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Bevezetés

Jelen értekezés a szerzonek a Budapesti Miszaki és Gazdasagtudomanyi Egyetem Villamos-
mérnoki és Informatikai Kardn inditott habiliticids eljardsdhoz késziilt. Célja, hogy a szerzd
(részben tarsszerzokkel k6zos), a PhD fokozat megszerzését kovetd tudomdnyos eredményei-
nek egy részét egységes keretben mutassa be. Az eredményeket 11 tézispontban rendszerezziik.
Ezt koveti a feldolgozott témakor attekintése és az egyes eredmények bdvebb kifejtése angol
nyelven. Szinte minden eredményhez kozoljiik a részletes bizonyitdsokat, kivételt csak a na-
gyon technikai, illetve méas bizonyitdsokhoz rendkiviil hasonlité esetekben tesziink. Természe-
tesen ezek a bizonyitdsok is megtaldlhatok a szerzd idevago publikécidiban. A tézisek a szerzd
[4, 42,60, 61, 62, 63, 64, 65] publikicidira épiilnek, melyek koziil [4] és [65] tarsszerzGje Ma-
koto Araya, [42] tarszerz6je Salamon Gébor. A [4, 61, 62, 63, 64, 65] publikdcidk az elmalt 5
évben jelentek meg.

A grafelméletben kozponti szerepet jatszik a Hamilton-kor é€s a Hamilton-ut probléma, vagyis
annak eldontése, hogy egy adott grafnak van-e Hamilton-kore, illetve -utja. Egyikiikre sem
ismert jOl hasznélhato sziikséges és elégséges feltétel, s6t mindkét probléma N P-teljes. Hason-
l6an nehezek a grafok egyéb hosszui koreivel €s utjaival, illetve specidlis feszit6faival kapcso-
latos problémak is; ezek egy része specidlis esetként tartalmazza a Hamilton-kor, illetve -ut
problémat. A kapcsolddo kutatdsok ennek, €s a téma fontossdgdnak kdszonhetden meglehets-
sen szertedgazok. Jelen disszertdcidoban hdrom kiillonbozé aspektusbdl vizsgaljuk a kérdést.

Az elsd fejezetben olyan grafokat vizsgalunk, melyek maguk nem rendelkeznek Hamilton-
korrel (-uttal), de barmely cstcsukat elhagyva mar olyan grafot kapunk, melynek van
Hamilton-kore (-ttja). Ezek az dgynevezett hypohamiltonian (hypotraceable) grafok. (Magyar
nyelvi terminolégia hidnydban az angol elnevezéseket haszndljuk.) A legkisebb hypohamilto-
nian graf a jol ismert Petersen-graf. A téma vizsgalata Sousselier 1963-as cikkével [46] kez-
dodott, melyben a Petersen-graf egy éltalanositdsa segitségével végtelen sok hypohamiltonian
gréfot taldlt. 1964-ben Herz, Gaudin és Rossi [23] belatta, hogy a Petersen-grafndl kisebb hy-
pohamiltonian graf nem létezik. 1997-re sikeriilt meghatdrozni, hogy pontosan mely csicssza-
mokra létezik hypohamiltonian graf (els6sorban Chvétal [11] és Thomassen [49] munkdjanak
koszonhetben, az i-re a pontot Aldred, McKay és Wormald [2] tette fel). Grotschel 1977-ben
megmutatta, hogy a hypohamiltonian grafok hasznélhat6k az utazéiigynok probléma egészér-
tékl programozasi megolddsahoz (a Gomory-féle cutting-plane médszert hasznélva), igy alkal-
mazdasaik rendkiviil szertedgazok, a hdldzatok €s chipek tervezésétdl a DNS-szekvenaldsig. Ha-
tékony megoldast elsGsorban kis méretli hypohamiltonian grafok esetén kaphatunk. Bar szamos
cikk foglalkozik hypohamiltonian grafokkal (kivédld, bar nem kimondottan friss dsszefoglald
Holton és Sheehan cikke [26]), val§jaban elég keveset tudunk réluk. Nem ismert példaul, hogy
l1étezik-e négyszeresen Osszefiiggd hypohamiltonian graf, s6t az sem, hogy létezik-e olyan,
amelynek nincs 3 foku csdcsa (nyilvdnvalé ugyanakkor, hogy minden hypohamiltonian graf
haromszorosan 0sszefiiggd). A hypotraceable grafokrél még ennél is joval kevesebbet tudunk.
Sokaig azt sejtették, hogy ilyenek nem is 1éteznek [30], s6t egy ideig az is kérdéses volt, hogy
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l1étezik-e olyan graf, melyben egyik csicson sem megy 4t az 0sszes leghosszabb ut (a kérdést
1966-ban vetette fel Gallai [17], 1969-ben valaszolta meg — igenléen — Walther [58]). Az elsd,
40 csucsu hypotraceable grafot Horton taldlta 1976-ban (1d. [67, 51]), a legkisebb ismert hypo-
traceable grafnak 34 csicsa van, ez Thomassen nevéhez fiz6dik [49]. Nem ismert érdemi alsé
becslés a legkisebb hypotraceble graf méretére. Ennek az az egyik magyardzata, hogy az dsszes
ismert hypotraceable graf hypohamiltonian grafok segitségével késziilt, Iényegében Thomas-
sen két modszerét haszndlva [49, 51]. (Az ugyanakkor ismert, hogy ha n > 42, akkor 1étezik n
csucsu hypotraceable graf [49].)

Az 1976-ig ismert hypohamiltonian grifok jorészt a Petersen-graf dltaldnositasaként, illetve
Chvital tgynevezett flip-flopjainak segitségével [11] dlltak eld és egyikiik sem volt sikbaraj-
zolhat6. Ez motivalta Chvatalt, amikor felvetette, hogy egyéltaldn 1éteznek-e sikbarajzolhato
hypohamiltonian gréfok (és ha igen, 1éteznek-e ilyenek, amelyek még 3-regularisak is). Az
els6 sikbarajzolhaté hypohamiltonian grafot 1976-ban taldlta Thomassen [51], ennek 105 csu-
csa volt, 1979-ben pedig Hatzel [22] talélt egy 57 csicsud hypohamiltonian sikgrafot. 1993-ban
Holton és Sheehan [26] tette fel a kérdést, hogy vajon 1étezik-e ennél kisebb hypohamiltonian
sikgraf. C. Zamfirescu és T. Zamfirescu [68] 2007-ben taldlt egy 48 csicsu ilyet, a szerz6 pedig
(Makoto Arayaval kozosen) 2011-ben egy 42 csucstit [65]. A legkisebb ismert hypohamilto-
nian sikgraf mérete 40, ezt Jooyandeh, McKay, Ostergérd, Pettersson és C. Zamfirescu [29]
taldlta 2014-ben.

A sikbarajzolhat6 esetben még kevesebbet tudunk a hypohamiltonian és hypotraceable grafok-
rél. 2011-ig még az sem volt ismert, hogy kelléen nagy n-re 1étezik-e n csicsi hypohamilto-
nian, illetve hypotraceable sikgraf (Holton és Sheehan meg is emliti az el6bbit a teriilet megol-
datlan problémadi kozott [26]). 2011-ben Makoto Arayaval kdzosen sikeriilt megvéalaszolnunk
e kérdéseket: megmutattuk, hogy minden n > 76 esetén létezik n csticst sikbarajzolhaté hypo-
hamiltonian graf, illetve minden n > 180 esetén 1étezik n csucsu sikbarajzolhaté hypotraceable
graf [65]. A becsléseket 2014-ben 42-re, illetve 156-ra javitottdk Jooyandeh és szerzotarsai
[29].

A sikbarajzolhaté 3-regularis grafok Hamilton-koreinek problémadja tobb, mint fél évszaza-
don at a grafelmélet egyik kozponti kérdése volt, hiszen Tait sejtésébdl, miszerint minden ha-
romszorosan Osszefiiggd, 3-reguldris sikgrafnak van Hamilton-kore, kovetkezett volna a hires
négyszin-sejtés [48]. Bar Tait sejtését 1946-ban megcéfolta Tutte [55], 1968-ig, a Grinberg-
tétel [19] felfedezéséig nagyon nehéz volt tovabbi ellenpélddkat talalni. Chvatal 1973-as, 3-
reguldris hypohamiltonian sikgrafokra vonatkoz6 kérdése ennek megfeleléen cseppet sem tlint
konnytinek. Az elsé ilyen grafot Thomassen taldlta 1981-ben, ennek 94 csicsa van. 2011-ig
nem is sikeriilt ennél kisebb példat taldlni és az sem volt ismert, hogy kelléen nagy paros n
esetén létezik-e n csicsu 3-reguldris hypohamiltonian sikgraf (mindkét kérdés szerepel Holton
€s Sheehan cikkében [26] a megoldatlan problémak kozott.) Aldred, Bau, Holton és McKay
2000-es cikkébdl [1] ugyanakkor kovetkezett, hogy nincs 42 vagy kevesebb csucst ilyen graf.
Makoto Arayaval kdzosen 201 1-ben sikeriilt mindkét kérdést megvélaszolnunk: mutattunk egy
70 csucsu 3-reguldris hypohamiltonian sikgrafot (melynél kisebb ma sem ismert) és bebizonyi-
tottuk, hogy minden n > 86 esetén 1étezik n cstcsi 3-reguldris hypohamiltonian sikgraf [4]. A
86-0s korlatot 2015-ben 74-re javitottdk [69].

A masodik fejezetben egy feszit6fa-optimalizaldsi problémara adunk kozelité algoritmuso-
kat. A feszit6fa-optimalizaldsi problémdk tipikusan gyakorlatban felmeriil6 feladatokkal 4ll-
nak szoros kapcsolatban (pl. hdl6zatok tervezése, routing) [41, 18, 39, 45, 6]. A cél egy Ossze-
fliggd graf valamilyen célfiiggvény szerint optimélis feszit6fdjanak megtaldldsa; nagyon gya-
kori, hogy a graf egy Hamilton-titja (ha 1étezik) optimadlis feszit6fa, ilyenkor a feladat persze
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NP-nehéz, ezért a pontos (de lassu) megolddsok helyett a kozelitd algoritmusok kertilnek eld-
térbe. Az éltalunk vizsgdlt MINLST (Minimum Leaf Spanning Tree) probléma is ide tartozik: a
cél olyan feszit6fa megtaldldsa, melynek a lehetd legkevesebb levele (vagyis 1 foku csicsa) van.
Lu és Ravi 1996-ban megmutatta [38], hogy erre az optikai hédlézatok, vizgazdalkoddsi rend-
szerek tervezésekor is hasznos problémara még kozelitd algoritmust sem lehet adni (hacsak
P = NP nem teljesiil). Optimalizalasi szempontbol a MINLST feladat nyilvan ekvivalens azzal
a problémadval, amikor olyan feszit6fat keresiink, melynek a lehetd legtobb belsé csticsa (azaz
nem levele) van. Ez a probléma (Maximum Internal node Spanning Tree — MAXIST) azon-
ban méar approximélhatd: 2008-ban Salamon Géaborral k6zosen linedris idejli 2-approximéaciot
sikeriilt megadnunk, melynek finomitdsaval %—approximéci(’)t kaptunk karom-mentes grafokra
és linedris futdsidej g-approximéciét 3-reguléris grafokra [42]. A cikk kozlése 6ta az approxi-
madcids faktort szamos alkalommal javitottak, a legjobb ismert faktor dltaldnos grafokra % [35],
1 foku csucs nélkiili grafokra pedig % [36].

A harmadik fejezetben az elsd két fejezet megkozelitéseit egyesitve a hypohamiltonian és hy-
potraceable tulajdonsdgokat kiterjesztjiilk az emlitett feszit6fa-optimalizaldsi problémaéra (és
egy utfedéssel kapcsolatos problémadra is). Az egyesitett megkozelités hatékonysagat mutatja,
hogy a segitségével sikeriilt megvalaszolni Gargano, Hammar, Hell, Stacho és Vaccaro [18]
egy nyitott kérdését. Egy Osszefiiggd graf minimadlis levélszamat a feszit6fai levélszdmanak
minimumaként definidljuk, azzal a kiegészitéssel, hogy ha a grdfnak van Hamilton-kore, akkor
a kérdéses szam nem 2, hanem 1. Egy gréafot /-levél-kritikusnak neveziink, ha a minimélis le-
vélszdma [ és barmely csicsat elhagyva a minimélis levélszam [/ — 1. Konnyen lathatd, hogy a
2-levél-kritikus grafok épp a hypohamiltonian grafok, a 3-levél-kritikus grafok pedig a hypotra-
ceable grafok. A 3.1 alfejezetben megmutatjuk, hogy nem csak / = 2,3, hanem tetszdleges [ > 2
egész esetén léteznek [-levél-kritikus grafok, s6t elegend6en nagy n esetén létezik n csucsu sik-
barajzolhatd, 3-reguldris [-levél-kritikus graf is [62, 63]. A hypohamiltonian és hypotraceable
grafok szerkezetérdl nagyon keveset lehet tudni, az egyik ilyen eredmény Thomassen hypotra-
ceable 2-toredékeket karakterizdlo lemmadja [49]. Ennek egy levél-kritikus grafokra vonatkozo
altaldnositasat bizonyitjuk be a 3.2 alfejezetben [62, 63].

A kovetkezd definiciok Garganotdl és szerzodtarsaitol szarmaznak [18]. Egy fat poknak neve-
ziink, ha legfeljebb egy olyan csicsa van, melynek foka nagyobb, mint 2; a pék kdozéppontja a
2-nél nagyobb foku csucs (ha van ilyen, egyébként tetsz6leges cstcs tekinthetd a kozéppont-
nak). Egy graf pokszerti, ha barmely v csticsdhoz 1étezik a grafnak olyan feszit6 pokja, melynek
kozéppontja v. Nyilvanval6, hogy a Hamilton-uttal rendelkez6 grafok pdkszertiek és konnyen
lathato, hogy ugyanez igaz a hypotraceable grafokra is. Garganoék (egyik) kérdése az volt,
hogy 1éteznek-e egyéb pokszerii grafok is. A 3.3 alfejezetben eldszor megmutatjuk, hogy a
kordbban talalt levél-kritikus grafok koziil bizonyosak tt-kritikusak is (vagyis barmely cstcsu-
kat elhagyva a csucsok fedéséhez sziikséges diszjunkt utak szama eggyel csokken — kordbban
ilyen gréfok csak a 2 uttal fedhetd esetben voltak ismertek) [64], majd ezt a tulajdonsagot fel-
hasznédlva Hamilton-ut nélkiili, nem hypotraceable, pokszert grafokat konstrualunk. S6t, azt is
megmutatjuk, hogy tetszbleges H graf esetén 1étezik olyan Hamilton-ut nélkiili, nem hypotra-
ceable, pokszeri graf, mely feszitett részgrafként tartalmazza H-t [64].

