Probability Theory and Statistics Lecture 17

Bence Csonka

Budapest University of Technology and Economics csonkab@edu.bme.hu

November 17

Markov's Inequality

It may happen that we do not know the exact distribution of a random variable, but we can estimate its expectation, variance (e.g., based on sampling \rightarrow see soon in the statistics part).

In the following we study inequalities that, based on expectation of a random variable, give an estimate for the probability that the random variable takes "extreme" (large/small) values.

Markov's Inequality

It may happen that we do not know the exact distribution of a random variable, but we can estimate its expectation, variance (e.g., based on sampling \rightarrow see soon in the statistics part).

In the following we study inequalities that, based on expectation of a random variable, give an estimate for the probability that the random variable takes "extreme" (large/small) values.

Theorem

Let X be a nonnegative random variable. Then for every a > 0,

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

(Proof)

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

Bence Csonka (BME) November 17 2 / 10

Markov's Inequality

It may happen that we do not know the exact distribution of a random variable, but we can estimate its expectation, variance (e.g., based on sampling \rightarrow see soon in the statistics part).

In the following we study inequalities that, based on expectation of a random variable, give an estimate for the probability that the random variable takes "extreme" (large/small) values.

Theorem

Let X be a nonnegative random variable. Then for every a > 0,

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}.$$

(Proof)

Bence Csonka (BME)

True in the discrete, continuous (and general) case as well.

4 = > 4 를 > 4 를 > 4 를 > 4 를 > 4 를 > 9 q @

November 17

2 / 10

Chebyshev's Inequality

Theorem (Turbo Markov Inequality)

Let X be a random variable and let $g: \underbrace{\operatorname{Ran}(X)}_{\subseteq \mathbb{R}} \to [0,\infty)$ be continuous

and strictly increasing.

Then for every $a > \mathbb{E}(g(X))$,

$$\mathbb{P}(X \geq a) = \mathbb{P}(g(X) \geq g(a)) \leq \frac{\mathbb{E}(g(X))}{g(a)}.$$

Strict monotonicity is important—otherwise the first equality need not hold!

Bence Csonka (BME) November 17 3 / 10

Chebyshev's Inequality

Theorem (Turbo Markov Inequality)

Let X be a random variable and let $g: \underbrace{\operatorname{Ran}(X)}_{\subseteq \mathbb{R}} \to [0,\infty)$ be continuous

and strictly increasing.

Then for every $a > \mathbb{E}(g(X))$,

$$\mathbb{P}(X \geq a) = \mathbb{P}(g(X) \geq g(a)) \leq \frac{\mathbb{E}(g(X))}{g(a)}.$$

Strict monotonicity is important—otherwise the first equality need not hold!

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge a) \le \frac{\mathbb{D}^2(Y)}{a^2}.$$

Bence Csonka (BME) November 17

3 / 10

Proof of Chebyshev's

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge a) \le \frac{\mathbb{D}^2(Y)}{a^2}.$$

Proof: This is just the turbo Markov with the following choice:

- $\bullet X = |Y \mathbb{E}(Y)|,$
- $g(x) = x^2$ (which is strictly increasing on $\operatorname{Ran}(X)$, i.e., on $[0, \infty)$).

By the turbo Markov and the definition of the variance,

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge a) = \mathbb{P}((Y - \mathbb{E}(Y))^2 \ge a^2) \le \frac{\mathbb{E}((Y - \mathbb{E}(Y))^2)}{a^2} = \frac{\mathbb{D}^2(Y)}{a^2}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q♡

Proof of Chebyshev's

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge a) \le \frac{\mathbb{D}^2(Y)}{a^2}.$$

Proof: This is just the turbo Markov with the following choice:

- $\bullet X = |Y \mathbb{E}(Y)|,$
- $g(x) = x^2$ (which is strictly increasing on $\operatorname{Ran}(X)$, i.e., on $[0, \infty)$).

Chebyshev's inequality works for any random variable (although if $\mathbb{E}(Y^2)=\infty$, it yields a trivial bound).

<ロト < 個 ト < 重 ト < 重 ト 三 重 の < で

4 / 10

Chebyshev's Inequality: Examples

A given database server handles on average 50 requests per unit time. From experience, the standard deviation of the number of requests is 5. Give a lower bound on the probability that the number of requests in a unit time is more than 40 but less than 60.

This problem is a typical example of when we do not know the distribution of a random variable, only something about its moments (here, its standard deviation).

