
Statistics

Lecture notes, 2025 Fall

Introduction

In this paper, we discuss the english version of a hungarian lecture note of the statistic

part, which was written by András Tóbiás.
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1 Basic Concepts of Mathematical Statistics

In the previous part of the lecture, the distribution of the random variables was assumed
to be known. In contrast, in mathematical statistics, random variables correspond to
measurement results, and therefore their distributions are not known precisely. It often
happens that, based on theoretical considerations, we can assume that the measurements
follow some type of distribution quite accurately, but this distribution depends on an
unknown parameter ϑ, whose possible values form a parameter domain θ ⊆ Rd for some
d ≥ 1.1 For example:

1ϑ and θ are two lowercase forms of the Greek letter “theta.”
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• If we find a coin on the street and do not know whether it is fair, then it shows
heads with an unknown probability ϑ ∈ θ = [0, 1] ⊂ R1. By tossing the coin several
times, we can try to estimate ϑ, or verify or reject the hypothesis that the coin is
fair. The indicator variable

1{the outcome of a given toss is head}

thus has the unknown parameter ϑ.

• The number of accidents at railway crossings in Hungary during a given month
can be assumed to follow a Poisson distribution quite accurately, since there are
many drivers, each having a small probability of an accident, and the events are
more or less independent. The Poisson distribution has an unknown parameter
ϑ ∈ θ = (0,∞) ⊂ R1.

• The height of a randomly selected female student at BME can be modeled by a
normal distribution.2 In this case, both the mean µ ∈ R and the variance σ2 > 0
are unknown, so the parameter domain is

θ = {(µ, σ2) ∈ R2 : σ2 > 0} ⊂ R2.

(Of course, in practice µ must be positive, but we ignore this restriction for gener-
ality.)

In mathematical statistics, it is typical that in order to study the unknown parameter, we
take a sample, that is, we “generate” independent, identically distributed random variables
X1, . . . , Xn following the distribution with the unknown parameter. For example:

• We toss the coin n times, and for each i = 1, . . . , n, let Xi = 1 if the i-th toss results
in heads, and Xi = 0 otherwise. Then X1, . . . , Xn are independent, identically
distributed indicator variables with parameter ϑ.

• We observe the number of railway crossing accidents in Hungary for n consecutive
months, and let Xi denote the number of accidents in month i. Then X1, . . . , Xn

are (approximately) independent and (approximately) Poisson(ϑ) distributed.

• From the list of BME female students, we randomly and independently select n
students, and let Xi denote the height of the i-th student. Then X1, . . . , Xn are
(approximately) independent and (approximately) N(µ;σ2) distributed, where both
parameters are unknown.

2Similarly, a randomly selected male student’s height can be modeled by a normal distribution with
a different mean. However, the height of a randomly selected BME student (without conditioning on
gender) cannot, since male and female averages differ, leading to a density with two local maxima —
which is therefore not approximately normal.
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The two main branches of mathematical statistics are estimation theory and hypothesis
testing. Estimation theory aims to determine, as precisely as possible, the value of the
unknown parameter based on the sample. (Of course, “as precisely as possible” is not a
mathematically precise expression; we shall clarify its meaning later for specific estima-
tion methods.) Hypothesis testing, on the other hand, aims to verify or reject a given
hypothesis using the sample. Examples include:

• The coin is fair.

• The average number of accidents per month is 2.

• The average height of female BME students is at most 166 cm.

• The standard deviation of female BME students’ height is 3 cm.

1.1 Sample and Realization

We define the concept of a sample without referring to the unknown parameter ϑ. This
will be useful because later we will encounter methods applicable not only to parametric
families but also to completely unknown distributions.

Definition 1.1.1. Let X1, . . . , Xn be independent, identically distributed random variables
with possibly unknown marginal distributions. Then the random vector

X = (X1, . . . , Xn)

is called an independent and identically distributed sample of size n (abbreviated
as an i.i.d. sample of size n).

Now we introduce some useful notation for the parametric case:

Notation 1.1.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n, where the common
distribution depends on a parameter ϑ ∈ θ ⊆ Rd for some d ≥ 1. Then, for a given ϑ ∈ θ:

1. The distribution function of X1 corresponding to parameter ϑ is denoted by Fϑ.

2. If X1 has a density function under this parameter, it is denoted by fϑ, i.e.

fϑ(x) =

{
F ′
ϑ(x), if Fϑ is differentiable at x,

0, otherwise.

3. If X1 is discrete under this parameter, its probability mass function is denoted by
pϑ, meaning that for x ∈ R, pϑ(x) denotes the probability that X1 = x, given that
ϑ is the true parameter.
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Example 1.1.1. • For the coin found on the street: pϑ(0) = 1 − ϑ and pϑ(1) = ϑ,
ϑ ∈ [0, 1].

• For the number of railway crossing accidents:

pϑ(k) =
ϑk

k!
e−ϑ, ϑ > 0, k = 0, 1, . . . .

• For the height of female BME students, the unknown parameter is (µ, σ2), hence

f(µ,σ2)(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R, µ ∈ R, σ2 > 0.

We leave the corresponding distribution functions to the reader.

Sometimes even the range of possible values of the sample elements depends on ϑ, as
shown by the following example (unlike the previous ones).

Example 1.1.2. A friend generated 5 random numbers distributed as U(0; 1), then mul-
tiplied each by the same unknown constant ϑ ∈ (1, 2), chosen secretly. The resulting
vector x = (x1, . . . , x5) ∈ R5 (i.e., the scaled numbers) was given to us. This vector is
a realization of an i.i.d. sample X = (X1, . . . , X5), whose elements are independent and
U(0;ϑ) distributed (is this clear? If not, try deriving the density!).
Given ϑ, the possible values of X1, . . . , Xn (where the density is positive) lie in the interval
(0, ϑ), thus depending on ϑ.

To define the term realization precisely, we first introduce the concept of the set of essential
values of a random variable (depending on ϑ). In the discrete case, this definition coincides
with the one encountered in regression theory (see Definition 11.1.5 in Szabolcs Mészáros’s
notes), except that there the parameter was not unknown.

Definition 1.1.2 (and notation). Let X = (X1, . . . , Xn) be an i.i.d. sample of size n,
where the distribution of the sample elements depends on a parameter ϑ ∈ θ ⊆ Rd. For
ϑ ∈ θ and i = 1, . . . , n, if the density function fϑ exists, define

S
(ϑ)
Xi

= {x ∈ R | fϑ(x) > 0} ⊆ R.

If instead the probability mass function pϑ exists, define

S
(ϑ)
Xi

= {x ∈ R | pϑ(x) > 0} ⊆ R.

In both cases, S
(ϑ)
Xi

is called the set of essential values of Xi for the parameter ϑ.3

3The set of essential values of Xi (for a given ϑ) is almost the same as the image of Xi as a function

Ω → R. The image may be slightly larger, but all values outside S
(ϑ)
Xi

occur with probability zero.
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Example 1.1.3. For the i.i.d. sample (X1, . . . , Xn) obtained from tossing a coin n times
with unknown head probability ϑ, where Xi is an indicator with parameter ϑ, we have
S
(ϑ)
Xi

= {0, 1} for all ϑ ∈ (0, 1), S
(0)
Xi

= {0} and S
(1)
Xi

= {1}. Furthermore, pϑ(1) = ϑ,
pϑ(0) = 1− ϑ, and pϑ(x) = 0 for all x ∈ R \ {0, 1}.

In the uniform example (1.1.2), where Xi ∼ U(0, ϑ) and n = 5,

S
(ϑ)
Xi

= (0, ϑ) and fϑ(x) =

{
1
ϑ
, if x ∈ (0, ϑ),

0, otherwise.

for all ϑ ∈ θ = (1, 2).

