

Precoloring extension on chordal graphs

Dániel Marx

Budapest University of Technology and Economics

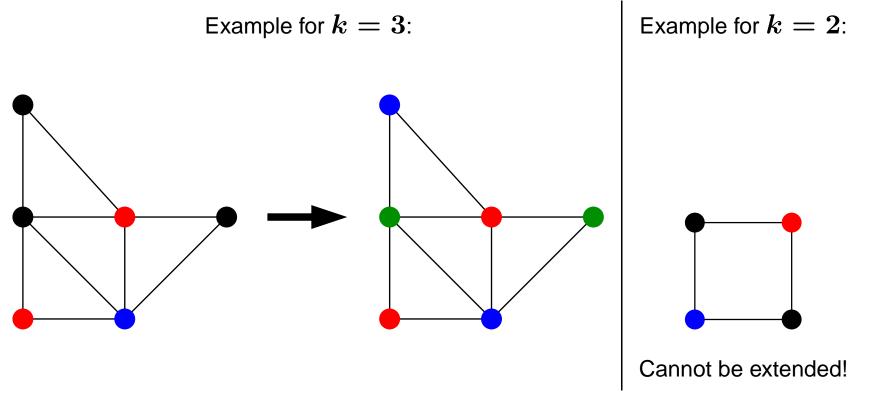
dmarx@cs.bme.hu

Graph Theory 2004,

July 5–9, Paris

Precoloring extension

Generalization of vertex coloring: given a partial coloring, extend it to the whole graph using k colors.



Precoloring extension (cont.)

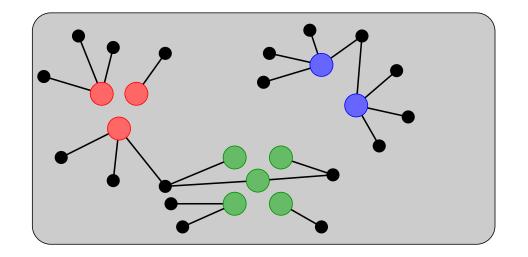
Vertex coloring is a special case of precoloring extension (PREXT).

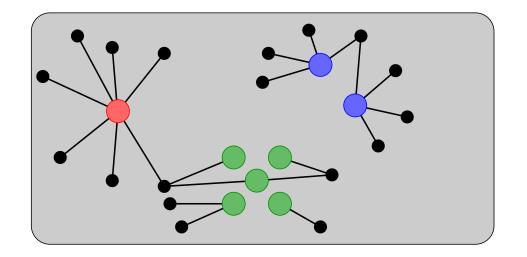
PREXT is polynomial time solvable for

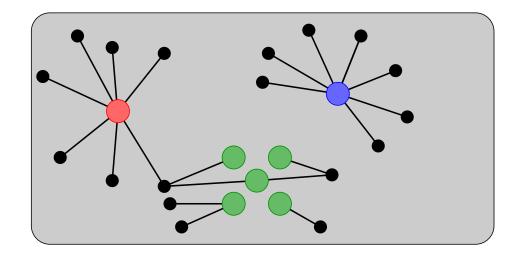
- 6 complements of bipartite graphs
- cographs
- split graphs
- 6 trees
- 6 partial k-trees

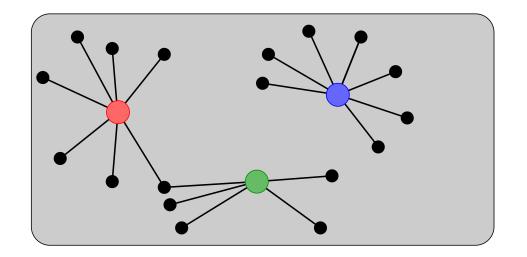
PREXT is **NP**-complete for

- 6 bipartite graphs
- 6 line graphs of bipartite graphs
- 6 line graphs of planar graphs
- 6 interval graphs

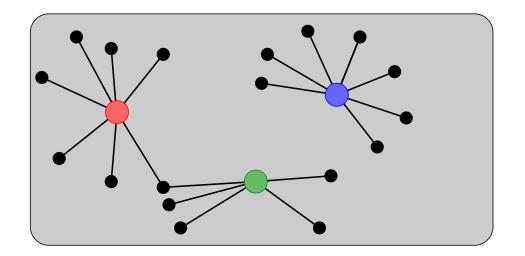








1-PREXT: every color occurs at most once in the precoloring. In general, not easier than PREXT: the vertices precolored with the same color can be identified.

