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Motivation

In the previous part of the lecture, the distribution of the random variables
was assumed to be known. In contrast, in mathematical statistics, random
variables correspond to measurement results, and therefore their
distributions are not known precisely.

The distribution depends on an
unknown parameter ϑ, whose possible values form a parameter domain
θ ⊆ Rd for some d ≥ 1.1

1ϑ and θ are two lowercase forms of the Greek letter
”
theta.”
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Examples 1

If we find a coin on the street and do not know whether it is fair, then it
shows heads with an unknown probability ϑ ∈ θ = [0, 1] ⊂ R1. By tossing
the coin several times, we can try to estimate ϑ, or verify or reject the
hypothesis that the coin is fair. The indicator variable

1{the outcome of a given toss is head}

thus has the unknown parameter ϑ.
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Example 2

The number of accidents at railway crossings in Hungary during a given
month can be assumed to follow a Poisson distribution quite accurately,
since there are many drivers, each having a small probability of an
accident, and the events are more or less independent. The Poisson
distribution has an unknown parameter ϑ ∈ θ = (0,∞) ⊂ R1.
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Example 3

The height of a randomly selected female student at BME can be modeled
by a normal distribution.2 In this case, both the mean µ ∈ R and the
variance σ2 > 0 are unknown, so the parameter domain is

θ = {(µ, σ2) ∈ R2 : σ2 > 0} ⊂ R2.

2Similarly, a randomly selected male student’s height can be modeled by a normal
distribution with a different mean. However, the height of a randomly selected BME
student (without conditioning on gender) cannot, since male and female averages differ,
leading to a density with two local maxima — which is therefore not approximately
normal.
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Basic concept

In mathematical statistics, it is typical that in order to study the unknown
parameter, we take a sample, that is, we

”
generate” independent,

identically distributed random variables X1, . . . ,Xn following the
distribution with the unknown parameter. For example:
We toss the coin n times, and for each i = 1, . . . , n, let Xi = 1 if the i-th
toss results in heads, and Xi = 0 otherwise. Then X1, . . . ,Xn are
independent, identically distributed indicator variables with parameter ϑ.
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Basic concept

We define the concept of a sample without referring to the unknown
parameter ϑ.

Definition

Let X1, . . . ,Xn be independent, identically distributed random variables
with possibly unknown marginal distributions. Then the random vector

X = (X1, . . . ,Xn)

is called an independent and identically distributed sample of size n
(abbreviated as an i.i.d. sample of size n).
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Useful notations

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n, where the common
distribution depends on a parameter ϑ ∈ θ ⊆ Rd for some d ≥ 1. Then,
for a given ϑ ∈ θ:

1 The distribution function of X1 corresponding to parameter ϑ is
denoted by Fϑ.

2 If X1 has a density function under this parameter, it is denoted by fϑ,
i.e.

fϑ(x) =

{
F ′
ϑ(x), if Fϑ is differentiable at x ,

0, otherwise.

3 If X1 is discrete under this parameter, its probability mass function is
denoted by pϑ, meaning that for x ∈ R, pϑ(x) denotes the probability
that X1 = x , given that ϑ is the true parameter.
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Examples

For the coin found on the street: pϑ(0) = 1− ϑ and pϑ(1) = ϑ,
ϑ ∈ [0, 1].

For the number of railway crossing accidents:

pϑ(k) =
ϑk

k!
e−ϑ, ϑ > 0, k = 0, 1, . . . .

For the height of female BME students, the unknown parameter is
(µ, σ2), hence

f(µ,σ2)(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R, µ ∈ R, σ2 > 0.

We leave the corresponding distribution functions to the reader.
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Essential values

Definition

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n, where the distribution
of the sample elements depends on a parameter ϑ ∈ θ ⊆ Rd . For ϑ ∈ θ
and i = 1, . . . , n, if the density function fϑ exists, define

S
(ϑ)
Xi

= {x ∈ R | fϑ(x) > 0} ⊆ R.

If instead the probability mass function pϑ exists, define

S
(ϑ)
Xi

= {x ∈ R | pϑ(x) > 0} ⊆ R.

In both cases, S
(ϑ)
Xi

is called the set of essential values of Xi for the

parameter ϑ.3

3The set of essential values of Xi (for a given ϑ) is almost the same as the image of

Xi as a function Ω → R. The image may be slightly larger, but all values outside S
(ϑ)
Xi

occur with probability zero.
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Realization

Definition

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n, where the sample
distribution depends on a parameter ϑ ∈ θ ⊆ Rd . A vector
x = (x1, . . . , xn) ∈ Rn is called a (possible) realization of

X = (X1, . . . ,Xn) for parameter ϑ ∈ θ, if xi ∈ S
(ϑ)
Xi

holds for all
i ∈ {1, . . . , n}.
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Example for realization

For the coin found on the street, the sequence
(x1, . . . , x7) = (1, 0, 0, 0, 1, 1, 0) is a realization of the i.i.d. sample
X = (X1, . . . ,X7) for all parameters 0 < ϑ < 1 (but not for ϑ = 0 or
ϑ = 1).
For the i.i.d. sample X = (X1, . . . ,X5) uniformly distributed on (0, ϑ),

(x1, . . . , x5) = (0.14, 0.79, 1.13, 1, 1.2)

is a possible realization if 1.2 < ϑ < 2, but not if 1 < ϑ ≤ 1.2.
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Statistics

For an i.i.d. sample of size n, a statistic is any function of the sample
elements which is symmetric, that is, it

”
depends on all sample elements in

the same way.” The following definition formalizes this property.

Definition

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n. If T : Rn → R is a
symmetric function, that is,

T (x1, . . . , xn) = T (xπ(1), . . . , xπ(n))

for all x1, . . . , xn ∈ R and for every permutation
π : {1, . . . , n} → {1, . . . , n} in the combinatorics chapter for an equivalent
definition, then the random variable T (X) = T (X1, . . . ,Xn) is called a
statistic of X1, . . . ,Xn.
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Sample mean

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n. Then the quantity

Xn =
X1 + . . .+ Xn

n
,

is called the sample mean of X, and it is a statistic of the sample. If
x = (x1, . . . , xn) is a realization of X = (X1, . . . ,Xn), then we denote the
mean of the realization by xn:

xn =
x1 + . . .+ xn

n
.
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Corrected empirical variance

Let X = (X1, . . . ,Xn) be an i.i.d. sample of size n. Then

(S∗
n )

2 =
1

n − 1

n∑
i=1

(Xi − Xn)
2 (1)

is called the corrected empirical variance of X,4 and

S∗
n =

√
(S∗

n )
2

is called the corrected empirical standard deviation of X.

4The word
”
empirical” means

”
based on observations.” The term

”
corrected

empirical variance” is also used.
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Property of mentioned statistics

Theorem

E(X n) = E(X1)

E((S∗
n )

2) = D2(X1).

(Proof)

Bence Csonka (BME) November 18 16 / 17