Definition 1.1.3. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n, where the sample
distribution depends on a parameter ϑ ∈ θ ⊆ Rd. A vector x = (x1, . . . , xn) ∈ Rn is called

a (possible) realization of X = (X1, . . . , Xn) for parameter ϑ ∈ θ, if xi ∈ S
(ϑ)
Xi

holds for
all i ∈ {1, . . . , n}.

Example 1.1.4. Let us illustrate the notion of realization using Example 1.1.3.
For the coin found on the street, the sequence (x1, . . . , x7) = (1, 0, 0, 0, 1, 1, 0) is a realiza-
tion of the i.i.d. sample X = (X1, . . . , X7) for all parameters 0 < ϑ < 1 (but not for ϑ = 0
or ϑ = 1).
For the i.i.d. sample X = (X1, . . . , X5) uniformly distributed on (0, ϑ),

(x1, . . . , x5) = (0.14, 0.79, 1.13, 1, 1.2)

is a possible realization if 1.2 < ϑ < 2, but not if 1 < ϑ ≤ 1.2.

1.2 Basic sample statistics

For an i.i.d. sample of size n, a statistic is any function of the sample elements which is
symmetric, that is, it “depends on all sample elements in the same way.” The following
definition formalizes this property.

Definition 1.2.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n. If T : Rn → R is
a symmetric function, that is,

T (x1, . . . , xn) = T (xπ(1), . . . , xπ(n))

for all x1, . . . , xn ∈ R and for every permutation π : {1, . . . , n} → {1, . . . , n} in the
combinatorics chapter for an equivalent definition, then the random variable T (X) =
T (X1, . . . , Xn) is called a statistic of X1, . . . , Xn.

We now introduce some classical statistics, partly already encountered earlier in the
course. The first one is the sample mean, familiar already from high school.
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Example 1.2.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n. Then the quantity

Xn =
X1 + . . .+Xn

n
,

introduced in Section 9.2, is called the sample mean of X, and it is a statistic of the
sample. If x = (x1, . . . , xn) is a realization of X = (X1, . . . , Xn), then we denote the mean
of the realization by xn:

xn =
x1 + . . .+ xn

n
.

Based on what we have seen so far, it is not surprising that the sample mean is a kind of
estimator of the expected value based on the sample. Clearly, if E(Xi) exists (that is, if
E[|Xi|] < ∞), then the expected value of the sample mean coincides with the expected
value of each sample element:

E
[
Xn

]
=

1

n

(
E(X1) + . . .+ E(Xn)

)
= E(X1).

Further properties of this estimator will be analyzed later, in the language of estimation
theory.

The next classical statistic is the corrected empirical variance, which approximates the
variance using the sample.

Definition 1.2.2. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n. Then

(S∗
n)

2 =
1

n− 1

n∑
i=1

(Xi −Xn)
2 (1)

is called the corrected empirical variance of X,4 and

S∗
n =

√
(S∗

n)
2

is called the corrected empirical standard deviation of X.

Clearly, (S∗
n)

2 is a statistic of the sample X. One may ask why we divide by n − 1 (and
not, say, by n) in formula 1. The reason is that in this way we obtain a statistic whose
expected value coincides with the variance of the sample elements:

Statement 1.2.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n, and assume that
E(X2

i ) <∞. Then
E
(
(S∗

n)
2
)
= D2(X1).

4The word “empirical” means “based on observations.” The term “corrected empirical variance” is
also used.
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Proof. The computations in the proof are somewhat lengthy, but apart from the linearity
of expectation, they only use the fact that the expectation of the product of independent
random variables equals the product of their expectations (Claim 6.1.4).
First,

E[(S∗
n)

2] =
1

n− 1

n∑
i=1

E
(
Xi −Xn

)2
=

1

n− 1

n∑
i=1

(
E(X2

i )− 2E(XiXn) + E(Xn
2
)
)

=
1

n− 1

n∑
i=1

E(X2
i )−

2

n− 1

n∑
i=1

E(XiXn) +
n

n− 1
E(Xn

2
).

We compute the three terms on the right-hand side separately. For the first term,

1

n− 1

n∑
i=1

E(X2
i ) =

n

n− 1
E(X2

1 ),

since X1, . . . , Xn are identically distributed.
For the second term, we compute its negative:

2

n− 1

n∑
i=1

E(XiXn) =
2

n− 1

n∑
i=1

E
(
Xi ·

1

n

n∑
j=1

Xj

)
=

2

n− 1

( 1
n

n∑
i=1

E(X2
i ) +

1

n

n∑
i=1

∑
j ̸=i

E(XiXj)
)

=
2

n− 1

(
E(X2

1 ) + (n− 1)E(X1)
2
)

=
2

n− 1
E(X2

1 ) + 2E(X1)
2,

since X1, . . . , Xn are identically distributed and independent.
For the third term,

n

n− 1
E(Xn

2
) =

n

(n− 1)n2
E
[( n∑

i=1

Xi

)2]
=

1

n(n− 1)
E
( n∑

i=1

X2
i + 2

∑
1≤i<j≤n

XiXj

)
=

1

n(n− 1)

( n∑
i=1

(
E(X2

1 ) + (n− 1)E(X1)
2
))

=
1

n− 1
E(X2

1 ) + E(X1)
2,
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again using independence and identical distribution.
Collecting all terms, we obtain

E[(S∗
n)

2] = E(X2
1 )
( n

n− 1
− 2

n− 1
+

1

n− 1

)
+E(X1)

2(−2+1) = E(X2
1 )−E(X1)

2 = D2(X1).

□

Remark 1.2.1. We see that if we divided by 1
n instead of 1

n−1 in formula (1), then (by linearity of

expectation) the expected value of the resulting statistic would not be D2(X1), but
n−1
n D2(X1).

The statistic

S2
n =

1

n

n∑
i=1

(Xi −Xn)
2

is called the empirical variance (and its square root the empirical standard deviation), while
(S∗

n)
2 is called corrected because its expected value equals D2(X1). This is the standard ter-

minology in the Hungarian literature. In foreign-language texts, (S∗
n)

2 may itself be called the
empirical variance, but we shall not adopt this convention here.

Another basic statistic is the mode of the sample, that is, the most frequent value in the
sample. If there are several such values, each of them is considered a mode.
To define further basic statistics, we first introduce the notion of an ordered sample.

Definition 1.2.3. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n. Let
(X∗

1 , X
∗
2 , . . . , X

∗
n) be a listing of the sample elements X1, . . . , Xn such that

X∗
1 ≤ X∗

2 ≤ . . . ≤ X∗
n.

Then (X∗
1 , X

∗
2 , . . . , X

∗
n) is called the ordered sample.

Example 1.2.2. Let x = (x1, . . . , x8) = (1, 2, 1, 3, 4, 6, 5, 2) be a realization of an i.i.d.
sample X = (X1, . . . , X8) from eight tosses of a fair die. Then the ordered sample
(X∗

1 , . . . , X
∗
8 ) has realization (x∗1, . . . , x

∗
8) = (1, 1, 2, 2, 3, 4, 5, 6). Thus the realization of

the ordered sample is uniquely determined by the realization of the original (unordered)
sample, even if there are repeated values.

It is important to emphasize that X∗
1 , . . . , X

∗
n are not independent (we do not prove

this formally, but one can feel that, for example, the distribution of the smallest sample
element affects the distributions of all the other ordered elements, since they must be
at least as large as the smallest one), and they are typically not identically distributed
either.
Using the ordered sample, we can define the empirical median, which for odd sample size
is the middle element of the ordered sample, and for even sample size is the arithmetic
mean of the two middle elements:
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Definition 1.2.4. For an i.i.d. sample X = (X1, . . . , Xn) of size n, the empirical me-
dian is defined as mn,X = X∗

k+1 when n = 2k + 1, and as

mn,X =
X∗

k +X∗
k+1

2

when n = 2k.