A negyedik fejezet olyan, hipergrafok nyomair6l szol6 tételeket tartalmaz, melyek halézatok
hibatiiréséhez, precizebben a hiperkocka bizonyos (hibés) csucsait elkeriilé hosszi utjaihoz és
koreihez kapcsolédnak. Hipergrafok nyomait (vagyis az alaphalmaz valamely részhalmazara
vett megszoritdsait) régdta vizsgaljak; Vapnik és Chervonenkis [56] klasszikus cikke 1971-ben
jelent meg. Ebben a cikkben mar szerepel (implicit formdban) a tobbnyire Sauer tételeként [43]
ismert 4llitds (melyet az emlitetteken kiviil bebizonyitott Perles és Shelah [44] is, de mér Erd&s
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is sejtette). A tétel szerint minden n elemi alaphalmazon adott, legalabb 26*1 (Vl') + 1 kiilon-
boz6 halmazt tartalmaz6 halmazrendszernek van olyan r elemi R halmazon vett nyoma, amely
R minden részhalmazat tartalmazza. Ennek az dllitdsnak és Bondy egy tételének [8] kozos al-
talanositasat adjuk a 4.1 alfejezetben [60]. EbbdI az altalanos allitasbol és Turan tételébdl [54]
kovetkezik a 4.2 alfejezet f6 eredménye, mely szerint m > 2n esetén minden n elemd alaphal-

P 2 7”7
mazon adott, m halmazt tartalmaz6 halmazrendszernek van olyan 5"—— elem{ halmazon vett

nyoma, melyben minden halmaz multiplicitisa legfeljebb me—i_z + 1 [60]. Ezt a tételt hasz-
nalta Fink és Gregor [14] annak bizonyitdsara, hogy elegend6en nagy n esetén az n-dimenzids
hiperkockébdl egy legfeljebb % +5 + 1 elemi X csticshalmazt térolve, a kapott grafnak van
2" —2|X| hosszi kore (ennél hosszabb kor tetszéleges X esetén nem varhaté el, hiszen a hi-
perkocka paros graf). Ez volt az els6 olyan eredmény, amelyben négyzetes nagysdgrendd hibas
csdcsot engedtek meg (kordbban X méretét (n— 1)-gyel, (2n—4)-gyel, majd (3n—7)-tel kellett
feliilrdl korlatozni). Hasonld, négyzetes nagysdgrendli eredményt bizonyitott az emlitett tétel
segitségével Dvorédk és Koubek [13] korok helyett utakrol.

Jelolések. A disszertdciéban szerepld grafok mind véges, egyszerd, irdnyitatlan, Osszefiiggd
grafok. A G gréf csicshalamzdt V(G), élhalmazat E(G) jeloli. Az a és b csticsok kozti élet
(a,b)-vel, az ay,a, ... ,a; csicsokon dtmend kort (ay,as,. .., a;)-val jeldljik. G[X] jeloli a G
graf Xcsicshalmaza dltal feszitett részgrafjat, eg(X) a G[X] graf élszamat, G — X pedig azt
a grafot, amit G-bdl az X csdcshalmaz torlésével kapunk, G — v := G — {v}. Ha H részgrifja
G-nek ,akkor G\ H az a graf, melynek cstcshalmaza V(G), élhalmaza E(G) \ E(H).

A v csics fokat a G grafban dg(v) jeloli (ha vilagos, hogy melyik grafr6l van szd, akkor
egyszerlien d(v)), az X és Y csticshalmazok kozt fut6 élek szamat pedig dg(X,Y). dg(X) :=
dG(va(G) \X>’ dG(va) = dG(Xv {V})

GUH a G és H grafok diszjunkt unidja, de haszndljuk a jelolést akkor is, ha G és H ugyanazon
graf részgrafjai, ilyenkor GUH csiicshalmaza V(G) UV (H), élhalmaza E(G) UE(H).

Legyen H a G graf részgrifja, X C V(G). Ekkor H 4 X jeloli G-nek azt a részgrafjat, melynek
csucsai V(H) UX, élei pedig H és G[X]| élein kivill a V(H) és X kozti G-beli élek; H +v :=
H +{v} barmely v € V(G)-re. Legyen a és b a G graf két csicsa, ekkor G + (a,b) jeloli azt a
grafot, melyet G-bdl az (a,b) él G-hez addsaval kapunk.



Tézispontok

1. Minden elegend&en nagy n egész esetén létezik n csucsu sikbarajzolhaté hypohamilto-
nian, illetve hypotraceable graf (sot, az els6 esetben n > 76, a masodikban n > 180 elég) —
a hypohamiltonian eset Holton és Sheehan egy 1993-as problémadjanak [26] megoldasa.
(Theorem 1.5 és Theorem 1.13. A 76-0s korlatot azéta 42-re, a 180-as korlatot 156-ra
javitottak [28, 29].) (Forrés: [65], kozos eredmények Makoto Arayaval.)

2. Alegkisebb sikbarajzolhat6 hypohamiltonian grafnak legfeljebb 42, a legkisebb sikbaraj-
zolhat6 hypotraceable grafnak legfeljebb 162 csticsa van. (Theorem 1.1, és Corollary 1.3.
A becsléseket azota 40-re és 154-re javitottdk [28, 29].) (Forrds: [65], k6z0s eredmények
Makoto Arayaval.)

3. Minden elegend6en nagy péros n egész esetén létezik n csicsi 3-reguldris sikbarajzol-
hat6 hypohamiltonian, illetve hypotraceable graf (s6t, az els6 esetben n > 86, a masodik
esetben n > 356 elég) — a hypohamiltonian eset Holton és Sheehan egy 1993-as problé-
madjanak [26] megoldasa. (Corollary 1.17 és Corollary 1.18. A 86-0s korlatot azéta 74-re
javitottak [69].). (Forrés: [4], k6zOs eredmények Makoto Arayaval.)

4. A legkisebb sikbarajzolhaté 3-reguldris hypohamiltonian grafnak legfeljebb 70, a leg-
kisebb sikbarajzolhaté 3-reguldris hypotraceable grafnak legfeljebb 340 csicsa van — a
hypohamiltonian eset ugyancsak Holton és Sheehan egy 1993-as problémadjanak [26]
megoldasa. (Theorem 1.16 és Corollary 1.18.) (Forrds: [4], kozos eredmények Makoto
Arayaval.)

5. Linearis futdsidejti 2-approximdcids algoritmus a MAXIST problémara (maximalis belsé
csdcsu feszitdfa keresése), %-approximéeic’) claw-free grafokra, linedris futdsidejd g-
approximdcio 3-reguldris grafokra. (Algorithm 1, Theorem 2.4, Algorithm 2, Theorems
2.6, 2.8. Azdta az approximdcios faktort altalanos grafokra el6bb %—ra [32], majd %—re
[351, 1 foki cstcs nélkiili grafokra Z-re [40], 3-ra [32], 3-re [35], majd 3-ra [36] javitot-
tak. Forras: [42], k6z0s eredmények Salamon Géaborral.)

6. Minden [ > 2 egészre 1éteznek [-levél-kritikus és [-levél-stabil grafok, st minden ele-
gendben nagy n-re 1étezik n csucsu [-levél-kritikus és [-levél-stabil graf. (Theorem 3.9,
Theorem 3.10, Remark, 33. oldal. Forras: [62, 63])

7. l-levélkritikus 2-toredékek karakterizacidja (Thomassen hypotraceable 2-toredékeket ka-
rakterizal6 lemmadjénak [51] altaldnositdsa). (Theorem 3.17. Forras: [62, 63]).

8. Minden p > 2 egészre 1éteznek p-ut-kritikus grafok, st minden elegenden nagy n-re
1étezik n cstcsu p-ut-kritikus graf. (Theorem 3.20. Forrés: [64])

9. Léteznek olyan nem hypotraceable arachnoid grafok, amiknek nincs Hamilton-titja —
Gargano, Hammar, Hell, Stacho és Vaccaro 2002-es problémdjanak [18] megoldésa. Sot,
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10.

11.

tetszOleges H grafhoz 1étezik olyan Hamilton-tt nélkiili, nem hypotraceable arachnoid
graf, mely H-t feszitett részgrafként tartalmazza. (Theorem 3.22, Remark, 40. oldal. For-
ras: [63, 64].)

Az (n,m) > (r,s) relaci6 karakterizdcidja a letomoritési technika segitségével — Bondy [8]
és Sauer [43] tételeinek egy kozos altalanositdsa. (Theorem 4.4. Forras: [60].)

m>2nésr= [ﬁ} esetén (n,m)> (r,r+1). S6t, minden <7 € MSH (n,m) esetén
létezik olyan [#W elemi X C [n| halmaz, melyre <7-t az [n] — X halmazra megszo-

ritva, a kapott hipergrafban minden él multiplicitdsa legfeljebb {me—ifz-‘ + 1. (Theorem
4.6, Theorem 4.7. Forras: [60, 61].)
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1. fejezet

Hypohamiltonian and hypotraceable
graphs

A graph is called hypohamiltonian if it is not hamiltonian but deleting any vertex gives a ha-
miltonian graph; a well-known example is the Petersen graph. The study of hypohamiltonian
graphs started in 1963, with the paper of Sousselier [46], who managed to find an infinite sequ-
ence of hypohamiltonian graphs on 6k + 10 vertices for every integer k > 0 by generalizing the
Peopen prob tersen graph. In 1975 Doyen and Van Dienst [12] found another generalization
and a sequence of hypohamiltonian graphs on 3k + 10 vertices for every integer k > 0. In 1973
Chvatal [11] invented the so-called flip-flops (that we will use in Chapter 3) and obtained many
new hypohamiltonian graphs.

Herz, Gaudin, and Rossi [23] in 1964 proved that the Petersen graph is the smallest hypoha-
miltonian graph, and Aldred, McKay, and Wormald [2] in 1997, finalizing the efforts of many
others (Herz, Duby, and Vigue [24], Chvétal [11], Thomassen [49], Collier and Scmeichel
[10]) proved that a hypohamiltonian graph on n vertices exists if and only if n = 10,13,15,16
orn > 18.

A graph is called hypotraceable if it is not traceable, but deleting any vertex gives a traceable
graph. The existence of such graphs was an open problem till 1975, when Horton found such
a graph on 40 vertices (see [67, 51]) disproving the conjecture of Kapoor, Kronk, and Lick
[30]. Actually, even the existence of graphs without concurrent longest paths was an open
question from 1966 to 1969 (raised by Gallai [17] and settled by Walther [58]). The smallest
known hypotraceable graph (having 34 vertices) is due to Thomassen [49], who also proved
that hypotraceable graphs on n vertices exist for every n > 42 [49].

Hypohamiltonian and hypotraceable graphs were extensively studied in the last five decades,
see e.g. the papers [50, 51, 52, 53, 22, 68, 28, 29] and the excellent survey by Holton and
Sheehan [26]. However, not much is known about their structure, especially in the case of hy-
potraceable graphs, e.g. all known hypotraceable graphs are constructed using hypohamiltonian
graphs. There are still a lot of open questions, even among the very natural ones, like whether
there exists a 4-connected hypohamiltonian or hypotraceable graph. Hypohamiltonian graphs
are easily seen to be 3-connected, hypotraceable graphs are easily seen to be 2-connected and
3-edge-connected, on the other hand no hypohamiltonian or hypotraceable graph without a
vertex of degree 3 is known.
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1.1. Planar hypohamiltonian and hypotraceable graphs

All graphs obtained by the flip-flop technique or generalizations of the Petersen graph are non-
planar. This fact led Chvatal to ask whether there exist planar hypohamiltonian graphs [11].
This was answered by Thomassen [51], who found such a graph on 105 vertices in 1976.
Hatzel [22] found a smaller planar hypohamiltonian graph, having 57 vertices in 1979. Holton
and Sheehan [26] asked about the minimum size of planar hypohamiltonian graphs. Hatzel’s
bound was improved to 48 by Zamfirescu and Zamfirescu [68] in 2007. M. Araya and the author
have found a planar hypohamiltonian graph on 42 vertices [65] in 2011 (see also Theorem 1.1)
and the currently known smallest such graph has 40 vertices [29, 28].

Using the graph in Theorem 1.1 and a theorem of Thomassen [49], M. Araya and the author
constructed a planar hypotraceable graph on 162 vertices (see [65] and Corollary 1.3) impro-
ving the (then) best known bound of 186, which was improved further to 154 by Jooyandeh et
al. [29, 28] recently.

We have mentioned that not much is known about hypohamiltonian and hypotraceable graphs.
This is even more true for the planar case (a nice exception is the theorem of Thomassen [52]
stating that every planar hypohamiltonian graph contains a vertex of degree 3); while since
1997 it has been known for which values of n exists a hypohamiltonian graph, Holton and
Sheehan [26] mention the open problem whether there exists a planar hypohamiltonian graph
on n vertices, provided n is sufficiently large. This problem has been settled in 2011 by M.
Araya and the author (see [65] and Theorem 1.5), moreover we proved a similar theorem for
hypotraceable graphs (Theorem 1.13). We showed that for every integer n > 76 there exists
a planar hypohamiltonian graph on n vertices and for every integer n > 180 there exists a
planar hypotraceable graph on n vertices. The bounds were improved recently to 42 and 156
by Jooyandeh et al. [29, 28].

Zamfirescu [66] denoted the smallest number of vertices of a planar k-connected graph, in

which every j vertices are omitted by some longest cycle (path) by C,{ (P,g ). In this section we

also improve on the (then) best known bounds concerning the numbers C3, C3, P;, P_32
Let us consider now the following graph I'.

Theorem 1.1 (Araya-Wiener, 2011 [65]) I is a planar hypohamiltonian graph.
Proof. T is obviously planar and has 42 vertices, 67 edges, and 27 faces, of which one is a

quadrilateral and the others are all pentagons. To prove that I' is not hamiltonian we use a
theorem of Grinberg [19].
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Theorem 1.2 (Grinberg, 1968 [19]) Suppose a plane graph has a hamiltonian cycle, such
that there are f; i-gons in the exterior of the hamiltonian cycle and f! i-gons in the interior of
the hamiltonian cycle. Then

Y.(i=2)(fi—f)=0.

1
For the graph I'" the sum in Grinberg’s theorem cannot be 0, since there is only one face of I'
whose degree is not congruent to 2 modulo 3, from which the nonhamiltonicity of I" follows.
To see that I' is hypohamiltonian indeed, we have to show that the deletion of any vertex of I"
gives a hamiltonian graph. Since the drawing of I" in Figure 1 is centrally symmetric, we only

have to check 21 cases. The hamiltonian cycles of all graphs obtained by deleting one vertex
of I' can be found in [65]. O

An easy corollary of the above theorem is the existence of a planar hypotraceable graph on
162 vertices, improving the bound of 186 in [68]. The construction is based on graph I" and a
method of Thomassen [49] for creating hypotraceable graphs using hypohamiltonian graphs.

Corollary 1.3 (Araya-Wiener, 2011 [65]) There exists a planar hypotraceable graph on 162
vertices.

Proof. Let I'y be the following graph. Let the neighbours of a vertex v of degree 3 in graph I" be
x,y,z. Take 4 vertex-disjoint copies of I' — v, and let the copies of x (resp. y,z) be x1,x2,x3,x4
(resp. y1,¥2,¥3,V4, 21,22,23,24). Now identify the vertex x; with x, and the vertex x3 with x4
and add the edges (y1,y3), (21,23), (¥2,4), (22,24) to the graph.

