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Abstract

In algorithmic graph theory, a classic open question is to determine the complexity of the Maximum
Independent Set problem on Pt-free graphs, that is, on graphs not containing any induced path on t
vertices. So far, polynomial-time algorithms are known only for t ≤ 5 [Lokshtanov et al., SODA 2014,
570–581, 2014], and an algorithm for t = 6 announced recently [Grzesik et al. Arxiv 1707.05491, 2017].
Here we study the existence of subexponential-time algorithms for the problem: we show that for any
t ≥ 1, there is an algorithm for Maximum Independent Set on Pt-free graphs whose running time is
subexponential in the number of vertices. Even for the weighted version MWIS, the problem is solvable
in 2O(

√
tn logn) time on Pt-free graphs. For approximation of MIS in broom-free graphs, a similar time

bound is proved.
Scattered Set is the generalization of Maximum Independent Set where the vertices of the

solution are required to be at distance at least d from each other. We give a complete characterization
of those graphs H for which d-Scattered Set on H-free graphs can be solved in time subexponential
in the size of the input (that is, in the number of vertices plus the number of edges):

• If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and
m edges can be solved in time 2O(|V (H)|

√
n+m log(n+m)), even if d is part of the input.

• Otherwise, assuming the Exponential-Time Hypothesis (ETH), there is no 2o(n+m)-time algorithm
for d-Scattered Set for any fixed d ≥ 3 on H-free graphs with n-vertices and m-edges.

1 Introduction
There are some problems in discrete optimization that can be considered fundamental. The Maximum
Independent Set problem (MIS, for short) is one of them. It takes a graph G as input, and asks for the
maximum number α(G) of mutually nonadjacent (i.e., independent) vertices in G. On unrestricted input, it
is not only NP-hard (its decision version “Is α(G) ≥ k?” being NP-complete), but APX-hard as well, and,
in fact, not even approximable within O(n1−ε) in polynomial time for any ε > 0 unless P=NP, as proved
by Zuckerman [27]. For this reason, those classes of graphs on which MIS becomes tractable are of definite
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interest. One direction of this area is to study the complexity of MIS on H-free graphs, that is, on graphs
not containing any induced subgraph isomorphic to a given graph H.

For the majority of the graphs H, we know a negative answer on the complexity question. It is easy to
see that if G′ is obtained from G by subdividing each edge with 2t new vertices, then α(G′) = α(G)+t|E(G)|
holds. This can be used to show that MIS is NP-hard on H-free graphs whenever H is not a forest, and
also if H contains a tree component with at least two vertices of degree larger than 2 (first observed in [2],
see, e.g., [19]). As MIS is known to be NP-hard on graphs of maximum degree at most 3, the case when H
contains a vertex of degree at least 4 is also NP-hard.

The above observations do not cover the case when every component of H is either a path, or a tree with
exactly one degree-3 vertex c with three paths of arbitrary lengths starting from c. There are no further
unsolved classes but even this collection means infinitely many cases. For decades, on these graphs H only
partial results have been obtained, proving polynomial-time solvability in some cases. A classical algorithm
of Minty [21] and its corrected form by Sbihi [24] solved the problem when H is a claw (3 paths of length 1
in the model above). This happened in 1980. Much later, in 2004, Alekseev [3] generalized this result by an
algorithm for H isomorphic to a fork (2 paths of length 1 and one path of length 2).

The seemingly easy case of Pt-free graphs is poorly understood (where Pt is the path on t vertices).
MIS on Pt-free graphs is not known to be NP-hard for any t; for all we know, it could be polynomial-time
solvable for every fixed t ≥ 1. P4-free graphs (also known as cographs) have a very simple structure, which
can be used to solve MIS with a linear-time recursion, but this does not generalize to Pt-free graphs for
larger t. In 2010, it was a breakthrough when Randerath and Schiermeyer [22] stated that MIS on P5-free
graphs was solvable in subexponential time, more precisely within O(Cn

1−ε

) for any constants C > 1 and
ε < 1/4. Designing an algorithm based on deep results, Lokshtanov et al. [19] finally proved that MIS is
polynomial-time solvable on P5-free graphs. More recently, a quasipolynomial (nlogO(1) n-time) algorithm was
found for P6-free graphs [18] and finally a polynomial-time algorithm for P6-free graphs was announced [13].

We explore MIS and some variants on H-free graphs from the viewpoint of subexponential-time algorithms
in this work. That is, instead of aiming for algorithms with running time nO(1) on n-vertex graphs, we ask
if 2o(n) algorithms are possible. Very recently, Brause [8] and independently the conference version of this
paper [4] observed that the subexponential algorithm of Randerath and Schiermeyer [22] can be generalized
to arbitrary fixed t ≥ 5 with running time roughly 2O(n1−1/t). Our first result shows a significantly improved
subexponential-time algorithm for every t.

Theorem 1.1. For every fixed t ≥ 5, MIS on n-vertex Pt-free graphs can be solved in subexponential time,
namely, it can be solved by a 2O(

√
n logn)-time algorithm.

