line graphs are claw-free. As G* has O(dn)
edges and maximum degree 4 (recall that G has maximum degree 3), the line graph G’ has
O(dn) vertices an edges. Thus an algorithm for SCATTERED SET with running time 2°(")
on n-vertex claw-free graphs of maximum degree 3 could be used to solve MIS on n-vertex
graphs with maximum degree 3 in time 2°("), contradicting ETH.

If there is an independent set S of size k in G, then we claim that the set S" = {e, 0 | v € S}
is a d- scattered set of size k in G’. To see this, suppose for a contradiction that there are
two vertices u,v € S such that the vertices of G’ representing e, ¢ and e, ¢ are at distance
at most d — 1 from each other. This implies that there is a path in G that has at most d
edges and whose first and last edges are e, ¢ and e, ¢, respectively. However, such a path
would need to contain all the ¢ edges of path @, and all the ¢ edges of @,, hence it can
contain at most d — 2¢ = 1 edges outside these two paths. But u and v are not adjacent in
G™ by assumption, hence more than one edge is needed to complete @, and @, to a path, a
contradiction.

Conversely, let S’ be a distance-d scattered set in G’, which corresponds to a set St of
edges in GT. Observe that for any v € V(G), at most one edge of ST can be incident to the
vertices of Q,: otherwise, the corresponding two vertices in the line graph G’ would have
distance at most £ < d. It is easy to see that if ST contains an edge incident to a vertex of
(v, then we can always replace this edge with e, ¢, as this can only move it farther away from
the other edges of ST. Thus we may assume that every edge of S is of the form e, . Let
us construct the set S = {v | e, ¢ € ST}, which has size exactly k. Then S is independent in
G: if u,v € S are adjacent in G, then there is a path of 2¢ + 1 = d edges in G whose first
an last edges are e, ¢ and e, ¢, respectively, hence the vertices of G’ corresponding to them
have distance at most d — 1.

If d > 4 is even, then the proof is similar, but we obtain the graph G by first subdividing
each edge and attaching paths of length ¢ = d/2 — 1 to each original vertex. The proof
proceeds in a similar way: if v and v are adjacent in G, then G has a path of 204+ 2 =d
edges whose first and last edges are e, ¢ and e, g, respectively, hence the vertices of G’
corresponding to them have distance at most d — 1. <

There is a well-known and easy way of proving hardness of MIS on graphs with large
girth: subdivide edges increases girth and the size of the largest independent set changes in
a controlled way.

» Lemma 11. If there is an 2°")-time algorithm for MIS on n-vertex graphs of mazimum
degree 3 and girth more than g for any fized g > 0, then ETH fails.

Proof. Let g be a fixed constant and let G be a simple graph with n vertices, m edges, and
maximum degree 3 (hence m = O(n)). We construct a graph G’ by subdividing each edge
with 2g new vertices. We have that G’ has n’ = O(n + gm) = O(n) vertices, maximum
degree 3, and girth at least 3(2¢g + 1). It is known and easy to show that subdividing the
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edges this way increases the size of the maximum independent set exactly by gm. Thus a
20(n")_ time algorithm for n’-vertex graphs of maximum degree 3 and girth at least g could
be used to give a 2°(")-time algorithm for n-vertex graphs of maximum degree g, hence ETH
would fail by Theorem 9. <

We use the lower bound of Lemma 11 to prove lower bounds for SCATTERED SET on
Ci-free graphs.

» Theorem 12. Assuming ETH, d-SCATTERED SET does not have a 2°™ algorithm on
n-vertex Cy-free graphs with mazimum degree 8 for any fired t > 3 and d > 2.

Proof. Let G be an n-vertex m-edge graph of maximum degree 3 and girth more than
t. We construct a graph G’ the following way: we subdivide each edge of G with d — 2
new vertices to create a path of length d — 1, and attach a path of length d — 1 to each of
the (d — 2)m = O(dn) new vertices created. The resulting graph has maximum degree 3,
O(d?n) vertices and edges, and girth more than (d — 1)¢ (hence it is Cj-free). We claim that
2q(G") = a(G) +m(d — 2) holds. This means that an 2°(*")-time algorithm for SCATTERED
SET n/-vertex Cy-free graphs with maximum degree 3 would give a 2°(")-time algorithm for
n-vertex graphs of maximum degree 3 and girth more than ¢ and this would violate ETH by
Lemma 11.

