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Multivariate Continuous Distributions and Moments

Given a continuous random vector X = (X1, . . . ,Xn).
Question: How do we determine E(Xi ) for 1 ≤ i ≤ n?

Answer 1: We can already determine the density of Xi , denoted fXi
.

Compute → E(Xi ) =
∫∞
−∞ xi fXi

(xi ) dxi (if it exists).

This is a good answer, but what if, e.g., we seek E(XiXj) for some
1 ≤ i , j ≤ n with i ̸= j?
The following statement addresses this.

Theorem

Let X = (X1, . . . ,Xn) be a continuous random vector, and let g : Rn → R
be a function such that∫ ∞

−∞
. . .

∫ ∞

−∞
|g(x1, . . . , xn)| fX (x1, . . . , xn)dx1 . . . dxn < ∞.

Then

E
(
g(X1, . . . ,Xn)

)
=

∫ ∞

−∞
. . .

∫ ∞

−∞
g(x1, . . . , xn) fX (x1, . . . , xn)dx1 . . . dxn.
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Multivariate Continuous Distributions and Moments

Answer 2: With the choice g(x1, . . . , xn) = xi ,

E(Xi ) =

∫ ∞

−∞
. . .

∫ ∞

−∞
xi fX (x1, . . . , xn) dx1 . . . dxn.

The two methods are the same; in Answer 1 we simply perform the integration with

respect to xi later than the others.

(Example: E(X ) = E(Y ) = 2
3 , E(XY ) = 4

9
in the 4xy example; see lecture.)
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Independence in the Continuous Case

Reminder:

Definition

Let X ,Y : Ω → R be random variables on the probability space (Ω,F ,P).
We say that X and Y are independent if, for all x , y ∈ R, the events
{X < x} and {Y < y} are independent.

Equivalently,

F(X ,Y )(x , y) = FX (x)FY (y), ∀x , y ∈ R.

Independence of n random variables is defined analogously, in accordance
with mutual independence of events. In fact, it is still sufficient for
independence that the joint distribution function factorizes as the product
of the marginal distribution functions:
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Independence in the Continuous Case

Reminder:

Definition

Let X ,Y : Ω → R be random variables on the probability space (Ω,F ,P).
We say that X and Y are independent if, for all x , y ∈ R, the events
{X < x} and {Y < y} are independent.

Theorem

The random variables X1, . . . ,Xn are independent if and only if

F(X1,...,Xn)(x1, . . . , xn) = FX1(x1) . . .FXn(xn)

for all x1, . . . , xn ∈ R.
This holds in the discrete, continuous, and general cases.
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Independence in the Continuous Case

Discrete case:

Definition

Two discrete random variables X and Y are independent if and only if
their joint mass function factorizes into the product of their marginal mass
functions, i.e., for all x , y ∈ R,

p(X ,Y )(x , y) = P(X = x ,Y = y) = P(X = x)P(Y = y) = pX (x)pY (y).

Continuous analogue: X1, . . . ,Xn are independent ⇔ the joint density of
X = (X1, . . . ,Xn) factorizes into the product of the marginal densities of
X1, . . . ,Xn.
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Independence in the Continuous Case

Discrete case:

Definition

Two discrete random variables X and Y are independent if and only if
their joint mass function factorizes into the product of their marginal mass
functions, i.e., for all x , y ∈ R,

p(X ,Y )(x , y) = P(X = x ,Y = y) = P(X = x)P(Y = y) = pX (x)pY (y).

Theorem

Let X1, . . . ,Xn be continuous random variables. They are independent if
and only if (X1, . . . ,Xn) is a continuous random vector and

f(X1,...,Xn)(x1, . . . , xn) = fX1(x1) · . . . · fXn(xn)

holds for all x1, . . . , xn ∈ R.

Bence Csonka (BME) October 28 5 / 23



Independence: Counterexample

In the following example:

fX ,Y (x , y) =


1

10x
e−x/10, if 0 < x < y < 2x ,

0, otherwise,

independence does not hold. For instance,

fX (50) > 0,

fY (42) > 0,

but f(X ,Y )(50, 42) = 0.

The formula for the joint density “apparently depends only on x”, but the
support (where it is nonzero) depends on the relation between x and y .
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E(XY ) = E(X )E(Y ) when X and Y are independent

Previously:

Theorem

If X and Y are independent random variables and E(XY ), E(X ), E(Y )
exist, then

E(XY ) = E(X )E(Y ). (1)

We proved this earlier only for simple random variables; now we prove it for
the case when (X ,Y ) is a continuous random vector (proof: see lecture).

(A previously mentioned) consequence: if X and Y are independent, then
D2(X + Y ) = D2(X ) + D2(Y ).
As with 6.1.4. Proposition, this holds for all random variables X ,Y .
*Assuming E(X 2) < ∞ and E(Y 2) < ∞.
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Transforms of Independent Random Variables Are
Independent

The following statement is not obvious, and we will not prove it here:

Theorem

If X and Y are independent random variables, and g and h are continuous
real functions, then g(X ) and h(Y ) are independent.