The algorithm is based on the combination of two ideas. First, we generalize the observation of Randerath
and Schiermeyer [22] stating that in a large connected P5-free graph there exists a high-degree vertex. Namely,
we prove that such a vertex always exists in a large connected Pt-free graph for general t ≥ 5 and it can be
used for efficient branching. Next we prove the combinatorial result that a Pt-free graph of maximum degree
∆ has treewidth O(t∆); the proof is inspired by Gyárfás’ proof of the χ-boundedness of Pt-free graphs [14].
Thus if the maximum degree drops below a certain threshold during the branching procedure, then we can
use standard algorithmic techniques exploiting bounded treewidth.

While our algorithm works for Pt-free graphs with arbitrary large t, it does not seem to be extendable to
H-free graphs where H is the subdivision of a K1,3. Hence, the existence of subexponential-time algorithms
on such graphs remains an open question. However, we are able to give a subexponential-time constant-factor
approximation algorithm for the case when H is a (d, t)-broom. A (d, t)-broom Bd,t is a graph consisting of
a path Pt and d additional vertices of degree one, all adjacent to one of the endpoints of the path. In other
words, Bd,t is a star K1,d+1 with one of the edges subdivided to make it a path with t vertices. For d = 2,
we obtain the generalized forks and t = 3, d = 2 yields the traditional fork. We prove the following theorem;
here d and t are considered constants, hidden in the big-O notation.

Theorem 1.2. Let d, t ≥ 2 be fixed integers. One can find a d-approximation to Maximum Independent
Set on an n-vertex Bd,t-free graph G in time 2O(n3/4 logn).
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Let us remark that on K1,d+1-free graphs, a folklore linear-time (and very simple) d-approximation
algorithm exists for Maximum Independent Set; better d/2-approximation algorithms also exist [5,6,15,
26]. On fork-free graphs, Independent Set can be solved in polynomial time [3]. For general graphs, we
do not expect that a constant-factor approximation can be obtained in subexponential time for the problem.
Strong evidence for this was given by Chalermsook et al. [9], who showed that the existence of such an
algorithm would violate the Exponential-Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane, which
can be informally stated as n-variable 3SAT cannot be solved in 2o(n) time (see [10,16,17]).

Scattered Set (also known under other names such as dispersion or distance-d independent set [1,
7, 11, 20, 23, 25]) is the natural generalization of MIS where the vertices of the solution are required to be
at distance at least d from each other; the size of the largest such set will be denoted by αd(G). We can
consider with d being part of the input, or assume that d ≥ 2 is a fixed constant, in which case we call the
problem d-Scattered Set. Clearly, MIS is exactly the same as 2-Scattered Set. Despite its similarity
to MIS, the branching algorithm of Theorem 1.1 cannot be generalized: we give evidence that there is no
subexponential-time algorithm for 3-Scattered Set on P5-free graphs.

Theorem 1.3. Assuming the ETH, there is no 2o(n)-time algorithm for d-Scattered Set with d = 3 on
P5-free graphs with n vertices.

In light of the negative result of Theorem 1.3, we slightly change our objective by aiming for an algorithm
that is subexponential in the size of the input, that is, in the total number of vertices and edges of the graph
G. As the number of edges of G can be up to quadratic in the number of vertices, this is a weaker goal: an
algorithm that is subexponential in the number of edges is not necessarily subexponential in the number of
vertices. We give a complete characterization when such algorithms are possible for Scattered Set.

Theorem 1.4. For every fixed graph H, the following holds.

1. If every component of H is a path, then d-Scattered Set on H-free graphs with n vertices and m
edges can be solved in time 2O(|V (H)|

√
n+m log(n+m)), even if d is part of the input.

2. Otherwise, assuming the ETH, there is no 2o(n+m)-time algorithm for d-Scattered Set for any fixed
d ≥ 3 on H-free graphs with n-vertices and m-edges.

The algorithmic side of Theorem 1.4 is based on the combinatorial observation that the treewidth of
Pt-free graphs is sublinear in the number of edges, which means that standard algorithms on bounded-
treewidth graphs can be invoked to solve the problem in time subexponential in the number of edges. It has
not escaped our notice that this approach is completely generic and could be used for many other problems
(e.g., Hamiltonian Cycle, 3-Coloring, and so on), where 2O(t) · nO(1) or perhaps 2t·logO(1) t · nO(1)-time
algorithms are known on graphs of treewidth t. For the lower-bound part of Theorem 1.4, we need to examine
only two cases: claw-free graphs and Ct-free graphs (where Ct is the cycle on t vertices); the other cases
then follow immediately.

The paper is organized as follows. Section 2 introduces basic notation and contains some technical tools
for bounding the running time of recursive algorithms. Section 3 contains the combinatorial results that
allow us to bound the treewidth of Pt-free graphs. The algorithmic results for Maximum Independent
Set (Theorems 1.1 and 1.2) appear in Section 4. The upper and lower bounds for d-Scattered Set, which
together prove Theorem 1.4, are proved in Section 5.

2 Preliminaries
Simple undirected graphs are investigated here throughout. The vertex set of graph G will be denoted by
V (G), the edge set by E(G). The notation dG(x, y) for distance, G[X] for the subgraph induced by the vertex
set X, will have the usual meaning, similarly as NG[X] and NG(X) for the closed and open neighborhood
respectively of vertex set X in G. ∆(G) is the maximum degree in G. For a vertex set X in G, G−X means
the induced subgraph H := G[V −X]. Pt (Ct) is the chordless path (cycle) on t vertices. Finally, a graph
is H-free if it does not contain H as an induced subgraph.
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A distance-d (d-scattered) set in a graph G is a vertex set S ⊆ V (G) such that for every pair of vertices
in S, the distance between them is at least d in the graph. For d = 2, we obtain the traditional notion of
independent set (stable set). For d > c, a distance-d set is a distance-c set as well, for example, for d ≥ 2,
any distance-d set is an independent set.

