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Remainder Continuous Random Variables

Definition

Let X : Ω → R be a continuous random variable. The distribution
function of X is defined by

FX (x) = P(X < x).

The density function of X is the function which satisfies

FX (x) =

∫ x

−∞
fX (t) dt.
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Remainder: Expectation in the Continuous Case

The continuous analogue: instead of summing the weight function times
k , we integrate the density times x—this is also a “probability-weighted
average”.

Definition

Let X be a continuous random variable such that∫ ∞

−∞
|x |fX (x)dx < ∞.

Then

E(X ) =

∫ ∞

−∞
x fX (x)dx .
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Expectation of a Transform

In the continuous case, quantities like the variance of X are important:

D2(X ) = E
(
(X − E(X ))2

)
= E(X 2)− E(X )2.

Question: How do we compute E(X 2)?

1. Option: apply the following statement with g(x) = x2.

Theorem

Let X be a continuous random variable and g : R → R a continuous
function. If ∫ ∞

−∞
|g(x)| fX (x) dx < ∞,

then

E(g(X )) =

∫ ∞

−∞
g(x) fX (x) dx .

Remark: If g(x) ≥ 0 for all x ∈ Ran(X ), then E(g(X )) ∈ [0,∞] is always
well-defined. For instance, E(X 2) is always well-defined (possibly infinite).
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Distribution of a Transform in the Continuous Case

Question: How do we compute E(X 2)?

2. Option: Determine the density fg(X ) of the random variable g(X ), then
compute its expectation by the usual formula:

E(g(X )) =

∫ ∞

−∞
x · fg(X )(x)dx .

If we only need E(g(X )), it is often easier to use the formula on the
previous slide. But if we also want the distribution of g(X ), we must find
fg(X ). Procedure:

1 Determine the range Ran(g(X )).

2 Compute the distribution function Fg(X ) by definition.

3 Differentiate it (where appropriate) to obtain the density fg(X ).

Caution: fg(X ) typically cannot be obtained directly.
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Transform of a Uniform (the Square)

Example: the distribution of Y = X 2 where X is uniform on (0, 1).

1 Ran(Y ) = (0, 1), since {x2 : x ∈ (0, 1)} = (0, 1).

2 FY (x) =


0, if x ≤ 0,
√
x , if 0 < x < 1,

1, if x ≥ 1.

(Computation: see lecture.)

3 Hence fY (x) =


1

2
√
x
, if 0 < x < 1,

0, if x ≤ 0 or x ≥ 1.
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Properties of the Variance

These remain true in the continuous/general case: if c ∈ R and
E(X 2) < ∞, then D2(cX ) = c2D2(X ) and D2(X + c) = D2(X ).

Reminder: (6.4.2. Proposition) If X and Y are independent random
variables with E(X 2),E(Y 2) < ∞, then

D2(X + Y ) = D2(X ) + D2(Y ).

We proved this only in the discrete case (and only partially), but the proof
is analogous for continuous variables.
The key point in the discrete proof: if X ,Y are independent, then
E(XY ) = E(X )E(Y ). This holds for any independent random variables.

We already know what independence means for general random
variables: X ,Y are independent ⇔
P(X < x ,Y < y) = P(X < x)P(Y < y), for all x , y ∈ R.
We have not yet discussed how to compute E(XY ) in the continuous
case (nor precisely what “continuous case” means for joint
distributions) → coming soon.
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Variances of Notable Continuous Distributions

Theorem

If X is uniformly distributed on (a, b), then

D2(X ) =
(b − a)2

12
.

(Thus D(X ) = b−a
2
√
3
.)

(Proof — compute E(X 2): see lecture.)
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Variance of Exponential Distribution

Theorem

If Z ∼ Exp(λ) (with λ > 0), then D2(Z ) = 1
λ2 (hence D(Z ) = 1

λ).

(Proof: we already know that E(Z )2 = 1
λ2 , so it suffices to show

E(Z 2) = 2
λ2 .

The computation is analogous to that of E(Z ): perform integration by
parts twice with the same roles; or avoid the second integration by
recognizing the Exp(λ) density.
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Simulation of Continuous Random Variables

An application of distribution transformations in computer science:

Assume that we have a random number generator capable of producing
approximately independent, approximately U(0; 1) distributed
(pseudo)random numbers.
The generation of pseudorandom numbers is beyond the scope of this course; we can

treat it as a black box.

Question: How can we use this to simulate (approximately) independent
random variables following (approximately) a given continuous
distribution? For example, Exp(λ) distributed ones?

Answer: Substitute the U(0; 1) random variables into the inverse of the
target distribution function.

We will justify the correctness of this procedure in two steps.
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Simulation of Continuous Random Variables

Theorem

If X is a continuous random variable, then FX (X ) is U(0; 1) distributed.
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Simulation of continous random variable

Theorem

If X is a continuous random variable and U ∼ U(0; 1), then the
distribution function of F−1

X (U) is FX .

(Proof in the above case)
(F−1

X (U) has distribution function FX ⇔ F−1
X (U) and X have the same

distribution.)

Remark: The Statement and the Theorem remain true for any continuous
random variable, but more care is needed to specify on which domain FX
and F−1

X are strictly monotone.
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Simulation of Continuous Random Variables: Example

If X ∼ Exp(λ) with λ > 0, then FX (x) = 1− e−λx .
The density of X is positive on the open interval I = (0,∞) and zero
elsewhere.
limx↓0 FX (x) = 0, limx↑∞ FX (x) = 1, and FX is strictly increasing on
(0,∞).
Thus for x > 0 and u ∈ (0, 1),

x = FX
−1(u) ⇔ FX (x) = u ⇔ 1− e−λx = u

⇔ −λx = ln(1− u) ⇔ x =
− ln(1− u)

λ
.

Therefore, if U ∼ U(0; 1) is a random number generated by a computer,

then − ln(1−U)
λ ∼ Exp(λ).
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Simulation of Discrete Random Variables

For discrete random variables X , the previous method cannot be used,
since FX is not invertible (it is piecewise constant with jumps in between).
Question: How can we simulate X using a random variable U ∼ U(0; 1)?

Answer: If Ran(X ) = {k1, k2, . . .} (where the ki are distinct), divide the
interval (0, 1) into disjoint subintervals I1, I2, . . . such that the length of Ii
equals P(X = ki ).
Then we simulate X as follows: if U ∈ Ii , we return the value X = ki .

Example: for a fair die, U ∈ (0, 1/6] ⇒ X = 1, U ∈ (1/6, 2/6] ⇒ X = 2,
. . . , U ∈ (5/6, 1) ⇒ X = 6. This is a perfect simulation (at least as
perfect as the U(0; 1) generator itself).

If the range of X is infinite (e.g. geometric, Poisson, or Zipf distributions),
only finitely many possible values can be simulated in this way.
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End of the midterm material.

From the exercise sheets, the 6th sheet is the last one included in the
midterm (including everything from it even if it is discussed during
the 6th week).

“Theoretical questions” (definitions, theorem statements) will only
appear in the final exam, but of course you will need to use the
definitions and results from the lectures in the midterm tasks. You
must refer to and name the relevant theorems and properties.
For example: “The events A,B and C form a complete system of
events, since they are pairwise disjoint and their union is Ω (with
justification). Therefore, by the Law of Total Probability: ...”
Naturally, shorter phrasing is acceptable, but the concept of a
complete system of events and the LTP must appear.

You may bring and use a calculator (recommended). We will provide
tables for the standard distributions; you may not use your own.
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