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Abstract. We consider the problem of partitioning the vertices of an n-vertex graph with
maximum degree d into k classes V1, . . . , Vk of size at most dn/ke in a way that minimizes the
number of pairs (i, j) for which there is an edge between Vi and Vj . We show that there is always

such a partition with O(k2−2/d) adjacent pairs and this bound is tight. This problem is related to
questions about the depth of certain graph embeddings, which have been used in the study of the
complexity of subgraph and constraint satisfaction problems.
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1. Introduction. If we randomly partition the vertices of a large graph G into
a small number k of classes V1, . . . , Vk of roughly equal sizes, then we expect that
every pair (Vi, Vj) of classes is adjacent (meaning that there is at least one edge with
one endpoint in Vi and the other in Vj). This is true even if the graph G is sparse,
for example, if it is a d-regular graph for any fixed positive d. The first question we
investigate is whether it is always possible to partition the vertices in a balanced way
into k classes such that the number of pairs of classes that are adjacent is significantly
less than the total number

(
k
2

)
of all pairs. Of course, no such partition is possible if

G is a clique, thus this question makes sense only for sparser classes of graphs. We
show that for graphs of maximum degree d, the answer is about k2−2/d in a fairly
tight sense: every sufficiently large graph with maximum degree d has a partition
where only O(k2−2/d) pairs are used, while there are graphs for which Ω(k2−2/d)
pairs are needed. The precise statement of the upper bound (proved in Section 2) is
the following:

Theorem 1.1. For d ≥ 2, there is a constant cd > 0 such that for every k > 0,
d ≥ 2, and d-regular graph F with n ≥ n0(k) vertices, the vertices of F can be
partitioned into k classes V1, . . . , Vk, each of size at most dn/ke, such that there are
at most cd ·k2−2/d unordered pairs {i, j} with i 6= j for which Vi and Vj are adjacent.

Theorem 1.1 is somewhat surprising: it says that every d-regular graph (even a
random d-regular graph) is structured at a certain large scale. The actual statement
we prove is stronger than Theorem 1.1: for every k and d, we give an explicit set Sk,d
of O(k2−2/d) pairs such that every sufficiently large d-regular graph F has a partition
with pattern Sk,d (meaning that Sk,d describes which pairs of classes can be adjacent).
The construction of Sk,d is similar to the construction of universal graphs by Alon
and Capalbo [1].

We prove the lower bound by showing that with high probability, a random d-
regular graph needs Ω(k2−2/d) pairs (Section 3). We say that an n-vertex random
graph satisfies a property asymptotically almost surely (a.a.s for short), if the proba-
bility it satisfies it tends to 1 as n tends to infinity.
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Theorem 1.2. For every fixed d > 2 there is a constant cd > 0 such that for
every k > k0(d), and even n > n0(k), the following holds. Let F be a random d-
regular graph on n vertices. Then a.a.s, for every partition V1, . . . , Vk of the vertices
of V into k classes with |Vi| ≤ 10n/k for every 1 ≤ i ≤ k, there are at least cd ·k2−2/d
unordered pairs {i, j}, i 6= j such that Vi and Vj are adjacent.

We also prove a variant of Theorem 1.2 where we allow at most n/k1−ε vertices
in each class instead of O(n/k), and we show that Ω(k2−2/d−3ε) pairs are required,
even after removing any set of εn edges of F (Theorem 3.1).

Another way of looking at the partitioning problems treated in Theorems 1.1
and 1.2 is via homomorphisms. A homomorphism from a graph F to a graph G is
a (not necessarily injective) mapping φ : V (F ) → V (G) such that if uv ∈ E(F ),
then φ(u)φ(v) ∈ E(G). The partitions in Theorems 1.1 and 1.2 can be interpreted
as a homomorphism from F to some k-vertex graph G having a certain number of
edges (and a loop at each vertex) and a balance requirement bounding the number
of vertices in F that can be mapped to a vertex of G. It will be useful to keep this
interpretation in mind, especially since we use techniques from [1] stated in terms of
homomorphisms.

Embeddings of bounded depth. Our understanding of sparse partitions can
be used to resolve problems arising in a different context. Recall that F is a minor
of G if there is a mapping φ assigning disjoint connected subsets of G to each vertex
of F such that for every edge uv of F there is an edge of G intersecting both φ(u)
and φ(v). In [12], this notion was generalized in the following way: in an embedding
of depth d we do not require the sets φ(u) to be disjoint, but we require instead that
each vertex of G appears in the image of at most d vertices of F . For every edge uv
of F , we require that φ(u) and φ(v) touch, that is, either they intersect or there is
an edge between them. Clearly, F has an embedding of depth 1 into G if and only
if F is a minor of G. For every F and G, graph F has a trivial embedding of depth
|V (G)| into G by mapping every vertex of F to the same vertex of G. The following
result of [12] shows that, intuitively, larger treewidth1 of G means that it has better
embedding power in the sense that we can guarantee smaller depth when embedding
into G:

Theorem 1.3 ([12]). There is a function m0(G) and a universal constant c > 0
such that for every k ≥ 1, if G is a graph with treewidth at least k and H is a graph
with |E(H)| = m ≥ m0(G) and no isolated vertices, then H has an embedding into G
with depth at most dcm log k/ke.

(Note that In Theorem 1.3, we expect that H is much larger than G.) Since there
are graphs G whose treewidth is linear in |V (G)| and if H has no isolated vertices, then
m = |E(H)| ≥ |V (H)|/2, the dcm log k/ke bound in the statement of Theorem 1.3
cannot be improved to o(m/k). Thus Theorem 1.3 is tight, up to a O(log k) factor.

Theorem 1.3 was used in [12] as an essential tool to prove complexity results for
constraint satisfaction and subgraphs problems (see later in the introduction). In
the hope of making these results tighter, it was raised as an open question whether
Theorem 1.3 remains true if the log k factor is removed from the bound on the depth.
In Section 4, we answer this question in the negative: the bound m log k/k in Theo-
rem 1.3 is tight (up to constant factors). We prove that the bound is tight even for
graphs whose treewidth is linear in the number of vertices.