Example 1.2.3. If a sample of size n = 4 has realization (x1, . . . , x4) = (
√
2, π,−1, e),

then the ordered sample has realization (x∗1, x
∗
2, x

∗
3, x

∗
4) = (−1,

√
2, e, π), and the empirical

median is
√
2+e
2

. If a sample of size n = 3 has realization (x1, x2, x3) = (−1, 3, 2), then the
ordered sample has realization (x∗1, x

∗
2, x

∗
3) = (−1, 2, 3), and the empirical median is 2.

1.3 Empirical distribution function

In this subsection we assume that the random variables X1, . . . , Xn are independent and
identically distributed with some unknown distribution, whose distribution function we
denote by x 7→ F (x) = P(Xi < x). (The parameter ϑ will not appear here either.) We
have no prior information about the distribution of the Xi’s: for instance, we do not know
whether it is discrete, continuous, or neither of the two.5

Given a realization x = (x1, . . . , xn) of the sample X = (X1, . . . , Xn), how can we “esti-
mate” the distribution function F so that, as n→ ∞, we obtain something converging to
the true distribution function? This is exactly what the empirical distribution function
does.

Definition 1.3.1. Let n ∈ N and let X1, . . . , Xn be i.i.d. random variables. The function
R → R defined by

x 7→ F ∗
n(x) :=

1

n

n∑
i=1

1{Xi<x} =
1

n

∣∣{i ∈ {1, . . . , n} | Xi < x}
∣∣ (2)

is called the empirical distribution function associated with the i.i.d. sample X =
(X1, . . . , Xn) of size n.

It is important to emphasize from the outset that F ∗
n is a random function: its values

depend on the random variables X1, . . . , Xn.
Using the ordered sample (X∗

1 , . . . , X
∗
n) (see Definition 1.2.3), the definition in (2) can be

rewritten in the following simple explicit form:

F ∗
n(x) =


0, if x ≤ X∗

1 ,
k
n
, if X∗

k < x ≤ X∗
k+1, k = 1, . . . , n− 1,

1, if x > X∗
n.

(3)

5For the latter, consider the random variable X defined as follows: toss a coin, and if it comes up
heads, toss a die and let X be the outcome; if it comes up tails, let X be a U(0; 1) distributed random
number, independent of the die toss.
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This reformulation also shows that, for any fixed realization x = (x1, . . . , xn) of X =
(X1, . . . , Xn), we indeed obtain a distribution function: the limit at −∞ is 0, the limit at
+∞ is 1, and the function is nondecreasing and (thanks to the strict inequalities in the
definition (2)) left-continuous.
The following statement shows that the empirical distribution function is a “good esti-
mator” of the true distribution function: its expected value equals the true distribution
function at every point, and its variance decreases as n grows. Moreover, the empirical
distribution function converges (with probability 1) to the true distribution function at
every point as n → ∞. In other words, if the sample size is large enough, then for any
fixed x ∈ R, the value F ∗

n(x) of the empirical distribution function can (with probability
1) be made arbitrarily close to the value F (x) of the true distribution function.

Statement 1.3.1. Let n ∈ N and let X1, . . . , Xn be independent, identically distributed
random variables with distribution function F . Then for every x ∈ R we have:

1. E(F ∗
n(x)) = F (x),

2. D2(F ∗
n(x)) =

F (x)(1− F (x))

n
, and

3. P(limn→∞ F ∗
n(x) = F (x)) = 1.

Proof. Fix x ∈ R. From the definition (2) we see that n · F ∗
n(x) is the sum of the i.i.d.

indicator variables 1{Xi<x}, each having parameter (and hence expected value) P(Xi <
x) = F (x). Therefore nF ∗

n(x) ∼ B(n;F (x)). Using the well-known properties of the
binomial distribution and of expectation and variance, we obtain

E
(
F ∗
n(x)

)
=

1

n
E
(
nF ∗

n(x)
)
=

1

n
· nF (x) = F (x)

and

D2
(
F ∗
n(x)

)
=

1

n2
D2

(
nF ∗

n(x)
)
=

1

n2
· nF (x)(1− F (x)) =

F (x)(1− F (x))

n
,

as claimed in (1) and (2).
To prove (3), we apply the strong law of large numbers (Theorem 9.2.1) to the i.i.d.
indicator variables 1{Xi<x}. Their expected value is

E
(
1{X1<x}

)
= P(X1 < x) = F (x),

and they have finite variance, in fact D2
(
1{X1<x}

)
= F (x)(1−F (x)). Hence, by Theorem

9.2.1, their average converges to their expected value with probability 1:

P
(
lim
n→∞

F ∗
n(x) = F (x)

)
= P

(
lim
n→∞

1

n

n∑
i=1

1{Xi<x} = E
(
1{X1<x}

))
= 1.

This proves (3) as well. □
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Statement 1.3.1 (3) can be strengthened further: the empirical distribution function not only
converges to the true distribution function at every point (with probability 1), but it converges
to it uniformly on the entire real line (with probability 1), that is, the distance between the two
functions tends to zero. This is expressed by the following theorem:

Theorem 1.3.1 (Glivenko–Cantelli theorem). Let n ∈ N and let X1, . . . , Xn be independent,
identically distributed random variables with distribution function F . Then the function x 7→
F ∗
n(x) converges uniformly to x 7→ F (x) with probability 1, that is,

P
(
lim
n→∞

sup
x∈R

∣∣F ∗
n(x)− F (x)

∣∣ = 0
)
= 1.

Why is this stronger than part (3) of Statement 1.3.1? In Statement 1.3.1, for each fixed x the

event where the convergence in (3) fails has probability 0, but in principle this null set may

depend on x. The Glivenko–Cantelli theorem implies that even if we take the union of all these

(uncountably many) null sets over all x ∈ R, we still obtain an event of probability 0. We will

not prove the Glivenko–Cantelli theorem in this course; a proof can be found in essentially any

textbook on mathematical statistics.
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2 Methods in estimation theory

In this chapter we again consider the situation where the distribution of the sample
elements X1, . . . , Xn depends on a parameter ϑ ∈ θ, and we wish to construct, based
on some statistic of an i.i.d. sample of size n, as good an estimate as possible for the
unknown parameter ϑ or for some function ψ(ϑ) of it.6 Due to time constraints, the
estimation methods discussed here will not be exhaustive; interested readers are referred
to the course Mathematical Statistics in the MSc programmes in Computer Engineering
and Business Informatics.

Definition 2.0.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n, where the common
distribution of the sample elements depends on an unknown parameter ϑ ∈ θ ⊆ Rd, and
let ψ : Rd → R be a function. Let T (X) = T (X1, . . . , Xn) be a statistic of the sample.
We say that the statistic T (X) is

1. an unbiased estimator of the parameter function ψ(ϑ) if for every ϑ ∈ θ,

Eϑ(T (X1, . . . , Xn)) = ψ(ϑ),

where Eϑ denotes expectation with respect to Pϑ;

2. an asymptotically unbiased estimator of the parameter function ψ(ϑ) if for
every ϑ ∈ θ,

lim
n→∞

Eϑ(T (X1, . . . , Xn)) = ψ(ϑ);

3. a strongly consistent estimator of the parameter function ψ(ϑ)7 if for every
ϑ ∈ θ,

Pϑ

(
lim
n→∞

T (X1, . . . , Xn) = ψ(ϑ)
)
= 1; (4)

4. if both T (X) and another statistic T ′(X) = T ′(X1, . . . , Xn) of the sample are unbi-
ased estimators of ψ(ϑ), then we say that T (X) is at least as efficient as T ′(X)
if

D2
ϑ(T (X)) ≤ D2

ϑ(T
′(X)),

where D2
ϑ denotes the variance with respect to Pϑ.

