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Abstract. Both human users and crawlers face the problem of finding good start
pages to explore some topic. We show how to assist in qualifying pages as start
nodes by link-based ranking algorithms. We introduce a class of hub ranking
methods based on counting the short search paths of the Web. Somewhat surpris-
ingly, the Page Rank scores computed on the reversed Web graph turn out to be
a special case of our class of rank functions. Besides query based examples, we
propose graph based techniques to evaluate the performance of the introduced
ranking algorithms. Centrality analysis experiments show that a small portion of
Web pages induced by the top ranked pages dominates the Web in the sense that
other pages can be accessed from them within a few clicks on the average; fur-
thermore the removal of such nodes destroys the connectivity of the Web graph
rapidly. By calculating the dominations and connectivity decay we compare and
analyze the proposed ranking algorithms without the need of human interaction
solely from the structure of the Web. Apart from ranking algorithms, the exis-
tence of central pages is interesting in its own right, providing a deeper insight to
the Small World property of the Web graph.

1 Introduction

Recent years witnessed an extensively developing interest on link-analysis algorithms
to improve textual based Web search engines. Inevitably, the most influential results
on this field are HITS [15,8] and Page Rank [7] algorithms; since then many improve-
ments and extensions appeared [9,17,13], see [5] for a comparative study. HITS assigns
a pair of scores to the pages belonging to a query. The authority score of a page is
proportional to its importance, and hub score describes the quality of a page as a link
collection within the topic. Page Rank, on the other hand, overall quality scores that
are applied in any query search later. Following HITS’ terminology, the Page Rank
scores act as overall authority values of pages independently from any topic. Overall
hub scores of the whole Web, however, earned less attention in the link-analysis litera-
ture. Remarkable exceptions [18,6] evaluate the rank of a page by summing the rankes
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of those linked by the page itself iteratively, which in turn acts as some hub score over
the Web.

In the first part of the paper we focus on finding good starting points for browsing
from which a large number of pages can be accessed within a few clicks. To express
the quality of pages as starting points, we define overall hub scores of the Web, which
can be evaluated for the whole Web graph independently from queries. For instance,
the hierarchically ordered link collection www.dmoz.org would be given much higher
credit as a hub than for example the site www.weather.com with good quality content
but only a limited amount of linkage outside its own domain. The Web does not only
provide explicitly defined hierarchical link collections that are easy to find, but also
contains several implicitly evolving search trees by the nature of hyperlink evolution.
The root of such trees are excellent start nodes for browsing, but authority based ranking
schemes rarely reveal such root pages.

Clearly it is advantageous to start browsing the Web from a page, if short sequences
of clicks from that page lead to as many other pages as possible. We introduce Start
Rank, a family of hub ranks through counting the search paths departing from each
Web page. User defined parameters tune the credit given for each search path. Path-
counting method appears first in the classical paper [14] about social networks defining
an influence measure, standing of persons that is closely related to authority measure of
Web pages. We slightly generalize their path-counting technique and apply the method
to estimate the hub quality of pages. Notice that hub scores of HITS are proportional
to the authority values of directly accessible pages, while Start Rank takes into account
the pages accessible in more than one click on hyperlinks.

As a candidate for overall hub ranking, we investigate Reversed Page Rank that is
computed after reversing the direction of all the hyperlinks, similar ranking algorithms
were proposed in [6]. We formally prove that Reversed Page Rank is a member of the
family of Start Rank scores supporting the assumption that Reversed Page Rank scores
express hub quality. The equivalence of Page Rank and path-counting rank is interesting
in its own right stating that Page Rank generalizes in-degree rank by taking into account
longer than one-step paths.

Evaluating and comparing the performance of link-analysis algorithm seems hard,
since there is no formal definition for the “qualities” of a Web pages. Typical practical
approaches are based on expert evaluation [2], volunteer testing [21], notions of “spam”
[10] or query examples [5], all depend on human judgment. In a theoretical approach
one can formally analyze certain desirable features of ranking algorithms such as sta-
bility [3,19], locality and monotonicity [5]. These features are natural requirements for
ranking algorithms, but neither of them acts as an objective measure of the quality of
link-analysis algorithms.

We propose centrality analysis as a graph based tool to provide quantitative justi-
fication and comparison of the introduced ranking methods. The key idea is that top
ranked pages play a central role in maintaining the connectivity of the Web graph. For
any ranking over the nodes of the Web graph, the centrality of the set of top ranked
pages can be evaluated numerically, yielding a qualification of the ranking algorithm.
Although such a qualification only classifies the top scores assigned for the pages, we



believe that centrality analysis is an important step towards the automatic evaluation of
ranking algorithms.