1The exact definition of treewidth is not essential for the current paper, it is sufficient to know
that treewidth is a graph measure and many algorithmic problems become easier on graphs of small
treewidth, see e.g., [5, 4].
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Theorem 1.4. There is an infinite family G of graphs and a universal constant
c, such that every graph G ∈ G has treewidth at least c|V (G)|, and for every G ∈ G,
there exist arbitrarily large 3-regular graphs H such that every embedding of H into
G has depth at least (cm log k)/k, where m = |E(H)| and k is the treewidth of G.

As the log k factor cannot be removed from Theorem 1.3 in general, we investigate
families of graphs where this is possible and Theorem 1.3 holds in the strongest
possible way. Theorem 1.4 shows that this is a nontrivial question even for graphs
where treewidth and the number of vertices have the same order. Let us say that
a family G of graphs has the tight embedding property if Theorem 1.3 is true with a
dcm/|V (G)|e bound on the depth when G is restricted to the class G. It can be shown
that for such a class, the treewidth of every graph in the family has to be linear in
its number of vertices.2 For example, line graphs of cliques form such a class: the
line graph of the k-clique has O(k2) vertices, treewidth Θ(k2), and it is shown in [12]
that this class has the tight embedding property. Notice that the average degree of
the line graph of the k-clique is Θ(k), i.e., square root of the number of vertices. Are
there classes of graphs with the tight embedding property having significantly smaller
average degree? We show (Section 4) that the average degree has to be polynomial
in the number of vertices, but the exponent can be arbitrary small.

Theorem 1.5. (1) If G has the tight embedding property, then there is a δ > 0
such that every G ∈ G has average degree Ω(|V (G)|δ).
(2) For every δ > 0, there is a class Gδ having the tight embedding property such that
for every G ∈ Gδ, the average degree of G is O(|V (G)|δ).

Complexity implications. The main goal of [12] was to understand the com-
plexity of constraint satisfaction problems in terms of the treewidth of the so-called
primal graph. Rather than defining constraint satisfaction problems and going through
the relevant background, we can discuss the problem in an essentially equivalent way
in terms of (colored) subgraph problems. Given two graphs G and H, the Subgraph
Isomorphism problem asks if G is a subgraph of H. In the colored (or more precisely,
partitioned) version of the problem, the input contains a (not necessarily proper) col-
oring of the vertices of H, where the set of colors is the same as the set of vertices of
G, and we ask if G appears as a subgraph of H in such a way that every vertex v of G
is mapped to a vertex with color v. In other words, the vertices of H are partitioned
into |V (G)| classes and we want to find a subgraph isomorphic to G such that the
i-th vertex of G appears in the i-th class.

If G has k vertices and H has n vertices, then Colored Subgraph Isomorphism
can be solved in time nO(k) by brute force. If G has small treewidth, then a more
efficient solution is possible: if G has treewidth at most w, then there is an nO(w)

time algorithm for the problem [9, 2]. The main result of [12] shows that this is
essentially best possible in the sense that there is no class of graphs where significant
improvement is possible in the exponent. The result is proved under the complexity-
theoretic assumption that there is no 2o(n) time algorithm for n-variable 3SAT, which
is also known as the Exponential Time Hypothesis (ETH), see [11].

Theorem 1.6 ([12]). If there is a class G of graphs with unbounded treewidth
and an arbitrary function f such that Colored Subgraph Isomorphism with the smaller
graph G restricted to being in G can be solved in time f(G)no(w/ logw) (where w is the
treewidth of G), then ETH fails.

2More generally, we can consider families of graphs where the bound is dcm/ke if G has treewidth
k, but in this paper we restrict our investigation to graphs with the additional property that treewidth
is linear in the number of vertices.
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It is conjectured in [12] that Theorem 1.6 holds even without the logw factor in
the exponent.

Conjecture 1. There is no class G of graphs with unbounded treewidth and
no function f such that Colored Subgraph Isomorphism with the smaller graph G
restricted to be in G can be solved in time f(G)no(w) (where w is the treewidth of G).

Conjecture 1 could be proved by showing that the log k factor in Theorem 1.3
is not needed (and assuming ETH). Unfortunately, by Theorem 1.4, this is not true.
Therefore, the techniques presented in [12] are not sufficient to prove the conjecture.
This does not invalidate the conjecture, but shows that if it is true, then substantially
different techniques are needed for its proof.

As a special case of Conjecture 1, we would like to find classes of graphs where
Colored Subgraph Isomorphism is “as hard as possible”: classes for which there is
no significantly better algorithm than trying all possibilities in nO(|V (G)|) time. For
example, this is true for the class of cliques: [7, 8] showed that there is no f(k)no(k)

time algorithm for the k-Clique problem, unless ETH fails. Moreover, as discussed
in [12], if a class G has the tight embedding property, then Conjecture 1 holds for G

(assuming ETH).

For the uncolored version of Subgraph Isomorphism, the hardness proof of the
result analgous to Theorem 1.6 requires the additional condition that every graph
is a core. Recall that a graph G is a core if every homomorphism from G to G is
surjective, i.e., there is no homomorphism from G to a proper induced subgraph of G.

Theorem 1.7 ([12]). Assume that ETH is true, let G be a class of graphs having
the tight embedding property, and let f be an arbitrary function.

(1) There is no f(G)no(|V (G)|) time algorithm for Colored Subgraph Isomorphism
with the smaller graph G restricted to being in G,

(2) If every G ∈ G is a core, then the same is true for (uncolored) Subgraph
Isomorphism.

Theorem 1.5(2) provides examples of relatively sparse classes that are “as hard
as possible.”

Theorem 1.8. If there is a δ > 0 and a function f(G) such that Subgraph
Isomorphism or Colored Subgraph Isomorphism can be solved in time f(G)no(|V (G)|)

when restricted to graphs G with average degree at most |V (G)|δ, then ETH fails.