It is obvious that I'4 has 162 vertices and it is also easy to see that it is planar. By a theorem of
Thomassen [49] I'4 is hypotraceable, since I" is hypohamiltonian by Theorem 1.1. a

Another corollary concerns some of the numbers C,{ (and P,g ), that are defined in [66] as the
smallest number of vertices of a planar k-connected graph, in which every j vertices are omitted
by some longest cycle (path). In the book by Voss [57] the following bounds can be found for
C},C3, P}, and P}: C} <57, C3 <6758, P} <224, P} <26378. These bounds were improved
by Zamfirescu and Zamfirescu [68]: based on their 48 vertex hypohamiltonian planar graph they
showed that C; <48, C% <4277, P31 < 188, and P32 < 16926. Now using our graph I we can
derive even better bounds. The proof of the bounds is based on the technique of Corollary 2 in

[68].
Corollary 1.4 (Araya-Wiener, 2011 [65]) C] < 42, C2 <3701, P! <164, P2 < 14694,
Now we prove the main theorem of this section.

Theorem 1.5 (Araya-Wiener, 2011 [65]) There exists a planar hypohamiltonian graph on n
vertices for every integer n > 76.

We will use the following definition and lemma several times in the proof of Theorem 1.5.

Definition 1.6 Let G be a graph with a 4-cycle (a,b,c,d). Now Th(G,a,b,c,d) is the graph
obtained from G by deleting the edges (a,b) and (c,d) and adding a new 4-cycle (a',b’,c’,d")
and the edges (a,d’), (b,b"), (¢,c), (d,d’) to G.

We call the function Th the Thomassen operation, since it was introduced by Thomassen [53],
who used it to show that there exist infinitely many planar cubic hypohamiltonian graphs. The
next two lemmas are a slight modification of a claim of Thomassen [53] and the proof is almost
the same; we include it for completeness.
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Lemma 1.7 Let G be a planar nonhamiltonian graph having a 4-cycle (a,b,c,d). Then
Th(G,a,b,c,d) is also a planar nonhamiltonian graph.

Proof. We use the shorthand notation Th(G) for Th(G,a,b,c,d). It is obvious that Th(G) is
planar. Now suppose to the contrary that Th(G) contains a hamiltonian cycle C. C clearly
contains either all four or exactly two of the edges (a,d’), (b,b'), (c,c’), (d,d’). In the first
case there exist two vertex-disjoint paths covering all vertices of G with endvertices a,b,c,d,
which together with two of the edges (a,b), (b,¢), (c,d), (d,a) gives a hamiltonian cycle of G,
a contradiction. In the second case there exists a hamiltonian path P of G with its endvertices
among a, b, c,d. We show that the endvertices are neighbours, thus again we have a hamiltonian
cycle in G, a contradiction. If the endvertices of the path were (say) a and c, then the deletion
of @’ and ¢’ from the hamiltonian cycle C would give a graph having three components ({5},
{d'}, and P), which is clearly impossible. O

Lemma 1.8 Let G be a planar hypohamiltonian graph having a 4-cycle (a,b,c,d) and suppose
that the degrees of the vertices a,b,c,d are 3. Then Th(G,a,b,c,d) is also a planar hypoha-
miltonian graph.

Proof. By Lemma 1.7, Th(G) is planar and nonhamiltonian. We have to show that the deletion
of any vertex of Th(G) gives a hamiltonian graph.

First let us suppose that we delete one of the new vertices a’,b’,c’,d’, let it be (say) a’. Consider
now a hamiltonian cycle C; of the graph G —d. Since a has degree 3 in G and d is one of its
neighbours, C; uses the edge (a,b). Now it is easy to see that by deleting this edge from C, and
adding the path (b,b',c’,d’,d,a), we obtain a hamiltonian cycle of Th(G) —d’.

Now suppose we delete a vertex v of G from Th(G). Without loss of generality we may assume
that v # a. Let us consider a hamiltonian cycle C, of G — v. Since a is in the cycle and has
degree 3 in G (and therefore degree at most 3 in G —v), C, contains at least one of the edges
(a,d), (a,b).

If C, contains both (a,b) and (c,d), then replace these edges by the paths (a,d’,b’,b) and
(¢,c’,d',d); if C, contains (a,b) and does not contain (c,d), then replace (a,b) by the path
(a,d',d',c',b',b);if C, contains (c,d) and does not contain (a,b), then replace (c,d) by the path
(c,c,b',d',d',d); finally if C, contains none of (a,b) and (c,d), then it contains the edge (a,d)
and now replace this edge by the path (a,d’,b’,c’,d’,d). In any case we obtain a Hamiltonian
cycle of Th(G) —v. O

Now we prove Theorem 1.5 through a sequence of lemmas.

Lemma 1.9 There exists a planar hypohamiltonian graph on 42+ 4m vertices for every integer
m > 0.

Let a,b,c,d be the vertices of the quadrilateral of graph I'. Then the graph Th(I",a,b,c,d) is
the following:
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By Lemma 1.7, Th(I",a,b,c,d) is planar and nonhamiltonian. To see that it is also hypohamil-
tonian we have to find hamiltonian cycles of all of its vertex-deleted subgraphs — these can be
found in [65]. Since it is obvious that Th(G) always contains a 4-cycle with vertices of degree
3, applying the Thomassen operation iteratively we obtain planar hypohamiltonian graphs on
42 4 4m vertices for every integer m > 0, by Lemma 1.8. a

Lemma 1.10 There exists a planar hypohamiltonian graph on 48 + 4m vertices for every inte-
germ > 0.

Now we apply the Thomassen operation on the Zamfirescu graph [68]: let a,b,c,d be the
vertices of the quadrilateral of the Zamfirescu graph Z. The resulting graph is the following:

By Lemma 1.7, Th(Z,a,b,c,d) is planar and nonhamiltonian. To see that it is also hypoha-
miltonian again we have to find H hamiltonian cycles of all of its vertex-deleted subgraphs —
these can be found in [65]. Now applying the Thomassen operation iteratively we obtain planar
hypohamiltonian graphs on 48 + 4m vertices for every integer m > 0, by Lemma 1.8. a

Lemma 1.11 There exists a planar hypohamiltonian graph on 57 + 4m vertices for every inte-
germ > 0.

Proof. We apply the Thomassen operation on the Hatzel graph [22]: let a, b, c,d be the vertices
of the quadrilateral of the Hatzel graph H, the resulting graph can be seen here:
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By Lemma 1.7, Th(H,a,b,c,d) is planar and nonhamiltonian. The hamiltonian cycles of its
vertex-deleted subgraphs again can be found in [65]. Now applying the Thomassen operation
iteratively we obtain planar hypohamiltonian graphs on 57 + 4m vertices for every integer m >
0, by Lemma 1.8. O

Lemma 1.12 There exists a planar hypohamiltonian graph on 79 + 4m vertices for every inte-
germ > 0.

Proof. Let T be the following graph. Let us take two vertex-disjoint copies of graph I" and delete
a vertex of degree 3 in both copies. Now we identify the neighbours of the deleted vertices (that
is, if they are a, 3,7 in one of the copies and &', ’,Y in the other, then we identify o with
o', B with B’, y with y). The graph T has 79 vertices. It is easy to see that T is planar and
by Lemma 2.1. of [49], T is hypohamiltonian. To obtain a planar hypohamiltonian graph on
79 4+ 4m vertices for some m > 1, we just have to change one of the copies of I" to a planar
hypohamiltonian graph on 42 + 4m vertices (such a graph exists by Lemma 1.9). a

Proof of Theorem 1.5: Now the proof is easy: since (42,48,57,79) is a complete residue system
modulo 4, by Lemmas 1.9, 1.10, 1.11, and 1.12, there exists a planar hypohamiltonian graph
on n vertices for every integer n > 76. a

Now we prove a similar theorem concerning hypotraceable graphs.

Theorem 1.13 (Araya-Wiener, 2011 [65]) There exists a planar hypotraceable graph on n
vertices for every integer n > 180.

Proof. We use the same method of Thomassen [49] as we used in the proof of Corollary 1.3.
Let G, G2, G3, G4 be planar hypohamiltonian graphs and let v; be a vertex of degree 3 in G;
(i=1,2,3,4). (Such a vertex always exists, see [52].) Let the neighbours of v; in G; be x;, i, z;.
Now consider the union of the graphs G; —v; (i = 1,2,3,4) and identify the vertices x;,x, and
the vertices x3,x4 and add to the graph the edges (y1,y3), (z1,23), (y2,y4), and (z2,z4). The
resulting graph G is easily seen to be planar and by Lemma 3.1 of [49] also hypotraceable.
We distinguish 4 cases according to the residue of n modulo 4.

Case 1. n = 4k for some k > 42. Let G and G; be the graph I', G3 the Zamfirescu graph Z, and
G4 be a planar hypohamiltonian graph on 4k — 126 vertices (4k — 126 > 42, thus by Lemma
1.9, such a graph exists). Now G has 4k vertices.

Case 2. n = 4k + 1 for some k > 44. Let G| and G, be the graph I', G3 the Hatzel graph H, and
G4 be a planar hypohamiltonian graph on 4k — 134 vertices (4k — 134 > 42, thus by Lemma
1.9, such a graph exists). Now G has 4k +- 1 vertices.
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Case 3. n = 4k + 2 for some k > 40. Let G1, G2, and G3 be the graph I', and G4 be a planar
hypohamiltonian graph on 4k — 118 vertices (4k — 118 > 42, thus by Lemma 1.9, such a graph
exists). Now G has 4k + 2 vertices.

Case 4. n = 4k + 3 for some k > 45. Let G be the graph I', G, the Zamfirescu graph Z, G3 the
Hatzel graph H, and G4 be a planar hypohamiltonian graph on 4k — 138 vertices (4k — 138 > 42,
thus by Lemma 1.9, such a graph exists). Now G has 4k + 3 vertices. a

1.2. Cubic planar hypohamiltonian and
hypotraceable graphs

Hamiltonian properties of planar cubic graphs have been investigated extensively since Tait’s
attempt to prove the four color conjecture based on the proposition that every 3-connected
cubic planar graph has a hamiltonian cycle. This proposition was disproved by Tutte [55] in
1946. However, until 1968, when Grinberg [19] proved his famous theorem (Theorem 1.2),
such graphs were quite difficult to find. Grinberg’s theorem can be easily used to create non-
hamiltonian planar cubic graphs, like graph I' of the previous section. Since 1968, several
non-hamiltonian 3-connected planar cubic graphs have been found, the smallest of them is the
Barnette-Bosak-Lederberg graph on 38 vertices [9, 33], see also [20]. The graph was discovered
by the three scientists independently, about the same time. It is worth mentioning that Lederberg
was not a mathematician or a computer scientist, but a molecular biologist (a really succesful
one — he won a Nobel Prize in Phisiology or Medicine at the age of 33.) In 1986, Holton
and McKay [25] (extending the results of many researchers) showed that there exists no 3-
connected cubic planar non-hamiltonian graph on fewer vertices.

Chvatal [11] raised the question in 1973 whether there exists a cubic planar hypohamiltonian
graph. This was answered by Thomassen [53], who found a sequence of such graphs on 94 44k
vertices for every integer k > 0 in 1981. However, the question whether there exist smaller cubic
hypohamiltonian graphs and whether there exists a positive integer N, such that for every inte-
ger n > N there exists a cubic planar hypohamiltonian graph on n vertices remained open (both
questions appear in the survey paper of Holton and Sheehan [26]). From the results of Aldred et
al. [1] follows that there is no cubic planar hypohamiltonian graph on 42 or fewer vertices. They
showed that every 3-connected, cyclically 4-connected cubic planar non-hamiltonian graph has
at least 42 vertices and presented all such graphs on exactly 42 vertices. Since hypohamiltonian
graphs are easily seen to be 3-connected and cyclically 4-connected, they must have at least 42
vertices in the cubic case. Moreover, all 42-vertex graphs presented in [1] have exactly one
face with a degree not congruent to 2 modulo 3, and it is easy to see that cubic graphs with this
property cannot be hypohamiltonian, as was observed by Thomassen [49].

Here we present a cubic planar hypohamiltonian graph on 70 vertices. Using the method of
Thomassen for creating an n + 4 vertex cubic hypohamiltonian graph from an n vertex cubic
hypohamiltonian graph [53] this also shows that cubic planar hypohamiltonian graphs on 70 +
4m vertices exist for every even integer m > 0. Since 70 = 94 (mod 4), this is not enough to
answer the second open question, however we also give a cubic planar hypohamiltonian graph
on 88 vertices, thus proving that cubic planar hypohamiltonian graphs on n vertices exist for
every even number n > 86. Using our graphs on 70 and 88 vertices and another construction
method of Thomassen [49], we can also show that a cubic planar hypotraceable graph exists on
340 vertices and on n vertices for every even number n > 356.

Using the 70-vertex cubic planar hypohamiltonian graph, the bounds on the numbers C_§ and
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P32 we have seen in the previous section are also improved.

We have seen that the size of the smallest cubic planar hypohamiltonian graph is at least 44 and
at most 70. The next claims (that are extensions of the observation of Thomassen) may help to
obtain a better lower bound. Let us denote the number of edges of a face T by d(T') and for the
sake of simplicity let us call a face F an i-face (i =0, 1,2), if d(F) =i (mod 3) and call the 0-
and 1-faces together non-2-faces.

Claim 1.14 A cubic planar hypohamiltonian graph has at least three non-2-faces.

Proof. Let D be an arbitrary cubic planar hypohamiltonian graph. If D has only 2-faces, then the
deletion of any vertex gives a graph D’ with exactly one non-2-face, so D’ is not hamiltonian, a
contradiction. D cannot have exactly one non-2-face by the observation of Thomassen [49]. So
let us assume that D has two non-2-faces A and B. It is easy to see that both A and B should be
0-faces, because the deletion of a vertex that is in one 1-face and two 2-faces gives a graph with
exactly one non-2-face. Now the deletion of a vertex not in any of the O-faces, but adjacent to a
vertex that is in exactly one of the O-faces gives a graph with exactly three O-faces, of which two
have two common edges. These cannot be on the same side of a hamiltonian cycle, therefore
the equality in Grinberg’s theorem cannot be satisfied, which finishes the proof. a

The following claim can be proved similarly.

Claim 1.15 If a cubic planar hypohamiltonian graph has exactly three non-2-faces, then the
three non-2-faces do not have a common vertex, moreover two 1-faces or a 1-face and a O-face
cannot be adjacent.

Now we construct our (relatively) small cubic planar hypohamiltonian graphs. Let G be the
following cubic planar graph on 70 vertices:

>

A

and let H be the following cubic planar graph on 88 vertices:
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Theorem 1.16 (Araya-Wiener, 2011 [4]) G and H are cubic planar hypohamiltonian graphs.