The centrality of a set of pages is either measured by domination, the average dis-
tance from the set to the other pages; or by the decay in the diameter of the Web graph
after the removal of the central nodes. The former centrality measure is applied for
hub ranking schemes, since from the set of strongest hubs the whole Web should cer-
tainly be available within a few clicks on the average. The latter notion of centrality will
show the quality of a ranking algorithm that gives credit for popular hubs—nodes that
are contained in a large amount of search paths of the Web. Our notions of centrality
were motivated by the NP-hard combinatorial optimization problem

�
-domination [11]

and by the experiments of [1] measuring the failure tolerance of real networks against
removing the largest degree nodes.

Besides qualifying the outputs of ranking algorithms, centrality analysis also pro-
vides a deeper insight to the small world phenomenon, empirically proved for many
implicitly evolving networks including the Web graph [4]. A network is referred to as
a small world, if the diameter is low and the number of edges in the network is rela-
tively small. Centrality analysis experiments reveal that a surprisingly small number of
central nodes are responsible for the connectivity of the Web graph. Such experiments
were pioneered by [1] implying that only a small set of largest degree nodes maintains
the connectivity of small world networks. In our centrality analysis experiments we
strengthen the results of [1] by showing more centralized nodes than the pages with
largest degrees.

Our experiments containing both centrality analysis and query search examples
were conducted on the .ie domain, the Irish Web. While this portion of the Web pro-
vides a computationally feasible test-bed, the contextual structure of a national domain
will not differ so much from the entire Web that would result in significant bias in
the experiment. Ranking is performed over the collection of near one million pages
crawled in October 2002; however for keyword searches we also relied on queries to
Google [12].

2 Hub scores of the Web

Finding a good start page is a critical part of browsing the Web: it is clearly worth
starting from a site from which a large amount of content can be reached within a few
clicks. Slightly modifying the notion of Kleinberg’s HITS algorithm [15] we refer to
such pages as good hubs.

In this section we introduce Start Rank as a family of hub scores to measure the
quality of pages as start nodes. Then we show one member of this family easily com-
putable by slight modifying Page Rank. Finally, some combinations with other ranking
algorithms are proposed.

2.1 Start Rank

Start Rank assigns a hub score for each web page on the basis of counting the search
paths originating from the page in question. Each search path is taken into account by



a weight depending on the value of the target page, the length of the search path and
the hyperlinks occurring in the search path. Note that Start Rank naturally generalizes
out-degree as the simplest measure on the hub quality of pages, since out-degree counts
all the one-step walks from each page.

The actual Start Rank scores are determined solely from the structure of the Web
graph and from the following three user defined parameters.

– The length weight function assigns a real weight ���������
	 for each length ���
	 . The
requirement that longer search paths generally worth less than shorter paths can be
achieved for a Start Rank by setting a monotone decreasing length weight function.
Furthermore, to eliminate the false effect of extremely long search paths containing
a large amount of cycles, it is reasonable to choose zero length weight beyond a
threshold. In most of what follows exponentially vanishing length functions are
employed with expected value falling into the range 5-15.

– The target value �
��������	 of a page � emphasizes the credit that is given for a
search path for finding � . Setting the target value identical over the Web pages
implies that all pages are treated equally worth as targets. Alternatively, an overall
quality measure, such as the Page Rank [7] can be chosen as target value for each
page. Then a node obtains high Start Rank, if a large amount of search paths lead to
high quality pages from the node in question. Another approach is to set the target
value topic specific by giving positive value only for a collection of pages inducing
a topic of the Web.

– The link factor ����������� assigns a real weight for each hyperlink ����� of the
Web. The appropriate choice of �����
����� is inversely proportional to the effort
spent by a surfer to select the link from the page � , when proceeding in a search
path. For example, the effort can be measured by ������� � , the number of out-going
links from page � , thus �!���"�#���%$ &')( *,+.- can act as a link factor. More intimate
link factor settings take into account the position or size of the anchor text of the
hyperlink in the HTML document.

