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Independence of discrete random variables

So far we mainly discussed the distribution of a single (mostly discrete)
random variable.

Now: We want to describe how several (typically two) discrete random
variables depend on each other, i.e., how they influence each other’s
behavior, and how this can be captured in a simple, compact form.

In particular, we extend the notion of independence, defined so far only for
events, to random variables.

Example: We roll a die twice; let X be the first and Y the second
outcome. Knowing X tells us nothing more about Y than without this
information, and vice versa. We will see shortly: in this case X and Y are
indeed independent random variables.
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Discrete joint distribution as a two-dimensional pmf

Definition

The discrete joint distribution of two random variables X and Y is a
two-dimensional probability mass function: the function

(x,¥) = pcx,v)(x,y), where by definition

Pix)(xy) =P(X =x Y =y) =P{X =x} n{Y = y}).

This is also called the joint pmf of X and Y.

YX|0 1
0 |z O
1 1
113 3
2 |0 3
In the example: px v)(0,1) = %.
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Independence of random variables

Recall: events A, B are independent if P(AN B) = P(A)P(B).

Definition

Let X,Y: Q — R be random variables on (2, F,P). We say X and Y are
independent if for all x,y € R, the events {X < x} and {Y < y} are
independent, i.e., P(X < x,Y <y)=P(X < x)P(Y < y).
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Independence of random variables

Recall: events A, B are independent if P(AN B) = P(A)P(B).

Definition

Let X,Y: Q — R be random variables on (2, F,P). We say X and Y are
independent if for all x,y € R, the events {X < x} and {Y < y} are
independent, i.e., P(X < x,Y <y)=P(X < x)P(Y < y).

This definition also works when the random variables are not necessarily
discrete. In the discrete case there is a simpler/more intuitive equivalent
definition.

Bence Csonka (BME) September 29 4/24



Independence of random variables

Recall: events A, B are independent if P(AN B) = P(A)P(B).

Definition

Let X,Y: Q — R be random variables on (2, F,P). We say X and Y are
independent if for all x,y € R, the events {X < x} and {Y < y} are
independent, i.e., P(X < x,Y <y)=P(X < x)P(Y < y).

This definition also works when the random variables are not necessarily
discrete. In the discrete case there is a simpler/more intuitive equivalent
definition.

Two discrete random variables X and Y are independent if and only if for
all x,y € R the events {X = x} and {Y = y} are independent, i.e.,

PX=x,Y=y)=P(X =x)P(Y = {)

— ——— = ~
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Example: discrete joint distribution and independence

Example: Flip a fair coin twice. Let X = T2nd toss is heads} and let Y be
the total number of heads.

@ Give the joint distribution of X and Y, i.e., the probabilities
P(X = k, Y =) for all k,| where this is nonzero.

@ Also give the marginal distributions of X and Y, i.e., the pmfs px
and py.

© Are X and Y independent?

© Compute E(XY). (Recall: by definition XY (w) = X(w)Y (w),
we )

(Before computing, think about whether they are independent and what
the marginals px and py will be.)
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Example: discrete joint distribution and independence

X = T {ond toss is heads}» ¥ = number of heads.
We give the joint distribution in a table (computation: in the lecture):

YX

N = O
O RRpH O
BRI O =

The probabilities in the table sum to 1.
Where do the marginals appear in the table?
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Example: discrete joint distribution and independence

X = T {ond toss is heads}, Y = number of heads.
We give the joint distribution in a table (computation: in the lecture):

YX |0 1] py
1

0 [z Of 3

1 |1 1|1

y 51
11

Px 5 3 1

The probabilities in the main body of the table sum to 1.
Where do the marginals appear in the table?
o px(k) =P(X = k) =>_cRran(v) P(X = k, Y =), so the column
sums give the corresponding values of px.
o py() =P(Y =1) = > keran(x) P(X = k, Y =), so the row sums
give the corresponding values of py.

E(XY) = 3 (see the lecture). X and Y are not independent since, e.g.,
PX=0,Y=2)=0#P(X =0)P(Y =2).
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“Tips and tricks" for joint distributions

YX |0 1] py
1

0 i 0]

1 1 1] 1

y 51
11

Px 5 3 1

For any discrete random variables X, Y:

@ To show that X and Y are not independent, it suffices to find one
pair (k,/) with P(X = k,Y =1) #P(X = k)P(Y = ).
A convenient special case visible in a table: if 0 =P(X =k, Y =)
while P(X = k) #0 and P(Y =1/) # 0.

@ To show that X and Y are independent, you must check every pair
(k,))that P(X = k, Y =1) =P(X = k)P(Y = /).