Proof. Both G and H are obviously cubic and planar. Both have one face of degree 4, and four
faces of degree 7, such that the face of degree 4 is adjacent to all faces of degree 7 and the
degrees of the other faces are congruent to 2 modulo 3. By Proposition 2.1. of [53], G and H
are non-hamiltonian (the proof is quite easy using Grinberg’s theorem: in order to satisfy the
equality in Grinberg’s theorem modulo 3, a hamiltonian cycle should separate one of the five
faces of degree 4 or 7 from the others, which is impossible in the case of G and H).

Now it remains to show that every vertex-deleted subgraph of G and H is hamiltonian. This can
be found in [4]. O

Now we show some corollaries of the previous theorem. The most important corollary is the
existence of cubic planar hypohamiltonian graphs on n vertices for every even number n > 86.
This settles an open question in [26].

Corollary 1.17 (Araya-Wiener, 2011 [4]) There exists a cubic planar hypohamiltonian graph
on n vertices for every even number n > 86.

Proof. The proof is quite obvious using a method of Thomassen [53]. Let 7 be a cubic planar
hypohamiltonian graph on n vertices having a 4-cycle (a,b,c,d). The graph T’ obtained from
T by deleting the edges (a,b) and (c,d) and adding a new 4-cycle (a',b',c’,d") and the edges
(a,d), (b,b), (c,c"), (d,d") to T. Now it is easy to see that 7’ is also a cubic planar hypohamil-
tonian graph on n + 4 vertices having a 4-cycle. By applying this operation iteratively on the
graphs G and H we obtain cubic planar hypohamiltonian graphs on n vertices for every even
number n > 86. d

Using another construction of Thomassen [51] a similar corollary for hypotraceable graphs can
also be proved.

Corollary 1.18 (Araya-Wiener, 2011 [4]) There exists a cubic planar hypotraceable graph
on 340 vertices and on n vertices for every even number n > 356.

Proof. We use a construction of Thomassen [51]. Let Ty, T», T3, T4, T5 be cubic planar hy-
pohamiltonian graphs and let x; and y; be adjacent vertices of 7; (i = 1,2,3,4,5). Let fur-
thermore the neighbours of x; (resp. y;), other than y; (resp. x;) be a; and b; (resp. ¢; and
d;). Consider the disjoint union of the graphs 7; — {x;,y;} and add to this graph the ed-

ges (c1,a2),(c2,a3),(c3,a4), (c4,as), (cs,a1) and the edges (d1,b2), (d2,b3), (d3,b4), (da,bs),
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(ds,b1). Now the resulting graph T is easily seen to be planar and cubic and by Lemma 3.1.
of [51], it is also hypotraceable. If we choose each T; to be isomorphic with G, then we obtain
a cubic planar hypotraceable graph on 340 vertices. To obtain a cubic planar hypotraceable
graph on 2k vertices for any k£ > 178 we just have to change 7} in this construction to a cu-
bic planar hypohamiltonian graph on 2k — 270 vertices (such a graph exists by Corollary 1.17,
since 2k — 270 > 86). O

The next corollaries concern planar 3-connected graphs, in which every two vertices or edges
are omitted by some longest cycle or path. First we improve a theorem of Schauerte and C.
Zamfirescu. In [47] they showed (using a computer) that for any pair of edges e, f there exists
a longest cycle in Thomassen’s 94-vertex cubic planar hypohamiltonian graph [53] avoiding e
and f. Using this observation and a method of T. Zamfirescu [67] they proved that there exists
a cubic planar 3-connected graph on 8742 vertices, such that any pair of vertices is missed by
a longest cycle.

The same property can also be checked easily for graph G by a computer, i.e. using a software
like Mathematica or Maple.

Claim 1.19 Let e and f be arbitrary edges of G. Then there exists a longest cycle in G that
does not contain e and f.

Corollary 1.20 (Araya-Wiener, 2011 [4]) There exists a cubic planar 3-connected graph on
4830 vertices, such that any pair of vertices is missed by a longest cycle.

Proof. We create a graph with the desired properties using a method of T. Zamfirescu [67].
Consider the 70-vertex cubic planar hypohamiltonian graph G, and let V(G) = {ay,az,...,a70}.
Let furthermore G’ be the graph obtained from G by the deletion of a7 and assume that the
neighbours of a;g are ay,a;, and a3 in G. Now consider the graph Z consisting of 70 copies of
G': G}, Gy, ..., Gy, such that we draw an edge between two copies G; and G if and only if a;
and a; are adjacent in G. These additional edges are always drawn between two vertices having
degree 2 in the copies (that is, copies of aj,as, or a3). It is easy to see that Z is a cubic planar 3-
connected graph on 69 - 70 = 4830 vertices. By Theorem 1.16, Proposition 1.19, and a theorem
of T. Zamfirescu [67], any pair of vertices is missed by a longest cycle in Z. For completeness’
sake we reformulate here the proof of Zamfirescu. Since G is hypohamiltonian, it is easy to see
that the longest cycle of Z has length 68 - 69 = 4692 (one copy and one vertex of every other
copy must be avoided, otherwise G would be hamiltonian, and a cycle of length 4692 is easy
to find using the hypohamiltonicity of G). If the two vertices x and y we would like to avoid by
a longest cycle are in the same copy, then simply consider a longest cycle avoiding this copy
completely. Thus we may assume that x and y are in different copies. It is easy to see that there
is a hamiltonian path between two of the vertices a;,as,a3 in every vertex-deleted subgraph
of G'. Let X' (y) be that copy of ay,a,, or a3 that is not the endvertex of such a hamiltonian
path if we delete x (y). Now let us delete x, y, and one vertex from every other copy of G’
from Z. Let us delete furthermore the additional edges incident to x’ and y'. By Theorem 1.16
and Proposition 1.19 there is a cycle of length 4692 in the remaining graph, which proves the
corollary. a

Finally, we improve the bounds of the previous section concerning the numbers C_g and 1’3_32
Corollary 1.21 (Araya-Wiener, 2011 [4]) C2 < 2765, P2 < 10902.

Proof. The method is similar to the one used in Corollary 1.20. Recall that I" is the planar hypo-
hamiltonian graph on 42 vertices described in the precious section. The graph I is obtained by
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deleting any vertex of degree 3 from I'. Now consider the graph Y consisting of 70 copies of I"':
I}, I%,..., T, such that we draw an edge between two copies I'; and I, if and only if a; and
a; are adjacent in G. These additional edges are always drawn between two vertices that are
copies of the neighbours of the deleted vertex. It is easy to see that Y is a planar 3-connected
graph on 41 -70 = 2870 vertices. From the hypohamiltonicity of I and G, Proposition 1.19, and
the mentioned theorem of Zamfirescu [67], any pair of vertices is missed by a longest cycle in
Y. None of these properties are lost if we now contract the additional edges of Y (see [67]),
obtaining a graph on 41 - 70 — 105 = 2765 vertices, which proves the first upper bound.

The second bound is proved similarly. First we take four copies of G’ and an additional edge
between any two copies (these edges are drawn between copies of ay,as, or a3 again). Denote
the graph obtained in this way by X. Now we execute the same procedure as above, but this
time we put the copies of I into the graph X and then contract the additional edges to obtain
a 3-connected planar graph, where every pair of vertices is missed by a longest path in 69 -4 -
41 —((105—3) -4+ 6) = 10902 vertices (see [67]). O
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2. fejezet

Minimum leaf spanning trees

Spanning tree optimization problems naturally arise in many applications, such as network de-
sign and connection routing. Several of these problems have an objective function based on the
degrees of nodes of the spanning tree. This model is extremely useful when designing networks
where the cost of devices to install depends highly on the needed routing functionality (end-
ing, forwarding, or routing a connection). Typical examples are cost-efficient optical networks
[41, 18, 39, 45] and water management systems [6].

In this chapter we are dealing with a problem of this kind. The problem MINLST (Minimum
Leaf Spanning Tree) is to find a spanning tree of a given graph having a minimum number
of leaves. Since hamiltonian paths (if exist) are the only spanning trees with exactly 2 leaves,
MINLST is a generalization of the Hamiltonian path problem and therefore is NP-hard. Mo-
reover, it is even hard to approximate: using a result of Karger, Motwani, and Ramkumar [31]
concerning the problem of finding the longest path of a graph, Lu and Ravi [38] showed that
no constant-factor approximation exists for the problem MINLST, unless P = NP.

From an optimization point of view, MINLST is equivalent to the problem of finding a span-
ning tree with a maximum number of internal nodes (non-leaves). However, we show that this
latter problem (called MAXIST — Maximum Internal node Spanning Tree) has much better
approximability properties. In Section 2.1 we give a linear time 2-approximation algorithm for
the MAXIST problem based on depth first search. In Section 2.2 we show that a refined vers-
ion of the depth first search algorithm provides a %—approximation on claw-free graphs (graphs
not containing K 3 as an induced subgraph) and a g-approximation on cubic graphs. It is worth
mentioning that for the problem of finding a spanning tree having a maximum number of leaves
Lu and Ravi [38] gave a constant factor approximation algorithm, followed by a more efficient,
near-linear time approximation [39].

One year after our paper was published, Salamon found the first approximation with a factor of
less than 2 [40, 41] for graphs without degree 1 vertices, while the best known approximation
has a factor of % and is due to Li, Chen, and Wang [35]. For graphs without degree 1 vertices

the best known approximation ratio is % [36].

2.1. Maximizing the Number of Internal Nodes

In this section, we first give a linear-time algorithm (Algorithm ILST) that finds either a hamil-
tonian path of a given graph G or a spanning tree of G with independent leaves. Then we prove
that such a tree has at least half times as many internal nodes as the optimal one. This shows
that Algorithm ILST is a linear-time 2-approximation algorithm for the MAXIST problem.
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The number of vertices of graph G is denoted by n, the number of edges by m. V;(G) (V>i(G))
denotes the set of nodes having degree exactly i (at least i) in a graph G. comp(X) denotes the
number of the connected components of G[X]. Finally, given two nodes u and v of a tree T we
denote by Pr(u,v) the unique path in 7' connecting « and v.

Our algorithm is basically a depth-first search. However, it can happen that the leaves of a DFS-
tree T are not independent. Thus, a single additional local replacement step might be needed to
execute on 7.

For a detailed discussion, let us recall that depth first search (DFES) (see for example [34]) is a
traversal, that is, it visits the nodes of the graph one by one, such producing a spanning tree (the
so-called DFS-tree) T of G rooted at some node r. We assign a unique DFS number to each
node v, which is the rank of v in the order of visiting. Each non-root node v has a unique parent
u, namely the node succeeding v on the path Pr(v,r). The node v is called a child of u, and the
nodes of the path Pr(u,r) are the ancestors of v. A node having no child is called a d-leaf. Note
that all d-leaves of T are also leaves of 7', and only the root r can be a leaf of 7" without being
a d-leaf. We recall a well-known property of DFS-trees.

Claim 2.1 Let T be a DFS-tree of the undirected graph G. Then each edge of G connects two
nodes of which one is an ancestor of the other in T. This implies that the d-leaves of T form an
independent set of G. O

Though the d-leaves of a DFS-tree T are independent, it may happen that the root of 7' is a leaf
and is adjacent to some d-leaves of 7. In this case, an additional replacement step is executed
that decreases the number of leaves by one and also makes the leaves independent.

Algorithm 1: Independent Leaves Spanning Tree (ILST)
Input: An undirected graph G = (V,E)
Output: A spanning tree 7 of G with independent leaves
T < DFS (G) ; // an arbitrary DFS tree of G
r < theroot of T;
if T is not a hamiltonian path and dr (r) = 1 and l is a d-leaf such that (r,l) € E(G) then
// r is a leaf and is adjacent to an other leaf [
x <— the branching node being closest to / in T’;
y < the neighbor of x on the path (/,x);
Add edge (I,r) to T;
Delete edge (x,y) from T;

return 7',

Algorithm ILST produces a spanning tree, as the replacement step first creates a unique cycle
by adding an edge to the DFS-tree and then removes an edge of this cycle. If the replacement
step is applied then / and r become internal nodes and y becomes a leaf. Since y is not an
ancestor of the other leaves, the spanning tree returned has independent leaves. The DFS-tree
can be found in linear time. If we check (r,/) € E(G) for each d-leaf / during the traversal then
the evaluation of the "if" condition needs only constant extra time. Once [ is found, finding x
and y and executing the replacement need linear time. Thus we have proved

Claim 2.2 The algorithm ILST gives either a hamiltonian path or a spanning tree whose leaves
form an independent set of G in O(m) time. O
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In order to show that ILST is a 2-approximation, first we introduce the cut-asymmetry of a
graph G = (V,E) as ca(G) = maxycy x-p (compg(X)—compgs(V\X)). Lemma 2.3 shows a
connection between cut-asymmetry and the number of leaves of trees.

Lemma 2.3 Let T be an arbitrary tree on at least 3 vertices. Then ca(T) = |V(T)| — 1.

Proof. First observe that comp (V1 (T)) —compy(V\Vi(T)) = |Vi(T)| — 1, since V;(T) is an
independent set and V' \ V;(T') spans a subtree. This implies ca(7T) > |V, (T)| — 1.

To show that ca(T') < |V;(T)|—11let X C V be a set of vertices for which ca(7T") = compy(X) —
compy(V \ X). For the sake of convenience, let x = compy(X) and X = compy(V \ X). Then
er(X)=|X|—x,and er(V\X) =n— |X| —X%, thus

Y dr(v) =2er(X)+er(X,V\X) =2er(X)+n—1—(er(X)+er(V\X))
veX

=2(|X|—x)+x+x—1=2|X|—x+x—1. (2.1)
Observe that each internal node of X contributes to ¥,y dr(v) by at least 2, yielding

Vi(T)NX|>2|X| =} dr(v) (2.2)
veX

Therefore, by (2.1) and (2.2), for the number of leaves of 7, we have |V{(T)| > |Vi(T)NX| >
2|1X| =Y, exdr(v) > x—x+1=ca(T) + 1, finishing the proof of the lemma. O

Now we apply the above lemma to prove the approximation ratio.

Theorem 2.4 (Salamon-Wiener, 2008 [42]) The algorithm ILST is a 2-approximation for the
MAXIST problem.

Proof. We have seen that the algorithm is polynomial (actually, linear), so we only have to
prove the approximation factor. Let 7* be a spanning tree with a maximum number of internal
nodes, and let 7' be a spanning tree given by the algorithm. If 7 is a hamiltonian path, we are
done, otherwise we apply Lemma 2.3: |V, (T*)| = ca(T*) + 1 > compy- (Vi (T)) — compz+(V \
Vi(T))+1>|Vi(T)| = [V\VI(T)| +1=2|Vi(T)| —n+ 1, since V| (T) is an independent set
of G (and thus also of T*) by Claim 2.2. Thus |V>o(T*)| =n—|Vi(T*)| <2(n—|Vi(T)|) =
2|V>2(T)|, proving the theorem. O

Notice that in DFS — and so in Algorithm ILST — the way of selecting the next node to visit is
not fully specified. It says only that an unvisited neighbor of the currently visited node must be
chosen. In Section 2.2, we present a refined version of DFS, which applies a node selection rule
to (partially) resolve the non-deterministic behaviour of the original algorithm. We can profit
of this refinement by obtaining a better approximation ratio for claw-free and cubic graphs.