The algorithmic problem Maximum Weight Independent Set is the problem of maximizing the sum
of the weights in an independent set of a graph with nonnegative vertex weights w. The maximum is denoted
by αw(G). For a weight w function that has value 1 everywhere, we obtain the usual problem Maximum
Independent Set (MIS) with maximum α(G).

An algorithm A is subexponential in parameter p > 1 if the number of steps executed by A is a subexpo-
nential function of the parameter p. We will use here this notion for graphs, mostly in the following cases: p
is the number n of vertices, the number m of edges, or p = n+m (which is considered to be the size of the
input generally). Several different definitions are used in the literature under the name subexponential func-
tion. Each of them means some condition: this function (with variable p > 1, called the parameter) may not
be larger than some bound, depending on p. Here we use two versions, where the bound is of type exp(o(p))
and exp(p1−ε) respectively, with some ε > 0. (Clearly, the second one is the more strict.) Throughout the
paper, we state our results emphasizing which version we mean. A problem Π is subexponential if there
exists some subexponential algorithm solving Π.

2.1 Time analysis of recursive algorithms
To formally reason about time complexities, we will need the following technical lemma.

Lemma 2.1. Let ∆ : R≥0 → R≥0 be a concave and nondecreasing function with ∆(0) = 0, ∆(x) ≤ x for
every x ≥ 1, and ∆(x) ≤ ∆(x/2) · (2 − γ) for some γ > 0 and every x ≥ 2. Let S, T : N → N be two
nondecreasing functions such that we have S(0) = T (0) = 0, moreover, for some universal constant c and
S(1), T (1) ≤ c and for every n ≥ 2:

T (n) ≤ 2cn logn/∆(n) + max(S(n), T (n− 1) + T (n− d∆(n)e),
max

1≤k≤b n
∆(n)

c
2k · n · T (n− dk∆(n)e)). (1)

Then, for some constant c′ depending only on c and γ, for every n ≥ 1 it holds that

T (n) ≤ 2c
′n logn/∆(n) · (S(n) + 1) .

We will use Lemma 2.1 as a shortcut to argue about time complexities of our branching algorithms; let
us now briefly explain its intuition. The function T (n) will be the running time bound of the discussed
algorithm. The term 2cn logn/∆(n) in (1) corresponds to a processing time at a single step of the algorithm;
note that this is at least polynomial in n as ∆(n) ≤ n. The terms in the max in (1) are different branching
options chosen by the algorithm. The first one, S(n), is a subcall to a different procedure, such as bounded
treewidth subroutine. The second one, T (n)+T (n−d∆(n)e), corresponds to a two-way branching on a single
vertex of degree at least ∆(n). The last one corresponds to an exhaustive branching on a set X ⊆ V (G) of
size k, such that every connected component of G−X has at most n− k∆(n) vertices.

Proof of Lemma 2.1. For notational convenience, it will be easier to assume that the functions S and T is
defined on the whole half-line R≥0 with S(x) = S(bxc) and T (x) = T (bxc).

First, let us replace max with addition in the assumed inequality. After some simplifications, this leads
to the following.

T (n) ≤ T (n− 1) + S(n) + 2cn logn/∆(n) + 2n ·
b n

∆(n)
c∑

k=1

2k · T (n− k∆(n)). (2)

From the concavity of ∆(n) it follows that

n− i−∆(n− i) ≤ n−∆(n).

4



Furthermore, the assumptions on ∆, namely the fact that ∆ is nondecreasing, concave, with ∆(0) = 0,
implies that for any 0 < y < x we have

y

x
∆(x) ≥ ∆(x)−∆(x− y).

After simple algebraic manipulation, this is equivalent to

x

∆(x)
≥ x− y

∆(x− y)
.

That is, x 7→ x/∆(x) is a nondecreasing function.
Using the fact that S(n) and T (n) are nondecreasing and the facts above, we iteratively apply (2) n times

to the first summand, obtaining the following.

T (n) ≤ n ·

S(n) + 2cn logn/∆(n) + 2n ·
b n

∆(n)
c∑

k=1

2k · T (n− k∆(n))

 . (3)

We now show the following.

Claim 2.2. Consider a sequence n0 = n and ni+1 = ni−∆(ni). Then ni = O(1) for i = O(n/∆(n)). Here,
the big-O-notation hides constants depending on γ.

Proof. By the concavity of ∆ we have ∆(n′/2) ≥ ∆(n′)/2, thus as long as ni > n0/2 we have that ni+1 ≤
ni−∆(n)/2. Consequently, for some j = O(n/∆(n)) we have nj < n0/2. We infer that we obtain ni = O(1)
at position

i = O
(

n

∆(n)
+

n/2

∆(n/2)
+

n/4

∆(n/4)
+ . . .

)
.

By the assumption that ∆(x) ≤ ∆(x/2) · (2 − γ) for some constant γ > 0 and every x ≥ 2, the sum above
can be bounded by a geometric sequence, yielding i = O(n/∆(n)). y

The above claim implies that if we iteratively apply (3) to itself, we obtain

T (n) ≤ (2n)O(n/∆(n)) ·
(
S(n) + 2cn logn/∆(n)

)
.