@ The order of X and Y matters. If you swap X and Y, then px
appears in the rows and py in the columns.
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Remainder Expected Value

Definition

Let X be a discrete random variable such that
> Ikl px(k) < oco.
keRan(X)
Then .
EX)E Y kP(X=k)= > kpx(k)eR.

keRan(X) keRan(X)
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Remainder Expected Value

Definition

Let X be a discrete random variable such that
> Ikl px(k) < oco.
keRan(X)

Then
EX)E Y kP(X=k= Y kpx(k)eR.

keRan(X) keRan(X)

In most cases Ran(X) C N, hence the absolute value does not matter.
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Properties of expected value

The linearity of expectation, E(X + Y) = E(X) + E(Y), E(cX) = cE(X),
holds for arbitrary (not necessarily discrete) random variables X, Y whose

expected values exist.

(Proof)
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Expectation of a product for independent random variables

If X and Y are independent, then the expectation of their product is the
product of their expectations:

If X and Y are independent random variables and E(XY'), E(X) and
E(Y) exist, then

E(XY) = E(X)E(Y). (1)

(Proof)
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Expectation of a product for independent random variables

If X and Y are independent, then the expectation of their product is the
product of their expectations:

If X and Y are independent random variables and E(XY'), E(X) and
E(Y) exist, then

E(XY) = E(X)E(Y). (1)

(Proof)

The converse is false! It may happen that X and Y are not independent,
yet (1) still holds. Example: later.
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Independence of several random variables

Recall: independence of n > 2 events Ay, ..., A, means that for any

2 < k < n, and any choice of k events, the probability of their intersection
equals the product of their probabilities. Formally: Aj,..., A, are
independent < forall k € {2,....,n}andall 1 < i < <...<ix<n,

IP’(A,‘1 N A,'2 N... ﬁA,‘k) = P(A,l) . P(AQ) RN P(A,k)

For n > 3 it did not suffice, e.g., to require pairwise independence or only
the n-fold intersection property.
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Independence of several random variables

Recall: independence of n > 2 events Ay, ..., A, means that for any

2 < k < n, and any choice of k events, the probability of their intersection
equals the product of their probabilities. Formally: Aj,..., A, are
independent < forall k € {2,....,n}andall 1 < i < <...<ix<n,

P(A, NA,N...NA,) =P(A;) - P(A,) ... - P(A,).

Similarly, if Xi,..., X, (n > 2) are random variables on (2, F,P), their
independence means that for any k € {2,...,n}, any
1<ii<ih<...<ik<n, and any x;,...,x; €R,

P(X,'l < Xy oo 7ka < ka) = ]P)(X,'l < X,'l) et ]P)(X,'k < ka)'

In the discrete case this is equivalent to replacing all the “<" by "=", that
is (with the same conditions)

P(Xy = xiy, ..., Xi, = xi.) = P(Xiy = xi,) - ... - P(X, = x;,. ).
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Expectation of a transformation in the discrete case

Definition

For a random variable X, a transformation is defined as the function
g(X): Q — R for some g: Ran(X) C R — R.

The transformation is defined ,, pointwise” :

For example, if X is the outcome of a die roll and we know that X =5,
then X? = 25.
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Expectation of a transformation in the discrete case

Definition

For a random variable X, a transformation is defined as the function
g(X): Q — R for some g: Ran(X) C R — R.

The transformation is defined ,, pointwise” :

For example, if X is the outcome of a die roll and we know that X =5,
then X? = 25.

If X is a discrete random variable, then any of its transformations is also a
random variable (i.e. {g(X) < x} € F holds for all x € R) and is also
discrete. For general random variables, the situation is more complicated.

Question: how do we compute the expectation of the transformation of a
discrete random variable (if it exists)?
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Expectation of a transformation in the discrete case

Example with die roll — we computed the probability mass function of X?
and from this E(X?):

E(X?) = > KP(X? = k).
k€{1,4,9,16,25,36}=Ran(X2)

Question: do we really need to compute the distribution of X? for this?

Alternative: take the probability mass function of X and weight with k?
instead of k:

E(X?) = > K2P(X = k).
ke{1,2,...,6}=Ran(X)

In general:

If X is a discrete random variable, then for any transformation g(X) for
which the expectation exists:

Eg(X)= > gkB(X=k).
keRan(X)
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Moments of random variables

If X is a discrete random variable, then for any transformation g(X) for
which the expectation exists:

E@g(X) = Y &kP(X=k).

keRan(X)

According to the earlier definition, E(g (X)) exists if

o> Y kIP(e(X)=Kk)= > [g)P(X=1),

keRan(g(X)) /eRan(X)

and the right-hand side is precisely E(|g(X)]), the expectation of the
absolute value of the transformation.
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Moments of random variables

If X is a discrete random variable, then for any transformation g(X) for
which the expectation exists:

E@g(X) = Y &kP(X=k).

keRan(X)

According to the earlier definition, E(g (X)) exists if

o> Y kIP(e(X)=Kk)= > [g)P(X=1),

keRan(g(X)) /eRan(X)

and the right-hand side is precisely E(|g(X)]), the expectation of the
absolute value of the transformation.

Special case: g(x) =x", n=1,2,....
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Moments of random variables

Special case: g(x) =x", n=1,2,....

