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Remainder

Theorem (Law of Total Expectation )

Let X and Y be random variables such that E(|X |) and E(|Y |) are finite.
Then

E(Y ) = E(E(Y |X )).

Theorem (Law of Total Expectation with a Partition)

Let A1, . . . ,An be a partition of Ω such that P(Ai ) > 0 for all i . If
E(|Y |) < ∞, then

E(Y ) =
n∑

i=1

E(Y |Ai )P(Ai ).
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Reminder

Theorem (Law of Total Expectation, Discrete Case)

Let X be a discrete random variable with possible values {x1, . . . , xn, . . .}
such that P(X = xi ) > 0. If E(|Y |) < ∞, then

E(Y ) =
∑
i

E(Y |X = xi )P(X = xi ).

Theorem (Law of Total Expectation, Continuous Case)

Let X be a continuous random variable with E(|Y |) < ∞, and let fX
denote its density function. Then

E(Y ) =

∫ ∞

−∞
E(Y |X = x)fX (x)dx .
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Exercises

Exercise 1: We choose an x number uniformly from 2 to 5. After the
choose a y number from x2 and x3. What is the expectation of y?

Exercise 2: Toss a fair coin. If it is head, then we take a number from
Y ∼ Exp(1/2), otherwise we take a number from Z ∼ N(2, 1). What is
the expectation of the final number?

Exercise 3: We can choose two different boxes, A and B. The probability
of choosing A is 1

3 and the probability of choosing B is 2
3 . In the A box,

there are 3 red and 5 blue balls. In the B box, there are 4 red and 3 blue
balls. From the chosen box we take out 3 balls. (Without replacement.)
What is the expectation of the number of blue balls that are discarded?
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Reminder

Theorem (Law of Total Probability for the Discrete Case)

Let X be a discrete random variable and A an event. Then

P(A) =
∑

k∈RanX

P(A|X = x)P(A|X = k).

Theorem (Law of Total Probability for the Continuous Case, or
“Continuous LTP”)

Let X be a continuous random variable and A an event. Then

P(A) =
∫ ∞

−∞
P(A|X = x)fX (x)dx ,

where fX is the density of X .
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Exercises 2

Exercise 1: We choose an x number uniformly from 2 to 5. After the
choose a y number from x and x2. What is the probability that y < 20?
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Exercises 2

Exercise 2: A wireless communication channel’s daily average noise level
is modeled by a random variable Y , where Y ∼ U(0, 2). On a given day, if
the noise level is Y = y , then the probability that a given 0-1 bit is
received in error is

p(y) =
y

4
, 0 ≤ y ≤ 2.

Let N denote the number of errors in a 10-bit message. What is the
probability that the 10-bit message is received without error?
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Convolution of random variables

Convolution: X + Y
We have seen:

Theorem

If X ∼ Poi(λ) and Y ∼ Poi(µ) are independent random variables, then
X + Y ∼ Poi(λ+ µ).

Theorem

If X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent random variables,
then X + Y ∼ Bin(n +m, p).
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Convolution of Normal Distributions

We haven’t seen the case of two independent normal distributions.

Theorem

If X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) are independent random variables,

then X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2). Moreover cX ∼ N(cµ1, c
2σ2

1)

Sketch of proof:

E(X + Y ) = E(X ) + E(Y ) = µ1 + µ2

D2(X + Y ) = D2(X ) + D2(Y ) = σ2
1 + σ2

2

E(cX ) = cE(X )

D2(cX ) = c2D2(X ).
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Exercise for the convolution of normal distributions

Exercise: Let X ∼ N(2, 12) and Y ∼ N(3, 22) be independent random
variables. If V := X + Y and W := X − Y , then

what is cov(V ,W )?

what is the linear regression of V on W ?
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