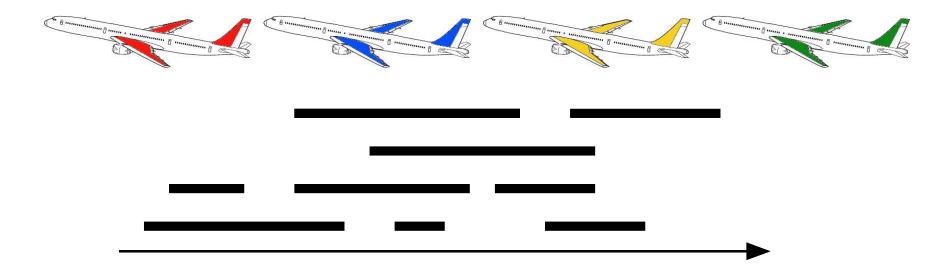


However, 1-PREXT can be easier for a restricted graph class: PREXT for interval graphs is **NP**-hard [Biró, Hujter, Tuza, 1992], even if every interval has the same length [M. 2003].

1-PREXT is polynomial-time solvable for interval graphs [Biró, Hujter, Tuza, 1992].

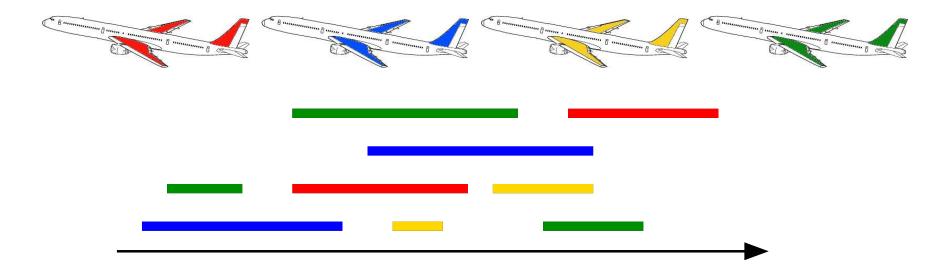
An application

Example: Assign aircrafts (colors) to the different flights (time intervals).



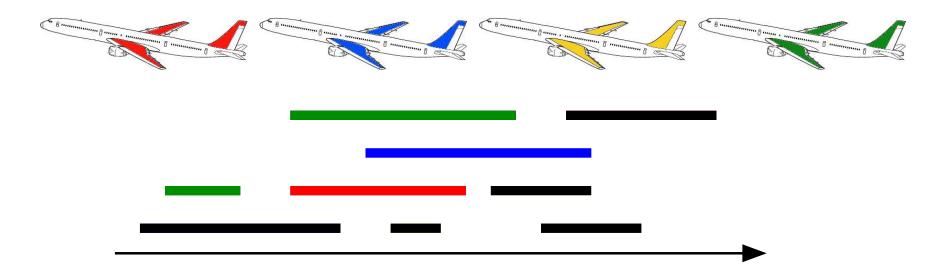
An application

Example: Assign aircrafts (colors) to the different flights (time intervals).



An application

Example: Assign aircrafts (colors) to the different flights (time intervals).



Interval coloring is linear time solvable \Rightarrow linear time algorithm for scheduling.

The problem is **NP**-hard if there are preassigned flights (PREXT).

If each aircraft has a preassigned maintenance interval, then the problem can be solved in polynomial time (1-PREXT).

Chordal graphs

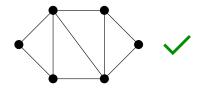
Question: [Biró, Hujter, Tuza] Is it possible to generalize the 1-PREXT algorithm for chordal graphs?

Our main result: 1-PREXT is polynomial-time solvable for **chordal graphs**.

A graph is **chordal** if it does not contain induced cycles longer than 3.

