Probability Theory and Statistics

Exercise 9 11.03. – 11.07.

Covariance and correlation of continuous random variables, linear regression

- 1. Let X and Y be independent random variables such that $\mathbb{E}(X) = 4$, $\mathbb{E}(Y) = 0$, $\mathbb{D}^2(X) = 1$, and $\mathbb{D}^2(Y) = 2$. Determine $\mathbb{E}(5X 6Y)$, $\mathbb{E}(XY)$, $\mathbb{D}^2(5X 6Y + 8)$, and cov(5X + 2Y + 2, X + 6Y 3).
- 2. Let $X, Y \sim U(0,1)$ be independent, and define $Z_1 = XY$ and $Z_2 = X + Y$.
 - a) Find the expected values of Z_1 and Z_2 .
 - b) Is it true that $\mathbb{D}^2(XY) = \mathbb{D}^2(X) \cdot \mathbb{D}^2(Y)$?
 - c) Compute $\mathbb{D}^2(Z_1+2Z_2)$.
- 3. Let the joint density function of X and Y be

$$f_{X,Y}: (x,y) \mapsto \begin{cases} 2(x^3 + y^3), & \text{if } 0 < x < 1 \text{ and } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Determine cov(X, Y).

- 4. Let $X \sim N(m, \sigma^2)$, Y = 3X + 8, and Z = 5 2X. Compute the correlation coefficient corr(Y, Z).
- 5. Let $X \sim U(0, 2\pi)$, $Y = \cos(X)$, and $Z = \sin(X)$. Determine $\cos(Y, Z)$. Are Y and Z independent?
- 6. Let the joint density function of U and V be

$$f_{U,V}: (u,v) \mapsto \begin{cases} \frac{1}{\sqrt{v}}, & \text{if } 0 < u < 1 \text{ and } 0 < v < u^2, \\ 0, & \text{otherwise.} \end{cases}$$

Determine $cov(U, V^2)$.

- 7. Let X_1, X_2 , and X_3 be uncorrelated random variables, each with mean 0 and standard deviation 1.
 - a) Compute $cov(X_1 + X_2, X_2 + X_3)$, $\mathbb{D}^2(X_1 + X_2)$, and $\mathbb{D}^2(X_2 + X_3)$.
 - b) What is the correlation between $X_1 + X_2$ and $X_2 + X_3$?
 - c) Find the regression line of $X_2 + X_3$ on $X_1 + X_2$.
 - d) Determine the variance of the approximation error using the above regression line.
- 8. Find the regression line of $X^2 + X + 1$ on X, where the distribution of X is
 - a) Exp(5) b) N(0,1) c^*) Bin(10,0.3)
- 9. Let the joint density of X and Y be the same as in Problem 3. Knowing that $\mathbb{D}^2(X) = 0.0775$, find the regression line of Y on X and the regression line of X on Y. Determine the mean squared error (i.e., the variance of the error) for each regression.
- 10. Suppose that the regression line of Y on X is given by $\{(x,y) \in \mathbb{R}^2 \mid y=x-2\}$, while the regression line of X on Y is $\{(y,x) \in \mathbb{R}^2 \mid x=\frac{1}{4}y-\frac{11}{2}\}$. Find $\mathbb{E}(X)$ and $\mathbb{E}(Y)$.
- 11. Two dice are rolled. Let X denote the number of sixes, and Y the number of even results. Find the regression line of Y on X and that of X on Y.