Definition

E[|X|"] is called the nth absolute moment of X.
If X has a finite nth absolute moment, then E(X") is called the nth
moment of X.

Thus, the first moment is the expectation (if it exists).
(Example: moments of an indicator random variable)
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Variance and standard deviation

It is often said that the expectation is “the most information one can
express about a distribution/random variable with a single number.”

This information is obviously not complete. (E.g., “a fair die shows 3.5 on
average” — this is true, but it tells us nothing about the support of the
die outcomes.)
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Variance and standard deviation

It is often said that the expectation is “the most information one can
express about a distribution/random variable with a single number.”

This information is obviously not complete. (E.g., “a fair die shows 3.5 on
average” — this is true, but it tells us nothing about the support of the
die outcomes.)

Example: To participate in a lottery we must pay 1 euro. The referee flips
a coin; if the result is heads, we receive 2 euros, otherwise we lose our 1
euro as well.

Then our expected gain is 0 euros.

Now raise the entry fee to 1000 euros and the possible prize to 2000. The
expectation stays the same, but we feel the difference.

General question: How can we measure the distance between a random
variable and its expectation?
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Variance and standard deviation

The (absolute) deviation of a random variable X from its expectation is
|IX — E(X)].
We could study its expectation, but the absolute value is often
inconvenient to handle.
Instead we study the square of this distance, namely

E[(X —E(X))?].

This quantity has many interesting and useful properties—besides being
easier to compute.

Definition
Let X be a random variable with E(X?) < co. Then

D?(X) := E[(X — E(X))?]

is called the variance of X, and D(X) = \/D?(X) is called the standard
deviation of X.

v
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Variance and standard deviation

D?(X) = E[(X — E(X))?], D(X) = /D*(X).
Remarks:
@ The variance (as the expectation of a nonnegative quantity) is always
nonnegative, so taking the square root makes sense.
e If D?(X) = 0, then (X — E(X))? is a nonnegative r.v. with
expectation 0, hence (X — E(X))? = 0 with probability 1, i.e.,
P(X =E(X)) = 1.
The converse is also true, therefore:
X has variance/standard deviation 0 if and only if X is almost surely
constant.
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Variance and standard deviation

D*(X) = E[(X — E(X))?], D(X) = /D?(X).
In practice, variance is computed via the following formula (though
sometimes the definition is simpler to use):

D?(X) = E(X?) — E(X)2.
(Proof:
D?(X) = E((X — E(X))?) = E(X? — 2XE(X) + E(X)?)
= E(X?) - 2E(X)E(X) + E(X)? = E(X?) — E(X)?,
by linearity of expectation.)

A consequence of the above properties:
if E(X?) < oo, then E(X?) > E(X)?, with equality if and only if X is
almost surely constant.
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Elementary properties of (standard deviation and) variance

Example for the standard deviation: fair die
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Elementary properties of (standard deviation and) variance

Example for the standard deviation: fair die

IfFE(X?) < 0o and a, b € R, then

D?(aX + b) = a’D?(X).

(Proof.)
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Elementary properties of (standard deviation and) variance

Example for the standard deviation: fair die

IfFE(X?) < 0o and a, b € R, then

D?(aX + b) = a’D?(X).

(Proof.)

IfE(X?) < oo and c € R, then
e D(cX) = |c|D(X) (standard deviation is absolutely homogeneous)
e (X + ¢) = D(X) (standard deviation is translation invariant).
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Elementary properties of (standard deviation and) variance

D?(aX 4 b) = a’D?(X).

Caution: unlike expectation, variance is generally not additive!

E.g., let X be a nonconstant r.v. with existing standard deviation, and let
Y = —X. Then

D?(X + Y) =D?*(X — X) =0,
et
’ D?(X) + D3(Y) = 2D?(X) # D?(X + Y).
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Elementary properties of (standard deviation and) variance

D?(aX 4 b) = a’D?(X).

Caution: unlike expectation, variance is generally not additive!

E.g., let X be a nonconstant r.v. with existing standard deviation, and let
Y = —X. Then

D?(X + Y) =D?*(X — X) =0,
et
’ D?(X) + D3(Y) = 2D?(X) # D?(X + Y).

To come: If X and Y are independent random variables, then
D?(X + Y) = D?(X) + D?(Y).

We will first introduce independence for random variables—coming soon.
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If X and Y are independent random variables with E(X?),E(Y?) < oo,
then

D?(X + Y) = D?(X) + D?(Y).

e (Proof)

@ (Reminder: for non-independent X, Y this is generally false!)
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If X and Y are independent random variables with E(X?),E(Y?) < oo,
then

D?(X + Y) = D?(X) + D?(Y).

e (Proof)
@ (Reminder: for non-independent X, Y this is generally false!)

(Example: If X, Y are independent, D?(X) = 4, D?(Y) =9, what is
D(2X 4+ Y +9)?)
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