To prove Theorem 1.8 for the (uncolored) Subgraph Isomorphism problem, we
need some additional arguments: Theorem 1.7(2) applies only to graph classes that
contain only cores. By slightly modifying the construction of Theorem 1.5(2), we can
ensure that the class Gδ contains only cores, and the complexity result for (uncolored)
Subgraph Isomorphism follows.

Theorem 1.8 leaves open the question whether there are really sparse (i.e., con-
stant maximum degree) graph classes that are “as hard as possible” to find. As proved
in Theorem 1.5(1), a graph class with constant average degree cannot have the tight
embedding property, thus this approach cannot be used to construct sparse classes
that are hard to find. Note that if a graph has a linear number of edges and treewidth
linear in the number of vertices, then it contains a large expander (cf. [10, 6]). Thus
it seems that the main question that lies at the heart of Conjecture 1 is whether it
is possible to find a given k-vertex bounded-degree expander in an n-vertex graph in
time no(k).

Organization. In Section 2, we prove the existence of partitions where the
number of pairs of adjacent classes is bounded from the above. In Section 3, we
give lower bounds on the number of adjacent pairs in the partition. In Section 4, we
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translate the results into the context of bounded depth embeddings.

2. Upper Bound. In this section, we prove the existence of the partitions re-
quired by Theorem 1.1. The construction is similar to the sparse universal graph
construction of [1]. Following [1], it will be convenient to consider the partitions
as homomorphisms. We say that a homomorphism φ from F to H is ε-balanced if
(1 − ε)|V (F )|/|V (H)| ≤ |φ−1(v)| ≤ (1 + ε)|V (F )|/|V (H)| for every v ∈ V (H). Our
first result proves the existence of an ε-balanced homomorphism to a specific graph:

Theorem 2.1. Let T be an arbitrary regular connected graph and let ε > 0. Let
H be the graph whose vertex set is V (T )d and two vertices are connected if and only
if in at least two coordinates they are within distance 4 in T . Then every d-regular
graph F with n ≥ n0(T, d, ε) vertices has an ε-balanced homomorphism f into H.

Note that in particular every vertex of H is adjacent to itself, i.e., has a loop.
Assuming that d and the degree of the regular graph T are fixed constants, every
vertex of H has degree O(|V (T )|d−2). As |V (H)| = |V (T )|d, this means that H has
O(|V (H)|2−2/d) edges, which is precisely the right exponent for Theorem 1.1.

The proof of Theorem 2.1 is similar to that of the main result of [1]. In particular,
we need the following tool. Let σ : V (F ) → {1, 2, . . . , |V (F )|} be an ordering of
the vertices of F . The bandwidth of σ is the maximum length of an edge in this
ordering, that is, maxuv∈E(F ) |σ(u) − σ(v)|. The bandwidth of a graph F is the
smallest bandwidth taken over all orderings σ of V (F ).

Theorem 2.2 ([1]). Let d ≥ 2 be an integer and let F be an arbitrary graph of
maximum degree at most d. Then there are d spanning subgraphs F1, . . . , Fd, each
of bandwidth at most 4, such that every edge of F lies in exactly two graphs Fi.

Proof (of Theorem 2.1). Let F1, . . . , Fd be a decomposition of F as in Theo-
rem 2.2, and let σi : V (F ) → N be an ordering of Fi having bandwidth at most 4.
Independently for i = 1, . . . , d, let us choose a random walk wi : N → V (T ) in the
r-regular graph T : we fix an arbitrary start vertex for each walk, and in each step,
the probability of staying at the same vertex or moving to a particular neighbor is
1/(r+1). It is well known that this random walk converges to a uniform distribution,
i.e., the probability of every vertex is 1/q, where q = |V (T )|. Therefore, we can fix a
constant t0 depending on |T |, ε, and d such that no matter where we start the random
walk, every vertex has probability between (1 − ε

2 )1/d/q and (1 + ε
2 )1/d/q after any

number t ≥ t0 of steps.
We define the homomorphism φ : V (F )→ V (H) by setting φ(v) = (w1(σ1(v)), . . . ,

wd(σd(v))). To see that it is a homomorphism, consider an edge uv ∈ E(F ). By as-
sumption, there are two indices i1, i2 such that uv appears in Fi1 , Fi2 . This means
that |σi1(u)− σi1(v)| ≤ 4 and hence the distance of wi1(σi1(u)) and wi1(σi1(v)) is at
most 4 in T . Similarly, the distance of wi2(σi2(u)) and wi2(σi2(v)) is at most 4 in T .
In other words, there are at least two coordinates where the distance of φ(u) and φ(v)
is at most 4 in T , implying that φ(u) and φ(v) are adjacent in H.

Finally, we show that φ is ε-balanced with high probability: for every δ > 0, the
probability that φ is not ε-balanced is at most δ, if n = |V (F )| is sufficiently large.
For every 0 ≤ i ≤ d and a = (a1, . . . , ai) ∈ V (T )i, let Va = {(a1, . . . , ai, bi+1, . . . , bd) |
bi+1, . . . , bd ∈ V (T )}. We claim that with probability at least 1−δ, for every 0 ≤ i ≤ d
and a ∈ V (T )i, we have

(1− ε)i/dn/qi ≤ |φ−1(Va)| ≤ (1 + ε)i/dn/qi.

We say that Va is bad if it does not satisfy this requirement. For i = d, the claim
shows that (1 − ε)n/|V (H)| ≤ |φ−1(a)| ≤ (1 + ε)n/|V (H)| for every a ∈ V (H), i.e.,
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φ is ε-balanced. If 0 is the vector having dimension 0, then we define V0 = V (T )d,
hence |φ−1(V0)| = n and V0 is not bad.

For every a = (a1, . . . , ai), let us define a′ = (a1, . . . , ai−1) (for i = 1, vector a′

is 0). We show that if n is sufficiently large, then the conditional probability that Va
is bad assuming that Va′ is not bad is at most δ/qd (for i = 1, as V0 is not bad, this
is just the probability that Va is bad). If some Va is bad, then there has to be an a
such that Va is bad and Va′ is not bad. The probability that Va is bad and Va′ is not
bad is at most the conditional probability that we bounded by δ/qd. Therefore, by a
union bound, this shows that the probability that at least one bad event happens is
at most δ.