This finishes the proof of the lemma.

3 Gyárfás’ path-growing argument
The main (technical but useful) result of this section is the following adaptation of Gyárfás’ proof that Pt-free
graphs are χ-bounded [14].

Lemma 3.1. Let t ≥ 2 be an integer, G be a connected graph with a distinguished vertex v0 ∈ V (G) and
maximum degree at most ∆, such that G does not contain an induced path Pt with one endpoint in v0. Then,
for every weight function w : V (G) → Z≥0, there exists a set X ⊆ V (G) of size at most (t − 1)∆ + 1 such
that every connected component C of G −X satisfies w(C) ≤ w(V (G))/2. Furthermore, such a set X can
be found in polynomial time.

Proof. In what follows, a connected component C of an induced subgraphH ofG is big if w(C) > w(V (G))/2.
Note that there can be at most one big connected component in any induced subgraph of G.

If G − {v0} does not contain a big component, we can set X = {v0}. Otherwise, let A0 = {v0} and B0

be the big component of G − A0. As G is connected, every component of G − A0 is adjacent to A0, thus
v0 ∈ N(B0) holds. We will inductively define vertices v1, v2, v3, . . . such that v0, v1, v2, . . . induce a path in
G.
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Given vertices v0, v1, v2, . . . , vi, we define sets Ai+1 and Bi+1 as follows. We set Ai+1 = NG[v0, v1, . . . , vi].
If G−Ai+1 does not contain a big connected component, we stop the construction. Otherwise, we set Bi+1

to be the big connected component of G − Ai+1. During the process we maintain the invariant that Bi is
the big component of G− Ai and that vi ∈ N(Bi). Note that this is true for i = 0 by the choice of A0 and
B0.

It remains to show how to choose vi+1, given vertices v0, v1, . . . , vi and sets Ai+1 and Bi+1. Note
that Ai+1 = Ai ∪ NG[vi] and vi ∈ N(Bi), so Bi+1 is the big connected component of G[(Bi \ NG(vi))].
Consequently, we can choose some vi+1 ∈ Bi ∩NG(Bi+1) ∩NG(vi) that satisfies all the desired properties.

Since G does not contain an induced Pt with one endpoint in v0, the aforementioned process stops after
defining a set Ai+1 for some i < t− 1, when G−Ai+1 does not contain a big component. Observe that

|Ai+1| ≤ (∆ + 1) + i ·∆ = (i+ 1)∆ + 1 ≤ (t− 1)∆ + 1.

Consequently, the set X := Ai+1 satisfies the desired properties.
For the algorithmic claim, note that the entire proof can be made algorithmic in a straightforward

manner.

It is well known that if graph G has a set X of size k for every weight function w : V (G) → Z≥0 such
that every connected component C of G−X satisfies w(C) ≤ w(V (G))/2, then G has treewidth O(w) (see,
e.g., [12, Theorem 11.17(2)]). Thus Lemma 3.1 implies a treewidth bound of O(t∆). Algorithmically, it is
also a standard consequence of Lemma 3.1 that a tree decomposition of width O(t∆) can be obtained in
polynomial time. What needs to be observed is that standard 4-approximation algorithms for treewidth,
which run in time exponential in treewidth, can be made to run in polynomial time if we are given a
polynomial-time subroutine for finding the separator X as in Lemma 3.1. For completeness, we sketch the
proof here.

Corollary 3.2. A Pt-free graph with maximum degree ∆ has treewidth O(t∆). Furthermore, a tree decom-
position of this width can be computed in polynomial time.

Proof. We follow standard constant approximation algorithm for treewidth, as described in [10, Section 7.6].
This algorithm, given a graph G and an integer k, either correctly concludes that tw(G) > k or computes a
tree decomposition of G of width at most 4k + 4.

Let G be a Pt-free graph with maximum degree at most ∆. We may assume that G is connected,
otherwise we can handle the connected components separately. Let us start by setting k := (t− 1)∆ so that
any application of Lemma 3.1 gives a set of size at most k + 1.

The only step of the algorithm that runs in exponential time is the following. We are given an induced
subgraph G[W ] of G and a set S ⊆W with the following properties:

1. |S| ≤ 3k + 4 and W \ S 6= ∅;

2. both G[W ] and G[W \ S] are connected;

3. S = NG(W \ S).

The goal is to compute a set S ( Ŝ ⊆W such that |Ŝ| ≤ 4k+ 5 and every connected component of G[W \ Ŝ]

is adjacent to at most 3k + 4 vertices of Ŝ.
The construction of Ŝ is trivial for |S| < 3k+4, as we can take Ŝ = S∪{v} for an arbitrary v ∈W \S. The

crucial step happens for sets S of size exactly 3k+4. Instead of the exponential search of [10, Section 7.6], we
invoke Lemma 3.1 on the graph G[W ] and a function w : W → {0, 1} that puts w(v) = 1 if and only if v ∈ S.
The lemma returns a set X ⊆W of size at most k+ 1 such that every connected component C of G[W \X]
contains at most 3k/2 + 2 vertices of S. Since G[W \ S] is connected and (3k/2 + 2) + (k + 1) < 3k + 4, we
cannot have X ⊆ S. Consequently, Ŝ := S ∪X satisfies all the requirements.