We will soon use this frequently (in the topic of conditional expectation).
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Relationship Between Random Variables

We saw: if X and Y are independent random variables, they do not affect
each other’s values. For dependent random variables, however, the value
of one can inform us about the value of the other.

Meteorological example:

There is a “positive relationship” between daily average relative
humidity and daily precipitation: if one is high, the other is likely
high; if one is low, the other is likely low.

There is a “negative relationship” between the end-of-month drought
index (measuring soil dryness on an increasing scale) and the
precipitation over the past month: if one is high, the other is
expected to be low, and vice versa.

Measuring the linear relationship between two random variables →
covariance, correlation.
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Relationship Between Random Variables

If X and Y are independent, the

E(g(X )h(Y )) = E(g(X ))E(h(Y ))

for every continuous real g , h for which both sides are defined.

Question: With the choice g(x) = h(x) = x (a linear function), when does

E(XY ) = E(X )E(Y )

hold for not necessarily independent X ,Y ? We already mentioned that
this can happen even when the variables are not independent.
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Covariance

Question: How far is E(XY ) from E(X )E(Y )? To measure this, we
introduce the following quantity.

Definition

The covariance of random variables X and Y is defined by

cov(X ,Y )
def
= E

(
(X − E(X ))(Y − E(Y ))

)
,

provided E(X 2) < ∞ and E(Y 2) < ∞.

Theorem

If cov(X ,Y ) is meaningful, then

cov(X ,Y ) = E(XY )− E(X )E(Y ).

(Proof)
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Covariance

Theorem

If cov(X ,Y ) is meaningful, then

cov(X ,Y ) = E(XY )− E(X )E(Y ).

(Proof)

Recall:
discrete case: E(XY ) =

∑
k∈Ran(X )

∑
l∈Ran(Y ) k l P(X = k,Y = l),

jointly continuous case: E(XY ) =
∫∞
−∞

∫∞
−∞ xy f(X ,Y )(x , y)dxdy .
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Covariance: Example

Y
X

0 1 pY

0 1
4 0 1

4
1 1

4
1
4

1
2

2 0 1
4

1
4

pX
1
2

1
2 1

We toss a fair coin twice; X = 1{the 2nd toss is heads}, Y = the number of
heads.
In this example, we already computed E(XY ) = 3

4 .
Furthermore, E(X ) = 1

2 , E(Y ) = 1, hence cov(X ,Y ) = 3
4 − 1

2 = 1
4 .

We will see: positive covariance → positive linear relationship between X
and Y .
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Properties of Covariance I

Theorem

Let X and Y be random variables for which cov(X ,Y ) is meaningful.

1 If Y is constant, then cov(X ,Y ) = 0.

2 If X and Y are independent, then cov(X ,Y ) = 0.

3 From cov(X ,Y ) = 0 it does not necessarily follow that X and Y are
independent.

Proof:

1 See lecture (linearity of expectation).

2 We have already seen that E(XY ) = E(X )E(Y ). Rearranging gives
cov(X ,Y ) = E(XY )− E(X )E(Y ) = 0.
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Properties of Covariance I

Theorem

Let X and Y be random variables for which cov(X ,Y ) is meaningful.

1 If Y is constant, then cov(X ,Y ) = 0.

2 If X and Y are independent, then cov(X ,Y ) = 0.

3 From cov(X ,Y ) = 0 it does not necessarily follow that X and Y are
independent.

Proof:
1 Simple counterexample: let Ran(X ) = {−1, 0, 1}, with probabilities

1
4 ,

1
2 ,

1
4 , respectively.

Let Y = |X |. One can compute (see lecture) that
cov(X ,Y ) = E(XY )− E(X )E(Y ) = 0− 0 · 1

2 = 0, but X and Y are
not independent, since, e.g.,

0 = P(X = 1,Y = 0) ̸= P(X = 1)P(Y = 0) =
1

8
.
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Properties of Covariance II

Theorem

Let (X ,Y ,Z ,W ) be a random vector and a, b, c , d ∈ R. Then the
following hold, provided the quantities involved are well-defined:

1 cov(X ,X ) = D2(X ).
Consequence: cov(X ,X ) ≥ 0 and cov(X ,X ) = 0 ⇔ X is almost
surely constant.

2 Symmetry: cov(X ,Y ) = cov(Y ,X ).

3 Bilinearity (linearity in each variable):

cov(X+Y ,Z+W ) = cov(X ,Z )+cov(X ,W )+cov(Y ,Z )+cov(Y ,W ).
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Properties of Covariance II

An equivalent formulation of bilinearity:

cov(X , bY + cZ ) = b · cov(X ,Y ) + c · cov(X ,Z ),

Consequence: “additive constants can be dropped; scalar factors pull
out of both variables”:

cov(aX + b, cY + d) = cov(aX , cY ) = a · c · cov(X ,Y ).
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Variance of a Sum

Theorem

If X ,Y are random variables with E(X 2),E(Y 2) < ∞, then

D2(X + Y ) = D2(X ) + D2(Y ) + 2 cov(X ,Y ).

(Proof: D2(X + Y ) = cov(X + Y ,X + Y ); apply bilinearity and symmetry
of covariance.)