2.2. Claw-free and Cubic Graphs

In this section, we deal with claw-free graphs (graphs not containing K 3 as an induced sub-
graph), and cubic graphs (3-regular graphs). First we present a refined version of the original
DEFS algorithm, called RDFS. Then we prove that RDFS approximates the MAXIST problem
within a factor of % for claw-free graphs, and within a factor of g for cubic graphs.

RDEFS is a depth first search in which we specify how to choose the next node of the traversal
in the cases when DFS itself would choose arbitrarily from several candidates. The main idea
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Algorithm 2: Refined DFS (RDFS)

Input: An undirected graph G = (V,E)
Output: An RDEFES tree 7 of G
begin

T < (V,0);

foreach v € V(G) do
dfs[v] < 0; // the DFS number of v
actdeg[v] < dg(v); // the number of non-visited neighbors
of v

k<0; // the number of already visited vertices
r < arandom vertex of G;

RDFSNode (r) ;

return 7

// Traversing from a node v
function RDFSNode (v)
begin

k+—k+1;

dfs[v] < k;

foreach neighbor w of v do actdeg|w]| + actdeg[w| — 1;

while actdeg[v] > 0 do

// We refine the original DFS by specifying how to
choose

// the next node to visit.

w <— a neighbor of v that has not been visited yet and that minimizes actdeg].];

Add edge (v,w) to T;

RDFSNode (w);
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is to select the vertex that has the minimum number of non-visited neighbors. For this purpose,
we use the array "actdeg" to maintain the number of non-visited neighbors of each node.
RDFS differs from DFS only at line (A), where this latter one would choose a non-visited
neighbor of v arbitrarily. Recall that DFS runs in linear time. At line (A\) we make at most A
steps to find the minimum, and this line is executed at most once for each edge of G. Thus the
total running time is O(Am), where A is the maximum node-degree of G.

A tree produced by RDFS is called an RDFS-tree. We use the following notation. Let 7" be an
RDFS-tree, and let / be a d-leaf of T such that dg (1) > 2. ¢(I) stands for the neighbor of / having
the greatest DFS number such that (I,c(/)) € E(G)\ E(T) (c(1) exists, because dg () > 2). Let
g(1) denote the neighbor of ¢(I) along the path Pr(c(l),l). We also use the shorthand notions
v1,va,v3 for the numbers |Vi(T)|, [V2(T)|, and |V (T)|, respectively.

Now we prove a useful lemma concerning the degree of the node g(I) in 7.

Lemma 2.5 Let T be an RDFS-tree and let | be a d-leaf of T. Then dr(g(l)) = 2.

Proof. Let us denote the set of vertices having DFS number greater than or equal to the DFS
number of a vertex v by Y,. It is obvious that / € Y (;).

Consider now that step of RDFS when we choose g(/) to be the next visited vertex. By Rule
(A) of RDFS, dG[( l]( ( )) < dG[Y MO By the definition of C(l) and g(l) dG[( Y] = 1, thus
dG[(yg(l)}( g() =1 (smce da|(y ( (1)) > 1 is obvious). Therefore g(I) has only one child (and
one parent, namely ¢(/)), so dT( (1)) = 2 indeed. O

Now we prove the approximation ratio for claw-free graphs.

Theorem 2.6 (Salamon-Wiener, 2008 [42]) RDFS is a %—approximation for the MAXIST
problem for claw-free graphs.

Proof. We have seen that the algorithm is polynomial, so we have to check the approximation
ratio. Let G be an arbitrary connected claw-free graph on n vertices and let 7 be an RDFS-tree
of G. First notice that d7(v) < 3 for any v € V(T) = V(G), otherwise the node v and three of its
children would induce a subgraph K 3 in G, because of Claim 2.1. Thus our aim is to show that
vo+v3 > %iop,, where i,,, is the number of internal nodes of an optimal spanning tree. Since T
is a tree, we have v = v3 + 2.

Now we would like to find many nodes of degree 2 in 7 in order to show that the number of
internal nodes is large.

For this we use Lemma 2.5. The problem is that in general, the nodes g(I) (having degree 2 in
T) are not necessarily distinct. However, we show that for claw-free graphs this is not the case.

Lemma 2.7 Let T be an RDFS-tree of G and let | and I' be d-leaves of T, such that dg(l) > 2
and dg(l') > 2. Then g(1) # g(I).

Proof of Lemma 2.7. Suppose to the contrary that g(/) = g(I’). It is obvious that ¢(1) and ¢(’) are
ancestors of / and I, respectively, thus from dr(g(l)) = 2 (Lemma 2.5) follows that ¢(I) = c(I').
Now consider the induced subgraph S = G[{c(1),,1’,g(I)}]. The vertices [,I’ and g(I) are all
adjacent to ¢(/) in G. On the other hand, / and I' are d-leaves of T, thus cannot be adjacent in
G. Moreover, g(I) cannot be adjacent to either [ or I’ in G\ T, because g(/) clearly has greater
DFS number than ¢(I) = ¢(I"). Since (1,g(1)) and (', g(l)) are not edges of T either (otherwise
g(1) could not be a common ancestor of / and /'), the induced subgraph S is isomorphic to K] 3,
a contradiction. O

Thus we have found as many nodes of degree 2 in 7" as the number of those d-leaves that has
degree at least 2 in G. Let us denote the number of vertices having degree 1 in G by w. These
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vertices are clearly leaves of any spanning tree of G, so the optimal spanning tree has at most
min(n — w,n — 2) internal nodes.

Now we consider two cases.

Case 1. w =0. Now every d-leaf has degree at least two in G, thus v, > v{ — 1. Since vi = v3+2
and n = v| + v, +v3, we have vy +v3 > %(n —2)m> %iop,.

Case 2. w > 1. It suffices to show that v, +v3 > %(vl + vy +v3 —w). Since now the graph G has
a vertex of degree one, the root of 7" has degree one in G, because of Rule (A) of RDFS. Thus
now we have vy > v —w, so it is enough to show that v, +v3 > %(2\/2 +v3), that is, vz > v,
which is equivalent to vi —2 > v,. If this latter inequality holds then we are done. Otherwise
vo > vq — 1 holds, from which v, +v3 > %(n —2)m> %iom follows just like in Case 1. O

Theorem 2.8 (Salamon-Wiener, 2008 [42]) RDFS is a g—approximation algorithm for the
MAXIST problem for cubic graphs.

Proof. We have to check the approximation ratio. Let G be an arbitrary connected cubic graph
on n vertices and let T be a spanning tree of G given by RDFS. Obviously dr(v) < 3 for
any v € V(T) = V(G), thus vi = v3 +2. We show that v, > 4v| — 6, then some elementary
computation gives |V, (T)| > %n - % > 2(n—2), from which the theorem follows.

Let [ be a d-leaf of T. Now [ has two neighbors in G\ 7, one of them is ¢(l), call the other
one /(). It is obvious that d7(c(1)) = 2 and also dr(c’(1)) = 2 if ¢/(I) is not the root. Further-
more, d7(g(l)) =2 by Lemma 2.5. Now let 4(l) be the only neighbor of g(I) in G\ T. As a
consequence of Rule (A) of RDFS and of Claim 2.1 we obtain that 4(l) is an ancestor of g(I).
Then either h(1) is the root or dr(h(l)) = 2. It is easy to check that if [ and I’ are two distinct
d-leaves, then the sets {c(),c'(1),g(1),h(1)} and {c(l'),c/(1"),g(I"),h(l')} can have only the
root as a common element.

In this way to every d-leaf / we have associated 4 nodes (namely c(/),c'(1),g(1), and h(I)).
Among these nodes only the root can occur more than once and all the other nodes have degree
2. Since the root can occur at most twice (because of the 3-regularity) and the number of
d-leaves is at least vi — 1, we have found 4(v; — 1) — 2 distinct nodes of degree 2, that is,
vy >4y —6. O

Remark Actually, we have proved v; < ¢ + % for any spanning tree 7 obtained by RDFS for
cubic graphs.
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3. fejezet

Leaf-critical and leaf-stable graphs

In this chapter we unify the approaches of Chapter 1 and Chapter 2. More precisely, we extend
the notions of hypohamiltonicity and hypotraceablity to spanning tree and path cover optimiza-
tion problems, where a hamiltonian path (if exists) gives the optimum value (like the problems
MINLST and MAXIST of Chapter 2). The usefulness of this unified approach is demonstrated
by settling an open question of Gargano, Hammar, Hell, Stacho, and Vaccaro [18].

The leaf number of a graph G, denoted by /(G) is the number of vertices of degree 1 in G, that
is [(G) = |V1(G)|. The minimum leaf number of a connected graph G, denoted by ml(G) is the
minimum number of leaves of the spanning trees of G if G is not hamiltonian and 1 if G is
hamiltonian.

We study nonhamiltonian graphs, whose vertex-deleted subgraphs have the same minimum
leaf number. The deletion of a vertex obviously may increase the minimum leaf number of the
graph, but there are vertices (e.g. leaves of an optimum spanning tree) whose deletion does
not increase, or even decrease ml(G). However, it is easy to see that by deleting a vertex of
a connected graph G, ml(G) can be decreased by at most one. Thus if G is nonhamiltonian
and ml(G — v) does not depend on v, then either ml(G — v) = ml(G) for every v € V(G) or
ml(G —v) =ml(G) — 1 for every v € V(G).

Definition 3.1 Letl > 2 be an arbitrary integer. A graph G is called l-leaf-critical, if ml(G) =1,
but for every vertex v of G, ml(G —v) =1— 1. A graph G is called l-leaf-stable, if ml(G) = I,
and for every vertex v of G, ml(G —v) = L.

At first sight it is not obvious whether such graphs exist at all. Actually, 2-leaf-critical and
hypohamiltonian graphs are the same. This follows immediately from the definitions and the
obvious fact that every hypohamiltonian graph is traceable. 3-leaf-critical graphs are also easy
to find: they are the hypotraceable graphs; this also follows immediately from the definitions
and the obvious fact that every hypotraceable graph has a spanning tree with 3 leaves.

Having seen that 2-leaf-critical and 3-leaf-critical graphs exist, one might expect that 2-leaf-
stable and 3-leaf-stable graphs also exist. Actually, in Section 3.1 we show that [-leaf-stable
and [-leaf-critical graphs exist for every integer [ > 2, moreover we show that for n suffici-
ently large, planar 3-connected /-leaf-stable and [-leaf-critical graphs exist on n vertices and
for n even and sufficiently large, cubic planar 3-connected /-leaf-stable and [-leaf-critical gra-
phs exist on n vertices. Our construction is a generalization of a construction of Thomassen
[49] that we have already used to obtain cubic hypotraceable graphs from cubic hypohamilto-
nian graphs (Corollary 1.18). In Section 3.2 we explore some properties of leaf-critical graphs
of connectivity 2. Sections 3.3 and 3.4 show some interesting connections between our gra-
phs and some known graph classes. Actually, in Section 3.3 we settle an open problem of
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Gargano, Hammar, Hell, Stacho, and Vaccaro [18] concerning the existence of non-traceable,
non-hypotraceable arachnoid graphs and in Section 3.4 we show that the graphs constructed
in Section 3.1 belong to a family of graphs introduced by Griinbaum [21] in connection with
the problem of finding graphs without concurrent longest paths. We conclude the chapter by
discussing some open problems.

3.1. Constructions

To construct /-leaf-critical and /-leaf-stable graphs for / > 3 we use the notion of J-cells [27].

Definition 3.2 A pair of vertices (a,b) of a graph G is said to be good if there exists a hamil-
tonian path of G between them. A pair of pairs of vertices of G ((a,b), (c,d)) is said to be good
if there exists a spanning subgraph of G consisting of two vertex-disjoint paths, one between a
and b and another one between c and d.

Definition 3.3 (Hsu, Lin [27]) The quintuple (H,a,b,c,d) is a J-cell if H is a graph and
a,b,c,d € V(H), such that

1. The pairs (a,d), (b,c) are good in H.
2. None of the pairs (a,b), (a,c), (b,d), (¢,d), ((a,b),(c,d)), ((a,c),(b,d)) are good in H.

3. For each v € V(H) there is a good pair in H —v among (a,b), (a,c), (b,d), (c,d),
((a,b),(c,d)), ((a;c), (b,d)).

It is worth mentioning that flip-flops used by Chvatal (see page 11) to obtain many hypoha-
miltonian graphs [11] are special J-cells: in flip-flops the pair ((a,d), (b,c)) is also good in
H and for each v € V(H) there is a good pair in H — v among (a,c), (b,d), ((a,b),(c,d)),
((a,c),(b,d)). J-cells can be obtained by deleting two adjacent vertices of degree 3 from a hy-
pohamiltonian graph, as was observed by Thomassen, who used them to construct 3-connected
hypotraceable graphs [51]. Our graphs are generalizations of this construction. (Actually, Tho-
massen did not name these graphs and used a somewhat different notation.) It is also easy to
see that by adding two vertices u and v and the edges (u,a), (u,d), (v,c), (v,d), (u,v) to a J-cell
we obtain a hypohamiltonian graph (this is observed for flip-flops in [11], but the proof also
works for J-cells). Thus the smallest J-cell is obtained from the Petersen graph by deleting two
adjacent vertices (this J-cell is also a flip-flop).

Let F; = (H;,a;,b;,ci,d;) be J-cells for i = 1,2,... k. Now we define the graphs Gy as follows.
G consists of vertex-disjoint copies of the graphs Hy,H,, ..., Hy, the edges (b;,a;+1), (ci,di+1)
for all i =1,2,...k— 1, and the edges (by,a;), (ck,d1). We will consider the graphs H; as
(induced) subgraphs of Gy.

First we prove some useful properties of spanning trees of Gy.

Claim 3.4 Let | > 2 and k € {21 — 1,21}. Let furthermore A be an arbitrary subset of B =
{(bx,a1),(ck,d1)}. Then Gy has a spanning tree T with [ leaves, such that E(T) N B = A.

Proof. Since the pairs (a;,d;) and (b;,¢;) are good in H;, the graphs H; U H; | are hamiltonian
for each i = 1,2,...,k (where Hy, is considered to be Hj). Let C; be a hamiltonian cycle of
H;UH;, . First let us consider the case k = 2/. Let

-1 -1 -1 -2

Ei = JE(Gj)UJ(b2j,aj11), Ex=JE(Cojs1) U (b2j,a2j41) U (bo,ar),
=0 =1 =0 =1
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-2 -1

-2
UE Coj)U | (b2j1,a2j42), Es= | E(Cojr) U (€2j,d2j51) U (car,dy).
j=1 j=0 j=0 j=1

Now the graphs D; = V(Gy;, E;) are connected subgraphs of Gy, for i = 1,2,3,4 and it is easy
to see that for i = 1,2, 3,4, D; contains a spanning tree S; with [ leaves, such that E(S;) "B =0,
E(Sz) NB= (bzz,al), E<S3) NB =8, E(S4) NB= (Czl,dl).