The algorithm of [10, Section 7.6] returns that tw(G) > k only if at some step it encounters pair (W,S)

for which it cannot construct the set Ŝ. However, our method of constructing Ŝ works for every choice of
(W,S), and executes in polynomial time. Consequently, the modified algorithm of [10, Section 7.6] always
computes a tree decomposition of width at most 4k + 4 = O(t∆) in polynomial time, as desired.
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4 Subexponential algorithms based on the path-growing argument
The goal of this section is to use Corollary 2.2 to prove Theorems 1.1 and 1.2 stated in the Introduction.

4.1 Independent Set on graphs without long paths
We first prove the following statement, which implies Theorem 1.1.

Theorem 4.1. The Maximum-Weight Independent Set problem on an n-vertex Pt-free graph can be
solved in time 2O(

√
tn logn).

Proof. Let G be an n-vertex Pt-free graph. We set a threshold ∆ = ∆(n) :=
√

n log(n+1)
t . If the maximum

degree of G is at most ∆, we invoke Corollary 3.2 to obtain a tree decomposition of G of width O(t∆) =
O(
√
tn log n). By standard techniques on graphs of bounded treewidth (cf. [10]), we solve Maximum-

Weight Independent Set on G in time 2O(
√
tn logn).

Otherwise, G contains a vertex of degree greater than ∆. We choose (arbitrarily) such a vertex v and we
branch on v: either v is contained in the maximum independent set or not. In the first case we delete NG[v]
from G, in the second we delete only v from G. This gives the following recursion for the time complexity
T (n) of the algorithm.

T (n) ≤ max
(
T (n− 1) + T (n− d∆(n)e) +O(n2), 2O(

√
tn logn)

)
. (4)

Observe that we have T (n) = 2O(
√
tn logn) by Lemma 2.1 with S(n) = 2O(

√
tn logn); it is straightforward to

check that ∆(n) =
√

n log(n+1)
t satisfies all the prerequisites of Lemma 2.1. This finishes the proof of the

theorem.

4.2 Approximation on broom-free graphs
We now extend the argumentation in Theorem 4.1 to (d, t)-brooms—however, this time we are able to obtain
only an approximation algorithm. Recall that a (d, t)-broom Bd,t is a graph consisting of a path Pt and d
additional vertices of degree one, all adjacent to one of the endpoints of the path.

We now prove Theorem 1.2 from the introduction.

Proof of Theorem 1.2. Let ∆(n) = 1
2dt · n

1/4; note that such a definition fits the prerequisites of ∆(n) for
Lemma 2.1. In the complexity analysis, we will use Lemma 2.1 with this ∆(n) and without any function
S(n); this will give the promised running time bound. In what follows, whenever we execute a branching
step of the algorithm we argue that it fits into one of the subcases of the max in (1) of Lemma 2.1.

As in the proof of Theorem 4.1, as long as there exists a vertex in G of degree larger than ∆, we can
branch on such a vertex v: in one subcase, we consider independent sets not containing v (and thus delete
v from G), in the other subcase, we consider independent sets containing v (and thus delete N(v) from G).
Such a branching step can be conducted in polynomial time, and fits in the second subcase of max in (1).
Thus, we can assume henceforth that the maximum degree of G is at most ∆.

We also assume that G is connected and n > (2dt)4, as otherwise we can consider every connected
component independently and/or solve the problem by brute-force.

Later, we will also need a more general branching step. If, in the course of the analysis, we identify
a set X ⊆ V (G) such that every connected component of G − X has size at most n − |X|n

1/4

2dt , then we
can exhaustively branch on all vertices of X and independently resolve all connected components of the
remaining graph. Such a branching fits into the last case of the max in (1), and hence it again leads to the
desired time bound 2O(n3/4 logn) by Lemma 2.1.

We start with greedily constructing a set A0 with the following properties: G[A0] is connected and
n1/2 ≤ |N [A0]| ≤ n1/2 + ∆. We start with A0 being a single arbitrary vertex and, as long as |N [A0]| < n1/2,
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we add an arbitrary vertex of N(A0) to A0 and continue. Since G is connected, the process ends when
|N [A0]| ≥ n1/2; since the maximum degree of G is at most ∆, we have |N [A0]| ≤ n1/2 + ∆ < 2n1/2.

Let B be the vertex set of the largest connected component of G − N [A0]. If |B| < n − n3/4, we
exhaustively branch on X := N [A0], as X is of size at most 2n1/2, but every connected component of G−X
is of size at most n− n3/4 ≤ n− 1

2 |X|n
1/4. Hence, we are left with the case |B| > n− n3/4.

Let S = N(B). Note that A0 is disjoint from N [B]. Let A1 be the connected component of G − S
that contains A0. Since S ⊆ N(A0), we have that N [A1] ⊇ N [A0]; in particular, |N [A1]| ≥ n1/2 while, as
|B| > n− n3/4, we have |N [A1]| ≤ n3/4. Furthermore, since S ⊆ N(A0) and A0 ⊆ A1, we have N(A1) = S.

Consider now the following case: there exists v ∈ S such that N(v)∩B contains an independent set L of
size d. Observe that such a vertex v can be found by an exhaustive search in time nd+O(1).

