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Convolution in the discrete case

If X and Y are independent random variables, what is the distribution of
X + Y ?

Theorem

Let X and Y be independent, discrete random variables taking values in
the nonnegative integers. Then

P(X + Y = k) =
k∑

i=0

P(X = i)P(Y = k − i)

for every k ∈ {0, 1, 2, . . .}.

(Proof.)

(Convolution: the distribution of the sum of independent random
variables.)
(For general discrete X ,Y the formula is analogous.)
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Convolution of Poisson

Let X and Y be independent random variables with X ∼ Pois(λ) and
Y ∼ Pois(µ). Then X + Y ∼ Pois(λ+ µ), i.e., for any k ∈ {0, 1, 2, . . .},

P(X + Y = k) =
(λ+ µ)k

k!
e−(λ+µ).

(Proof: see the lecture.)
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Remainder Continuous Random Variables

Definition

Let X : Ω → R be a continuous random variable. The distribution
function of X is defined by

FX (x) = P(X < x).

The density function of X is the function which satisfies

FX (x) =

∫ x

−∞
fX (t) dt.
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Remainder: the Uniform Distribution

Definition

The density function of a random variable X uniformly distributed on the
interval (a, b) is

fX (x) =
1

b − a
,

if a < x < b, and fX (x) = 0 otherwise. By integration, we obtain

FX (x) =


0, if x ≤ a,
x−a
b−a , if a < x < b,

1, if x ≥ b.

Notation: X ∼ U(a; b). For the U(a; b) distribution the density function is
constant (on (a, b), and zero outside), while the distribution function is
linear (on (a, b), and constant outside).
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Remainder: Exponential Distribution

Definition

A random variable Z has an exponential distribution with parameter λ > 0
if

fZ (x) =

{
λe−λx , if x > 0,

0, otherwise.

Equivalently,

FZ (x) =

{
0, if x ≤ 0,

1− e−λx , if x > 0.

Notation: X ∼ Exp(λ).
Occurrence: waiting times (Z ≥ 0 with probability 1), e.g. the remaining
lifetime of a light bulb until it burns out.
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Example for Exponential Distribution

Let X be an exponentially distributed random variable such that
P(X > 3) = e−6.

a) What is the parameter λ of the distribution of X?
b) Compute P(X < 2).
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Exponential Distribution: CDF and PDF
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Exponential Distribution: Memorylessness

Reminder: the geometric distribution is memoryless: if X ∼ Geo(p), then

P(X > s + t | X > t) = P(X > s), ∀s, t ∈ {1, 2, . . .}. (1)

Note: if at least one of s, t is not an integer, then (1) need not hold. For
instance, let t = 3/4, s = 1/2, then

P(X > s + t | X > t) = P(X > 5/4 | X > 3/4) = P(X ≥ 2) = 1− p,

but
P(X > s) = P(X > 1/2) = 1.

However, if X ∼ Exp(λ) with λ > 0, then (1) holds for all s, t ∈ [0,∞).

Modeling question: for which types of waiting times does (1) hold?
E.g. for light bulbs, measurements suggest it is approximately true. For
human lifetimes, it is not true!
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Memorylessness: Exponential vs. Geometric

Reminder:

Theorem

If a non-constant random variable X satisfies

P(X > s + t | X > t) = P(X > s), ∀s, t ∈ {1, 2, . . .} (2)

and Ran(X ) = {1, 2, . . .}, then X ∼ Geo(p) with p = P(X = 1).

Now:

Theorem

If a non-constant random variable X satisfies

P(X > s + t | X > t) = P(X > s), ∀s, t ≥ 0 (3)

and Ran(X ) = [0,∞), then the distribution of X is exponential.
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Proof of Memorylessness

Theorem

If a non-constant random variable X satisfies

P(X > s + t | X > t) = P(X > s), ∀s, t ≥ 0 (4)

and Ran(X ) = [0,∞), then the distribution of X is exponential.

(Proof)
In the proof we use the following lemma (stated without proof):

Lemma

If g : [0, 1) → R is a non-increasing function such that
g(t + s) = g(t) + g(s) for all s, t ∈ [0,∞), then g(t) = −λt, where
λ = −g(1) ≥ 0.
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Link Between Exponential and Geometric Distributions

Due to memorylessness, the exponential distribution is the continuous
analogue of the geometric distribution. By the next statement, the
geometric distribution can actually be expressed via the exponential.