8 If T (X) is at least as efficient as
any unbiased estimator of ψ(ϑ), then we say that T (X) is an efficient estimator
of the parameter function ψ(ϑ).

6ψ is also a Greek letter, called “psi.”
7There are other notions of consistency for estimators, for example weak consistency, which expresses

the same idea as strong consistency but with convergence in probability instead of almost sure convergence
in (4). When we simply say that an estimator is consistent, we mean that it is weakly consistent. As we
have already seen in the topic of laws of large numbers, almost sure convergence implies convergence in
probability, so every strongly consistent estimator is consistent. There are further notions of consistency
(which we do not detail here), for example consistency in mean square; see the course Mathematical
Statistics in the MSc programmes in Computer Engineering and Business Informatics.

8In an analogous and straightforward way one can define the relations “(strictly) more efficient than”,
“at most as efficient as” and “(strictly) less efficient than” between two unbiased estimators.
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Clearly, if a statistic is an unbiased estimator of a given parameter function, then it is
also asymptotically unbiased. Let us now see some examples of unbiased, asymptotically
unbiased and strongly consistent estimators.

Example 2.0.1. In the setting of Definition 2.0.1, one possible choice of the function ψ
is

θ ∋ ϑ 7→ ψ(ϑ) = Eϑ(X1),

provided that Eϑ(X1) exists for every ϑ ∈ θ (that is, Eϑ(|X1|) <∞ for all ϑ ∈ θ). In this
case

T (X1, . . . , Xn) = Xn =
X1 + . . .+Xn

n

(the sample mean) is an unbiased estimator of the parameter function ψ(ϑ) = Eϑ(X1),
since for every ϑ ∈ θ,

Eϑ(Xn) =
1

n

n∑
i=1

Eϑ(Xi) = Eϑ(X1)

(see Example 1.2.1). Furthermore, by the strong law of large numbers, if we assume that
ϑ is the true parameter, then the sample mean converges almost surely to ψ(ϑ) = Eϑ(X1).
Formally, for every ϑ ∈ θ,

Pϑ

(
lim
n→∞

Xn = Eϑ(X1)
)
= 1.

Thus T (X1, . . . , Xn) = Xn is also a strongly consistent estimator of the parameter ψ(ϑ) =
Eϑ(X1).

Example 2.0.2. Another possible choice for ψ is

θ ∋ ϑ 7→ ψ(ϑ) = D2
ϑ(X1),

provided that Eϑ(X
2
1 ) is finite for every ϑ ∈ θ. In this case

T (X1, . . . , Xn) = (S∗
n)

2 =
1

n− 1

n∑
i=1

(Xi −Xn)
2

(the corrected empirical variance) is an unbiased estimator of the parameter function

ψ(ϑ) = D2
ϑ(X1).

Indeed, for every ϑ ∈ θ we have

Eϑ((S
∗
n)

2) = D2
ϑ(X1).

13



We can also see that the statistic

T ′(X1, . . . , Xn) = S2
n =

1

n

n∑
i=1

(Xi −Xn)
2 (5)

is not an unbiased estimator of D2
ϑ(X1), since (by linearity of expectation, see also Re-

mark 1.2.1)

Eϑ[S
2
n] =

n− 1

n
Eϑ[(S

∗
n)

2] =
n− 1

n
D2

ϑ(X1).

On the other hand, T ′(X1, . . . , Xn) = S2
n is an asymptotically unbiased estimator of

D2
ϑ(X1), because

lim
n→∞

Eϑ[S
2
n] = lim

n→∞

n− 1

n
D2

ϑ(X1) = D2
ϑ(X1).

Example 2.0.3. Unbiasedness alone does not guarantee that an estimator is good, for
instance in terms of efficiency; there may exist another unbiased estimator that is strictly
more efficient.
Let (X1, X2, X3) be an i.i.d. sample from a U(ϑ; 1+ϑ) distribution with unknown param-
eter ϑ ≥ 0, and consider the ordered sample element T (X1, X2, X3) = X∗

2 as a statistic of
(X1, X2, X3). In an earlier exercise we proved that, for ϑ = 0, the density of X∗

2 is

fX∗
2
(x) =

{
6x− 6x2, if 0 < x < 1,

0, otherwise.

We also computed that E(X∗
2 ) = 1/2, and from the density it is easy to compute that

D2(X∗
2 ) = 0.05.

For a general ϑ > 0, we can obtain X1, X2, X3 by taking i.i.d. random variables Y1, Y2, Y3
uniformly distributed on (0, 1) (with Y ∗

2 denoting the second order statistic) and then
adding ϑ to each of them. Hence for general ϑ,

E(X∗
2 ) = E(Y ∗

2 + ϑ) = 1/2 + ϑ = Eϑ(X1)

and
D2(X∗

2 ) = D2(Y ∗
2 + ϑ) = D2(Y ∗

2 ) = 0.05.

Thus the statistic T (X1, X2, X3) = X∗
2 is an unbiased estimator of the parameter function

ψ(ϑ) = Eϑ(X1) = ϑ+
1

2
.

However, this estimator is not efficient: for example,

S(X1, X2, X3) = X3

14



(the sample mean of three observations) is also an unbiased estimator of ψ(ϑ), but its
variance is

D2(X3) = D2
(X1 +X2 +X3

3

)
=

1

3
D2(X1) =

1

12 · 3
=

1

36
< 0.05,

that is, smaller than the variance of T (X1, X2, X3). Therefore S(X1, X2, X3) is more
efficient than T (X1, X2, X3).
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3 Confidence intervals

3.1 Basic concepts: confidence interval, quantiles of continuous
distributions

The maximum likelihood and method-of-moments estimators introduced so far belong to
the category of point estimators, since our estimate for the unknown parameter ϑ (or
for some function of it) is a “point” that depends on the sample, that is, a real number
or vector. Although a point estimate gives, in a certain sense, our “best guess” for the
parameter given the observed sample, in practice it rarely happens that the true parameter
is actually close to the obtained estimate.
Therefore, in this chapter we introduce confidence intervals, which belong to the class of
interval estimators. Here the result of the estimation is an interval, depending on the
realization, which contains the true parameter value ϑ with a pre-specified probability
1 − ε. By increasing the length of the interval, this probability can be made arbitrarily
close to 1; for instance, it is often chosen to be 0.99 (the error probability is then ε = 0.01)
or 0.95 (with ε = 0.05). The following definition formalizes this.

Definition 3.1.1. Let X = (X1, . . . , Xn) be an i.i.d. sample of size n, where the common
distribution of the sample elements depends on a parameter ϑ ∈ θ ⊆ Rd, let ψ : Rd → R
be a function, and let 0 < ε < 1.
We say that the interval [T1(X), T2(X)] is a (precise) confidence interval of level 1−ε
for the parameter function ψ(ϑ) if

Pϑ

(
T1(X) ≤ ψ(ϑ) ≤ T2(X)

)
= 1− ε

holds for all ϑ ∈ θ.

Remark 3.1.1. 1. The endpoints T1(X) and T2(X) in the definition are statistics of
the sample X, so they depend on the random sample, but once the realization is
observed, they are no longer random.

2. A confidence interval of exact level 1−ε can typically be constructed only when the
marginal distribution of X1, . . . , Xn is continuous. In the discrete case, one usually
speaks of at least 1− ε level confidence intervals, where “= 1− ε” in the definition
is replaced by “≥ 1− ε”. This distinction will not play a major role in this course.