For such a vertex v and independent set L, define D to be the vertex set of the connected component of
G− (N [L] \ {v}) that contains A1. Note that as L ⊆ B we have N [L]∩A1 = ∅, and thus such a component
D exists. Furthermore, as N(A1) = S, D contains S \ (N(L) \ {v}). In particular, D contains v, and

|D| ≥ |(A1 ∪ S) \N(L)| ≥ |N [A1]| −∆ · |L| ≥ n1/2 − dn1/4 ≥ 1

2
n1/2.

If |D| < n−n1/2, then we exhaustively branch on the set X := N [L] \ {v}, as |X| ≤ d∆ ≤ 1
2n

1/4 while every
connected component of G − X is of size at most n − 1

2n
1/2 due to D being of size at least 1

2n
1/2 and at

most n− n1/2. Consequently we can assume |D| ≥ n− n1/2.
Observe that G[D] does not contain a path Pt with one endpoint in v, as such a path, together with the set

L, would induce a Bd,t in G. Consequently, we can apply Lemma 3.1 to the graph G[D] with the vertex v0 = v
and uniform weight w(u) = 1 for every u ∈ D, obtaining a set XD ⊆ D of size |XD| ≤ (t− 1)∆ + 1 ≤ 1

2n
1/4

such that every connected component of G[D \X] has size at most n/2. We branch exhaustively on the set
X = XD ∪ (N [L] \ {v}): this set is of size at most n1/4, while every connected component of G−X is of size
at most n/2 due to the properties of XD and the fact that |D| ≥ n − n1/2. This finishes the description of
the algorithm in the case when there exists v ∈ S and an independent set L ⊆ N(v) ∩B of size d.

We are left with the complementary case, where for every v ∈ S, the maximum independent set in
N(v) ∩ B is of size less than d. We perform the following operation: by exhaustive search, we find a
maximum independent set IA in G−B and greedily take it to the solution; that is, recurse on G−N [IA] and
return the union of IA and the independent set found by the recursive call in G−N [IA]. Since |B| > n−n3/4,
the exhaustive search runs in 2n

3/4

nO(1) time, fitting the first summand of the right hand side in (1). As a
result, the graph reduces by at least one vertex, and hence the remaining running time of the algorithm fits
into the second case of the max in (1). This gives the promised running time bound. It remains to argue
about the approximation ratio; to this end, it suffices to show the following claim.

Claim 4.2. If I is a maximum independent set in G and I ′ is a maximum independent set in G −N [IA],
then |I| − |I ′| ≤ d|IA|.

Proof. Let J = I \N [IA]. Clearly, J is an independent set in G −N [IA], and thus |J | ≤ |I ′|. It suffices to
show that |I| − |J | ≤ d|IA|, that is, |I ∩N [IA]| ≤ d|IA|.

The maximality of IA implies that V (G) \ B ⊆ N [IA]. As IA is a maximum independent set in G − B,
we have that |I \B| ≤ |IA|. For every w ∈ I ∩N [IA] ∩B, pick a neighbor f(w) ∈ IA ∩N(w). Note that we
have f(w) ∈ S. Since for every vertex v ∈ S, the size of the maximum independent set in N(v) ∩ B is less
than d, we have |f−1(v)| < d for every v ∈ S ∩ I. Consequently,

|I ∩N [IA] ∩B| ≤ (d− 1)|IA ∩ S| ≤ (d− 1)|IA|.

Together with |I \B| ≤ |IA|, we have |I ∩N [IA]| ≤ d|IA|, as desired. y

This finishes the proof of Theorem 1.2.
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5 Scattered Set
We prove Theorem 1.4 in this section. The algorithm for Scattered Set for Pt-free graphs hinges on the
following combinatorial bound.

Lemma 5.1. For every t ≥ 2 and for every Pt-free graph with m edges, we have that G has treewidth
O(t
√
m).

Proof. Let X be the set of vertices of G with degree at least
√
m. The sum of the degrees of the vertices in X

is at most 2m, hence we have |X| ≤ 2m/
√
m = 2

√
m. By the definition of X, the graph G−X has maximum

degree less than
√
m. Thus by Corollary 3.2, the treewidth of G−X is O(t

√
m). As removing a vertex can

decrease treewidth at most by one, it follows that G has treewidth at most O(t
√
m) + |X| = O(t

√
m).

It is known that Scattered Set can be solved in time dO(w) · nO(1) on graphs of treewidth w using
standard dynamic programming techniques (cf. [20,25]). By Lemma 5.1, it follows that Scattered Set on
Pt-free graphs can be solved in time dO(t

√
m) · nO(1). If d is a fixed constant, then this running time can be

bounded as 2O(t
√
m)+O(logn) = 2O(t

√
n+m). If d is part of the input, then (taking into account that we may

assume d ≤ n) the running time is

dO(t
√
m) · nO(1) = 2O(t

√
m logn)+O(logn) = 2O(t

√
n+m log(n+m)).

Observe that if every component of a fixed graph H is a path, then H is an induced subgraph of P2|V (H)|,
which implies that H-free graphs are P2|V (H)|-free. Thus the algorithm described here for Pt-free graphs
implies the first part of Theorem 1.4.