To see that aq(G') = a(G) + m(d — 2) holds, consider first an independent set S of G.
When constructing G’, we attached m(d — 2) paths of length d — 1. Let S” contain the
degree-1 endpoints of these m(d — 2) paths, plus the vertices of G’ corresponding to the
vertices of S. It is easy to see that any two vertices of S’ has distance at least d from each
other: S is an independent set in GG, hence the corresponding vertices in G’ are at distance
at least 2(d — 1) from each other, while the degree-1 endpoints of the paths of length d — 1
are at distance at least d from every other vertex that can potentially be in S’. This shows
aq(G") > a(G) + m(d — 2) Conversely, let S’ be a set of vertices in G’ that are at distance at
least d from each other. The set S’ contains two types of vertices: let S7 be the vertices that
correspond to the original vertices of G and let S} be the m(d — 2)d new vertices introduced
in the construction of G'. Observe that S5 can be covered by m(d — 2) paths of length
d — 1 and each such path can contain at most one vertex of S’, hence at most m(d — 2)
vertices of S’ can be in S5. We claim that 5] can contain at most «(G) vertices, as S’ N S}
corresponds to an independent set of G. Indeed, if v and v are adjacent vertices of G, then
the corresponding two vertices of G’ are at distance d — 1, hence they cannot be both present
in §’. This shows aq(G’) < a(G) + m(d — 2), completing the proof of the correctness of the
reduction. <

As the following corollary shows, putting together Theorems 10 and 12 implies The-
orem 3(2).

» Corollary 13. If H is a graph having a component that is not a path, then, assuming ETH,
d-SCATTERED SET has no 2°"t™) _time algorithm on n-vertex m-edge H-free graphs for any
fixed d > 3.

Proof. Suppose first that H is not a forest and hence some cycle C; for t > 3 appears as
an induced subgraph in H. Then the class of H-free graphs is a superset of Ci-free graphs,
which means that statement follows from Theorem 12 (which gives a lower bound for a more
restricted class of graphs).

Assume therefore that H is a forest. Then it has to have a component that is a tree, but
not a path, hence it has a vertex v of degree at least 3. The neighbors of v are independent in
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the forest H, which means that the claw K 3 appears in H as an induced subgraph. Then the
class of H-free graphs is a superset of claw-free graphs, which means that statement follows
from Theorem 10 (which gives a lower bound for a more restricted class of graphs). |

6 Conclusion

In spite of our results, it remains an open problem for an infinite class of graphs H, whether a
subexponential or even a polynomial algorithm exists for MIS on H-free graphs. Namely, as
indicated in the Introduction, among connected graphs these are the ones in which the triple
of lengths of paths starting from the unique vertex of degree three is (i, j, k) with ¢ < j <k
and with (4,4, k) # (1,1,1),(1,1,2). Moreover, for paths, it is an unsolved question whether
the problem is polynomial-time solvable for H = P;, t > 6.

Our subexponential algorithm uses simple branching which clearly works for WEIGHTED
INDEPENDENT SET as well.

For SCATTERED SET, we have seen that on P;-free graphs there are algorithms subexpo-
nential in the number of edges, and Theorem 2 shows that polynomial-time algorithms are
unlikely. But can one give a tight lower bound on the subexponential running time, perhaps
showing that 1 — O(1/t) in the exponent of the exponent is in some sense best possible?

After the acceptance of this manuscript we learned that independently and simultaneously
Brause (Ch. Brause, “A subexponential-time algorithm for the Maximum Independent Set
in P-free graphs”, Discrete Applied Mathematics, DOI:10.1016/j.dam.2016.06.016) also
proved the subexponentiality of MIS on Pi-free graphs. (His time bound is weaker than
the one in this paper.) Moreover, an unpublished result of Lokshtanov, Pilipczuk, and van
Leuwen yields an algorithm with much better bound on the running time.
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