For k =21 — 1 let P; be a hamiltonian path of H; between the vertices b; and ¢; fori = 1,2 and

let
-1

-1

Es=E(P)U|JE(Cj)ul](b2j-1,a2)),

= =1
-1 -2

Ee=E(P)U|JE(Cj)U ] (b2j-1,a2j) U (ba—1,a1),
= =1

-1 -1
E;=E(P)U|JE(Cyj1)U | (b2j,a2j-1) U (b1, a2),
=1 =1

-1 -
Eg=E(P)U|JE(Gj)U U c2j-1,d2j) U (cor—1,dy).
p j=1

Now the graphs D; = V(Gy;_1,E;) are connected subgraphs of Gy, for i =5,6,7,8 and it
is easy to see that for i = 5,6,7,8, D; contains a spanning tree S; with [/ leaves, such that
E(Ss)NB=0,E(S¢) N\B= (by-1,a1), E(S7)NB = B, E(S3) B = (c21-1,d1). O

Corollary 3.5 Let [ > 2. Then ml(Gy;) <l and ml(Gyy1) <I+1. a

Claim 3.6 Let T be a spanning tree of Gy. Then there are at most two indices i, such that all
vertices in'V (H;) has degree 2 in T.

Proof. Suppose that all vertices in (say) V(H)) has degree 2 in T. Then dr(H;) must be even
(since dT(Hl) = ZveV(Hl)d(V) — 2‘E(T[H1])| = 2|V(H1)’ — Z‘E(T[Hl])’), thus dT(Hl) is 2 or
4. If dr(H,) = 2, then T[H;] is a hamiltonian path of H; and by the second property of J-
cells the endvertices of the path are either a; and d; or b; and ¢y (w.l.o.g. assume they are
aj and d}). Therefore the edges leaving V(H;) in T are (by,a;) and (c,d) ), thus there are no
edges between V(H;) and V(H,) in T. If dr(H;) = 4, then T[H|] is a spanning subgraph of
H, consisting of two vertex-disjoint paths. By the second property of J-cells, the endvertices of
one of the paths are a; and d; and the endvertices of the other path are b and c. Thus in this
case there is no path between a; and b in T [H,]. It is clear now that if there is an index i # 1,2,
such that all vertices in V (H;) has degree 2 in T, then T is not connected, a contradiction. O

Claim 3.7 Let [ > 2. Then ml(Gyy11) =1+ 1 and ml(Gy;) = L.

Proof. We have seen (Corollary 3.5) that ml(Gy;4 1) <[+ 1 and ml(Gy;) <1, so we have to show
that ml(Gy;1) > [+ 1 and ml(Gy;) > [. Let us start by proving ml(Gy;11) > [+ 1. Assume to
the contrary that G, | has a spanning tree 7 with at most / leaves. Then the number of vertices
of degree at least 3 in 7T is at most [/ — 2, thus the number of vertices not having degree 2 is
at most 2/ — 2. This means that there are at least three indices i, such that V (H;) only contains
vertices of degree 2 in 7', a contradicition by Claim 3.6. The proof of ml(Gy;) > [ is the same
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for [ > 3: if Gy; has a spanning tree 7 with at most / — 1 leaves, then the number of vertices of
degree at least 3 in T is at most [/ — 3, thus the number of vertices not having degree 2 is at most
2] —4. This means that there are at least four indices i, such that V (H;) only contains vertices of
degree 2 in T, once again a contradicition by Claim 3.6. For the case [ = 2 we have to show that
G4 1s not hamiltonian. This also follows easily from Claim 3.6: if C is a hamiltonian cycle of G4
and e is an edge of H,[C] (that clearly exists, provided C exists), then C — e is a spanning tree
of Gy, such that V (H;) only contains vertices of degree 2 in C —e for i = 1,2, 3, a contradiction.
O

Lemma 3.8 Let k > 4 and v be an arbitrary vertex of Gy. Then Gy, —v has a spanning tree with
ml(Gy_1) leaves.

Proof. Let | :== ml(Gy_;) and let us suppose w.l.o.g. that v € Hy. Since F; is a J-cell, at least
one of the pairs (ak,bk), (Ck,dk), (ak,ck), (bk,dk), ((ak,bk), (Ck,dk)), ((ak,ck), (bk,dk)) is good
in H; —v. We distinguish six cases, based on which pair is good and construct a spanning tree
T’ of Gy — v with [ leaves in each case.

Case 1: (ay,by) is good in Hy — v. Let P be a hamiltonian path between a; and by in Hy — v. By
Claims 3.4 and 3.7 there exists an [-leaf spanning tree T of G;_1, such that (b;_;,a;) € E(T)
and (Ckfl,dl) ¢ E(T) Now let E(T/) = E(T) \ (bk,l,al) U (bk,l,ak) UE(P) U (bk,al). It is
easy to verify that 7’ is a spanning tree of G, — v with [ leaves.

Case 2: (cy,dy) is good in H;, — v. The construction is similar to that of the previous case. Let
P be a hamiltonian path between c; and d; in H; —v. By Claims 3.4 and 3.7 there exists an
[-leaf spanning tree T of Gy_, such that (¢x_1,d) € E(T) and (by_1,a1) & E(T). Let now
E(T")=E(T)\ (ck—1,d1) U (ck—1,dr) UE(P) U (ck,dy). Again, it is easy to verify that 7’ is a
spanning tree of Gy —v with [ leaves.

Case 3: (ay,cx) is good in H; — v. Let P be a hamiltonian path between a; and ¢ in H, — v. By
Claims 3.4 and 3.7 there exists an [-leaf spanning tree T’ of Gy_1, such that (by_1,a;1) € E(T)
and (cx—1,d1) € E(T), just like in Case 1. Actually, now we need that 7 possesses the additional
property that d7(a;) = 3. It is easy to see that T can be chosen this way (consider the edge sets
E> and Eg in the proof of Claim 3.4). Let E(T') = E(T) \ (bx_1,a1) U (bx_1,ar) UE(P) U
(ck,dy). Tt is easy to verify that 7’ is a spanning tree of G — v with [ leaves (since a; has degree
2in T').

Case 4: (by,dy) is good in Hy — v. Again, the construction is similar to that of the previous
case. Let P be a hamiltonian path between b; and dj in H; —v. By Claims 3.4 and 3.7 there
exists an [-leaf spanning tree T of Gy_1, such that (¢;_1,d;) € E(T) and (by_y,a,) € E(T),
and we choose T, such that it has the additional property that dr(d;) = 3. It is easy to see that
T can be chosen this way (consider now the edge sets E4 and Ejy in the proof of Claim 3.4). Let
E(T")=E(T)\ (ck_1,d1)U(cx_1,dx) UE(P)U (by,ay). It is easy to verify that T’ is a spanning
tree of G; — v with [ leaves (since d; has degree 2 in T").

Case 5: ((ag,bi), (ck,dy)) is good in H;, — v. Let S be a spanning subgraph of Hy — v consisting
of two vertex-disjoint paths, one between a; and b; and the other one between c; and di. By
Claims 3.4 and 3.7 there exists an /-leaf spanning tree T of Gy_, such that (by_1,a;) € E(T)
and (Ck_l,d]) S E(T) Let E(T/) = E(T) \ (bk_l,cn) \ (Ck—l7d1) U (bk_l,ak) U (Ck—ladk) @)
E(S)U (bg,a1) U (cr,dy). Again, it is easy to verify that 7" is a spanning tree of G, — v with [
leaves.

Case 6: ((ag,cr), (br,dy)) is good in Hy, —v. Let S be a spanning subgraph of Hy — v consisting
of two vertex-disjoint paths, one between a; and ¢ and the other one between by and dy. If k
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is odd, then k = 2/ + 1 and if k is even, then k = 2/ by Claim 3.7. Suppose first that k is odd.
Let us consider now the /-leaf spanning tree S3 of Gy;, constructed in the proof of Claim 3.4.
S3 contains the edges (by;,a;) and (cy,d; ), moreover by deleting these two edges from S3 we
obtain the following three components: a hamiltonian path of H,; between by; and cy;, a path
inside H starting at either a; or d; (say a) and a third component that contains d; and all other
vertices of H| not contained in the previous path and all vertices of Hy,Hs,...,Hy;_1. Let now
E(T') = E(S83) \ (b, a1) \ (c21,d1) U (bay, a1 11) U (cor, dopp1) UE(S) U (boyp1,a1) U (corp1,dr ).
It can be easily seen that the paths of S connect the components of S3 — (by,a;) — (c2,d))
without creating a cycle, and therefore T’ is a spanning tree of Gy, ; — v with [ leaves. Let us
suppose now that & is even and let us consider the /-leaf spanning tree S7 of G,;_1, constructed
in the proof of Claim 3.4. S; contains the edges (by;_1,a) and (¢p;_1,d] ), moreover by deleting
these two edges from S7 we obtain three components just like in the previous case. Let now
E(T")=E(S7)\ (by—1,a1) \ (c21-1,d1) U (by—1,a21) U (co1—1,d2) UE(S) U (b, a1) U (e, dy).
The same argument we have seen in the previous case shows that 7’ is a spanning tree of Go; —v
with [ leaves. O

Theorem 3.9 (Wiener, 2015 [62, 63]) Gy, is (I + 1)-leaf-critical for 1 > 2.

Proof. We have seen that ml(Gy;41) =1+ 1 (Claim 3.7), so we have to show that ml(Gy; | —
v) = [ for every vertex v € V(Gy11). ml(Gyyp —v) <1 follows from Lemma 3.8, while
ml(Gyy1 —v) > [ is obvious. O

Theorem 3.10 (Wiener, 2015 [62, 63]) Gy; is [-leaf-stable for | > 2.

Proof. We have seen that ml(Gy;) = [ (Claim 3.7), so we only have to show that ml(Gy; —v) =1
for every vertex v € V(Gyy). ml(Gy —v) <[ follows from Lemma 3.8. Now we prove that
ml(Gy; —v) > 1. Let us suppose w.l.0.g. that v € Hy; and let us assume to the contrary that there
exists a spanning tree 7" of G,; — v with at most / — 1 leaves. Let a be an arbitrary neighbour
of vin Hy;. Then T’ := T + (a,v) is a spanning tree of G,; with at most / leaves. The number
of vertices of degree at least 3 in T’ is therefore at most [ — 2, thus the number of vertices not
having degree 2 is at most 2/ — 2. It is easy to see that two of these vertices, namely a and v are
in Hy;: v is a leaf of T” and a has degree at least 3 in T’, since a cannot be a leaf of T, otherwise
T’ would also have at most [ — 1 leaves, which is impossible by Claim 3.7. Thus there are at
least 3 of the H;’s contain only vertices of degree 2 in 7', which is a contradiction by Claim 3.6.
O

Remark. By choosing the J-cells approprietly, we obtain /-leaf-critical and [-leaf-stable graphs
possessing some additional properties. It is easy to see that the graphs Gy are 3-connected for
k > 4. A J-cell is said to be cubic, if the vertices a,b,c,d have degree 2 and the other verti-
ces have degree 3. It is straightforward that if all J-cells used in the construction are cubic,
then Gy is also cubic, while if all J-cells used are planar, then Gy is also planar. Since J-cells
can be obtained from hypohamiltonian graphs by deleting two neighbouring vertices of deg-
ree 3 and planar hypohamiltonian graphs containing neighbouring vertices of degree 3 exist
on n vertices for every n sufficiently large [65], it is easy to see that for n sufficiently large,
planar /-leaf-stable and [-leaf-critical graphs exist on n vertices. Since J-cells obtained from
a cubic hypohamiltonian graph are cubic and for n even and sufficiently large, cubic, planar
hypohamiltonian graphs exist on n vertices [4], for n even and sufficiently large, cubic, planar
[-leaf-stable and [-leaf-critical graphs also exist on n vertices. The smallest /-leaf-critical (-
leaf-stable) graph that can be obtained using our construction has 16/ — 8 (16/) vertices for
[ >3 (for [ > 2), using the J-cell obtained from the Petersen graph as F; for all i.

33



3.2. Leaf-critical graphs of connectivity 2

We have seen that not much is known about the structure of hypohamiltonian and hypotraceable
graphs, and obviously the same holds for leaf-critical graphs as well. (Though it is easy to
see that all leaf-critical graphs are 2-connected and 3-edge-connected, but not necessarily 3-
connected). In this section we give a characterization of the so-called 2-fragments of leaf-
critical graphs generalizing a lemma of Thomassen (Lemma 5.1 of [51]).

Definition 3.11 Let G be a non-complete graph with connectivity k and X = {x1,x2,...,x}
be a cut of G. Let furthermore H be one of the components of G—X. Then H + X is called a
k-fragment of G, and X is called the vertices of attachment of H.

Definition 3.12 Ler G be a graph, a,b € V(G). A subgraph F of G is said to be (a,b)-nice if
at least one of the following three properties hold.

1. Fisatreeand l(F) <ml(G—a)— 1.
2. Fisatree, [(F) <ml(G—a)and aorbis aleaf of F.

3. F is a forest with two components, such that [(F) < ml(G — a) + 1, both a and b are
leaves of F and they are in different components of F.

If it does not cause any misunderstanding we just use the shorthand term nice, instead of (a,b)-
nice.

Lemma 3.13 Ler G be a leaf-critical graph of connectivity 2 and {a,b} a cut of G. Then
G —a— b has two components.

Proof. Let the components of G—a—b be Hy,...,H, and assume to the contrary that r > 3. Let
I =ml(G) — 1. Since G is leaf-critical, G — a has a spanning tree Fj, and G — b has a spanning
tree F, with [ leaves. Let A; = F,[H; + a] and B; = F,[H; + b for i = 1,2,...,r. Let furthermore
li(a)=T1ifaisaleaf of A; fori=1,2,...,rand let [;(a) = 0 otherwise. Similarly, let /;(b) = 1 if
b is a leaf of B; and /; (b) 0 otherwise. Ay UAU...UA, =F,and BiUB,U...UB, = F}, thus

P lA) =1+Yli(a)and Y[ I(B;)) =1+ Y ,1i(b). Let e be an edge between b and H
and f be an edge between a and H; (such edges clearly exist). Now A{UA,U...UA,_1UB,+e
is a spanning tree of G with Y/— I[(A;) +1(B,) — ¥.i=| li(a) — I,(b) leaves and By UB,U...U
B,_1 UA,+ f is a spanning tree of G with Y/_ I(B;) +1(A,) — X/~ ] l(b) — I,(a) leaves (since
none of a and b is a leaf of any of the two spanning trees, because r—1 > 2). Thus these
two spanning trees of G have Y/ (I(A;) +1(B;)) — Yi_, (li(a) + 1;(b)) = 2l leaves altogether.
Therefore (at least) one of them has at most / leaves, a contradiction, since = ml(G) — 1. O

Lemma 3.14 Let G| be a 2-fragment of the (I + 1)-leaf-critical graph G with vertices of at-
tachment a and b. Then G has no (a,b)-nice spanning forest, but for any v € V(Gy), G| —v
has an (a,b)-nice spanning forest.