Definition 1 For given user defined parameters –length weight function, target values,
and link factors– the weight /0�213� of a search path 1 with length � , target node � is
defined as follows, /0�213��$4�
�����65
��������5879;:�< �!�2=>�)?
where the product is taken over all link = contained by the path. The start rank @�AB��� �
of a node � is

SR ���8��$ C<�D +.E3F /G��13�)?
summing over all paths originating at � .

In the rest of this section, we show that the H -dimensional Start Rank vector SR can
be expressed as a linear combination of matrix powers, where H denotes the number
of Web pages. Let I denote the H -by-H matrix with entries I FKJ + $L�!���M�N��� for
each link �O�P� ; and I FKJ + $Q	 , if the link �O�P� does not exist. (Equivalently,I is obtained by transposing the adjacency matrix of the Web graph and by replacing



each � entry with the link factor corresponding to the directed edge.) Furthermore, by
introducing the � notation for the H -dimensional row vector of the target values, the
weights arising for search paths with length � are ������� 5;� 5
I �

, thus the start rank scores
can be expressed as

SR $
�
C ����� ��������5 � 5KI

���
(*)

Evaluating such a formula seems hopeless due to the huge dimensions of I , how-
ever, the complexity of multiplying a vector with I is proportional to the number of
non-zero entries of I , or equivalently the number of hyperlinks of the Web. Such a
multiplication can be performed by external memory implementation, similarly to a
Page Rank iteration [7]. Thus, if the length function vanishes for numbers over

�
, then

the � I �
vectors can be evaluated with

�
external memory iterations even for the whole

Web graph.

2.2 Reverse Page Rank

Since Page Rank (PR) acts as a successful authority score over the Web pages, one
may intuitively feel by symmetry that reversing the direction of the hyperlinks and
then applying PR yields an overall hub score of the pages. To justify the statement we
formally prove the equivalence of reverse Page Rank with a special case of Start Rank
scores with appropriate user parameter settings.

For the sake of simplicity in the rest of the paper, we assume that nodes with zero
in- or out-degrees have been removed from the Web graph. Furthermore, reversed Web
graph refers to the graph obtained from the Web graph by reversing the directions of
the edges.

First, we recall the definition of PR scores defined on the Web graph through the
random surfer model resembling the behavior of human users. The surfer takes a ran-
dom walk visiting the Web sites by selecting the next page according to the following
rule: with probability �
	 � , the next page is chosen from those pointed by the currently
visited page; and with probability � , it is selected from all the pages according to some
jump distribution independently from the currently visited page. Intuitively, the above
damping factor � is the probability that the random surfer gets bored and restarts surf-
ing; in practical applications it is set to ��� 	 � �
	"	 � � . The jump probabilities describes
the preference of the random surfer among starting nodes to jump; in the simplest case
this is uniform over all the Web pages. The random surfer model yields a Markov chain
and the PR of a Web site is defined as the probability of the page in its stationary distri-
bution [7].

Definition 2 For given damping factor and jump probabilities, the reverse Page Rank
(RPR) is defined as the PR computed on the reversed Web graph.

Similar to Page Rank implementation [7], RPR can be computed by the power iteration
method, and it can be evaluated for such an enormous input as the Web graph. RPR can
be easily interpreted in the random surfer model, with the modification that the random



surfer follows the links backwards. However, the interpretation does not support the
assumption that RPR is useful as a hub score—in the rest of this section we deduce that
RPR is a member of the family of start rank (SR) scores.

Theorem 1. The RPR with damping factor 	�� ��� � and given jump probabilities
is equivalent to a SR with the following parameter settings. The length weight ������� $�35���� 	!��� � , the target values are identical to the jump probabilities and the link factor�!��� � ����$ &'�� *,F)- is inversely proportional to the in-degree of � .

Proof. Let � denote the H -dimensional row vector of the jump probabilities and � theH��3H matrix with all rows equal to � where H is the number of web pages. Let RPR and
SR denote the RPR and SR vectors. Furthermore the stochastic matrix I is obtained
from the adjacency matrix of the reversed Web graph by normalizing its rows. Note that
normalization is equivalent to multiplying the entries of the adjacency matrix with the
corresponding link factors.

