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Independence of discrete random variables

So far we mainly discussed the distribution of a single (mostly discrete)
random variable.

Now: We want to describe how several (typically two) discrete random
variables depend on each other, i.e., how they influence each other’s
behavior, and how this can be captured in a simple, compact form.
In particular, we extend the notion of independence, defined so far only for
events, to random variables.

Example: We roll a die twice; let X be the first and Y the second
outcome. Knowing X tells us nothing more about Y than without this
information, and vice versa. We will see shortly: in this case X and Y are
indeed independent random variables.
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Discrete joint distribution as a two-dimensional pmf

Definition

The discrete joint distribution of two random variables X and Y is a
two-dimensional probability mass function: the function
(x , y) 7→ p(X ,Y )(x , y), where by definition

p(X ,Y )(x , y) := P(X = x ,Y = y) = P({X = x} ∩ {Y = y}).

This is also called the joint pmf of X and Y .

YX 0 1

0 1
4 0

1 1
4

1
4

2 0 1
4

In the example: p(X ,Y )(0, 1) =
1
4 .
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Independence of random variables

Recall: events A,B are independent if P(A ∩ B) = P(A)P(B).

Definition

Let X ,Y : Ω → R be random variables on (Ω,F ,P). We say X and Y are
independent if for all x , y ∈ R, the events {X < x} and {Y < y} are
independent, i.e., P(X < x ,Y < y) = P(X < x)P(Y < y).

This definition also works when the random variables are not necessarily
discrete. In the discrete case there is a simpler/more intuitive equivalent
definition.

Theorem

Two discrete random variables X and Y are independent if and only if for
all x , y ∈ R the events {X = x} and {Y = y} are independent, i.e.,

P(X = x ,Y = y) = P(X = x)P(Y = y).
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Example: discrete joint distribution and independence

Example: Flip a fair coin twice. Let X = 1{2nd toss is heads} and let Y be
the total number of heads.

1 Give the joint distribution of X and Y , i.e., the probabilities
P(X = k ,Y = l) for all k , l where this is nonzero.

2 Also give the marginal distributions of X and Y , i.e., the pmfs pX
and pY .

3 Are X and Y independent?

4 Compute E(XY ). (Recall: by definition XY (ω) = X (ω)Y (ω),
ω ∈ Ω.)

(Before computing, think about whether they are independent and what
the marginals pX and pY will be.)
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Example: discrete joint distribution and independence

X = 1{2nd toss is heads}, Y = number of heads.
We give the joint distribution in a table (computation: in the lecture):

YX 0 1

0 1
4 0

1 1
4

1
4

2 0 1
4

The probabilities in the table sum to 1.
Where do the marginals appear in the table?
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Example: discrete joint distribution and independence

X = 1{2nd toss is heads}, Y = number of heads.
We give the joint distribution in a table (computation: in the lecture):

YX 0 1 pY
0 1

4 0 1
4

1 1
4

1
4

1
2

2 0 1
4

1
4

pX
1
2

1
2 1

The probabilities in the main body of the table sum to 1.
Where do the marginals appear in the table?

pX (k) = P(X = k) =
∑

l∈Ran(Y ) P(X = k ,Y = l), so the column
sums give the corresponding values of pX .

pY (l) = P(Y = l) =
∑

k∈Ran(X ) P(X = k ,Y = l), so the row sums
give the corresponding values of pY .

E(XY ) = 3
4 (see the lecture). X and Y are not independent since, e.g.,

P(X = 0,Y = 2) = 0 ̸= P(X = 0)P(Y = 2).
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“Tips and tricks” for joint distributions

YX 0 1 pY
0 1

4 0 1
4

1 1
4

1
4

1
2

2 0 1
4

1
4

pX
1
2

1
2 1

For any discrete random variables X ,Y :

To show that X and Y are not independent, it suffices to find one
pair (k , l) with P(X = k,Y = l) ̸= P(X = k)P(Y = l).
A convenient special case visible in a table: if 0 = P(X = k,Y = l)
while P(X = k) ̸= 0 and P(Y = l) ̸= 0.

To show that X and Y are independent, you must check every pair
(k, l) that P(X = k ,Y = l) = P(X = k)P(Y = l).

The order of X and Y matters. If you swap X and Y , then pX
appears in the rows and pY in the columns.
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Remainder Expected Value

Definition

Let X be a discrete random variable such that∑
k∈Ran(X )

|k| pX (k) < ∞.