Chebyshev's inequality does not always give a very good bound; indeed, even when $\mathbb{E}(Y^2) < \infty$ it may give a trivial bound.

5 / 10

Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let $\overline{X}_n := \frac{X_1 + \ldots + X_n}{n}$, where X_i s are independent identacilly distributed with $\mathbb{E}(X_i) = \mu$, $\mathbb{D}(X_i) = \sigma$.

6 / 10

Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let $\overline{X}_n := \frac{X_1 + \ldots + X_n}{n}$, where X_i s are independent identacilly distributed with $\mathbb{E}(X_i) = \mu$, $\mathbb{D}(X_i) = \sigma$.

Theorem (Weak Law of Large Numbers)

$$\lim_{n\to\infty} \left(|\overline{X}_n - \mu| \ge \varepsilon \right) = 0.$$

(Proof)

Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let $\overline{X}_n := \frac{X_1 + \ldots + X_n}{n}$, where X_i s are independent identacilly distributed with $\mathbb{E}(X_i) = \mu$, $\mathbb{D}(X_i) = \sigma$.

Theorem (Weak Law of Large Numbers)

$$\lim_{n\to\infty} \left(|\overline{X}_n - \mu| \ge \varepsilon \right) = 0.$$

(Proof)

Theorem (Strong Law of Large Numbers)

$$\mathbb{P}(\lim_{n\to\infty}\overline{X}_n=\mu)=1.$$

(We will not prove.)

4 D > 4 A > 4 B > 4 B > B 900

6 / 10

Parameterized Chernoff Bound

Theorem

Let X be a random variable and let $g: \operatorname{Ran}(X) \to [0, \infty)$ be continuous and strictly increasing. Then for every $a > \mathbb{E}(g(X))$,

$$\mathbb{P}(X \geq a) = \mathbb{P}(g(X) \geq g(a)) \leq \frac{\mathbb{E}(g(X))}{g(a)}.$$

Compared to the choice $g(x) = x^2$, we can obtain a sharper bound by choosing a faster growing g:

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a, t > 0,

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(e^{tX})}{e^{ta}}.$$

イロト (個)ト (意)ト (意)ト

Parameterized Chernoff Bound

Theorem

Let X be a random variable and let $g: \operatorname{Ran}(X) \to [0, \infty)$ be continuous and strictly increasing. Then for every $a > \mathbb{E}(g(X))$,

$$\mathbb{P}(X \geq a) = \mathbb{P}(g(X) \geq g(a)) \leq \frac{\mathbb{E}(g(X))}{g(a)}.$$

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a, t > 0,

$$\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(e^{tX})}{e^{ta}}.$$

Proof: This is indeed the turbo Markov with X = X, $g(x) = e^{tx}$.

November 17

7 / 10

Example for Parameterized Chernoff inequality

Let $X \sim \operatorname{Pois}(5)$. Give an upper bound for $\mathbb{P}(X \geq 10)$. \to Using the parameterized Chernoff inequality and optimizing over t yields a much tighter upper bound than Chebyshev's inequality.)

8 / 10

Exercises

Exercise 1: Let X be a non-negative random variable such that $\mathbb{E}(X) = 5$. Use Markov's inequality to give an upper bound on $\mathbb{P}(X \ge 15)$.

9 / 10

Exercises

Exercise 1: Let X be a non-negative random variable such that $\mathbb{E}(X) = 5$. Use Markov's inequality to give an upper bound on $\mathbb{P}(X \ge 15)$.

Exercise 2: Let X be a random variable with mean $\mu=100$ and variance $\sigma^2=25$. Use Chebyshev's inequality to find an upper bound on the probability that X differs from its mean by more than 10.

Bence Csonka (BME) November 17 9 / 10

Exercises

Exercise 1: Let X be a non-negative random variable such that $\mathbb{E}(X) = 5$. Use Markov's inequality to give an upper bound on $\mathbb{P}(X \ge 15)$.

Exercise 2: Let X be a random variable with mean $\mu=100$ and variance $\sigma^2=25$. Use Chebyshev's inequality to find an upper bound on the probability that X differs from its mean by more than 10.

Exercise 3: Let X be a random variable with $\mathbb{E}(X) = 50$ and Var(X) = 9. Find an upper bound on $\mathbb{P}(|X - 50| \ge 6)$ using Chebyshev's inequality. Then compute the bound for $\mathbb{P}(|X - 50| \ge 3)$.

Bence Csonka (BME) November 17 9 / 10