5.1 Lower bounds for Scattered Set
A standard consequence of the ETH and the so-called Sparsification Lemma is that there is no subexponential-
time algorithm for MIS even on graphs of bounded degree (see, e.g., [10]):

Theorem 5.2. Assuming the ETH, there is no 2o(n)-time algorithm for MIS on n-vertex graphs of maximum
degree 3.

A very simple reduction can reduce MIS to 3-Scattered Set for P5-free graphs, showing that, assuming
the ETH, there is no algorithm subexponential in the number of vertices for the latter problem. This proves
Theorem 1.3 stated in the Introduction.

Proof of Theorem 1.3. Given an n-vertex m-edge graph G with maximum degree 3 and an integer k, we
construct a P5-free graph G′ with n + m = O(n) vertices such that α(G) = α3(G′). This reduction proves
that a 2o(n)-time algorithm for 3-Scattered Set could be used to obtain a 2o(n)-time algorithm for MIS
on graphs of maximum degree 3, and this would violate the ETH by Theorem 5.2.

We may assume that G has no isolated vertices. The graph G′ contains one vertex for each vertex of G
and additionally one vertex for each edge of G. The m vertices of G′ representing the edges of G form a
clique. Moreover, if the endpoints of an edge e ∈ E(G) are u, v ∈ V (G), then the vertex of G′ representing e
is connected with the vertices of G′ representing u and v. This completes the construction of G′. It is easy
to see that G′ is P5-free: an induced path of G′ can contain at most two vertices of the clique corresponding
to E(G) and the vertices of G′ corresponding to the vertices of G form an independent set.

If S is an independent set of G, then we claim that the corresponding vertices of G′ are at distance
at least 3 from each other. Indeed, no two such vertices have a common neighbor: if u, v ∈ S and the
corresponding two vertices in G′ have a common neighbor, then this common neighbor represents an edge
e of G whose endpoints are u and v, violating the assumption that S is independent. Conversely, suppose
that S′ ⊆ V (G′) is a set of k vertices with pairwise distance at least 3 in G′. If k ≥ 2, then all these vertices
represent vertices of G: observe that for every edge e of G, the vertex of G′ representing e is at distance
at most 2 from every other (non-isolated) vertex of G′. We claim that S′ corresponds to an independent
set of G. Indeed, if u, v ∈ S′ and there is an edge e in G′ with endpoints u and v, then the vertex of G′
representing e is a common neighbor of u and v, a contradiction.
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Next we give negative results on the existence of algorithms for Scattered Set that have running
time subexponential in the number of edges. To rule out such algorithms, we construct instances that have
bounded degree: then being subexponential in the number of vertices or the number of edges are the same.
We consider first claw-free graphs. The key insight here is that Scattered Set with d = 3 in line graphs
(which are claw-free) is essentially the Induced Matching problem, for which it is easy to prove hardness
results.

Theorem 5.3. Assuming the ETH, d-Scattered Set does not have a 2o(n) algorithm on n-vertex claw-free
graphs of maximum degree 6 for any fixed d ≥ 3.

Proof. Given an n-vertex graph G with maximum degree 3, we construct a claw-free graph G′ with O(dn)
vertices and maximum degree 4 such that αd(G′) = α(G). Then by Theorem 5.2, a 2o(n)-time algorithm for
d-Scattered Set for n-vertex claw-free graphs of maximum degree 4 would violate the ETH.

The construction is slightly different based on the parity of d; let us first consider the case when d is odd.
Let us construct the graph G+ by attaching a path Qv of ` = (d− 1)/2 edges to each vertex v ∈ V (G); let
us denote by ev,1, . . . , ev,` the edges of this path such that ev,1 is incident with v. The graph G′ is defined
as the line graph of G+, that is, each vertex of G′ represents an edge of G+ and two vertices of G′ are
adjacent if the corresponding two vertices share an endpoint. It is well known that line graphs are claw-free.
As G+ has O(dn) edges and maximum degree 4 (recall that G has maximum degree 3), the line graph G′
has maximum degree 6 with O(dn) vertices an edges. Thus an algorithm for Scattered Set with running
time 2o(n) on n-vertex claw-free graphs of maximum degree 3 could be used to solve MIS on n-vertex graphs
with maximum degree 3 in time 2o(n), contradicting the ETH.

If there is an independent set S of size k in G, then we claim that the set S′ = {ev,` | v ∈ S} is a
d-scattered set of size k in G′. To see this, suppose for a contradiction that there are two vertices u, v ∈ S
such that the vertices of G′ representing eu,` and ev,` are at distance at most d − 1 from each other. This
implies that there is a path in G+ that has at most d edges and whose first and last edges are eu,` and ev,`,
respectively. However, such a path would need to contain all the ` edges of path Qu and all the ` edges of
Qv, hence it can contain at most d− 2` = 1 edges outside these two paths. But u and v are not adjacent in
G+ by assumption, hence more than one edge is needed to complete Qu and Qv to a path, a contradiction.

Conversely, let S′ be a distance-d scattered set in G′, which corresponds to a set S+ of edges in G+.
Observe that for any v ∈ V (G), at most one edge of S+ can be incident to the vertices of Qv: otherwise, the
corresponding two vertices in the line graph G′ would have distance at most ` < d. It is easy to see that if
S+ contains an edge incident to a vertex of Qv, then we can always replace this edge with ev,`, as this can
only move it farther away from the other edges of S+. Thus we may assume that every edge of S+ is of the
form ev,`. Let us construct the set S = {v | ev,` ∈ S+}, which has size exactly k. Then S is independent in
G: if u, v ∈ S are adjacent in G, then there is a path of 2`+ 1 = d edges in G+ whose first an last edges are
ev,` and eu,`, respectively, hence the vertices of G′ corresponding to them have distance at most d− 1.