Then
E(X )

def
=

∑
k∈Ran(X )

kP(X = k) =
∑

k∈Ran(X )

k pX (k) ∈ R.

In most cases Ran(X ) ⊆ N, hence the absolute value does not matter.
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Properties of expected value

Theorem

The linearity of expectation, E(X + Y ) = E(X ) + E(Y ), E(cX ) = c E(X ),
holds for arbitrary (not necessarily discrete) random variables X ,Y whose
expected values exist.

(Proof)
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Expectation of a product for independent random variables

If X and Y are independent, then the expectation of their product is the
product of their expectations:

Theorem

If X and Y are independent random variables and E(XY ), E(X ) and
E(Y ) exist, then

E(XY ) = E(X )E(Y ). (1)

(Proof)

The converse is false! It may happen that X and Y are not independent,
yet (1) still holds. Example: later.
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Independence of several random variables

Recall: independence of n ≥ 2 events A1, . . . ,An means that for any
2 ≤ k ≤ n, and any choice of k events, the probability of their intersection
equals the product of their probabilities. Formally: A1, . . . ,An are
independent ⇔ for all k ∈ {2, . . . , n} and all 1 ≤ i1 < i2 < . . . < ik ≤ n,

P(Ai1 ∩ Ai2 ∩ . . . ∩ Aik ) = P(Ai1) · P(Ai2) · . . . · P(Aik ).

For n ≥ 3 it did not suffice, e.g., to require pairwise independence or only
the n-fold intersection property.

Similarly, if X1, . . . ,Xn (n ≥ 2) are random variables on (Ω,F ,P), their
independence means that for any k ∈ {2, . . . , n}, any
1 ≤ i1 < i2 < . . . < ik ≤ n, and any xi1 , . . . , xik ∈ R,

P(Xi1 < xi1 , . . . ,Xik < xik ) = P(Xi1 < xi1) · . . . · P(Xik < xik ).

In the discrete case this is equivalent to replacing all the “<” by “=”, that
is (with the same conditions)

P(Xi1 = xi1 , . . . ,Xik = xik ) = P(Xi1 = xi1) · . . . · P(Xik = xik ).
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Expectation of a transformation in the discrete case

Definition

For a random variable X , a transformation is defined as the function
g(X ) : Ω → R for some g : Ran(X ) ⊆ R → R.

The transformation is defined
”
pointwise”:

(g(X ))(ω) = g(X (ω)).

For example, if X is the outcome of a die roll and we know that X = 5,
then X 2 = 25.

If X is a discrete random variable, then any of its transformations is also a
random variable (i.e. {g(X ) < x} ∈ F holds for all x ∈ R) and is also
discrete. For general random variables, the situation is more complicated.

Question: how do we compute the expectation of the transformation of a
discrete random variable (if it exists)?
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Expectation of a transformation in the discrete case

Example with die roll → we computed the probability mass function of X 2

and from this E(X 2):

E(X 2) =
∑

k∈{1,4,9,16,25,36}=Ran(X 2)

kP(X 2 = k).

Question: do we really need to compute the distribution of X 2 for this?
Alternative: take the probability mass function of X and weight with k2

instead of k:

E(X 2) =
∑

k∈{1,2,...,6}=Ran(X )

k2P(X = k).

In general:
If X is a discrete random variable, then for any transformation g(X ) for
which the expectation exists:

E(g(X )) =
∑

k∈Ran(X )

g(k)P(X = k).
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Moments of random variables

Theorem

If X is a discrete random variable, then for any transformation g(X ) for
which the expectation exists:

E(g(X )) =
∑

k∈Ran(X )

g(k)P(X = k).

According to the earlier definition, E(g(X )) exists if

∞ >
∑

k∈Ran(g(X ))

|k |P(g(X ) = k) =
∑

l∈Ran(X )

|g(l)|P(X = l),

and the right-hand side is precisely E(|g(X )|), the expectation of the
absolute value of the transformation.

Special case: g(x) = xn, n = 1, 2, . . ..
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Moments of random variables

Special case: g(x) = xn, n = 1, 2, . . ..

Definition

E[|X |n] is called the nth absolute moment of X .
If X has a finite nth absolute moment, then E(X n) is called the nth
moment of X .

