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Markov’s Inequality

It may happen that we do not know the exact distribution of a random
variable, but we can estimate its expectation, variance (e.g., based on
sampling → see soon in the statistics part).

In the following we study inequalities that, based on expectation of a
random variable, give an estimate for the probability that the random
variable takes

”
extreme” (large/small) values.

Theorem

Let X be a nonnegative random variable. Then for every a > 0,

P(X ≥ a) ≤ E(X )

a
.

(Proof)

True in the discrete, continuous (and general) case as well.
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Chebyshev’s Inequality

Theorem (Turbo Markov Inequality)

Let X be a random variable and let g : Ran(X )︸ ︷︷ ︸
⊆R

→ [0,∞) be continuous

and strictly increasing.
Then for every a > E(g(X )),

P(X ≥ a) = P(g(X ) ≥ g(a)) ≤ E(g(X ))

g(a)
.

Strict monotonicity is important—otherwise the first equality need not
hold!

Theorem ((Chebyshev’s inequality))

Let Y be a random variable. Then for every a > 0,

P(|Y − E(Y )| ≥ a) ≤ D2(Y )

a2
.
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Proof of Chebyshev’s

Theorem ((Chebyshev’s inequality))

Let Y be a random variable. Then for every a > 0,

P(|Y − E(Y )| ≥ a) ≤ D2(Y )

a2
.

Proof: This is just the turbo Markov with the following choice:

X = |Y − E(Y )|,
g(x) = x2 (which is strictly increasing on Ran(X ), i.e., on [0,∞)).

By the turbo Markov and the definition of the variance,

P(|Y −E(Y )| ≥ a) = P((Y −E(Y ))2 ≥ a2) ≤ E((Y − E(Y ))2)

a2
=

D2(Y )

a2
.
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Proof of Chebyshev’s

Theorem ((Chebyshev’s inequality))

Let Y be a random variable. Then for every a > 0,

P(|Y − E(Y )| ≥ a) ≤ D2(Y )

a2
.

Proof: This is just the turbo Markov with the following choice:

X = |Y − E(Y )|,
g(x) = x2 (which is strictly increasing on Ran(X ), i.e., on [0,∞)).

Chebyshev’s inequality works for any random variable (although if
E(Y 2) = ∞, it yields a trivial bound).
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Chebyshev’s Inequality: Examples

A given database server handles on average 50 requests per unit time.
From experience, the standard deviation of the number of requests is 5.
Give a lower bound on the probability that the number of requests in a
unit time is more than 40 but less than 60.

This problem is a typical example of when we do not know the distribution
of a random variable, only something about its moments (here, its
standard deviation).

Chebyshev’s inequality does not always give a very good bound; indeed,
even when E(Y 2) < ∞ it may give a trivial bound.
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Weak Law of Large Numbers

We will see an application of Chebyshev’s inequality. Let X n := X1+...+Xn
n ,

where Xi s are indepdendent identacilly distributed with E(Xi ) = µ,
D(Xi ) = σ.

Theorem (Weak Law of Large Numbers)

lim
n→∞

(
|X n − µ| ≥ ε

)
= 0.

(Proof)

Theorem (Strong Law of Large Numbers)

P( lim
n→∞

X n = µ) = 1.

(We will not prove.)
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Parameterized Chernoff Bound

Theorem

Let X be a random variable and let g : Ran(X ) → [0,∞) be continuous
and strictly increasing. Then for every a > E(g(X )),

P(X ≥ a) = P(g(X ) ≥ g(a)) ≤ E(g(X ))

g(a)
.

Compared to the choice g(x) = x2, we can obtain a sharper bound by
choosing a faster growing g :

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a, t > 0,

P(X ≥ a) ≤
E
(
etX

)
eta

.
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.

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a, t > 0,

P(X ≥ a) ≤
E
(
etX

)
eta

.

Proof: This is indeed the turbo Markov with X = X , g(x) = etx .
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Example for Parameterized Chernoff inequality

Let X ∼ Pois(5). Give an upper bound for P(X ≥ 10). → Using the
parameterized Chernoff inequality and optimizing over t yields a much
tighter upper bound than Chebyshev’s inequality.)
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Exercises

Exercise 1: Let X be a non-negative random variable such that E(X ) = 5.
Use Markov’s inequality to give an upper bound on P(X ≥ 15).

Exercise 2: Let X be a random variable with mean µ = 100 and variance
σ2 = 25. Use Chebyshev’s inequality to find an upper bound on the
probability that X differs from its mean by more than 10.

Exercise 3: Let X be a random variable with E(X ) = 50 and Var(X ) = 9.
Find an upper bound on P(|X − 50| ≥ 6) using Chebyshev’s inequality.
Then compute the bound for P(|X − 50| ≥ 3).

Bence Csonka (BME) November 17 9 / 10



Exercises

Exercise 1: Let X be a non-negative random variable such that E(X ) = 5.
Use Markov’s inequality to give an upper bound on P(X ≥ 15).

Exercise 2: Let X be a random variable with mean µ = 100 and variance
σ2 = 25. Use Chebyshev’s inequality to find an upper bound on the
probability that X differs from its mean by more than 10.

Exercise 3: Let X be a random variable with E(X ) = 50 and Var(X ) = 9.
Find an upper bound on P(|X − 50| ≥ 6) using Chebyshev’s inequality.
Then compute the bound for P(|X − 50| ≥ 3).

Bence Csonka (BME) November 17 9 / 10



Exercises

Exercise 1: Let X be a non-negative random variable such that E(X ) = 5.
Use Markov’s inequality to give an upper bound on P(X ≥ 15).

Exercise 2: Let X be a random variable with mean µ = 100 and variance
σ2 = 25. Use Chebyshev’s inequality to find an upper bound on the
probability that X differs from its mean by more than 10.

Exercise 3: Let X be a random variable with E(X ) = 50 and Var(X ) = 9.
Find an upper bound on P(|X − 50| ≥ 6) using Chebyshev’s inequality.
Then compute the bound for P(|X − 50| ≥ 3).

Bence Csonka (BME) November 17 9 / 10