If d ≥ 4 is even, then the proof is similar, but we obtain the graph G+ by first subdividing each edge
and attaching paths of length ` = d/2− 1 to each original vertex. The proof proceeds in a similar way: if u
and v are adjacent in G, then G+ has a path of 2`+ 2 = d edges whose first and last edges are ev,` and eu,`,
respectively, hence the vertices of G′ corresponding to them have distance at most d− 1.

There is a well-known and easy way of proving hardness of MIS on graphs with large girth: subdividing
edges increases girth and the size of the largest independent set changes in a controlled way.

Lemma 5.4. If there is an 2o(n)-time algorithm for MIS on n-vertex graphs of maximum degree 3 and girth
more than g for any fixed g > 0, then the ETH fails.

Proof. Let g be a fixed constant and let G be a simple graph with n vertices, m edges, and maximum degree
3 (hence m = O(n)). We construct a graph G′ by subdividing each edge with 2g new vertices. We have that
G′ has n′ = O(n + gm) = O(n) vertices, maximum degree 3, and girth at least 3(2g + 1) > g. It is known
and easy to show that subdividing the edges this way increases the size of the maximum independent set
exactly by gm. Thus a 2o(n

′)- time algorithm for n′-vertex graphs of maximum degree 3 and girth at least
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g could be used to give a 2o(n)-time algorithm for n-vertex graphs of maximum degree 3, hence the ETH
would fail by Theorem 5.2.

We use the lower bound of Lemma 5.4 to prove lower bounds for Scattered Set on Ct-free graphs.

Theorem 5.5. Assuming the ETH, d-Scattered Set does not have a 2o(n) algorithm on n-vertex Ct-free
graphs with maximum degree 3 for any fixed t ≥ 3 and d ≥ 2.

Proof. Let G be an n-vertex m-edge graph of maximum degree 3 and girth more than t. We construct a
graph G′ the following way: we subdivide each edge of G with d− 2 new vertices to create a path of length
d− 1, and attach a path of length d− 1 to each of the (d− 2)m = O(dn) new vertices created. The resulting
graph has maximum degree 3, O(d2n) vertices and edges, and girth more than (d− 1)t (hence it is Ct-free).
We claim that αd(G′) = α(G) +m(d− 2) holds. This means that an 2o(n

′)-time algorithm for Scattered
Set n′-vertex Ct-free graphs with maximum degree 3 would give a 2o(n)-time algorithm for n-vertex graphs
of maximum degree 3 and girth more than t and this would violate the ETH by Lemma 5.4.

To see that αd(G′) = α(G)+m(d−2) holds, consider first an independent set S of G. When constructing
G′, we attached m(d − 2) paths of length d − 1. Let S′ contain the degree-1 endpoints of these m(d − 2)
paths, plus the vertices of G′ corresponding to the vertices of S. It is easy to see that any two vertices of
S′ has distance at least d from each other: S is an independent set in G, hence the corresponding vertices
in G′ are at distance at least 2(d − 1) ≥ d from each other, while the degree-1 endpoints of the paths of
length d − 1 are at distance at least d from every other vertex that can potentially be in S′. This shows
αd(G

′) ≥ α(G) + m(d − 2). Conversely, let S′ be a set of vertices in G′ that are at distance at least d
from each other. The set S′ contains two types of vertices: let S′1 be the vertices that correspond to the
original vertices of G and let S′2 be the vertices that come from the m(d− 2)d new vertices introduced in the
construction of G′. Observe that S′2 can be covered by m(d − 2) paths of length d − 1 and each such path
can contain at most one vertex of S′, hence at most m(d− 2) vertices of S′ can be in S′2. We claim that S′1
can contain at most α(G) vertices, as S′ ∩S′1 corresponds to an independent set of G. Indeed, if u and v are
adjacent vertices of G, then the corresponding two vertices of G′ are at distance d − 1, hence they cannot
be both present in S′. This shows αd(G′) ≤ α(G) +m(d− 2), completing the proof of the correctness of the
reduction.

As the following corollary shows, putting together Theorems 5.3 and 5.5 implies Theorem 1.4(2).

Corollary 5.6. If H is a graph having a component that is not a path, then, assuming the ETH, d-
Scattered Set has no 2o(n+m)-time algorithm on n-vertex m-edge H-free graphs for any fixed d ≥ 3.

Proof. Suppose first that H is not a forest and hence some cycle Ct for t ≥ 3 appears as an induced subgraph
in H. Then the class of H-free graphs is a superset of Ct-free graphs, which means that statement follows
from Theorem 5.5 (which gives a lower bound for a more restricted class of graphs).

Assume therefore that H is a forest. Then it must have a component that is a tree, but not a path, hence
it has a vertex v of degree at least 3. The neighbors of v are independent in the forest H, which means
that the claw K1,3 appears in H as an induced subgraph. Then the class of H-free graphs is a superset of
claw-free graphs, which means that statement follows from Theorem 5.3 (which gives a lower bound for a
more restricted class of graphs).
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