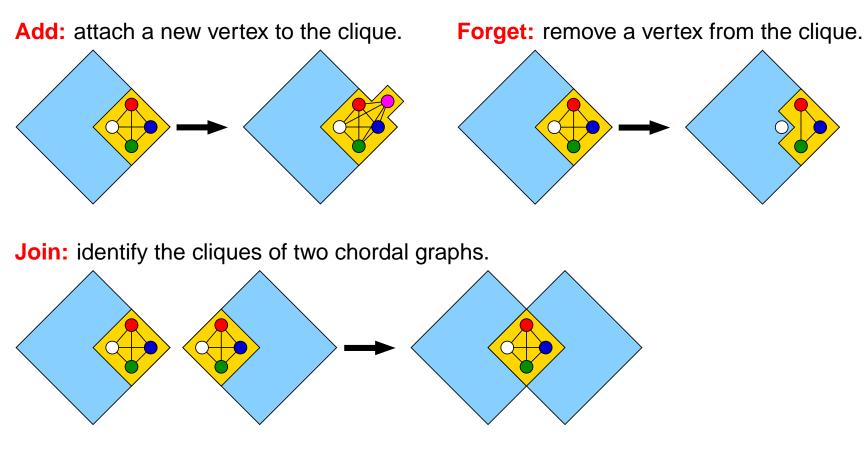
- 6 Interval graphs are chordal.
- Intersection graphs of intervals on a line \Leftrightarrow interval graphs.
- Intersection graphs of subtrees in a tree \Leftrightarrow chordal graphs.
- 6 Chordal graphs are perfect.





Tree decomposition

Every chordal graph can be built using the following operations. We consider chordal graphs with a distinguished clique.

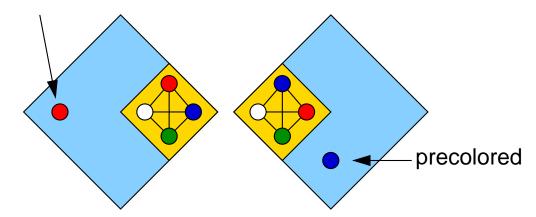


Coloring chordal graphs

Tree decomposition gives a method of coloring chordal graphs. Main idea: before the **join** operation we can permute the colors such that the clique has the same coloring in both graphs.

This approach does not work if there are precolored vertices:

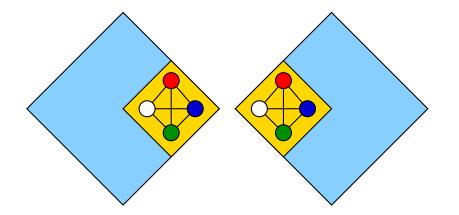
precolored



The two colorings cannot be joined!

Precoloring extension

Idea 1: For each subgraph appearing in the construction of the chordal graph, list all possible colorings that can appear on the distinguished clique in a precoloring extension.

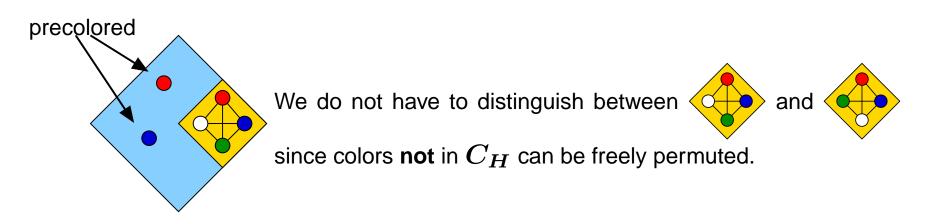


The graphs can be joined if they have colorings that agree on the clique. The colors outside the clique are not important.

Problem: There can be too many (exponentially many) colorings.

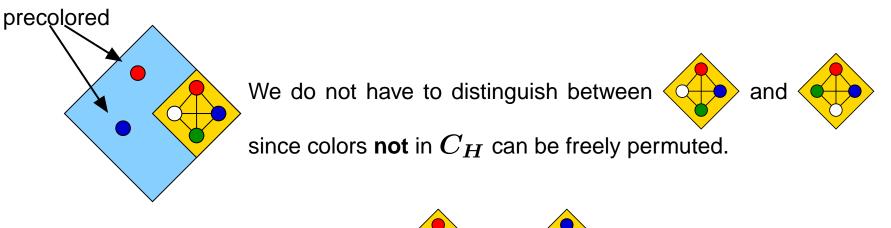
Colorings of the clique

For a subgraph H, let C_H be those colors that are used in the precoloring inside H.



Colorings of the clique

For a subgraph H, let C_H be those colors that are used in the precoloring inside H.



We do not have to distinguish between \bigcirc and \bigcirc either: outside H no vertex is precolored with C_H (1-PREXT!), thus the colors can be freely permuted.

Idea 2: The only important thing in a coloring of the clique is which vertices receive colors from C_H , and which vertices receive colors not in C_H .