Observe that whether Va′ is bad depends only on the walks w1, . . . , wi−1, while
whether Va is bad depends only on the walks w1, . . . , wi. We show that fixing the
walks w1, . . . , wi−1 such that Va′ is not bad, the probability that walk wi makes Va
bad is at most δ/qd.

Let us enumerate the vertices v of φ−1(Va′) by increasing value of σi(v). For
1 ≤ s ≤ t0, let Xs = x1, x2, . . . be the subsequence of this enumeration containing
every t0-th vertex in this enumeration, starting with the s-th. As xj ∈ φ−1(Va′) for
every j, we know that wi′(σi′(xj)) = ai′ for every 1 ≤ i′ < i. Thus xj ∈ φ−1(Va) if
and only if wi(σi(xj)) = ai also holds. For every j′ ≤ j, we have σi(xj) ≥ σi(xj′)+ t0,
thus the definition of t0 ensures that the conditional probability P (wi(σi(xj)) = a |
wi(σi(xj′)) = b) is between (1− ε

2 )1/d/q and (1 + ε
2 )1/d/q for every a, b ∈ V (T ). Let

Y be an arbitrary subsequence y1, y2, . . . , y|Y | of Xs. The probability of the event
that wi(σi(y)) = ai for every y ∈ Y can be bounded from above by the product of
|Y | such conditional probabilities. Therefore, the probability that |Xs ∩ φ−1(Va)| ≥
(1 + ε)1/d|Xs|/q holds is not larger than the probability that the binomial random
variable B(|Xs|, (1 + ε

2 )1/d/q) is larger than (1 + ε)1/d|Xs|/q. From standard bounds,
we know that if n (and hence |Xs|) is sufficiently large, then this probability can be
bounded by an arbitrary small constant. Thus we can assume that this probability is
at most δ/(2t0q

d). Therefore, by the union bound, the upper bound on |Xs∩φ−1(Va)|
holds for every 1 ≤ s ≤ t0 with probability at least 1− δ/(2qd), hence we have

|φ−1(Va)| ≤ (1 + ε)1/d|φ−1(Va′)|/q ≤ (1 + ε)i/d|V (F )|/qi,

where the second inequality uses the assumption that Va′ is not bad. Similarly, we can
show that the lower bound on |φ−1(Va)| holds with probability at least 1 − δ/(2qd),
hence the conditional probability that Va is bad assuming Va′ is not bad is at most
δ/qd.

To obtain the result stated in Theorem 1.1, we need to improve Theorem 2.1
in two ways. First, Theorem 2.1 partitions the set of vertices into qd classes for
some integer q, while in Theorem 1.1 we allow an arbitrary number of classes. More
importantly, we need to ensure that the partition is not only ε-balanced, but every
class contains at most dn/ke vertices. This problem can be solved by a technique
of [1]: we define a bounded-degree expander on the classes and allow the vertices to
move between neighboring classes to achieve a perfectly balanced partition.

Theorem 2.3. For every d > 2 and k > 0, there is an integer n0(d, k) and a
set Sd,k of O(k2−2/d) pairs (i, j) (i, j ∈ [k]) such that the following holds. If F is a
graph on n > n0(d, k) vertices and maximum degree d, then the vertices of F can be
partitioned into k sets V1, . . . , Vk, each of size at most dn/ke, such that if Vi and Vj
are adjacent, then (i, j) ∈ Sd,k.

Proof. Let q = d(20k)1/de. Because of the big-O notation in the statement of
the theorem, we can assume that k is sufficiently large and hence q ≥ 3. Let T be
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the cycle on q vertices and let H be defined as in Theorem 2.1. Note that qd ≥ 20k
and qd < ((20k)1/d + 1)d ≤ 21k if k is sufficiently large. Therefore, 20 ≤ qd/k ≤ 21
and the vertices of H have a partition U1, . . . , Uk such that 20 ≤ |Ui| ≤ 21 for every
1 ≤ i ≤ k.

Let M be a bounded-degree expander on [k] with the property that for every
subset X of at most half the vertices of M , the set X has at least |X|/9 neighbors
outside X. For every X ⊆ [k], denote by NM [X] the closed neighborhood of X, i.e.,
the set of all vertices that are in X or adjacent to a vertex of X. The set Sd,k is
constructed in the following way: the pair (i, j) (i 6= j) is in Sd,k if and only if there
is a pair (i′, j′) such that

(i) i′ ∈ NM [{i}],
(ii) j′ ∈ NM [{j}],
(iii) Ui′ and Uj′ are adjacent in H (i.e., there is an edge between a vertex of Ui′

and a vertex of Uj′).
To bound the size of Sd,k, recall first that for a fixed d, each vertex of H has degree
O(qd−2). As the set Ui′ contains at most 21 vertices of H, there can be at most
21 · O(qd−2) = O(k1−2/d) values j′ such that Ui′ and Uj′ are adjacent. Therefore, if
the degree of M is bounded by a constant c, then each 1 ≤ i ≤ k can participate in
at most c ·O(k1−2/d) · c = O(k1−2/d) pairs of Sd,k. Thus the total number of pairs in
Sd,k is O(k2−2/d), as required.

To show that the required partition V1, . . . , Vk of V (F ) exists, set ε = 0.01 and
let us use Theorem 2.1 to obtain an ε-balanced homomorphism φ : V (F ) → V (H).
This homomorphism φ defines a partition V ′1 , . . . , V ′k by setting V ′i = {v ∈ V (F ) |
φ(v) ∈ Ui}. Note that

|V ′i | ≤ 21 · 1.01n/qd ≤ 21/20 · 1.01(n/k) ≤ 1.1(n/k)

and

|V ′i | ≥ 20 · 0.99n/qd ≥ 20/21 · 0.99(n/k) ≥ 0.9(n/k).