Before we can present examples of confidence intervals, we also need the notion of a
quantile. We introduce this only for continuous random variables.
Let X be a continuous random variable. By Definition 4.2.1 this means that X has a
density function fX . In this case we know that the distribution function x 7→ FX(x) is
continuous. For simplicity, assume that the density is nonzero exactly on a single open
interval I (that is, fX(x) > 0 for all x ∈ I and fX(x) = 0 for all x ∈ R \ I). Examples:

1. the uniform distribution, where I = (a, b), with −∞ < a < b <∞,
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2. the exponential distribution, where I = (0,∞),

3. and the normal distribution, where I = (−∞,∞) = R.

Then on the interval I the distribution function FX is strictly increasing. Furthermore, if
I is of the form (a, b) or (a,∞), then FX(x) = 0 holds for all x ≤ a, and if I is of the form
(a, b) or (−∞, b), then FX(x) = 1 holds for all x ≥ b. It follows that the inverse function

F−1
X : (0, 1) → I, y 7→ F−1

X (y)

exists (for x ∈ I and 0 < y < 1, the equality x = F−1
X (y) holds if and only if y =

FX(x)). This inverse function is also continuous and strictly increasing. It is important
to emphasize, however, that the range of F−1

X is generally not all of R, but only I. Indeed,
the examples above show that the value 0 is taken by FX either at infinitely many points
(uniform and exponential distributions) or at no point at all (normal distribution), and
similarly for the value 1.

Definition 3.1.2. Let X be a continuous random variable with distribution function FX

and density fX . Assume that there exists an open interval I such that for all x ∈ R we
have fX(x) ̸= 0 if and only if x ∈ I.
Let 0 < y < 1. Then the point F−1

X (y) ∈ I is called the y-quantile of X. The 1
2
-quantile

(that is, the case y = 1/2) is called the median.

If x is the y-quantile of X, then

FX(x) = P(X < x) = y,

that is, X takes values smaller than x with probability exactly y. In the case of the
median, y = 1/2, so the probability that X < x equals the probability that X ≥ x (and,
due to continuity, also the probability that X > x). In this sense the median is indeed
analogous to the empirical median, i.e. to the “middle element of the ordered sample” (or
the average of the two middle elements in case of an even sample size).
For discrete random variables it may well happen that the value 0 < y < 1 is skipped
by the distribution function. For example, in the case of a single fair die roll, the dis-
tribution function never takes the value 1/12, since it jumps from 0 directly to 1/6 (at
x = 1). For this reason, the above definition of the y-quantile is only correct when the
distribution function is continuous; however, with some technical work, the definition can
be generalized to discrete random variables as well.

3.2 Confidence interval for the mean of a normal distribution
with known variance

We now present our first example of a confidence interval, which is perhaps also the most
classical one in this topic:
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Example 3.2.1. Let X1, . . . , Xn ∼ N(µ;σ2) be i.i.d. random variables, where the mean
µ ∈ R of the normal distribution is unknown, but the variance σ2 > 0 is known. For
ε ∈ (0, 1), construct a confidence interval of level 1 − ε for the mean µ of the normal
distribution in such a way that the length of the interval is as small as possible.

Since the density

fµ(x) =
1√
2πσ

e−
(x−µ)2

2σ2

is strictly decreasing as a function of the distance of x from µ (for any fixed value of the
parameter µ), the shortest confidence interval of level 1− ε for a given ε is obtained if we
choose it symmetrically around the sample mean Xn, that is, in the form

[Xn − rε, Xn + rε]

such that
Pµ(µ ∈ [Xn − rε, Xn + rε]) = 1− ε (6)

holds for all µ ∈ R. Our task is thus to determine the value of rε (depending on ε).
The distribution of the sample mean is, by a well-known property of the normal distribu-
tion,

Xn =
1

n

n∑
i=1

Xi︸︷︷︸
∼N(µ;σ2) i.i.d.︸ ︷︷ ︸

∼N(nµ;nσ2)

∼ N(µ;σ2/n).

It follows that
Xn − µ

σ/
√
n

=

√
n(Xn − µ)

σ
∼ N(0; 1). (7)

Let us now rewrite equation (6) in terms of the random variable Xn−µ
σ

√
n:

Pµ(µ ∈ [Xn − rε, Xn + rε]) = 1− ε

⇔ Pµ(−rε ≤ Xn − µ ≤ rε) = 1− ε

⇔ Pµ

(
− rε
σ

√
n ≤ Xn − µ

σ

√
n ≤ rε

σ

√
n
)
= 1− ε.

The last equality holds (denoting the distribution function of the standard normal distri-
bution by Φ) if and only if

Φ
(rε
σ

√
n
)
− Φ

(
− rε
σ

√
n
)
= 2Φ

(rε
σ

√
n
)
− 1 = 1− ε,

which can be rearranged as

Φ
(rε
σ

√
n
)
= 1− ε

2
. (8)
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The distribution function Φ: R → (0, 1) is strictly increasing on all of R, so the inverse
function Φ−1 : (0, 1) → R exists and is also strictly increasing. Applying Φ−1 to both sides
of (8) yields

rε
σ

√
n = Φ−1(1− ε/2),

that is,

rε =
σ√
n
Φ−1(1− ε/2).

To state the final result, let us introduce, for δ ∈ (0, 1), the notation

uδ = Φ−1(1− δ). (9)

Note that this is exactly the (1− δ)-quantile of the standard normal distribution, since if
X ∼ N(0; 1), then

P(X < uδ) = Φ(uδ) = Φ(Φ−1(1− δ)) = 1− δ.

Thus
rε =

σ√
n
uε/2,

and the desired confidence interval is[
Xn −

σuε/2√
n
,Xn +

σuε/2√
n

]
.

We summarize our result in the following statement.

Statement 3.2.1. Let X1, . . . , Xn be i.i.d. N(µ;σ2) distributed random variables, where
the mean µ is unknown and the variance σ2 > 0 is known, and let Xn denote the sample
mean. Then for ε ∈ (0, 1) a confidence interval of level 1− ε for the mean µ is given by[

T1(X), T2(X)
]
=

[
Xn −

σuε/2√
n
,Xn +

σuε/2√
n

]
,

where uε/2 is the (1− ε/2)-quantile of the standard normal distribution.

Remark 3.2.1. Observe that:

1. the larger the sample size n, the shorter the required confidence interval (cf. the law
of large numbers);

2. the larger the variance σ2, the longer the required confidence interval (since larger
variance means a “flatter”, more spread-out density);

3. the smaller the error level ε, the longer the required confidence interval (since µ
must lie in the confidence interval with probability 1− ε if µ is the true parameter).
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A natural question arises: how do we construct a confidence interval for the variance of
a normal distribution when the mean is known? Or how can we construct a confidence
interval for the mean of a normal distribution when the variance is unknown? The re-
mainder of this chapter is devoted to these questions. Informatics (or the corresponding
course in any BSc programme in mathematics).
After that, we discuss the construction of confidence intervals for the variance of a normal
distribution with known mean.
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4 Hypothesis testing methods

4.1 Introduction

Besides estimation theory, the other major branch of mathematical statistics is hypothesis
testing, where we aim to confirm or reject some prior hypothesis (assumption) based on
measurements or data analysis. Examples of such hypotheses include:9

• The expected value of the sample elements is 2.

• The expected value of the sample elements is at most 2.

• The expected value of the sample elements is equal to the expected value of the
elements of a given second sample.

• The sample elements are normally distributed.

• The realizations are independent of the outcomes of some other, related measure-
ments.

In this chapter our goal is to study hypotheses belonging to the first three types. For
further topics we again refer the interested reader to the course Mathematical Statistics
in the MSc programmes in Computer Engineering and Business Informatics.
After sampling, we use calculations to examine whether the measurement results con-
tradict our hypothesis, that is, whether the observed data are very unlikely under the
assumption that the hypothesis holds. If so, we reject the hypothesis.
In general, a hypothesis test (or test for short) consists of the following steps:

1. Formalization of the null hypothesis H0.

2. Construction of the acceptance region and the critical region for the sample.

3. Execution of the experiment, yielding a realization (data) x1, . . . , xn.

4. Checking whether the data fall into the acceptance region. If yes, we accept H0.
Otherwise we reject H0.

We now give the formal definitions of the above notions, and of some further related
concepts.