Theorem

If X is exponentially distributed with parameter λ, then ⌈X ⌉ is
geometrically distributed with parameter 1− e−λ.

(Proof.)

Note that there is also a connection between the exponential and the
Poisson distributions: if X ∼ Exp(λ) and Y ∼ Pois(λ), then

P(X ≥ 1) = e−λ = P(Y = 0).
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Not Every Random Variable is Discrete or Continuous...

Example: define X as follows. Toss a fair coin. If it lands heads, sample a
number uniformly on (0, 1) using your favorite random number generator
and take this value as X ; if tails, roll a fair die and take the outcome as X .
Then

X is not continuous, because if it were, we would have P(X = 6) = 0,
but actually P(X = 6) = 1

2 · 1
6 = 1

12 (multiplication rule).

X is not discrete either, since on (0, 1) it can take every value, hence
its range is uncountable.

Conditional on heads, X behaves like a continuous r.v.; conditional on
tails, like a discrete one.
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Expectation in the Continuous Case

Reminder:

Definition

If X is a nonnegative discrete random variable with∑
k∈Ran(X )

|k|P(X = k) < ∞,

then
E(X ) =

∑
k∈Ran(X )

kP(X = k).

The continuous analogue: instead of summing the weight function times
k , we integrate the density times x—this is also a “probability-weighted
average”.
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Expectation in the Continuous Case

The continuous analogue: instead of summing the weight function times
k , we integrate the density times x—this is also a “probability-weighted
average”.

Definition

Let X be a continuous random variable such that∫ ∞

−∞
|x |fX (x)dx < ∞.

Then

E(X ) =

∫ ∞

−∞
x fX (x)dx .
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Expected Values of Notable Distributions

Theorem

If X ∼ Exp(λ) for some λ > 0, then E(X ) = 1
λ .

(Proof)
Thus, the larger λ, the smaller the expectation.

Intuition: if interarrival times between certain events are independent and

Exp(λ)-distributed, then on average λ events occur in a unit time interval. For

this reason, the parameter λ of the exponential distribution is often called the

rate.

Theorem

If X is uniformly distributed on (a, b) (where −∞ < a < b < ∞), then
E(X ) = a+b

2 .

(Proof)
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Expectation: Positive and Negative Parts

Question: if
∫∞
−∞ |x |fX (x)dx = ∞, can we at least define E(X ) to be +∞

or −∞?

The answer mirrors the discrete case:

If P(X ≥ 0) = 1: E(X ) =
∫∞
−∞ xfX (x)dx ∈ [0,∞] is well-defined.

If P(X ≤ 0) = 1: E(X ) ∈ [−∞, 0] is well-defined.

If X takes both positive and negative values: as before, X+ = max(X , 0)
and X− = max(−X , 0) are nonnegative random variables, and

X = X+ − X− and |X | = X+ + X−.

If E(X+) < ∞ or E(X−) < ∞, then set

E(X )
def.
= E(X+)− E(X−),

which is either a real number, +∞, or −∞. If E(X+) = E(X−) = ∞, the
expectation is undefined (example: Cauchy distribution).

Again we see: E(|X |) < ∞ iff E(X ) exists and is finite.
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Linearity of Expectation

Linearity of expectation holds not only for discrete but for any random
variables whose expectations exist:

Theorem

Let X ,Y be random variables with E(|X |) < ∞ and E(|Y |) < ∞. Then
E(X + Y ) = E(X ) + E(Y ) and, for c ∈ R, E(cX ) = c E(X ).

The same holds, e.g., for nonnegative random variables as well, using the
convention ∞+∞ = ∞+ c = ∞ (where c ∈ R):

Theorem

If X ,Y are nonnegative random variables, then E(X +Y ) = E(X )+E(Y ).

These statements remain true even if, say, X is discrete and Y is
continuous. For example, if X is the outcome of a die roll and
Y ∼ Exp(1), then E(X + Y ) = 4.5.
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