We make the partition more balanced by allowing each vertex to move to a class that
is adjacent in M . Let us build a bipartite graph B where the first class is the set of
vertices in F and the second class contains dn/ke vertices representing each class Vi
(i.e., the second class contains kdn/ke vertices). The edges of B are defined as follows:
v ∈ V (F ) and a vertex representing class Vi are adjacent if v ∈ V ′i′ for some i′ such
that i and i′ are adjacent in M . We show that this bipartite graph has a matching
covering V (F ). If this is true, then we obtain the partition V1, . . . , Vk by putting
vertex v to the class represented by its mate. It is clear that each class Vi contains
at most dn/ke vertices and a vertex of Vi and vertex of Vj can be adjacent only if
(i, j) ∈ Sd,k.

We use Hall’s Theorem to show that the bipartite graphB has a matching covering
V (F ). For S ⊆ V (F ), let NB(S) be the neighbors of S in B. Note that the vertices in
V ′i have the same neighborhood in B, thus it is sufficient to check the Hall condition
for every subset of S ⊆ V (F ) that is the union of some classes V ′i . Let S =

⋃
i∈X V

′
i

be such a set for some X ⊆ [k]. If |X| ≤ k/2, then |NM [X]| ≥ 10
9 |X|, hence

|NB(S)| ≥ 10

9
|X|dn/ke > 1.1(n/k)|X| ≥ |S|.

On the other hand, if |X| > k/2, then let Y = [k] \ NM [X]; clearly |Y | < k/2.
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Therefore, NM [Y ] ≥ 10
9 |Y | and∣∣∣∣∣∣
⋃

i∈NM [Y ]

V ′i

∣∣∣∣∣∣ ≥ 10

9
|Y |0.9(n/k) = |Y |(n/k).

If i ∈ NM [Y ], then V ′i is not in S, thus we can bound the size of S by

|S| ≤ n− |Y |(n/k) = (k − |Y |)(n/k) = |NM [X]|(n/k) ≤ |NM [X]|dn/ke = |NB(S)|.

Thus the Hall condition holds in this case as well.

3. Lower bound. For the proof of Theorem 1.2 stated in the introduction,
we need a lower bound on the number of labeled d-regular graphs on n vertices.
The asymptotic number of such graph is known [3], but a lower bound of the form
(n/αd)

nd/2 (for some constant αd > 0 depending only on d) will be sufficient for
our purposes. We sketch how such a bound can be obtained by considering only the
bipartite d-regular graphs having two fixed bipartite classes of size exactly n/2. Each
such bipartite graph can be obtained as the union of d matchings between the two
bipartite classes; the number of possibilities for selecting d matchings is ((n/2)!)d ≥
(n/(2e))nd/2. However, this formula might overcount the number of bipartite graphs
for two reasons: the matchings might not be disjoint (hence the union is not d-regular)
and the same bipartite graph might be obtained multiple times. It is known that the
probability of d permutations being disjoint is at least some constant c′d > 0, and each
d-regular bipartite graph can be obtained at most dnd/2 times (as each of the nd/2
edges can belong to one of the d matchings). Therefore, by setting αd appropriately
large, it is true that there are at least (n/αd)

nd/2 different d-regular bipartite graphs.
Proof (of Theorem 1.2). Let us fix a sufficiently small positive cd. Let us call a

d-regular graph F = (V,E) on n vertices bad if there is a partition V1, . . . , Vk such
that each Vi is of size at most 10n/k, and if S is defined as the set that contains

the pair {i, j} (i 6= j) if and only if Vi and Vj are adjacent, then |S| ≤ cdk
2− 2

d . We
estimate the number of bad graphs as follows. The number of allowed partitions can
be bounded by the number kn of all partitions, and the number of possibilities for
the set S can be generously bounded by 2k

2

. For a fixed partition and set S, we
bound the number of bad graphs by considering all possibilities for the edges. Each
edge is either fully contained in some Vi, or the endpoints are in Vi and Vj for some
{i, j} ∈ S. Since each Vi has size at most 10n/k, there are at most (|S|+k)·100n2/k2 ≤
100cdn

2/k
2
d + 100n2/k ≤ 200cdn

2/k
2
d such edges (where the last inequality holds if k

is sufficiently large compared to cd). Thus we can bound the number of bad graphs
by

kn · 2k
2

·
(

200cdn
2/k

2
d

dn/2

)
≤ kn · 2k

2

·
(

400cden

dk
2
d

)dn/2
= ndn/2 · 2k

2

·
(

400cde

d

)dn/2
�
(
n

αd

)dn/2
.

We used
(
a
b

)
≤ (ae/b)b in the first inequality and in the last inequality we assume that

cd is sufficiently small and n is sufficiently large. As the number of d-regular graphs on
n vertices is at least (n/αd)

nd/2, this shows that the probability of a random d-regular
graph being bad goes to zero.
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The following version of Theorem 1.2 is stronger in the sense that we allow larger
classes and a set of at most εn exceptional edges that do not respect the pairs S, but it
gives a slightly weaker bound of k2−

2
d−3ε on the size of S. In the next section, we need

this strengthening with exceptional edges in the proof of Theorem 4.1 (which in turn
is used to prove Theorem 1.4). To give a different perspective, we state the following
theorem in terms of colors, where there is a bound on the size of the color classes and
on the pairs of colors that can appear on the edges. The proof uses essentially the
same arguments as the proof of Theorem 1.2.