For the transition matrix 	 of the Markov chain defined by the random surfer model
the following equation holds,

	 $ �
��� ��� 	!��� I �

Since RPR is the stationary distribution,

RPR 	 $ RPR
�

(**)

In order to show that the equation RPR $ SR holds, we will prove that SR satisfies
(**). The SR probabilities can be expressed by equation (*),

SR $
�
C � � � � � � 	���� � � I � ?

since the length distribution is geometric with parameter � . By substituting this into
(**)

SR 	 $
� �
�
C ����� � ��� 	!��� � I � � ������� ��� 	!��� I �

$ ��� �����
�
C ��� &

� ��� 	!��� � I �

$ ��� ���
�
C ��� &

� ��� 	�� � � I �

$��
�
C ����� � � � 	�� � � I �

$ SR
�

The second equation comes from the fact that the matrix ��$�� �� ��� � ��� 	 � � � I �
is

stochastic, and ��� $�� holds for any stochastic matrix, as the rows of � are equal.
Similarly � ��$�� was applied for the third equation.



Finally, we mention that a similar statement holds for the original PR citation index
showing that the PR of each page can be expressed as the weighted sum of all paths
arriving at the node in question. Hence PR generalizes the simple in-degree rank by
taking into account all the in-coming walks not only the one-step paths.

2.3 Mixed and aggregate ranks

We investigate the alternatives to combine Reverse Page Rank (RPR) with other ranking
strategies to obtain refined quality measures on Web Pages. From the several possible
options, we especially focus on combinations with ordinary Page Rank (PR) — for
more general aggregating methods we refer to [10].

The RPR of each page counts the short search paths leaving from the actual page,
and the credit given for a target page can be tuned by setting the target value or equiva-
lently the jump probability of the target as stated in Theorem 1. We propose the follow-
ing methods for tuning the jump probabilities (target values) of RPR.

– Uniform RPR algorithm performs iterations with uniform jump distribution over
the Web pages. Such a choice of jump probabilities raises the hub score of pages
from which a large amount of nodes can be accessed, however the qualities of the
accessed pages are not taken into account. In what follows, we always refer to
uniform RPR, if the jump probabilities are not defined explicitly.

– Popular RPR algorithm precomputes ordinary PR, and then performs RPR itera-
tions, where the jump probabilities of the nodes are set to the precomputed PR
scores. By the assumption that ordinary PR measures the quality of pages, popu-
lar RPR will be raised for those pages from which a large amount of high quality
content can be accessed within short click streams. Notice the analogy with HITS
algorithm [15], where the hub score of a node is equal to the sum of the authority
scores available with one step. Popular RPR refines this idea by taking into account
the authority scores of nodes available in more than one step with exponential de-
creasing relevance in the number of clicks.

– Personalized RPR assigns non-zero jump probabilities only for the members of a
certain topic of the Web following the idea of [20] originally proposed for PR.
Personalized RPR scores then express hub quality only in a certain topic. Such
approach seems practical for query searches or clustering, while personalized RPR
would require on-line computation over the entire Web graph for each topic query.

– Topic sensitive RPR acts as an off-line alternative of personalized RPR by com-
puting RPR with a few topic specific jump distributions belonging to some low-
dimensional basis of the topic-space. Then, hub scores of an arbitrary topic are
evaluated as some linear combination of the basis hub scores, which is practically
computable on-line. The method was introduced in [13] for PR and the adaptation
is straightforward for RPR.

Fixing the jump distribution with one of the above methods RPR algorithm yields
scores expressing the quality of pages as hubs. Such score may present as a component
of some overall quality measure of pages as in the following examples.



– Mixed PR refers to the family of scores evaluated as � � PR ? RPR � , i.e., some func-
tion of the already computed PR and RPR values. Mixed PR is a trade-off between
hub and authority scores depending on function � .

– Product PR score of each page is defined as the product of PR and RPR values.
(Notice that product PR specializes mixed PR.) Web pages possessing high product
PR are both valuable hubs and authorities, so the numbers of in-coming and out-
going paths are both large. We believe that such pages play an important role in
maintaining the connectivity of the Web graph.

3 Centrality analysis

For a given ranking of the Web pages, centrality-analysis experiments numerically eval-
uate the centralities of small sets of top-ranked pages in the Web graph. Such an exper-
iment requires graph theoretical definition of centrality; in the following section we
propose different notions of centrality based on averaging some distances in the Web
graph.

Distance averaging techniques face the problem of infinite distances that is handled
by harmonic mean in our definitions. A further advantage of harmonic mean that it
expresses the expected search efficiency of a surfer following the shortest paths of the
Web.

3.1 Domination of a start set

From a general start set of pages most other nodes of the Web graph should be available
within a few clicks. We introduce a qualification for start sets and an intuitive explana-
tion of the formula through search efficiency.