Thus, the first moment is the expectation (if it exists).
(Example: moments of an indicator random variable)
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Variance and standard deviation

It is often said that the expectation is “the most information one can
express about a distribution/random variable with a single number.”
This information is obviously not complete. (E.g., “a fair die shows 3.5 on
average” → this is true, but it tells us nothing about the support of the
die outcomes.)

Example: To participate in a lottery we must pay 1 euro. The referee flips
a coin; if the result is heads, we receive 2 euros, otherwise we lose our 1
euro as well.
Then our expected gain is 0 euros.

Now raise the entry fee to 1000 euros and the possible prize to 2000. The
expectation stays the same, but we feel the difference.

General question: How can we measure the distance between a random
variable and its expectation?
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Variance and standard deviation

The (absolute) deviation of a random variable X from its expectation is
|X − E(X )|.
We could study its expectation, but the absolute value is often
inconvenient to handle.
Instead we study the square of this distance, namely

E[(X − E(X ))2].

This quantity has many interesting and useful properties—besides being
easier to compute.

Definition

Let X be a random variable with E(X 2) < ∞. Then

D2(X ) := E[(X − E(X ))2]

is called the variance of X , and D(X ) =
√

D2(X ) is called the standard
deviation of X .
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Variance and standard deviation

D2(X ) = E[(X − E(X ))2], D(X ) =
√
D2(X ).

Remarks:

The variance (as the expectation of a nonnegative quantity) is always
nonnegative, so taking the square root makes sense.

If D2(X ) = 0, then (X − E(X ))2 is a nonnegative r.v. with
expectation 0, hence (X − E(X ))2 = 0 with probability 1, i.e.,
P(X = E(X )) = 1.
The converse is also true, therefore:
X has variance/standard deviation 0 if and only if X is almost surely
constant.
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Variance and standard deviation

D2(X ) = E[(X − E(X ))2], D(X ) =
√
D2(X ).

In practice, variance is computed via the following formula (though
sometimes the definition is simpler to use):

D2(X ) = E(X 2)− E(X )2.

(Proof:

D2(X ) = E((X − E(X ))2) = E(X 2 − 2XE(X ) + E(X )2)

= E(X 2)− 2E(X )E(X ) + E(X )2 = E(X 2)− E(X )2,

by linearity of expectation.)

A consequence of the above properties:
if E(X 2) < ∞, then E(X 2) ≥ E(X )2, with equality if and only if X is
almost surely constant.
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Elementary properties of (standard deviation and) variance

Example for the standard deviation: fair die

Theorem

If E(X 2) < ∞ and a, b ∈ R, then

D2(aX + b) = a2D2(X ).

(Proof.)

Corollary

If E(X 2) < ∞ and c ∈ R, then
D(cX ) = |c|D(X ) (standard deviation is absolutely homogeneous)

D(X + c) = D(X ) (standard deviation is translation invariant).
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Elementary properties of (standard deviation and) variance

D2(aX + b) = a2D2(X ).

Caution: unlike expectation, variance is generally not additive!
E.g., let X be a nonconstant r.v. with existing standard deviation, and let
Y = −X . Then

D2(X + Y ) = D2(X − X ) = 0,

yet
D2(X ) + D2(Y ) = 2D2(X ) ̸= D2(X + Y ).

To come: If X and Y are independent random variables, then
D2(X + Y ) = D2(X ) + D2(Y ).
We will first introduce independence for random variables—coming soon.

Bence Csonka (BME) September 29 22 / 24



Elementary properties of (standard deviation and) variance

D2(aX + b) = a2D2(X ).

Caution: unlike expectation, variance is generally not additive!
E.g., let X be a nonconstant r.v. with existing standard deviation, and let
Y = −X . Then

D2(X + Y ) = D2(X − X ) = 0,

yet
D2(X ) + D2(Y ) = 2D2(X ) ̸= D2(X + Y ).

To come: If X and Y are independent random variables, then
D2(X + Y ) = D2(X ) + D2(Y ).
We will first introduce independence for random variables—coming soon.

Bence Csonka (BME) September 29 22 / 24



Theorem

If X and Y are independent random variables with E(X 2),E(Y 2) < ∞,
then

D2(X + Y ) = D2(X ) + D2(Y ).

(Proof)

(Reminder: for non-independent X ,Y this is generally false!)

(Example: If X ,Y are independent, D2(X ) = 4, D2(Y ) = 9, what is
D(2X + Y + 9)?)
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