Theorem 3.1. For every fixed integer d > 2, real ε < 1/4, integer k > k0(ε, d)
and for every even n > n0(k) the following holds. Let F be a random d-regular graph
on n vertices. Then a.a.s., for every (not necessarily proper) coloring of the vertices
of F by k colors, so that each color appears at most n/(k1−ε) times, and for any

choice of a set S of at most k2−
2
d−3ε unordered pairs of colors, there are at least εn

edges of F whose endpoints have colors x, y with x 6= y and {x, y} 6∈ S.
Proof. Let us call a d-regular graph F = (V,E) on n vertices bad if there is a

coloring, a set S, and a subset E′ of at most εn edges such that each color appears
on at most n/(k1−ε) vertices, |S| ≤ k2−

2
d−3ε, and for every edge in E \ E′, the two

endpoints either have the same color or are colored by a pair from S. We estimate the
number of bad graphs as follows. The number of allowed colorings can be bounded
by the number kn of total colorings, and the number of possibilities for the set S can
be generously bounded by 2k

2

. For a fixed coloring and set S, we bound the number
of bad graphs by considering all possibilities for the set E′ and for the set E \ E′.
An edge of E′ can be any of the

(
n
2

)
< n2 possible edges, while the colors of the

endpoints of each edge of E \ E′ have to be in S or have to be the same. Since each
color appears on at most n/k1−ε vertices, there are at most (|S| + k) · (n/k1−ε)2 ≤
2k2−

2
d−3ε · (n/k1−ε)2 = 2n2/k

2
d+ε such edges. Thus we can bound the number of bad

graphs by

kn · 2k
2

·
(
n2

εn

)
·
(

2n2/k
2
d+ε

dn/2− εn

)
≤ kn · 2k

2

·
(en
ε

)εn
·
(

2en

(d/2− ε)k 2
d+ε

)(d/2−ε)n

≤ ndn/2 · 2k
2

· g(d)n · kn(1−( 2
d+ε)(

d
2−ε)) = ndn/2 · 2k

2

· g(d)n · k−(( d
2−

2
d−ε)εn)

≤ ndn/2 · 2k
2

· g(d)n · k−(( d
2−

2
d−

1
4 )εn) � (n/αd)

nd/2.

for some function g(d) depending only on d. In the first inequality, we used
(
a
b

)
≤

(ae/b)b; in the second inequality, we used the fact that (1/x)x can be bounded by a
constant. For the last inequality, let us observe that for every d ≥ 3, δ := d

2 −
2
d −

1
4

is positive. Thus if k is sufficiently large compared to d and 1/ε, and n is sufficiently

large compared to k and ε, then kδεn dominates 2k
2

, g(d)n, and α
nd/2
d . As the number

of d-regular graphs is at least (n/αd)
nd/2, this shows that the probability of a random

d-regular graph being bad goes to zero.

4. Bounded depth embeddings. We can use the lower bound of Section 3 to
obtain lower bounds on the depths of certain embeddings. Our first result shows that
Theorem 1.3, the dcm log k/ke upper bound from [12], is tight.

Theorem 4.1. Let G be a 3-regular graph with k vertices. Then, for all even
n > n0(k), there exists a 3-regular graph F on n vertices so that any embedding of F
into G is of depth at least Ω(n log k

k ).
Proof. Let d = 3 and ε = 1/100. We can assume that k is sufficiently large since

otherwise the theorem automatically holds due to the Ω notation. Let F be a random
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cubic graph on n vertices satisfying the requirements of Theorem 3.1. Suppose for

contradiction that there is an embedding φ of F into G having depth less than ε2n log k
3k .

Let V ′ be the set of all vertices of F that are mapped to sets of size at least ε log k;
clearly, |V ′| < εn/3. Let E′ contain all edges of F that touch V ′, we have |E′| < εn.

For each vertex v of F , choose an arbitrary vertex f(v) of φ(v) and consider f as
a coloring of F with k colors (corresponding to the vertices of G) having the property

that no color is used more than ε2n log k
3k < n/k1−ε times (assuming that k is sufficiently

large). Let S be the set of all pairs of colors {x, y}, x 6= y (i.e., pairs of vertices of
G) such that the distance of x and y in G is at most 2ε log k = 0.02 log k. Since G
is 3-regular, |S| ≤ O(k · 22ε log k) ≤ O(k1.02) < k4/3−3ε. Therefore, by Theorem 3.1,
there must be at least εn edges of F whose endpoints are colored by a pair of (two
different) colors such that this pair does not appear in S. As |E′| < εn, there is such
an edge uv ∈ E \ E′, that is, u, v 6∈ V ′. Therefore, both φ(u) and φ(v) have size
at most ε log k and {f(u), f(v)} 6∈ S implies that the distance of f(u) and f(v) is
more than 2ε log k. This means that φ(u) and φ(v) cannot touch, contradicting the
definition of embedding.

To obtain Theorem 1.4, it is sufficient to take G to be a class of 3-regular ex-
panders. It is well known that the treewidth of an expander is linear in the number
of vertices (cf. [10, 6]), and Theorem 1.4 follows.

Theorem 4.1 shows that a very sparse (3-regular) class of graphs cannot have
the tight embedding property. How dense should a class be to have this property?
The lower bound on the depth in Theorem 4.1 is a logarithmic factor larger than the
trivial lower bound Ω(n/k) and it is matched by the embedding result of Theorem 1.3.
Therefore, it might be a reasonable educated guess to expect that an extra logarithmic
factor appears here as well and an average degree of log |V (G)| is sufficient for the
tight embedding property. However, our second negative result shows that the number
of edges has to be polynomially larger than linear, i.e., the average degree has to be
|V (G)|δ for some δ > 0. The proof is a modification of the proof of Theorem 4.1.

Theorem 4.2. For every δ > 0 and k > k0(δ) the following holds. Let G be a
graph with k vertices and at most k1+δ edges. Then, for all even n > n0(k), there
exists a 3-regular graph F on n vertices so that any embedding of F into G is of depth
at least Ω( nkδ ).

Proof. Let d = 3 and ε = 1/100, and let F be a random cubic graph on n vertices
satisfying the requirements of Theorem 3.1. Assume that k is sufficiently large to
ensure that kδ > 1/δ holds. Let D be the set of those vertices of G that have degree
at least kδ/δ, we have |D| ≤ 2δk.