Suppose that a user is searching for some target page. Let us assume that by care-
fully reading the contents of the intermediate pages, it is always possible to choose the
best possible direction towards the target. In this case the surfer will follow a shortest
path.

Next we consider how efficiently the user spent browsing time to find the target. If
the target is reached in 3 clicks for example, then he spends one third of his time to read
something interesting while the rest of it is wasted for visiting inner pages of the search
path. Hence we say that the efficiency of a start page � to find target � is &dist *�� J ��- , where

dist ��� ? � � denotes the minimum number of clicks to reach � from � . If there is no path
from � to � , then dist ��� ? � ��$�� and the efficiency is zero.

More generally, the surfer uses some start set �
	 of pages to find target � . As he
always starts from the members of �
	 , he knows well the contents of these pages.
Therefore he can guess the closest page of ��	 to � . Then the efficiency of the start set
is &dist *
��� J ��- , where dist ����	 ? � � denotes the minimum of distances from the nodes of ��	
to � . The domination of a start set is defined as the average efficiency over all possible
web pages as goals. This can be interpreted as the expected efficiency, if a surfer starts



searching a random goal page. Formally, the domination of � 	 is determined as follows:

dom ����	 ��$ �� � � 	 � � 	 � C� : ��� � �
�

dist ��� 	 ? � � ?
where � denotes the set of Web pages. Thus the domination of a start set is the inverse
of the harmonic mean of distances between � 	 and all the other Web sites.

Our first notion of centrality of a set of pages is equal to the above introduced
domination. In the centrality analysis experiments of Section 4.2 we successively add
the top ranked pages to a start set and evaluate the domination in each iteration. The
experiment reveals the quality of the ranking algorithm to select graph theoretically
good sets of hubs or starting points from which the rest of the Web is accessible within
a few clicks on the average.

Our notion of domination resembles of the NP-hard combinatorial optimization
problem of finding a minimum size subset of nodes in a graph � such that all the
other nodes are within a given distance

�
from the subset [11]. In our scenario such a

subset would be a start set from which the farthest node has distance at most
�

. Such
a worst-case analysis cannot express a fine quality measure on the start set, hence we
proposed to take the average of distances.

3.2 Attacking the Web

Besides domination, the centrality of a set of nodes can be measured by the attacking
ability of the set—the decay in the connectivity of the Web graph after removing the set
of nodes in question. In our centrality analysis experiments, the top ranked nodes are
removed gradually, and then we evaluate the connectivity of the remaining part of the
Web graph.

The connectivity is expressed by the harmonic diameter of the Web graph, the har-
monic mean of distances between all the pairs of nodes. The reciprocal of the harmonic
diameter, under the notion of the previous subsection, means the expected efficiency
when a surfer starts searching a random goal from a random start node. Hence what we
actually measure is the fraction of time spent on reading topics of interest in contrast to
downloading pages just to find an appropriate link to move on. Formally if � denotes
the set of Web pages, then let

diam $
� � � � � � � 	 �K�

� +��� F : � &dist * +�J F)-
�

Another advantage of our notion of harmonic diameter compared to other notions of
diameter is that pairs of nodes unreachable from one another have contribution zero in
the formula, hence harmonic distance measures both distance and reachable at the same
time.

The idea of removing some small portion of Web pages and measuring how the
diameter increases was originally proposed [1] for different purpose. They concluded
that the failure caused by randomly chosen nodes hardly effect the connectivity of the
Web, but an intentional attack removing the nodes with large degree raises the average



distance rapidly. Notice that the degrees of nodes also induce a ranking on the nodes.
In our experiments we investigate the effect of replacing degree rank with more subtle
scores of the importance of pages.

4 Experimental results

Our experiments were conducted on the .ie domain, the Web pages of Ireland. We
believe that the structure and diversity of this domain is similar to that of the whole
WWW. The graph of the .ie domain was small enough to store in internal memory,
thus any variant of the proposed ranking algorithms were calculated within 15 minutes.

We downloaded 986,207 pages from the Irish Web in October, 2002. We used the
open source Web robot Larbin [16] on a 1.8GHz Pentium IV CPU with a 10Mb Eth-
ernet connection. The Web graph induced by the .ie domain had 792,902 nodes 3 and
10,037,951 edges. The ranks PR, RPR, popular RPR and product PR were computed
with damping factor � $ 	 � � using 100 power iterations that yielding an error smaller
than �K	�� � in all cases.