We see again: if cov(X ,Y ) = 0, then D2(X + Y ) = D2(X ) + D2(Y ).
Previously known special case: if X and Y are independent, then
D2(X + Y ) = D2(X ) + D2(Y ).
If cov(X ,Y ) ̸= 0, this fails!

Example: if cov(X ,Y ) = 1, D2(X ) = 2 and D2(Y ) = 3, then what is
cov(2X + Y − 42, 3Y + 100)?

Bence Csonka (BME) October 28 16 / 23



Analogy with the Dot Product of Vectors

Covariance is (almost) analogous to the dot product of vectors.

Reminder: if u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3, then the dot product
of u and v is

u · v = u1v1 + u2v2 + u3v3.

In n dimensions the definition is analogous, with a sum of n terms.

Properties

Positive definite: u · u = u21 + u22 + u23 ≥ 0 and u · u = 0 ⇔ u = 0.

Symmetric: u · v = v · u.
Bilinear: (u + v) · w = u · w + v · w (and similarly in the other
variable; scalar multiples pull out).
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Analogy with the Dot Product of Vectors

The covariance of random variables has the same properties, except that
“additive constants do not matter,” i.e., the covariance of a constant r.v.
with anything is 0.

Positive semidefinite: cov(X ,X ) ≥ 0 and
cov(X ,X ) = 0 ⇔ P(X = c) = 1 for some c ∈ R.
Symmetric: cov(X ,Y ) = cov(Y ,X ).

Bilinear: cov(X + Y ,Z ) = cov(X ,Z ) + cov(Y ,Z ) (and similarly in
the other variable).
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The CSB Inequality

For the dot product of spatial vectors, the Cauchy–Schwarz–Bunyakovsky
(CSB) inequality holds:

∣∣u · v
∣∣ ≤ √

|u · u| · |v · v |, with equality if and only
if u and v are parallel (i.e., linearly dependent).
Equivalently, for u, v ̸= 0:

−1 ≤ u · v√
(u · u) · (v · v)

≤ +1.

= +1 ⇒ u and v are parallel and in the same direction, i.e., v = au
for some a > 0.

= −1 ⇒ u and v are parallel and in opposite directions, i.e., v = au
for some a < 0.

= 0 if and only if u and v are orthogonal.

Interpretation: the ratio measures the “degree of linear dependence” (of
course, two nonparallel nonzero vectors are always linearly independent).
Why are these true? Because u · v = |u||v | cos(α), where α is the angle
between the two vectors.
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CSB Inequality and Correlation

−1 ≤ u · v√
|u · u| · |v · v |

≤ +1, u, v ̸= 0.

The analogue of this ratio for covariance is correlation:

Definition

Let X and Y be non-constant random variables. If E(X 2) < ∞ and
E(Y 2) < ∞, then the correlation of X and Y is

corr(X ,Y )
def.
=

cov(X ,Y )√
cov(X ,X )cov(Y ,Y )

=
cov(X ,Y )

D(X )D(Y )
.
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Correlation

Correlation always lies between −1 and 1 (“−100% and +100%”). The
following statements are analogues of the CSB inequality, taking into
account the “additive constants do not matter”:

−1 ≤ corr(X ,Y ) =
cov(X ,Y )

D(X )D(Y )
≤ 1.

if X and Y are independent, then corr(X ,Y ) = 0. From corr(X ,Y ) = 0
we generally cannot conclude that X ,Y are independent; typically it only
rules out a linear relationship between them.
Terminology: corr(X ,Y ) > 0: X and Y are positively correlated;
corr(X ,Y ) = 0: uncorrelated; corr(X ,Y ) < 0: negatively correlated.
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Correlation: Example

Y
X

0 1 pY

0 1
4 0 1

4
1 1

4
1
4

1
2

2 0 1
4

1
4

pX
1
2

1
2 1

We toss a fair coin twice; X = 1{the 2nd toss is heads}, Y = the number of

heads. We saw: cov(X ,Y ) = 1
4 .

Furthermore, E(X ) = 1
2 , E(Y ) = 1, hence

D2(X ) = E(X 2)− E(X )2 =
1

2
− 1

4
=

1

4

and

D2(Y ) = E(Y 2)− E(Y )2 =
1

2
· 12 + 1

4
· 22 − 12 =

1

2
.
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Correlation: Example

Y
X

0 1 pY

0 1
4 0 1

4
1 1

4
1
4

1
2

2 0 1
4

1
4

pX
1
2

1
2 1

Thus

corr(X ,Y ) =
cov(X ,Y )

D(X )D(Y )
=

1
4

1
2

1√
2

=

√
2

2
.

X and Y are positively correlated (what is the reason?).
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Correlation: Interpretation

In the weather example:
Humidity and precipitation → positively correlated; drought index and
precipitation → negatively correlated.

A frequent misunderstanding in some social-science contexts: a large (near
1) correlation between two random quantities usually indicates not

causation, but a linear relationship.

It may happen, e.g., that neither of two positively correlated quantities
causes the other; rather, both follow from a third cause.
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