Suppose for contradiction that there is an embedding φ of F into G having depth

less than ε2n
6kδ . Let V ′ be the set of all vertices of F that are mapped to sets of size at

least ε/δ; clearly, |V ′| < εn/6. Let V ′′ contain those vertices of V \ V ′ whose images

intersect D, we have |V ′′| ≤ ε2n
6kδ |D| ≤ ε2n/3 < εn/6. Let E′ contain all edges of F

that touch V ′ ∪ V ′′; clearly, we have |E′| < εn.
For each vertex v of F , choose an arbitrary vertex f(v) of φ(v) and consider f

as a coloring of F with k colors having the property that no color is used more than
ε2n
6kδ < n/k1−ε times (assuming that k is sufficiently large compared to 1/δ). Let S be
the set of all pairs of colors x, y (i.e., pairs of vertices of G) such that the distance of
x and y in G \ D is at most 2ε/δ = 0.02/δ. Since every vertex of G \ D has degree
at most kδ/δ < k2δ (using kδ > 1/δ), |S| ≤ O(k · k2δ·0.02/δ) = O(k1.04) < k4/3−3ε.
Therefore, by Theorem 3.1, there must be at least εn edges of F whose endpoints are
colored by a pair of (two different) colors not appearing in S. As |E′| < εn, there is
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such an edge uv ∈ E \E′, that is, u, v 6∈ V ′ ∪V ′′. Therefore, both φ(u) and φ(v) have
size at most ε/δ and they are disjoint from D. Furthermore, {f(u), f(v)} 6∈ S implies
that the distance between f(u) and f(v) is more than 2ε/δ in G\D. This means that
φ(u) and φ(v) cannot touch, contradicting the definition of embedding.

Theorem 4.2 shows that if for every δ > 0, the class G contains infinitely many
graphs G with average degree at most |V (G)|δ, then there is no constant c such
that it is true that every graph F has an embedding into every G ∈ G with depth
c|E(F )|/|V (G)|, or in other words, G does not have the tight embedding property.
Thus if G has the tight embedding property, then there is a δ > 0 such that there
are only finitely many graphs G ∈ G with average degree at most |V (G)|δ. Therefore,
we can say that every graph G ∈ G has average degree Ω(|V (G)|δ) (by choosing the
constant hidden in the Ω notation appropriately), proving Theorem 1.5(1).

To prove Theorem 1.5(2), we construct a family of graphs having the tight em-
bedding property. This family is based on a product construction similar to the one
appearing in the proof of Theorem 2.1. This class in some sense generalizes line graphs
of cliques, and we prove the tight embedding property similarly to the way it is proved
for line graphs of cliques in [12].

LetG[k, d] be the graph whose vertex set is [k]d and two vertices (a1, . . . , ad) ∈ [k]d

and (b1, . . . , bd) ∈ [k]d are adjacent if there is exactly one value 1 ≤ i ≤ d such that
ai 6= bi. Note that G[k, d] has kd vertices and is d(k − 1)-regular.

Theorem 4.3. For integers k, d > 0 and every graph F with m > m0(k, d)
edges and no isolated vertices, there is an embedding of depth O(dm/kd) from F into
G[k, d].

Proof. First we argue that it is sufficient to prove the theorem for graphs F having
maximum degree at most 3. Otherwise, let us construct F ′ by replacing every vertex
v of F having degree d(v) with a path v1, . . . , vd(v) of d(v) vertices and let every
edge incident to v use a different copy of v on the path. Clearly, F ′ has maximum
degree at most 3 and has at most 3m edges. If there is an embedding φ′ from F ′

into G[k, d], then it can be turned into an embedding φ from F into G[k, d] by setting

φ(v) =
⋃d
i=1 φ

′(vi). It is clear that the depth of φ is not larger than the depth of φ′.
Thus in the following, we assume that F has maximum degree at most 3.

Let n be the number of vertices of F . Let us partition the vertices of F into kd

classes Va (a ∈ [k]d), each of size at most dn/kde, in an arbitrary way. Let us orient
the edges of F arbitrarily and let Ea,b be the set of edges going from Va to Vb. For
every a,b ∈ [k]d, let us partition Ea,b into classes Ec

a,b (c ∈ [k]d), each of size at most

d|Ea,b|/kde, in an arbitrary way. Let Ec
a,∗ =

⋃
b∈[k]d E

c
a,b and Ec

∗,b =
⋃

a∈[k]d E
c
a,b.

Note that

|Ec
a,∗| =

∑
b∈[k]d

|Ec
a,b| ≤

∑
b∈[k]d

d|Ea,b|/kde ≤
∑

b∈[k]d
|Ea,b|/kd + kd ≤ 3|Va|/kd + kd

≤ 3dn/kde/kd + kd ≤ 4n/k2d,

where the third inequality uses the fact every vertex in Va has degree at most 3 and
the last inequality uses that n is sufficiently large. A similar bound holds for |Ec

∗,b|.
For a = (a1, . . . , ad) and b = (b1, . . . , bd), we denote by Wa,b the walk whose i-th

vertex (0 ≤ i ≤ d) is (b1, . . . , bi, ai+1, . . . , ad). Note that if ai = bi, then the (i− 1)-st
and the i-th vertices are the same. Clearly, Wa,b is connected and contains a and b.

We define the embedding φ in the following way. First, if v ∈ Va, then let φ(v)
contain vertex a. If an edge of Ec

a,b leaves v, then we add Wa,c to φ(v); if an edge of
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Ec
b,a enters v, then we add Wc,a to φ(v). Observe that this gives a correct embedding:

φ(v) is connected and if an edge of Ec
a,b connects x and y, then φ(x) contains Wa,c

and φ(y) contains Wc,b, hence φ(x) and φ(y) intersect in vertex c.
To bound the depth of the embedding φ, let us estimate the number of vertices

of F whose images contain a particular vertex g = (g1, . . . , gd). Vertex g is in φ(v) if
a walk Wx,y containing g was added to φ(v). For every 0 ≤ i ≤ d, there are exactly
kd pairs (x,y) such that the i-th vertex of Wx,y is g: namely, the pairs (x,y) with
x = (x1, . . . , xi, gi+1, . . . , gd), y = (g1, . . . , gi, yi+1, . . . , yd) for arbitrary x1, . . . , xi,
yi+1, . . . , yd. Therefore, there are at most (d + 1)kd pairs (x,y) such that Wx,y

contains g. The path Wx,y is added to φ(v) only if an edge of Ey
x,∗ or an edge of Ex

∗,y
is incident to v. Therefore, the path Wx,y is used at most |Ey

x,∗|+ |Ex
∗,y| times. This

means that the depth of vertex g is at most

(d+ 1)kd(|Ey
x,∗|+ |Ex

∗,y|) ≤ 2(d+ 1)kd · 4n/k2d = O(dm/kd),

if m is sufficiently large.
Consider the graph class containing G[k, d] for every k ≥ 1. By Theorem 4.3,

this class has the tight embedding property. The graph G[k, d] has kd vertices and its
average degree is d(k − 1) = O(k). Thus the graph class Gδ = {G[k, d1/δe] | k ≥ 1}
satisfies the requirements of Theorem 1.5(2).