Definition 4.1.1. Let X = (X1, . . . , Xn) be an i.i.d. sample on the probability space
(Ω,F ,P), where the marginal distribution of the sample elements is unknown. Let x =
(x1, . . . , xn) be a realization of X = (X1, . . . , Xn).

9In addition to the examples listed here, we may of course think of the example hypotheses mentioned
at the beginning of Section 1.
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1. A null hypothesis H0 is a statement whose truth value depends only on the joint
distribution of X1, . . . , Xn. The alternative hypothesis H1 is the negation of H0:
H1 = ¬H0. The alternative associated with the given test is

H0 vs. H1.

2. An acceptance region Xe is a subset of Rn. The critical region Xk associated
with the acceptance region Xe is the complement of Xe, that is, Xk = Xe = Rn \Xe.

The (statistical) test defined by the critical region Xk is the procedure in which
we accept H0 if X ∈ Xe, and reject H0 (i.e. accept H1) if X ∈ Xk.

3. The size (or significance level) of the test defined by the critical region Xk is the
number 0 < α < 1 for which

P
(
(X1, . . . , Xn) ∈ Xk

∣∣H0 is true
)
= α.

4. A type I error occurs when, in the course of the test procedure, we reject H0 even
though H0 is true. A type II error occurs when we accept H0 even though H1 is
true (that is, H0 is false).

Remark 4.1.1. For a test of size α, the probability of a type I error is exactly the size:

P(we reject H0 | H0 is true) = P
(
(X1, . . . , Xn) ∈ Xk

∣∣H0 is true
)
= α.

In contrast, there is in general no explicit method to compute the probability of a type
II error, as concrete examples will illustrate.

Some general, mathematically imprecise considerations and examples10 may help in un-
derstanding how specific tests work.

Remark 4.1.2. The null hypothesis H0 is often formulated in such a way that, if it is
true, then the distribution of the sample elements X1, . . . , Xn is fully specified. In this
sense, for the coin found on the street, a good choice for H0 is the statement

H0 : “the coin is fair”,

because ifH0 is true, then the sample elements are i.i.d. indicator variables with parameter
1/2.

By contrast, a poor choice for the null hypothesis would be

H ′
0 : “the coin is not fair”,

because under H ′
0 we only know that the sample elements are i.i.d. indicator variables

with some parameter different from 1/2, which does not provide enough information to
compute the size of the test.

10These originate from Marianna Bolla’s 2012 lecture course Mathematical Statistics.
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Remark 4.1.3. It is often useful to interpret the null hypothesis as expressing a kind of
presumption of innocence. For instance, we typically examine the coin because we suspect
that it is biased, yet we take the negation of this suspicion as H0. In this interpretation:

• a type I error can be seen as analogous to convicting an innocent person;

• a type II error can be seen as analogous to acquitting a guilty person.

(We emphasize once more that these are mathematically imprecise, and not really for-
malizable, statements.)
In most standard tests we can control only the probability of a type I error, that is, the
size of the test: we fix a value α in advance, and the construction of the test guarantees
that its size is exactly α. However, it is intuitively clear — even before learning about
specific tests — that if we choose the desired size very small, then the probability of a
type II error will increase. (“If we want to be very sure we do not convict innocent people,
then we will end up acquitting guilty people more often as well.”)
In practice, the most commonly used significance levels are α = 0.05 and α = 0.01.

Example 4.1.1. Suppose we want to introduce a new drug to the market. Then the
alternative

H0 : “the drug is ineffective or harmful” vs. H1 : “the drug is effective”

is a reasonable choice, because in this case a type I error corresponds to the scenario
where, based on the sample, we conclude that a drug that is in fact ineffective or harmful
is effective (and thus we would likely release it). Since this is a type I error, we can control
its probability and keep it below a prescribed level 1 − α, at the cost of increasing the
probability of a type II error.
Here, a type II error corresponds to the case where the drug is effective, but based on the
sample we still deem it ineffective or harmful (and therefore we will not introduce it). Of
course, a type II error is also undesirable (e.g. from an economic perspective), but it does
not have such potentially fatal consequences as a type I error.
Therefore, if we are using a hypothesis testing method for drug testing in which only the
probability of a type I error is controllable, then we should choose H0 as above.

4.2 u-test

In the remainder of this chapter we describe several variants of the u-test and the t-test.
These are tests concerning the mean of a normal distribution, in the cases of known and
unknown variance, respectively. We will see that these tests are closely related to the
topic of confidence intervals (which is already suggested by the notation u and t). It is
worth clarifying right at the start that the u- and t-tests only work under the assumption
of normally distributed samples. By the central limit theorem, many kinds of samples
can be reasonably approximated as normal, but there are also numerous applications
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where this is not the case. For example, in the course Mathematical Statistics in the MSc
programmes in Computer Engineering and Business Informatics, so-called nonparametric
tests are also covered; these do not assume normality and can be applied to a wide variety
of distributions. The best-known examples of nonparametric tests include the χ2-test and
the Kolmogorov–Smirnov test.
We introduce the two-sided, one-sample version of the u-test via an example, and then
summarize the procedure in a concise form.

Example 4.2.1 (Two-sided, one-sample u-test: buying bread). We buy a “1 kg” loaf of
bread every day at the corner bakery, and recently the breads look smaller than we were
used to before, so we suspect that the baker has started selling loaves whose mean weight
is now less than 1 kg. We assume that the weights of the loaves we buy (measured in
kilograms) are independent and normally distributed with unknown mean µ and known
standard deviation σ = 0.02 kilograms (so σ2 = 0.0004 kg2).
We therefore set up the alternative

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

where in our case µ0 = 1. We prescribe a size ε = 0.05, i.e. we want the probability of
rejecting H0 under H0 to be at most 0.05.
We then take a sample: for n = 25 days we place each purchased loaf on the scale. We
obtain a realization x = (x1, . . . , x25) with sample mean xn = x25 = 0.98 kg. Based on
this sample, we want to construct a test of size exactly ε = 0.05, that is, we want to
choose the acceptance region Xe and the critical region Xk so that

P(H0 is rejected | H0) = ε = 0.05

holds.
We look for the acceptance region in the form

Xe = [Xn − h,Xn + h],

where h > 0. We want to choose h so that, when µ = µ0 = 1 (we denote the corresponding
probability by Pµ0), the true mean µ = µ0 falls into the critical region with probability
exactly ε, i.e. into the acceptance region with probability 1− ε:

Pµ0

(
µ0 ∈ [Xn − h,Xn + h]

)
= 1− ε.

In other words, [Xn − h,Xn + h] must be a symmetric confidence interval of level 1 − ε
around Xn for the parameter µ0. From Subsection 3.2 we already know that such a
confidence interval is [

Xn −
σuε/2√
n
,Xn +

σuε/2√
n

]
,

and thus
h =

σuε/2√
n
.
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That is, we accept H0 exactly when

Xn −
σuε/2√
n

≤ µ0 ≤ Xn +
σuε/2√
n

⇔ µ0 −
σuε/2√
n

≤ Xn ≤ µ0 +
σuε/2√
n

⇔ −uε/2 ≤
Xn − µ0

σ

√
n ≤ uε/2.

Hence the acceptance region is

Xe =
{
x = (x1, . . . , xn) ∈ Rn : − uε/2 ≤

xn − µ0

σ

√
n ≤ uε/2

}
.