4.1 Ranking keyword search hits

We investigate how well RPR or popular RPR serve in ranking keyword queries. We
believe that by the nature of ranking link collections high our ranking strategies act well
for a broad topic search—at least as a possible aggregated rank component combined
with text and link based strategies. In our experiment we submitted keywords of broad
topics to Google [12] and saved all the enumerated URLs. The number of available
URLs was varying between 500 and 1000. Then we used RPR to reorder these URLs
and compared the top ten Google hits with our ranking. Since the reordered list was
computed from Google’s top

� 	 	 	 �K	�	 	 hits, this can be treated as an aggregate of
Google’s ranking with popular RPR.

The query results are listed on Table 4.1 for “fishing” and “sailing”—typical broad
topic query strings for exploring certain topic rather than searching for a specific piece
of information. The number 1, 4 and 5 hits of Google on “fishing” are Web sites of spe-
cific famous fishing resorts and boats—inevitably these pages provide popular content.
Popularity is however not appreciated by the RPR scores; instead credit is given to link
collections. Such examples are the number 2, 4, 5, 7 and 8 hits of RPR query or 1, 2,
3 and 4 of popular RPR for “fishing”. Hit number 8 of popular RPR on “sailing” is a
remarkable example of a good link collection. Such a collection may act as an excellent
start node to explore “sailing in Ireland”.

A drawback of RPR and popular RPR can be also read from the lists of top ranked
URLs. Both gives high credit to archives or large collections of databases within a Web
site. Such examples are 1 and 3 from RPR with query “fishing”. In some cases popular
RPR was able to overcome the problem such as in the case of “fishing” query, since the
members of the archive have low target probability.

3 We have deleted those pages not linking within the .ie domain that would otherwise corre-
spond to a node with zero out-degree in the graph.



Table 1. Query results for Google and by reordering the top 500-1000 hits of Google.

Google with query “fishing”
1 indigo.ie/˜bwlodge/
2 indigo.ie/˜bwlodge/fisreport.htm
3 www.infowing.ie/fishing/
4 www.infowing.ie/fishing/Sligo2.htm
5 homepage.tinet.ie/˜bluewater/
6 homepage.tinet.ie/˜ncffi/
7 www.shannon-fishery-board.ie/
8 www.shannon-fishery-board.ie/

fishing-open.htm
9 www.react.ie/Activities/Fishing.htm
10 www.react.ie/Activities/

Fishingwhere.htm

Google with query “sailing”
1 www.sailing.ie/
2 www.iol.ie/ glenans/
3 www.iol.ie/ gerbyrne/
4 www.braysailingclub.ie/
5 www.braysailingclub.ie/sailing/

sailing instructions.html
6 www.alia.ie/sailing/
7 www.alia.ie/sailing/afloat.html
8 www.arklowsc.ie/
9 www.arklowsc.ie/Sailing Tips/

sailing tips.htm
10 homepage.tinet.ie/ bmcg/Cullaun/

cullaun.htm
RPR with query “fishing”
1 www.ndpgenderequality.ie/statdata/

2002/measure/measure4.html
2 www.nci.ie/holiday
3 www.ndpgenderequality.ie/statdata/

2002/topic/topics17.html
4 kildare.local.ie/things to do and see
5 www.lakedistrict.ie/fishing/index.shtml
6 www.thecia.ie/patricks
7 westmeath.local.ie/things to do and see
8 www.oksports.ie/irish/water.html
9 www.falconholidays.ie/locations/

12/11.html
10 www.cybercottage.ie

RPR with query “sailing”
1 sport.startpage.ie
2 www.irishferries.ie/sitemap.shtml
3 www.homefromhome.ie/properties.asp
4 www.kellyco.ie/html/AvailRes.html
5 www.athlonechamber.ie/about-athlone/

tourism.htm
6 www.oksports.ie/irish/water.html
7 www.wolfhound.ie/eveningclasses/

email.htm
8 doon.mayo-ireland.ie/moores.html
9 www.inside.ie/e article000074755.cfm
10 www.csis.ul.ie/staff/CiaranCasey/

personal.htm
Popular RPR with query “fishing”
1 www.nci.ie/holiday
2 kildare.local.ie/things to do and see
3 www.infowing.ie/fishing
4 www.lakedistrict.ie/fishing/index.shtml
5 www.connacommunitycouncil.ie
6 westmeath.local.ie/things to do and see
7 www.thecia.ie/patricks
8 tiara.ie/goingto.htm
9 indigo.ie/˜bwlodge/fisreport.htm
10 www.cybercottage.ie