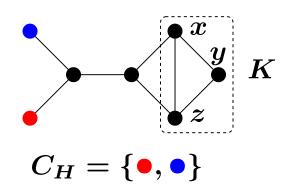
The set system

Let H be a graph with a distinguished clique K. Set system $\mathcal{S}(H,K)$ contains

 $S\subseteq K$ if and only if there is a precoloring extension on H such that

- \circ vertices in S receive colors from C_H ,
- \circ vertices not in S receive colors not in C_H .

Example:



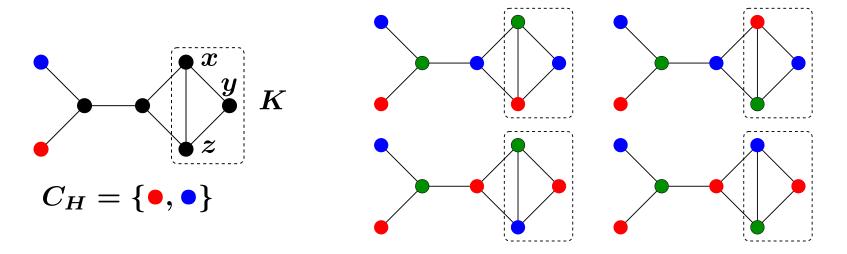
The set system

Let H be a graph with a distinguished clique K. Set system $\mathcal{S}(H,K)$ contains

 $S\subseteq K$ if and only if there is a precoloring extension on H such that

- \circ vertices in S receive colors from C_H ,
- \circ vertices not in S receive colors not in C_H .

Example:



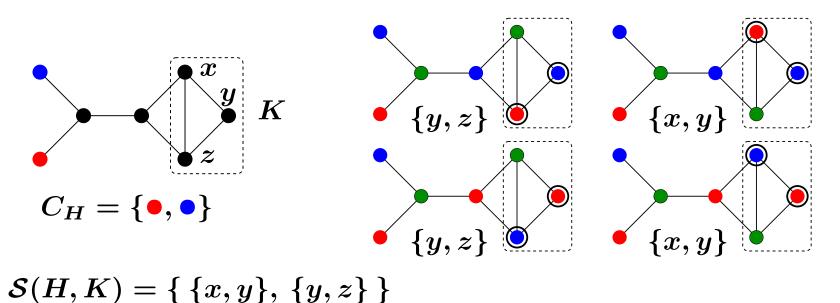
The set system

Let H be a graph with a distinguished clique K. Set system $\mathcal{S}(H,K)$ contains

 $S\subseteq K$ if and only if there is a precoloring extension on H such that

- ${\scriptstyle 60}$ vertices in S receive colors from C_H ,
- \circ vertices not in S receive colors not in C_H .

Example:



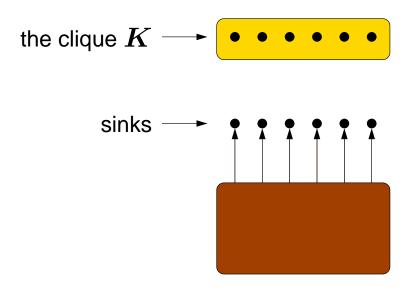
For each subgraph H appearing in the tree decomposition, we determine the set system $\mathcal{S}(H,K).$

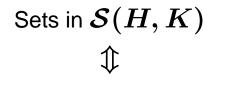
Problem: Size of $\mathcal{S}(H, K)$ can be exponentially large.

For each subgraph H appearing in the tree decomposition, we determine the set system $\mathcal{S}(H,K).$

Problem: Size of $\mathcal{S}(H, K)$ can be exponentially large.

Idea 3: The set system $\mathcal{S}(H,K)$ can be compactly represented by network flows.



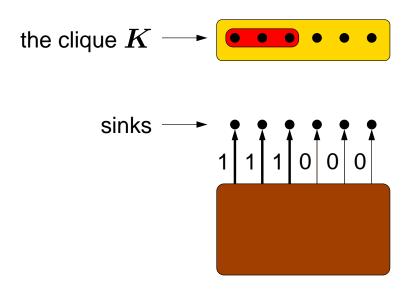


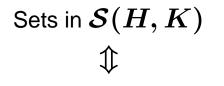
Maximum flows in the network

For each subgraph H appearing in the tree decomposition, we determine the set system $\mathcal{S}(H,K).$

Problem: Size of $\mathcal{S}(H, K)$ can be exponentially large.

Idea 3: The set system $\mathcal{S}(H,K)$ can be compactly represented by network flows.