Thus, if the test statistic

u(X) =
Xn − µ0

σ

√
n

takes a realized value

u(x) =
xn − µ0

σ

√
n

that lies between −uε/2 and uε/2, then we accept H0; otherwise we reject it (and thus
accept H1).
In our concrete case ε = 0.05, n = 25, xn = 0.98, µ0 = 1 and σ = 0.02. Thus

u(x) =
0.98− 1

0.02

√
25 = −5.

Looking into the standard normal table we find that uε/2 = Φ−1(0.975) ≈ 1.9600. Hence
we would accept H0 if the value of the test statistic u(X) lay between −1.96 and 1.96.
Since this is not the case, we reject H0, i.e. we have sufficient evidence that the breads do
not have mean weight 1 kg.

We now formalize the general procedure of the one-sample u-test; some details depend on
the subtype of the test (one-sided or two-sided):

One-sample u-test Assumptions: the data points x1, . . . , xn are realizations of i.i.d.
normal random variablesX1, . . . , Xn with unknown mean µ and known standard deviation
σ > 0. General procedure:

1. Formulate the null hypothesis H0.

2. Choose the desired size ε ∈ (0, 1).

3. Collect the data x1, . . . , xn.

4. Determine the acceptance region. This depends on the subtype of the test, but
always involves computing (or reading from a table) an appropriate quantile of the
normal distribution.
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5. Compute the value of the test statistic

u(x) =
xn − µ0

σ

√
n.

6. Decide whether the value of the test statistic falls into the acceptance region. If yes,
we accept H0. If not, we reject H0 (and thus accept H1).

Based on our example, in the two-sided, one-sample u-test, the procedure can be made
more precise as follows:

• Null hypothesis: H0 : µ = µ0.

• Relevant quantile: uε/2 = Φ−1(1− ε/2).

• Acceptance region: Xe = {(x1, . . . , xn) : |u(x)| ≤ uε/2}, that is:

– if |u(x)| > uε/2, we reject H0,

– otherwise we accept H0.

We now return to our previous example and introduce the one-sided, one-sample u-test
as well.

Example 4.2.2 (One-sided, one-sample u-test: buying bread). In the previous example,
one may ask why we chose as null hypothesis that the mean weight of the breads is
exactly 1 kg. After all, no reasonable person would interpret a sample mean of 0.98 kg as
evidence that the mean is greater than 1 kg; we only see it as evidence that it is smaller.
Accordingly, we can set up a different alternative (again in the spirit of a “presumption
of innocence”):

H0 : µ ≥ µ0 vs. H1 : µ < µ0, (10)

where µ0 is still equal to 1.
Does this alternative satisfy the requirement that if it holds, then the distribution of the
sample elements is known? Strictly speaking, no: if H0 holds, the sample elements might
be distributed as N(µ0;σ

2) or as N(µ0 + 113;σ2), for example. However, under H0, a
sample with mean less than µ0 is most likely when µ equals µ0 (rather than being larger).
Therefore, if for any event A we (somewhat abusively) introduce the notation

P(A | H0 is true) := P(A | the mean of the sample elements is µ0),

i.e. we treat H0 being true as the mean being equal to µ0, then we can proceed similarly
as in the two-sided, one-sample u-test.
The realized test statistic u(x) is the same as in the two-sided case; the only difference is
that we now reject H0 only when the value u = xn−µ0

σ

√
n is very small. More precisely,

we choose an acceptance region that is unbounded to the right, such that for µ = µ0 the
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value µ0 lies in the acceptance region Xe with probability 1− ε, and in the critical region
Xk to its left with probability ε:

Xk = {x = (x1, . . . , xn) ∈ Rn : u(x) < −uε},

where uε = Φ−1(1− ε) is again the (1− ε)-quantile of the standard normal distribution.
In our example we found u(x) = −5. The (1− ε) = 0.95 quantile of the standard normal
distribution is Φ−1(1− ε) = Φ−1(0.95) ≈ 1.6449. Since u(x) = −5 < −uε, we again reject
H0, and conclude that the mean weight of the breads is less than 1 kg.
Thus, in the one-sided, one-sample u-test with H0 : µ ≥ µ0, we never reject H0 when
the sample mean exceeds µ0; however, for sample means smaller than µ0 the test is
stricter than the two-sided one-sample test: in our example, if u(x) lies between −1.9600
and −1.6449, then the one-sided test already rejects H0, whereas the two-sided test still
accepts it. This is the main advantage of the one-sided test.

If we instead want to construct a one-sided, one-sample u-test for the alternative

H0 : µ ≤ µ0 vs. H1 : µ > µ0, (11)

then by symmetry we obtain the critical region

Xk = {x = (x1, . . . , xn) ∈ Rn : u(x) > uε}.

Now we reject H0 only when the value of the test statistic is very large. Summarizing the
properties of the one-sided, one-sample u-test for both possible null hypotheses:

H0 : µ ≥ µ0 version

• Null hypothesis: H0 : µ ≥ µ0.

• Relevant quantile: −uε = −Φ−1(1− ε).

• Acceptance region: Xe = {(x1, . . . , xn) : u(x) ≥ −uε}, that is:

– if u(x) < −uε, we reject H0,

– otherwise we accept H0.

H0 : µ ≤ µ0 version

• Null hypothesis: H0 : µ ≤ µ0.

• Relevant quantile: uε = Φ−1(1− ε).

• Acceptance region: Xe = {(x1, . . . , xn) : u(x) ≤ uε}, that is:

– if u(x) > uε, we reject H0,
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– otherwise we accept H0.

Remark 4.2.1 (Power of a test, optimality of the u-test). We have proved (at least sketchily)
that the size of the two-sided, one-sample u-test, i.e. the probability of a type I error, is at most
the prescribed parameter ε. What can we say about the type II error? If H1 holds, then we do
not know the distribution of the sample elements, since the mean of their normal distribution
is unknown. Take some parameter µ1 ̸= µ0, where µ0 is the mean under the null hypothesis.
Thus if µ1 is the true parameter, then H1 is true.
If we knew that µ1 is the true parameter, then the type II error probability would be

P(H0 is accepted | µ1 is the true parameter) = P
(
u(X) ∈ [−uε/2, uε/2]

∣∣ X1 ∼ N(µ1;σ
2)
)
,

which is a concrete value that can be computed. In this case, the power of the test is defined
as 1 minus the probability of a type II error. The power is thus defined only for a specific
parameter value µ1 in H1. It is clear that the further µ1 is from µ0, the smaller the type II error
probability will be, and hence the larger the power of the test.
Why do we use the (two-sided, one-sample) u-test in practice, and not some other test of the
same size ε for the same alternative (assuming the sample elements are normal with known σ)?
Because it can be shown that the u-test is the uniformly most powerful test among all such
tests. This means that, for any choice of µ1 in H1, the type II error probability for µ = µ1 is
minimized when we use the u-test. We do not prove this statement here, nor do we formulate
it in a precise way; we only note that it follows from the Neyman–Pearson lemma. The
Neyman–Pearson lemma states the existence of a uniformly most powerful test and provides
its construction in general, and is typically covered in mathematical statistics courses aimed at
mathematics students (for instance at BME-TTK).
In this sense, the one-sided, one-sample and the two-sided, two-sample u-tests, as well as all the
t-tests discussed in these notes, are uniformly most powerful for their respective alternatives.

We now give an example where the underlying distribution is not normal, but the CLT
still allows us to apply the u-test.

Example 4.2.3. We toss the coin found on the street, which shows heads with an un-
known probability ϑ ∈ (0, 1), n = 100 times; the result is 60 heads and 40 tails. Decide,
using the one-sided, one-sample u-test, whether the coin can be considered fair if the size
of the test is ε = 0.05 and ε = 0.01.
The sample elements Xi = 1{the i-th toss is heads} are not normally distributed. They are
indicator variables with parameter ϑ, so Eϑ[Xi] = ϑ, and their variance is also unknown:
D2

ϑ[Xi] = ϑ(1− ϑ).
The sample size n ≥ 30 is large enough to apply the central limit theorem. Consider the
alternative

H0 : ϑ ≤ 1

2
vs. H1 : ϑ >

1

2
.