Proof. We start along the same lines as in the previous proof. Let /; = ml(G| — a) and let the
other 2-fragment of G with vertices of attachment a and b be G, (by Lemma 3.13 there are no
more 2-fragments with the same vertices of attachment). Since G is (I + 1)-leaf-critical, G — a
has a spanning tree Fj, with [ leaves and G — b has a spanning tree F, with [ leaves. Let A| =
F,[V(G1 —b)],Ay = F,[V(Gy — b)],B1 = Fp[V(G| — a)],By = F,[V (G, — a)]. Let furthermore
li(a) = 1if a is a leaf of A; for i = 1,2 and let /;(a) = 0 otherwise. Similarly, let [;(b) = 1 if
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b is a leaf of B; for i = 1,2 and let [;(b) = 0 otherwise. A| UA; = F, and By U B, = F, thus
(A1) +1(Ay) =1+ 1 (a)+ L(a) and [(By) +1(B2) =1+ 11(b) + Ir(b). Now we show that a
and b are not adjacent in G. Suppose they are and consider the spanning trees A| U B, + (a,b)
and Ay UB1 + (a,b) of G. These two trees have [(A) +1(A2) +1(B1) +1(By) — 11 (b) — (b)) —
l1(a) — I, (a) = 21 leaves altogether, thus (at least) one of them has at most [ leaves, which
contradicts the fact that G is (/ + 1)-leaf-critical.

Now let e be an edge between a and B; if a is a leaf of A; and let ¢ be an edge bet-
ween A; and b otherwise. Similarly, let f be an edge between a and B; if a is a leaf of
A and let f be an edge between A, and b otherwise. (such edges clearly exist, since G
is 2-connected). Consider now the spanning trees A; UBy + e and A, UBj + f of G. Since
a and b are not adjacent we have [(A; UBy +¢) = [(A) + [(B2) — max(lx(b),l;(a)) and
I(AyUB1 + f) = [(A2) +1(By) — max(lp(a),l1(b)). Therefore these two spanning trees have
l(Al) + l(Bz) - max(lz(b),ll(a)) + l(Az) + l(Bl) — max(lz(a),ll(b)) =2+ ll(b) + lz(b) +
li(a) + I(a) —max(lr(b),l1(a)) —max(ly(a),l; (b)) < 2]+ 2 leaves altogether. Since none of
these trees can have at most / leaves, both of them have exactly [/ + 1 leaves, which implies
I(B1)+1(A2) =1(A))+1(By) =1+2and [, (b) =1(b) =11(a) = h(a) = 1, that is a is a leaf of
both A and A, and b is a leaf of both B; and B;. We claim that By is a minimum leaf spanning
tree of G| — a. Indeed, if a spanning tree T of G| — a with less than [(B;) leaves exists, then
the spanning tree T UA; + f of G has less than [(By) +1(Az) — 1 =1+ 1 leaves (since a is a
leaf of A, and the edge f is incident to a), a contradiction. It can be similarly shown that A;
is a minimum leaf spanning tree of G; —b. A1 UA; is a spanning tree of G — b and B} UB»
is a spanning tree of G — a, therefore /(A UAy) > [ and (B} UB,) > . Since a is a leaf of
both A| and A; and b is a leaf of both B and B,, we have [(A; UA,) =1(A;)+1(A;) —2 and
l(Bl UB2) = l(Bl) —l—l(Bz) —2, thatis l(A]) —I—Z(Az) >[+2and l(Bl) —l—l(Bz) > [+ 2. Since we
have [(B)+1(A2) =1(A1) +1(B2) =1 +2, this implies /(B;) = [(A;) and [(B;) = [(A2). Thus
both A| and B; have [ = /(G| — a) leaves. It is obvious now (by symmetry) that A, and B, are
minimum leaf spanning trees of G, — b and G, — a, respectively. Let I, = [(Ay) = [(B>), then
we have ml(Gy, —a) =l and [} + 1, =1+2.

Now we prove that G has no nice spanning forest. First let us show that ml(Gy) > /;. Assume
to the contrary that a spanning tree 7" of G| with less than /; leaves exists. Then the spanning
tree T UA, of G has at most /1 — 141, — 1 = leaves (since a is a leaf of A,), a contradiction.
The proof of the fact that G; has no spanning tree with at most /; leaves where a or b is a leaf
is basically the same: if 7 is such a spanning tree, then T UA; or T U B; is a spanning tree of
G with at most [; — 1+, — 1 = [ leaves, a contradiction. Finally let us show that G; has no
spanning forest with at most /1 + 1 leaves consisting of two trees, such that a is a leaf of one of
the trees and b is a leaf of the other tree. Suppose F is such a forest and consider the spanning
tree FUB; + e of G. This has at most (/; + 1) 4+ 1, —2 — 1 = [ leaves, a contradiction. It is now
obvious by symmetry that G, has no nice spanning forest either.

Let us prove now that G| — v has a nice spanning forest for each v € V(Gy). If v=a then B is a
nice spanning tree of G| — v, since it has /1 leaves and b is a leaf of B. If v= > then A; is a nice
spanning tree of G| — v, since it has /| leaves and a is a leaf of A;. Suppose now that v = a, b.
Since G is (I+ 1)-leaf-critical, G — v has a spanning tree F' with / leaves. Let F1 = F[V (G| — V)]
and F, = F[V(G,)]. Since (a,b) ¢ E(G), exactly one of Fj and F; is connected (the one which
contains the unique a — b path in F'). It is also obvious that the F; that is not connected has two
components: one containing a and the other one containing . Now we distinguish two cases
based on whether Fj is connected.

Case 1: Fj is connected. Fj is obviously a spanning tree of G| — v and F, is a spanning forest of
G> with two components, one containing a and the other one containing b. Thus either F, has
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at least [, + 2 leaves or (at least) one of a and b is not a leaf of F,. Now we distinguish three
cases and show that in each case F has at most [; — 2 leaves in G| — v.

Case 1.1: [(F2) > I +2. Then F has at most [ — ((I; +2) —2) = I; — 2 leaves in G| — v, since
the leaves of F, different from a and b are also leaves of F.

Case 1.2: [(F>) < I, +2 and exactly one of a and b is a leaf of F>. W. 1. 0. g. assume b is a leaf
and a is not. Then I(F>) > I, + 1, since G5 has no spanning tree with at most [, leaves, where
b is a leaf and therefore G, obviously has no spanning forest with at most /, leaves, where b
is a leaf. Thus F has at most [ — (I + 1) — 1) = [} — 2 leaves in G| — v, since the leaves of F;
different from b are also leaves of F.

Case 1.3: [(F>) < I, +2 and none of a and b is a leaf of F>. Now [(F>) > I, (since G; has no
spanning tree with less than /, leaves, therefore G, obviously has no spanning forest with less
than [, leaves). F' has at most [ — [, = [; — 2 leaves in G| — v, because now each leaf of F, is
also a leaf of F.

F has at most /] — 2 leaves in G| — v, [(F}) < I; (the leaves of F different from the leaves of F
can only be a and b) and [(F) = [; is possible only if both a and b are leaves of Fj, therefore
F is nice. (Actually, it is easy to check that /(F) < [; is not possible.)

Case 2: F1 has two components: one containing a and the other one containing b. Now F, is
a spanning tree of Gy, thus either /(F,) > I, + 1 or none of a and b is a leaf of F,. Here we
distinguish two cases, depending on /(F).

Case 2.1 I(F;) > I+ 1. Then F has at most [ — ((lp+1) —2) =1; — 1 leaves in G| — v, since
the leaves of F, different from a and b are also leaves of F'. Now if both a and b are leaves
of Fi, then I(Fy) <y + 1 and F] is a nice spanning forest. If exactly one of a and b is a leaf,
then /(F;) < l;. Now we can add an edge to F} to obtain a spanning tree of G; — v with [; — 1
leaves or with [; leaves, such that a or b is a leaf. In both cases the spanning tree obtained is
nice. Finally, if none of a and b is a leaf, then /(F;) <} — 1 and therefore a spanning tree 7 of
G1 — v with at most /] — 1 leaves exists; by definition 7 is nice.

Case 2.2: I[(F;) < I+ 1. Then none of a and b is a leaf of F; and since ml(G,) > I, we have
[(F,) = I. Then F has at most [ — I, = I} — 2 leaves in G| — v, since the leaves of F, are also
leaves of F. This means that /(F}) <; and [(F}) =, is possible only if both a and b are leaves
of F|. Now by adding an edge between the components of F; we obtain a nice spanning tree of
G1 — v and the proof is finished. a

The properties of Lemma 3.14 characterize the leaf-critical 2-fragments. In order to prove this,
we still have to show that every graph possessing these properties is a 2-fragment of some
leaf-critical graph. We prove a somewhat stronger lemma.

Claim 3.15 Let G be a graph, a,b € V(G). If G has no nice spanning forest, but both G — a
and G — b have a nice spanning forest, then (a,b) ¢ E(G), ml(G —b) = ml(G — a), and any
nice spanning forest F, (F,) of G—a (G — b) is a tree, such that b (a) is a leaf of Fy, (F,).

Proof. Let F;, and F, be a nice spanning forest of G —a and G — b, respectively. Since b (a)
cannot be a leaf of F, (Fy), F, and F, are trees, thus by definition /(F,) < ml(G — b) and
[(Fy) < ml(G —a). On the other hand, clearly /(F,) > ml(G — b) and [(F},) > ml(G — a) (since
F, and F, are spanning trees), therefore /(F;) = ml(G — a) and [(F,) = ml(G — b) and by the
definition of nice subgraphs b is a leaf of Fj,, a is a leaf of Fy. If (a,b) € E(G) then F}, + (a,b)
is a nice spanning tree of G, a contradiction. ml(G — b) = ml(G — a) is also easy to prove: no
spanning tree F of G — b can have less than ml(G — a) leaves, otherwise by adding an edge
between F and b to F we would obtain a spanning tree of G with at most ml(G — a) leaves,
where b is a leaf, a contradiction. Thus ml(G — b) > ml(G — a), and ml(G —a) > ml(G — b)
can be proved similarly. O
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Lemma 3.16 (Wiener, 2015 [62, 63]) Let G be a graph of connectivity 2 and {a,b} a cut in
G. Let G| and Gy be 2-fragments of G with vertices of attachment a,b, such that G; has no
(a,b)-nice spanning forest, but for any v € V(G;), G; — v has an (a,b)-nice spanning forest for
i = 1,2. Then G is l-leaf-critical, where | = ml(G| —a) +ml(Gy —a) — 1.

Proof. By Lemma 3.13, G = G| U G». Let us prove first that ml(G) < [. We have to find a
spanning tree of G with at most [ leaves: let F; be a nice spanning forest of G; —a and F; be a
nice spanning forest of G, —b. Then by Claim 3.15, F; and F, are trees and b is a leaf of F| and
a is a leaf of F>. By adding an edge between a and Fj to F; UF; we obtain a spanning tree of G
with at most /(F)+1(F,) — 1 leaves. By Claim 3.15, [(F}) = ml(G| —a) and [(F;) = ml(G; —a)
and we are done.

Now we prove ml(G) > [. Let T be an arbitrary spanning tree of G. Then 71 = T[V(G)]
and T» = T[V(G,)| are spanning forests of G; and G», respectively, such that one of them
(say T) is a tree and the other one (7, then) consists of two trees, such that a and b are in
different components. Since G| has no nice spanning forest, /(77) > ml(G| —a) and if [(T}) =
ml(G| — a), then none of a and b is a leaf. Since G, has no nice spanning forest, /(75) >
ml(G; — a), furthermore if /(7>) = ml(G, — a), then none of @ and b is a leaf and if [(T5) =
ml(G, — a) + 1, then at most one of a and b is a leaf. Thus T has at least ml(G| —a) — 1
leaves in V(G| —a — b) and at least ml(G, — a) leaves in V(G, —a — D), that is T has at least
I =ml(G —a)+ml(G, —a) — 1 leaves altogether, which proves ml(G) > / and we have proved
ml(G) = 1.

Now let us prove that for an arbitrary v € V(G) we have ml(G —v) = [ — 1. Obviously, it
suffices to prove that ml(G —v) <[ — 1, that is G — v has a spanning tree with [ — 1 leaves.
W.l.o.g. assume v € V(Gy). Suppose first that v = a. G| —a and G, — a have nice spanning
forests N = F; and N,. By Claim 3.15, N; and N, are trees with at most ml(G| — @) and
ml(G; — a) leaves, respectively and b is a leaf of both N and N,. Thus N; UN, is a spanning
tree of G —a with at most ml(G; —a) +ml(G, —a) —2 = — 1 leaves. The case v = b is proved
similarly. Let us suppose now that v € V(G| —a — b). G| — v has a nice spanning forest H.
Now we distuingish three cases, based on whether the first, second, or third property of nice
subgraphs holds for H.

Case 1: His atree and [(H) < ml(G| —a) — 1. Then H UN; is a spanning tree of G — v with at
most (ml(G; —a) — 1) +ml(Gy —a) — 1 =1—1 leaves.

Case 2: H is a tree, [(H) < ml(G| —a) and a or b is a leaf of H. Then HUF, and HUN,
are spanning trees of G — v and one of them has at most ml(G| —a) +ml(Gy —a) —2=1—1
leaves.

Case 3: H is a forest with two components, such that /[(H) < ml(G; —a) + 1, both a and b are
leaves of H and they are in different components of H. Let g be an edge between b and F,. Then
HUF,Ug is a spanning tree of G —v with at most (ml(G; —a)+1)+ml(Gy—a)—2—1=1—1
leaves and the proof is complete. O

Now the following generalization of Lemma 5.1 of [49] is an immediate consequence of Lem-
mas 3.14 and 3.16.

Theorem 3.17 (Wiener, 2015 [62, 63]) Let G be a graph, a,b € V(G). G is a 2-fragment of
a leaf-critical graph with vertices of attachment a and b if and only if G has no (a,b)-nice
spanning forest, but for any v € V(G), G — v has an (a,b)-nice spanning forest. a

Another interesting corollary is that leaf-critical graphs contain 2-fragments of other leaf-
critical graphs with a much smaller minimum leaf number.
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Corollary 3.18 If G is an l-leaf-critical graph of connectivity 2, then it contains an r-leaf-
critical 2-fragment, where r < L#J

Proof. Let {a,b} be a cut in G and let G; and G, be the 2-fragments of G with vertices of
attachment a, b (by Lemma 3.13, G = G| UG3). Suppose w.L.o.g. that ml(G| —a) < ml(G, —a)
and let G3 be a 2-fragment of a 3-leaf-critical (that is, hypotraceable) graph with vertices of
attachment x,y (Such a 2-fragment exists [49]). Let H be the graph obtained by identifying the
vertices a and x and the vertices b and y of the graph G; U G3. By Lemma 3.14 and Lemma
3.16 H is (ml(G| — a) 4 1)-leaf-critical. Since ml(G| —a) < ”Tl and G| is a 2-fragment of H,
the proof is finished. a

3.3. Path-critical and arachnoid graphs

The path-covering number of G, denoted by ((G) is the minimum number of vertex-disjoint
paths that cover the vertices of G (a path may consist of just one vertex). The branch number
of G, denoted by s(G) is the minimum number of branch vertices (vertices of degree at least
3) of the spanning trees of G. Gargano, Hammar, Hell, Stacho, and Vaccaro [18] defined the
notion of spanning spiders: these are spanning trees with at most one branch. The spider is
said to be centred at the branch vertex (if there is any, otherwise the spider is centred at any
of the vertices). They studied the parameter s(G) and graphs with s(G) < 1. They also defined
arachnoid graphs; these are graphs that have a spanning spider centred at any of their vertices.
Traceable graphs are obviously arachnoid, and Gargano et al. observed that hypotraceable gra-
phs are also easily seen to be arachnoid [18]. However, they did not find any other arachnoid
graphs, and asked the question whether they exist. In this section we answer this question in the
affirmative, moreover, we show that for any prescribed graph H, there exists a non-traceable,
non-hypotraceable, arachnoid graph that contains H as an induced subgraph. To this end we
introduce path-critical graphs.