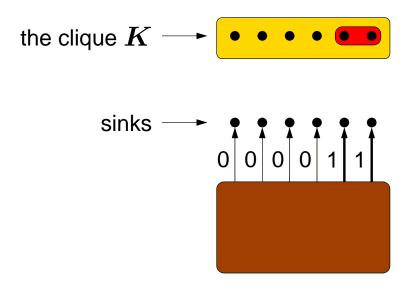


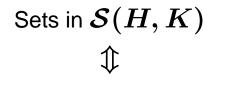
Maximum flows in the network

For each subgraph H appearing in the tree decomposition, we determine the set system $\mathcal{S}(H,K).$

Problem: Size of $\mathcal{S}(H, K)$ can be exponentially large.

Idea 3: The set system $\mathcal{S}(H,K)$ can be compactly represented by network flows.



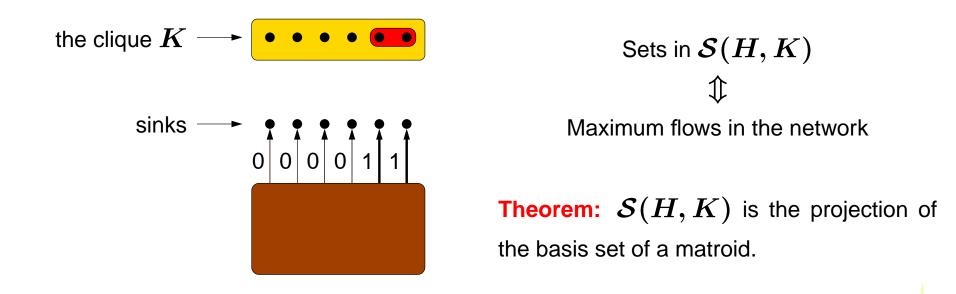


Maximum flows in the network

For each subgraph H appearing in the tree decomposition, we determine the set system $\mathcal{S}(H,K).$

Problem: Size of $\mathcal{S}(H, K)$ can be exponentially large.

Idea 3: The set system $\mathcal{S}(H,K)$ can be compactly represented by network flows.

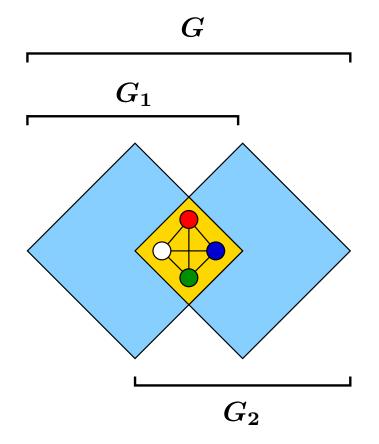


When we build the graph with the **add**, **forget**, and **join** operations, we can build at the same time the networks representing the set systems.

In the case of join, we use the following lemma:

 $S\in \mathcal{S}(G,K)$

S can be partitioned into S_1 and S_2 such that $S_1 \in \mathcal{S}(G_1,K)$ and $S_2 \in \mathcal{S}(G_2,K)$



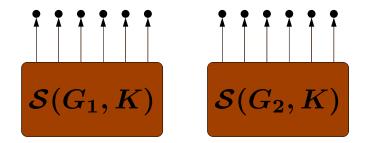
When we build the graph with the **add**, **forget**, and **join** operations, we can build at the same time the networks representing the set systems.

In the case of join, we use the following lemma:

$$S\in \mathcal{S}(G,K)$$
 \mathbb{P}

S can be partitioned into $S_{\mathbf{1}}$ and $S_{\mathbf{2}}$ such that

 $S_1\in \mathcal{S}(G_1,K)$ and $S_2\in \mathcal{S}(G_2,K)$

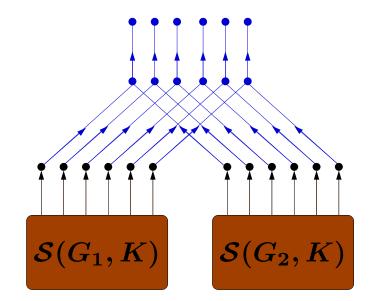


When we build the graph with the **add**, **forget**, and **join** operations, we can build at the same time the networks representing the set systems.

