Probability Theory and Statistics

Exercise 8

$$10.27. - 10.31.$$

Covariance, Joint Density Function

- 1. Let $X \sim U(0,3)$ and $Y \sim U(-1,4)$ be independent random variables. Plot the level sets of the joint distribution function of (X,Y). Compute the following quantities:

 - a) $\mathbb{P}(X < Y) = ?$ b) $\mathbb{P}(X + Y = 1) = ?$ c) $\mathbb{P}(XY < 1) = ?$
- 2. Let $X, Y \sim U(0,1)$ be independent, and define Z = 2X + 1, V = 3Y. Compute $\mathbb{P}(V < Z)$.
- 3. Let the joint density of X and Y be

$$f_{X,Y}(x,y) = \begin{cases} 2(x^3 + y^3), & \text{if } 0 < x < 1 \text{ and } 0 < y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) $\mathbb{P}(X + Y < 1) = ?$
- (b) $\mathbb{P}(X^2 < Y) = ?$
- (c) Determine the marginal density functions of X and Y.
- (d) $\mathbb{E}(X) = ?$
- (e) Are X and Y independent?
- 4. The continuous random vector (X,Y) has distribution function

$$F_{X,Y}(x,y) = \frac{xy^3 + x}{2}, \qquad 0 < x < 1, |y| < 1.$$

The range of X is [0,1], and the range of Y is [-1,1]. Find the probability that (X,Y) lies inside the triangle with vertices A(0,0), $B(\frac{1}{2},0)$, and $C(\frac{1}{2},-\frac{1}{4})$. (Hint: the joint density function may be useful.)

5. Let the joint density of X and Y be

$$f_{X,Y}(x,y) = \begin{cases} a(4x+y) + bxy + \frac{2}{5}, & \text{if } 0 < x < 1, \ 0 < y < 1, \\ 0, & \text{otherwise,} \end{cases}$$

where $a, b \in \mathbb{R}$. For which values of a and b are X and Y independent random variables?

- 6. The continuous random vector (X,Y) is uniformly distributed over the region bounded by the x-axis and the sine curve $y = \sin(x)$ between the points (0,0) and $(\frac{\pi}{2},0)$. Determine the joint density of (X,Y) and the marginal density of X.
- 7. A hat contains the numbers 1, 2, 3 written on slips of paper. Two slips are drawn successively without replacement. Let X be the result of the first draw and Y that of the second.
 - a) cov(X,Y) = ? b) cov(X,X) = ? c) cov(Y,Y) = ? d) Are X and Y independent?
- 8. Let X be a random variable with $\mathbb{E}(X) = 2$, $\mathbb{E}(X^2) = 5$, and $\mathbb{E}(X^3) = 14$. Compute $\operatorname{cov}(X, X^2 1)$ 4X + 4). Are X - 2 and $(X - 2)^2$ independent?
- 9. Two dice are rolled. Let X denote the number of ones obtained and Y the outcome of the second die. Determine the covariance of X and Y.
- 10. Prove that if X and Y are random variables with the same (finite) variance, then the covariance of X + Y and X - Y is 0.