Popular RPR with query “sailing”
1 www.irishferries.ie/sitemap.shtml
2 sport.startpage.ie
3 www.kellyco.ie/html/AvailRes.html
4 www.homefromhome.ie/properties.asp
5 www.athlonechamber.ie/about-athlone/

tourism.htm
6 www.wolfhound.ie/eveningclasses/

email.htm
7 www.rte.ie/aertel/p581.htm
8 www.oksports.ie/irish/water.html
9 www.tourismresources.ie/fh/

shannon.htm
10 www.rosscarbery.ie



Fig. 1. Domination of start sets.

4.2 Top ranked pages, domination and diameter

In our centrality analysis experiments we selected the first few top ranked pages under
different ranks and measured graph theoretic quantities related to distance and connec-
tivity as a function of the number of pages selected. We graphed our results for multiples
of a hundred Web pages. Under any reasonable ranking strategy the top few hundred
nodes should form a subset of the Web with an important role in search and navigation.
Note that the size in question is smaller than one percent of our document collection of
pages from Ireland.

In our first experiment we constructed start sets of sizes falling into the range �K	�	 	
� 	�	 	 from the top ranked nodes. Then we calculated the domination of these sets, the
efficiency of searching a random node from the given set. The results for PR, RPR,
popular RPR and out-degree rank are depicted on Fig. 1.

The diagram shows that nodes with large PR behave worse as start sets than even
the simple heuristic of choosing out-degree as rank. On the other hand both RPR and
popular RPR finds sets with large domination, i.e., from these sets all the other pages
are accessible within a few clicks on the average. Recall that RPR scores are based on
counting the weighted sum of all search paths as stated in Theorem 1. The domination of
top ranked sets are calculated on the basis of shortest paths, thus we conclude from the
success of RPR scores that RPR acts as some approximation of shortest path counting.
We mention that such approximation results do not hold in arbitrary graphs, since in
RPR all the search paths are taken into account not only the shortest paths.



Fig. 2. Increasing the diameter of the Web graph by removing the top ranked nodes.

The removal of the top ranked nodes should, in addition to having large domination,
also destroy the connectivity of the Web. While removing the top ranked 100, 200, . . . ,
1000 nodes, we measured the harmonic diameter of the remaining graph. 4 The results
are depicted on Fig. 2 for PR, RPR, popular RPR, degree rank, and the mixed rank
computed as the product of PR and popular RPR.

Product PR turns out the strongest “destructor” by increasing the diameter over 45
after removing 1000 nodes. The reason for this phenomenon is that product PR can only
be high for a node having both high RPR and PR scores. High RPR scores imply that a
large number of search paths depart from the page, and the PR score shows that a large
amount of search paths arrive at the node in question. Thus, a node with high product
PR is a typical inner node of short search paths of the Web. Therefore the removal of
such central nodes destroys the connectivity of the Web as verified by our experimental
results.

The fact that RPR has the lowest power of destruction among the measures appears
surprising and contradicting the domination results. However it is easy to put the two
results together and conclude that top start rank nodes, instead of acting central and
interconnecting different topics and domains, serve for finding quick routes by possibly
sitting on the top of large semi-local collections of specific and non-overlapping topics.

Except for RPR, all the ranking algorithms performed better than the degree rank,
thus we strengthen the results of [1]. PR, product PR and popular RPR all provide

4 An exact computation of the diameter would require a Depth First Search from each node.
Thus we approximated the result by computing DFS from 1000 randomly chosen nodes.



central sets of nodes taking the responsibility for the low diameter of the Web graph. The
existence of such centralized sets let us a deeper insight how the small world property
is achieved for the Web graph.

5 Conclusion

Start nodes play important roles in exploring some part of the Web. We proposed start
rank algorithms to express the qualities of pages as hubs based on short random walk
arrival probabilities. The algorithm performs Page Rank computation on the reversed
Web Graph. Thus, it is practically implementable in case of the Web graph. Graph
theoretical tools are introduced to evaluate start ranking algorithms by measuring the
domination and the attacking ability of the top ranked nodes. In our experiments on the
Irish Web, the proposed start ranking algorithms selected start sets with largest domi-
nation justifying our intuitions. We believe that aggregating the start rank algorithms in
text based query search engines improves the efficiency of browsing the Web.
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