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Markov's Inequality

It may happen that we do not know the exact distribution of a random
variable, but we can estimate its expectation, variance (e.g., based on
sampling — see soon in the statistics part).

In the following we study inequalities that, based on expectation of a
random variable, give an estimate for the probability that the random
variable takes , extreme” (large/small) values.
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Markov's Inequality

It may happen that we do not know the exact distribution of a random
variable, but we can estimate its expectation, variance (e.g., based on
sampling — see soon in the statistics part).

In the following we study inequalities that, based on expectation of a
random variable, give an estimate for the probability that the random
variable takes , extreme” (large/small) values.

Let X be a nonnegative random variable. Then for every a > 0,

E(X)

P(X > a) <

(Proof)

True in the discrete, continuous (and general) case as well.
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Chebyshev's Inequality

Theorem (Turbo Markov Inequality)

Let X be a random variable and let g: Ran(X) — [0, 00) be continuous
———
CR
and strictly increasing.

Then for every a > E(g(X)),

B(X > a) = P(g(X) > g(a) < 8D

Strict monotonicity is important—otherwise the first equality need not
hold!
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Chebyshev's Inequality

Theorem (Turbo Markov Inequality)

Let X be a random variable and let g: Ran(X) — [0, 00) be continuous
———

CR
and strictly increasing.

Then for every a > E(g(X)),

B(X > a) = P(g(X) > g(a) < 8D

Strict monotonicity is important—otherwise the first equality need not
hold!

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

D2(Y)

P(Y —E(Y)| > 2) < —;
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Proof of Chebyshev's

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

< DY)

P(lY —E(Y)| > a) <

22

Proof: This is just the turbo Markov with the following choice:

e X =|Y—-E(Y)],

e g(x) = x? (which is strictly increasing on Ran(X), i.e., on [0, 0)).
By the turbo Markov and the definition of the variance,

E((Y —E(Y))?) _ D*(Y)

P(|Y —E(Y)| > a) =P((Y ~E(Y))* > &%) < o 2
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Proof of Chebyshev's

Theorem ((Chebyshev's inequality))

Let Y be a random variable. Then for every a > 0,

Proof: This is just the turbo Markov with the following choice:
o X =1|Y—-E(Y)],
e g(x) = x? (which is strictly increasing on Ran(X), i.e., on [0, 0)).

Chebyshev's inequality works for any random variable (although if
E(Y?) = oo, it yields a trivial bound).
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Chebyshev's Inequality: Examples

A given database server handles on average 50 requests per unit time.
From experience, the standard deviation of the number of requests is 5.
Give a lower bound on the probability that the number of requests in a
unit time is more than 40 but less than 60.

This problem is a typical example of when we do not know the distribution
of a random variable, only something about its moments (here, its
standard deviation).

Chebyshev's inequality does not always give a very good bound; indeed,
even when E(Y?) < oo it may give a trivial bound.
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Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let X, :
where X;s are indepdendent identacilly distributed with E(X;) = u,
D(Xj) =o.

— X1+~--+Xn
= =",
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Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let X, := M
where X;s are indepdendent identacilly distributed with E(X;) = u,
D(Xj) =o.

Theorem (Weak Law of Large Numbers)

lim (X, —pl>¢) =0.

n—o0

(Proof)
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Weak Law of Large Numbers

We will see an application of Chebyshev's inequality. Let X, := M
where X;s are indepdendent identacilly distributed with E(X;) = u,
D(Xj) =o.

Theorem (Weak Law of Large Numbers)

(Proof)

(We will not prove.)
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Parameterized Chernoff Bound

Let X be a random variable and let g: Ran(X) — [0,00) be continuous
and strictly increasing. Then for every a > E(g(X)),

B(X > a) = P(g(X) > g(a)) < =6

- g(a)

2

Compared to the choice g(x) = x*, we can obtain a sharper bound by

choosing a faster growing g:

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a,t > 0,

E et‘X
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Parameterized Chernoff Bound

Let X be a random variable and let g: Ran(X) — [0,00) be continuous
and strictly increasing. Then for every a > E(g(X)),

P(X > 2) = P(g(X) > g(a)) < 26X,

Theorem (Parameterized Chernoff inequality)

Let X be a random variable. Then for every a,t > 0,

E(etX) ‘

P(X > a) < =

Proof: This is indeed the turbo Markov with X = X, g(x) = e™.
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Example for Parameterized Chernoff inequality

Let X ~ Pois(5). Give an upper bound for P(X > 10). — Using the
parameterized Chernoff inequality and optimizing over t yields a much
tighter upper bound than Chebyshev's inequality.)
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Exercises

Exercise 1: Let X be a non-negative random variable such that E(X) = 5.
Use Markov's inequality to give an upper bound on P(X > 15).

Bence Csonka (BME) November 17 9/10



Exercises

Exercise 1: Let X be a non-negative random variable such that E(X) = 5.
Use Markov's inequality to give an upper bound on P(X > 15).

Exercise 2: Let X be a random variable with mean ¢ = 100 and variance
02 = 25. Use Chebyshev's inequality to find an upper bound on the
probability that X differs from its mean by more than 10.
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Exercises

Exercise 1: Let X be a non-negative random variable such that E(X) = 5.
Use Markov's inequality to give an upper bound on P(X > 15).

Exercise 2: Let X be a random variable with mean ¢ = 100 and variance
02 = 25. Use Chebyshev's inequality to find an upper bound on the
probability that X differs from its mean by more than 10.

Exercise 3: Let X be a random variable with E(X) = 50 and Var(X) = 9.
Find an upper bound on P(|X — 50| > 6) using Chebyshev's inequality.
Then compute the bound for P(|X — 50| > 3).
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