By Theorem 1.7(1), if a graph class G has the tight embedding property, then
there is no f(G)no(|V (G)|) time algorithm for the special case of Colored Subgraph
Isomorphism with the smaller graph G restricted to G. Therefore, Theorem 1.8 follows
for Colored Subgraph Isomorphism.

In order to prove Theorem 1.8 for (uncolored) Subgraph Isomorphism, we have to
use Theorem 1.7(2). Therefore, we need classes Gδ that contain only cores (recall that
a graph is a core if it has no endomorphism to any of its proper induced subgraphs).
Notice that G[k, d] is not a core: it is k-colorable (let the color of a vertex be the sum
of the coordinates modulo k) and contains a k-clique. However, by attaching a “rigid”
graph to G[k, d], we can make it a core and this modification can be done in such a
way that the size of the graph does not increase by too much, thus the class retains
the tight embedding property. Therefore, the following theorem proves Theorem 1.8
for (uncolored) Subgraph Isomorphism.

Theorem 4.4. For every d ≥ 2, there is a class of graphs having the tight
embedding property such that every member G of the class is a core and has maximum
degree O(|V (G)|1/d).

Proof. For every k ≥ 1, the class contains a graph G′[k, d], which is a supergraph
of G[k, d]. Let D be a triangle-free graph with chromatic number 4 such that any
proper induced subgraph of D is 3-colorable; for example, the Grötzsch graph is such
a graph. Let v1, . . . , vn be the vertices of G[k, d]. The graph G′[k, d] is obtained by
extending G[k, d] with the following vertices and edges:

1. a clique K1 of size k + 4,
2. a clique K2 of size k + 1,
3. a copy of D, with every vertex adjacent with every vertex of K2,
4. a path u1, . . . , u6n+1 where u1 is a vertex of K1 and u6n+1 is a vertex of K2,
5. for every 1 ≤ i ≤ 6n, a vertex wi that is adjacent with ui and ui+1,
6. for every 1 ≤ i ≤ n, a vertex zi that is adjacent with vi and u6i.

The maximum degree of G′[k, d] is max{d(k − 1) + 1, k + |D| + 1} and the number
of vertices increases only by a constant factor. Therefore, the only thing we have to
show is that G′[k, d] is a core. Consider a homomorphism φ from G′[k, d] to itself.
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K1 is the only clique of size k+ 4 in the graph: the maximum clique size of G[k, d] is
k, and the clique K2 can be extended by at most 2 vertices of D to a larger clique.
Therefore, φ is a permutation on K1. Similarly, φ must map K2 to a clique of size
k + 1, which is either a subset of K1 or a subset of K2 ∪D. However, since K2 ∪D
is not (k + 4)-colorable (as D is not 3-colorable), the closed neighborhood of every
vertex in K2 is not (k + 4)-colorable. The closed neighborhood of every vertex in K1

is (k + 4)-colorable, thus φ cannot map a vertex of K2 to a vertex of K1. Therefore,
φ must map every vertex of K2 to K2 ∪D. As every vertex of D is adjacent to every
vertex of K2, this also means that φ maps every vertex of D to K2 ∪D. Since every
proper subset of K2 ∪D is (k + 4)-colorable, φ is a permutation on K2 ∪D.

If a vertex is in a triangle, then φ must map this vertex to a vertex that is also
in a triangle. Therefore, φ must map the path u1, . . . , u6n+1 into a walk on 6n + 1
vertices from φ(u1) ∈ K1 to φ(u2) ∈ K2 ∪ D such that each vertex is in a triangle.
This means that the walk cannot use the vertices zi, hence the only possibility is
that φ(ui) = ui for every 1 ≤ i ≤ 6n + 1. It also follows that φ(wi) = wi for every
1 ≤ i ≤ 6n.

We show that φ(vi) = vi and φ(zi) = zi for every 1 ≤ i ≤ n. Let vj be a
neighbor of vi. There is a path u6i, zi, vi, vj , zj , u6j of length 5 between u6i and
u6j . The homomorphism φ must map this path to a walk. Removing zi or zj makes
the distance of u6i and u6j at least 6, thus the walk has to use both zi and zj . Now
the only possibility is that the walk is the same as the path. This shows that φ is a
permutation on G′[k, d].

5. Conclusions. As an important ingredient in the hardness results of [12], an
appropriate notion of embedding was defined and it was proved that embeddings with
certain properties exist. The more efficient embedding we are able to find, the tighter
the hardness results are. Thus obtaining tighter complexity results was the motivation
for the purely combinatorial question of whether the logarithmic factor in Theorem 1.3
can be removed. It turned out that understanding a different kind of combinatorial
question (sparse balanced partitions) allows us to resolve this question. We proved
both positive and negative results on the existence of sparse balanced partitions. The
positive results use techniques and ideas related to yet another combinatorial problem:
the construction of sparse universal graphs.

The combinatorial results of the paper do not answer Conjecture 1, the main
complexity question left open in [12]. However, the negative result in Theorem 1.4
shows the limitations of the techniques of [12] and implies that simple combinatorial
embeddings are not sufficient to prove Conjecture 1. Therefore, substantially different
methods would be required to prove the conjecture in the positive. It seems that the
critical question that has to be understood first is the exact complexity of finding
sparse expanders: Is there an no(k) time algorithm that decides if a given k-vertex
bounded-degree expander appears as subgraph?
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