Again, under H0, a sample with mean larger than nϑ = 50 is most likely when ϑ = 1
2
.

Therefore, we may (again somewhat abusively) assume that under H0 we have ϑ = 1
2
. In

this case the sample elements Xi have mean 1
2
and variance 1

4
.
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Hence, by the central limit theorem,

u(X1, . . . , Xn) =

∑n
i=1Xi − 1

2
n

1
2

√
n

is approximately N(0; 1) distributed. In the spirit of the one-sided, one-sample u-test, if
the value of this statistic lies in (−∞, uε], we accept H0, and otherwise we reject H0.
In our concrete example,

u(x1, . . . , xn) =
60− 50

10/2
= 2.

We compare this to uε = Φ−1(1 − ε) = Φ−1(0.95) = 1.6449 for ε = 0.05, and to uε =
Φ−1(0.99) = 2.3263 for ε = 0.01. Therefore, for ε = 0.05 we reject H0 (and conclude that
the coin is not fair), whereas for ε = 0.01 we accept H0 (and conclude that the coin is
fair).

Remark 4.2.2 (p-value). We see that decreasing ε makes it more likely that we accept H0;
this is not surprising, since ε coincides with the size of the test, i.e. with the probability of a
type I error. In the coin example above, the largest size for which we still accept H0 given the
observed test statistic u(x) lies between ε = 0.01 and ε = 0.05. This value is called the p-value
of the test. The smaller the p-value, the more justified the rejection of H0.
In the coin example (one-sided, one-sample u-test) the p-value is exactly 1 minus the value of
the standard normal distribution function at the test statistic:

u(x) = uε ⇔ P(u(X) > u(x)) = ε ⇔ ε = 1− Φ(u(x)) = 1− Φ(2) ≈ 1− 0.9772 = 0.0228.

So the p-value is approximately 2.28%. For sizes smaller than or equal to this value we accept
H0, and for larger sizes we reject it.
In the two-sided u-test, for example in the bread example, we have

|u(x)| = uε/2 ⇔ ε = 2(1− Φ(|u(x)|)) = 2(1− Φ(5)) ≈ 5.733× 10−7.

Thus the p-value of the test is extremely small; we accept H0 only if ε ≤ 5.733× 10−7.
Using the p-value represents an alternative viewpoint to the preset size: instead of choosing the
size ε before sampling, and then deciding on acceptance or rejection of H0 based on this size
and the sample, we determine (from the sample) the size ε that lies exactly on the borderline
between acceptance and rejection of H0, i.e. the p-value.
It is common terminology to say that a statement about a sample is significant if the p-value
is at most 0.05, and highly significant if it is at most 0.01. This terminology can be used for
almost any hypothesis testing method; it means that, if we reject the null hypothesis based
on the sample, then the probability of a type I error (i.e. the size) is at most 0.05 or 0.01,
respectively.

At the end of this subsection, we turn to the two-sample u-test, which can be used to
test the equality of the means of two normal populations. We only present the two-sided
version here; the one-sided version can be derived from it in the same way as in the
one-sample case. We again start with the bread example, in a slightly extended form.
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Example 4.2.4 (Two-sided, two-sample u-test: buying bread). After learning that, with
size ε = 0.05, we must reject the null hypothesis that the breads bought at our original
baker have mean weight 1 kg, we look for an alternative source of bread. Near our home
there is another bakery that produces “1 kg” loaves that look, taste and cost very similarly
to those of the first baker. This baker advertises that, using precision equipment, they
can produce loaves whose weights have standard deviation only 0.01 kg (i.e. σ1 = 0.01 kg,
so σ2

1 = 0.0001 kg2).
We now buy one loaf per day from this baker for n1 = 10 days and measure their weights.
We obtain a realization x = (x1, . . . , xn1) with sample mean xn1 = 0.9825 kg. We intro-
duce a new notation (which will be useful later) for the weights of the breads bought at
the old bakery: y = (y1, . . . , yn2), where the sample size is n2 = 25, the sample mean is
yn2 = 0.98, and the standard deviation is σ2 = 0.02. (We assume that the weight of any
bread produced by either baker is independent of the weight of any bread produced by
the same or the other baker.)
We would like to decide whether we are better off buying from this new baker, i.e. whether
the unknown mean µ1 of the weights of the breads from the new baker is greater than the
mean µ2 of those from the old baker. Therefore, for the alternative

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2

we want to construct a test of size ε = 0.05. Assuming that the sample (X1, . . . , Xn1) is in-
dependent of the sample (Y1, . . . , Yn2), the sample mean Xn1 is independent of the sample
mean Yn2 . Therefore, linear combinations of Xn1 and Yn2 are also normally distributed.
It can be shown by elementary calculations (which we omit here) that

u(X,Y) =
Xn1 − Yn2√

σ2
1

n1
+

σ2
2

n2

has a standard normal distribution. Knowing this, we can proceed similarly to the two-
sided, one-sample u-test. If

u(X,Y) ∈ [−uε/2, uε/2] =
[
− Φ−1(1− ε/2),Φ−1(1− ε/2)

]
,

then we accept H0, and otherwise we reject it. That is, the critical region is

Xk =
{
(x,y) = (x1, . . . , xn1 , y1, . . . , yn2) ∈ Rn1+n2 : |u(x,y)| > uε/2

}
.

In our concrete example,

u(x,y) =
0.9825− 0.98√

0.0001
10

+ 0.0004
25

≈ 0.4903.

Since |u(x,y)| < uε/2 = Φ−1(0.975) = 1.9600, we accept H0. In other words, the mean
weights of the breads at the new and the old bakeries are the same, so switching bakers
does not improve our situation...
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We now summarize the two-sided, two-sample u-test:
Two-sided, two-sample u-test Assumptions: the data points x1, . . . , xn1 are real-

izations of i.i.d. normal random variables X1, . . . , Xn1 with unknown mean µ1 and known
standard deviation σ1 > 0. The data points y1, . . . , yn2 are realizations of i.i.d. normal
random variables Y1, . . . , Yn2 that are jointly independent of X1, . . . , Xn1 , with unknown
mean µ2 and known standard deviation σ2 > 0. Procedure:

1. Null hypothesis: H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2.

2. Choose the desired size ε ∈ (0, 1).

3. Collect the data x1, . . . , xn1 , y1, . . . , yn2 .

4. Test statistic:

u(x,y) =
xn1 − yn2√

σ2
1

n1
+

σ2
2

n2

.

5. Acceptance region:

Xe =
{
(x,y) = (x1, . . . , xn1 , y1, . . . , yn2) ∈ Rn1+n2 : |u(x,y)| ≤ uε/2

}
,

where uε/2 = Φ−1(1− ε/2).

6. Decision: if |u(x,y)| > uε/2, we reject H0, otherwise we accept it.
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Formulas for confidence intervals and hypothesis tests

s2n = 1
n

∑n
i=1 x

2
i − xn

2, (s∗n)
2 = n

n−1
s2n = 1

n−1

∑n
i=1(xi − xn)

2, s∗n =
√
(s∗n)

2.

u-test

1. Two-sided, one-sample: u = xn−µ0

σ

√
n, uε/2 = Φ−1(1− ε/2),

confidence interval for µ: [
xn −

σuε/2√
n
, xn +

σuε/2√
n

]
.

2. One-sided, one-sample: u = xn−µ0

σ

√
n, uε = Φ−1(1− ε).

3. Two-sided, two-sample: u =
xn1−yn2√

σ2
1

n1
+

σ2
2

n2

, uε/2 = Φ−1(1− ε/2).
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