In the case of join, we use the following lemma:

$$S\in \mathcal{S}(G,K)$$
 \mathbb{P}

S can be partitioned into S_1 and S_2 such that $S_1 \in \mathcal{S}(G_1,K)$ and $S_2 \in \mathcal{S}(G_2,K)$

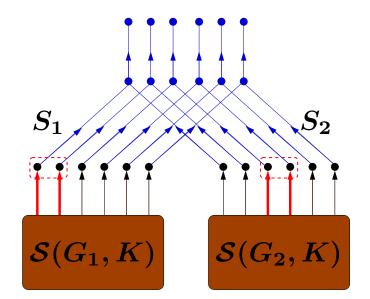


When we build the graph with the **add**, **forget**, and **join** operations, we can build at the same time the networks representing the set systems.

In the case of join, we use the following lemma:

$$S\in \mathcal{S}(G,K)$$
 \mathbb{P}

S can be partitioned into S_1 and S_2 such that $S_1 \in \mathcal{S}(G_1,K)$ and $S_2 \in \mathcal{S}(G_2,K)$

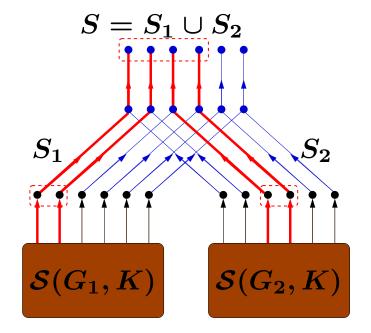


When we build the graph with the **add**, **forget**, and **join** operations, we can build at the same time the networks representing the set systems.

In the case of join, we use the following lemma:

$$S \in \mathcal{S}(G,K)$$

S can be partitioned into S_1 and S_2 such that $S_1 \in \mathcal{S}(G_1,K)$ and $S_2 \in \mathcal{S}(G_2,K)$ (+ some technical condition holds)



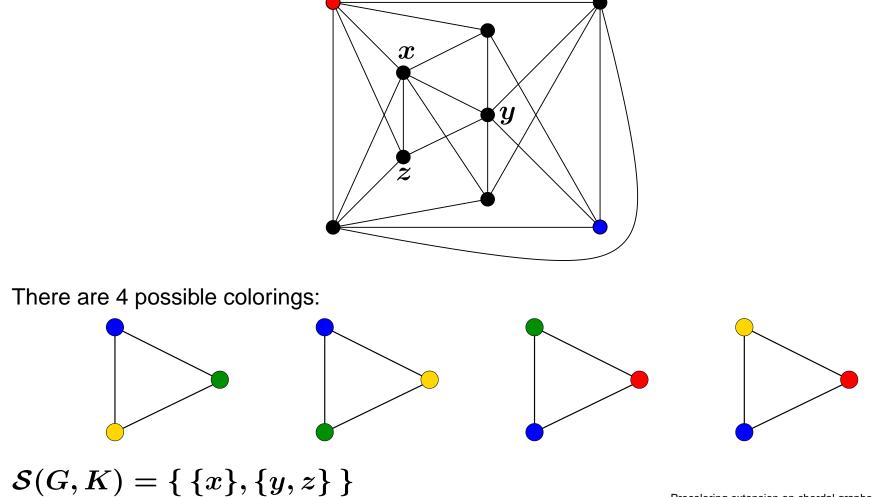
The algorithm

Algorithm for 1-PREXT on chordal graphs:

- Sind a tree decomposition of G.
- 6 For each subgraph H in the tree decomposition, construct a network representing $\mathcal{S}(H,K)$.
- ⁶ The network for G can be used to determine whether there is a precoloring extension for G or not.

A non-matroidal example

If the graph is not chordal, then the set system may not be the projection of a matroid:



Precoloring extension on chordal graphs – p.15/16

- Special case 1-PREXT of PREXT.
- **Previous result:** 1-PREXT is polynomial-time solvable for **interval** graphs.
- **Our result:** 1-PREXT is polynomial-time solvable for **chordal** graphs.
- Set system $\mathcal{S}(H,K)$ is the projection of a matroid if the graph is chordal.
- 6 If the graph is not chordal, the this set system is not necessarily a matroid.

- Special case 1-PREXT of PREXT.
- **Previous result:** 1-PREXT is polynomial-time solvable for **interval** graphs.
- **Our result:** 1-PREXT is polynomial-time solvable for **chordal** graphs.
- Set system $\mathcal{S}(H,K)$ is the projection of a matroid if the graph is chordal.
- 6 If the graph is not chordal, the this set system is not necessarily a matroid.

Thank you for your attention! Questions?