Definition 3.19 Let u > 2 be an integer. A graph G is p-path-critical if W(G) = 1 and u(G —
v)=u—1foreachveV(G).

It is easy to see that the 2-path-critical graphs are the hypotraceable graphs, but the existence of
u-path-critical graphs for g > 3 is far from from obvious. The next theorem shows that some
of the leaf-critical graphs Gy we have constructed in Section 3.1 are also path-critical.

Theorem 3.20 (Wiener, 2015 [64]) Let k > 0 be an integer. Then for any v € V(Gyjys) we
have W(Guyrs —v) = UW(Gapys) — 1 = k+ 1, thus Gagys is (k+2)-path-critical.

Proof. We need the following lemma.

Lemma 3.21 G4 has a hamiltonian path P, such that there is no edge of P between H| and Hy
and for any vertex v € V(Gs) there is a hamiltonian path P of Gs — v, such that there is no edge
of P between H| and Hs.

Proof. The first part of the claim is easy to see: there is a hamiltonian path of H; between b;
and c; and a hamiltonian path of H; | between a;;| and d;, by the first property of J-cells,
thus H; U H, and H3 U Hy are hamiltonian, therefore there is a hamiltonian path P, of Hy U H,
starting at b, and a hamiltonian path P; of H3 U Hy starting at a3. Now E(P;)U (by,a3) UE(Ps)
is a hamiltonian path of G4 without edges between H; and Hy. Let now F = (H,a,b,c,d) be any
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of the J-cells used in the construction of Gs and let us check whether (a,b), (a,c), (b,d), (c,d),
((a,b),(c,d)), or ((a,c),(b,d)) is good in H — v. Let us number the J-cells used to construct
Gs, such that H3 = H in the first four cases, and H, = H in the last two cases. If (a,b) = (a3,b3)
is good in H3z — v, then let P be a hamiltonian path of Hz — v between a3 and b3. We have seen
that H; U H;, is hamiltonian, therefore H; U H;;| has a hamiltonian path starting at any of its
vertices. Let P be a hamiltonian path of Hy U H, starting at b, and let P4 be a hamiltonian path
of Hy U Hs starting at a4. Then E(Py) U (by,a3) UE(P) U (b3,a4) UE(Py) is the edge set of a
hamiltonian path of G5 — v and does not contain any edges between H; and Hs. The cases when
(a,c), (b,d), or (c,d) is good is dealt with similarly. If ((a,b),(c,d)) = ((a2,b2),(c2,d3)) is
good in H, — v, then let Q be the union of the vertex-disjoint a — b and ¢ — d paths that cover
all vertices of Hy —v. Let furthermore Q be a hamiltonian path between b; and c¢; in H,
and Qs be a hamiltonian path between d3 and either b3 or c¢3 (say w.l.o.g. b3) in Gz —a3. O
and Q3 exist since F; and F3 are J-cells. Then E(Q;) U (b1,a2) U (c1,d2) UE(Q) U (by,a3) U
(c2,d3) UE(Q3) U (b3,a4) UE(Py) is again the edge set of a hamiltonian path of G5 — v that
does not contain any edges between H; and Hs. The case when ((a,c), (b,d)) is good is dealt
with similarly. a

Now let us denote Guiys5[U",V(H;)] by G(n,m) for 1 <n <m < 4k+35. It is obvious that
if n# 1 or m # 4k+ 5, then G(n,m) is isomorphic to some graph G,,—p+1 — (Pp—nt1,a1) —
(¢m—n+1,d1), thus G(n,m) is traceable if m = n+3 and G(n,m) — v is traceable for any
v € G(n,m) if m = n+4 by Lemma 3.21. Since G(1,4),G(5,8),...,G(4k — 3,4k) and
G(4k+ 1,4k +5) — v are all traceable, the vertices of G415 — v can be covered by k+ 1 vertex-
disjoint paths, that is 4t (Gagrs5 —v) < k+ 1 for any v € V(G). On the other hand, we show that
U (Garrs) > k+2. Assume to the contrary that there are at most k+ 1 vertex-disjoint paths that
cover the vertices of Gy 5. Since Gy 5 1s connected, it is possible to add some (at most k, but it
is irrelevant) edges to these paths to obtain a spanning tree of G5 with at most 2k + 2 leaves.
On the other hand, by Lemma 3.7, ml(Gy;5) > 2k + 3, a contradiction. Since for any graph G,
1(G) < u(G—v)+1is obvious, we have k+ 1 < t(Garrs) — 1 < (G5 —v) < k+1, and
the theorem is proved. a

Now we are ready to construct non-traceable, non-hypotraceable, arachnoid graphs. Let G,]; be
the graph obtained from Gy by adding j new vertices uy,uy,...,u; and edges between u; and
every vertex of Gy to Gy fori=1,2,..., .

Theorem 3.22 (Wiener, 2015 [63, 64]) G’jk 5 Is an arachnoid graph that is neither traceable,
nor hypotraceable for any k > 1.

Proof. Let G = Gﬁk . 5- We have to show that for any w € V(G), G has a spanning spider centred
at w. Let v be a neighbour of w, such that v € G4 5 (such a v clearly exists). Now by Theorem
3.20, the vertices of G445 — v can be covered by k + 1 vertex-disjoint paths, thus using the
vertices uy,...,uy (that are all connected to all vertices of G4xs) a hamiltonian path of G —v
is easy to obtain. Now by adding the edge (v,w) to this path we obtain a spanning spider of G
centred at w, therefore G is arachnoid, indeed.

Now we show that G is not traceable. Assume to the contrary that there exists a hamiltonian
path P of G and let us delete the vertices up,...,u; from P. We obtain at most kK + 1 vertex-
disjoint paths, such that they cover the vertices of G445, which is a contradiction, by Theorem
3.20.

Finally, we have to show that G is not hypotraceable. It is easy to see that G — u; is not traceable,
the proof is the same as the proof of the non-traceablity of G (by deleting the u;’s we would
obtain at most k paths, instead of at most k4 1). O
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Remark. It is easy to see that adding any edges between the ;s does not make the graph either
traceable or hypotraceable (while the arachnoid property is obviously preserved), therefore we
can obtain a non-traceable, non-hypotraceable, arachnoid graph that contains any prescribed
graph H as an induced subgraph.

3.4. Longest paths avoiding certain vertices

We have mentioned that Walther [58] settled Gallai’s problem whether there exist graphs with-
out concurrent longest paths. Exploring this area further, T. Zamfirescu [66] and Griinbaum [21]
defined several numbers and graph families based on properties of longest paths and cycles, of
which we have already studied the numbers C%, C%, P31, P32 in Section 1.1 and the numbers C%

and P32 again in Section 1.2. Now we are dealing with the graph family I1(j,m) introduced by
Griinbaum [21]. This family consists of graphs having m more vertices than their longest paths
have, such that for each j vertices there is a longest path missing these j vertices; e.g. IT(1,1)
is the class of hypotraceable graphs.

Theorem 3.23 (Wiener, 2015 [63]) G4 € T1(1,k) for all k > 1.

Proof. First we prove that for any v € V(Gy.14) there is a path in Gjy4 that misses exactly
k vertices, one of which is v. W.l.o.g. we may suppose that v € H3. Since F3 is a J-cell, at
least one of the pairs (a3, b3), (a3,¢3), (b3,d3), (c3,d3), ((a3,b3), (c3,d3)), ((a3,¢3),(b3,d3)) is
good in H3 —v. It is easy to see that by symmetry reasons we may suppose that either (a3, b3)
or ((az,b3),(c3,d3)) is good in H3 —v.

If (a3,b3) is good, then let P3 be a hamiltonian path between a3 and b3 in H3 —v and P, be a
hamiltonian path of Hy U H; starting at by (since H; U H; is hamiltonian, such a path exists).
If k£ > 2 then let us consider now the graph Hy — dy4. Since Fy is a J-cell, this graph contains a
hamiltonian path between a4 and either b4 or c4. By symmetry reasons we may suppose that
there is a hamiltonian path between a4 and b4 in Hy — d4, let us call it Py. If k > 3 then the
paths P; are defined similarly for i =5,6,...,k+4 2. Finally, let P, 3 be a hamiltonian path of
Hj 3 UHj 4 starting at a4 (since Hy 3 U Hy 4 1s hamiltonian, such a path exists). Now

P U (bz,ag,) UP U (b3,a4) U...U (bk+2,ak+3) UPi3

is a path in Gy, 4 missing exactly k vertices, one of which is v.

If ((as,b3),(c3,d3)) is good in H3 — v, then let Q be a spanning subgraph of Hz — v consisting
of two vertex-disjoint paths, one between a3 and b3 and the other one between c3 and d3. Let
P, be a hamiltonian path between b, and ¢, in H; (since F; is a J-cell, such a hamiltonian path
exists). Since Fy is a J-cell, Hy — d4 contains a hamiltonian path between a4 and either b4 or c4.
By symmetry reasons we may suppose that there is a hamiltonian path between a4 and b4 in
Hy—dy, letitbe Py. If k > 2 then the paths P, are defined similarly for i = 5,6, ...,k+ 3. Finally,
let P, 4 be a hamiltonian path of Hjy,4 U H; starting at a4 (since Hy4 U H; is hamiltonian,
such a path exists). Now

P U (bz,a_g) U (Cz,d3) uQu (C3,d4) U <b3,a4) UPU (b4,a5) Uu...u (bk+3,ak+4) U Prysa

is a path in G4 missing exactly k vertices, one of which is v.

Now we have to show that there is no path in Gy, 4 that misses only k — 1 vertices. Assume to
the contrary that such a path P exists. If there are at least 5 indices i, such that P contains all
vertices of H;, then there are 3 such i’s with the additional property that all vertices in H; have
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degree 2 in P. In this case it is possible to add some edges to P to obtain a spanning tree T
of G4 such that all vertices in V (H;) has degree 2 in T, which is impossible by Claim 3.6.
Therefore there are at most 4 such indices, thust there are at least k indices i, for which P does
not contain all vertices of H;. This means that there are at least k vertices of Gy 4 missing from
P, a contradiction. O

Walther [58] constructed connected graphs belonging to I1(1,m) for every m > 4, and T. Zamfi-
rescu [67] constructed 2-connected planar graphs and 3-connected graphs belonging to IT(1,m)
for every m > 1. Actually, using one of Thomassen’s 3-connected planar hypotraceable graphs
[51] instead of Horton’s graph in Zamfirescu’s construction one obtains 3-connected planar
graphs belonging to I1(1,m) for every m > 1. The graphs Gy seem to give the smallest known
3-connected graphs in II(1,m) (using the 8 vertex flip-flop obtained from the Petersen graph as
Fifori=1,2,... ,k=m+4) and also the smallest known 3-connected planar graphs in I1(1,m)
(using a J-cell obtained from a 40 vertex planar hypohamiltonian graph of Jooyandeh et al. [29]
as Fifori=1,2,... m+4).

3.5. Open problems

Here we mention some open questions related to leaf-critical and leaf-stable graphs and some
other topics covered. We have constructed (! + 1)-leaf-critical and [-leaf-stable graphs for every
[ > 2 and explored some properties of leaf-critical graphs of connectivity 2. However, all leaf-
critical and leaf-stable graphs we have constructed have connectivity 3. While the 2-leaf-critical
(hypohamiltonian) graphs are all 3-connected, there exist 3-leaf-critical (hypotraceable) graphs
of connectivity 2 [49] and it is not so difficult to construct 2-leaf-stable graphs of connectivity
2:

Theorem 3.24 (Wiener, 2015 [63]) Let G be a hypotraceable graph with a cut {a,b}. Then
(a,b) € E(G) and G+ (a,b) is 2-leaf-stable.

Proof. Let us denote G + (a,b) by G'. Let G; and G, be the 2-fragments of G with vertices of
attachment a,b (by Lemma 3.13, G = G| U G,). First we show that G’ is traceable (this also
implies that (a,b) ¢ E(G)). Let P be a hamiltonian path of G —a and Q a hamiltonian path
of G—b. Then P[V (G| —a)]UQ[V (G, — b)] + (a,b) is a hamiltonian path of G’. On the other
hand, G’ is not hamiltonian, otherwise G would be traceable. Now we have to show that for any
vertex v € V(G') G' — v is traceable, but not hamiltonian. The former is obvious, since G—v is a
subgraph of G’ — v and is traceable. Now assume to the contrary that there exists a hamiltonian
cycle of G’ —v. This cycle must contain the edge (a,b), since G — v cannot have a hamiltonian
cycle, otherwise G would be traceable. This means that there is a hamiltonian path between a
and b in G — v, but in this case G — a — b would be connected, a contradiction. O

It would be interesting to construct (I + 1)-leaf-critical and [-leaf-stable graphs of connectivity
2 with [ > 3.

A pretty natural question concerns the size of the smallest /-leaf-critical and /-leaf-stable
graphs. This is known only for hypohamiltonian graphs. Probably it is even more difficult
for planar graphs; the size of the smallest planar hypohamiltonian graph is only known to be
between 18 and 40 [2], [29].

The next question is about the structure of leaf-critical and leaf-stable graphs. All such graphs
known (except the hypohamiltonian graphs) are constructed using hypohamiltonian graphs as
building blocks. Is it possible to construct such graphs without using hypohamiltonian graphs or
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do these graphs always contain J-cells or other graphs obtained from hypohamiltonian graphs
(like vertex-deleted hypohamiltonian graphs)? We have mentioned that planar hypohamiltonian
graphs contain a vertex of degree 3 [52]. Using the constructions known this property is inhe-
rited for leaf-critical and leaf-stable graphs. Are there planar leaf-critical or leaf-stable graphs
without a degree 3 vertex?

One of the classical open problems concerning hypohamiltonicity (that we have already men-
tioned earlier) is whether there exist hypohamiltonian graphs without a degree 3 vertex or even
of connectivity at least 4.

We have settled an open problem of Gargano et al. [18] concerning spanning spiders and arach-
noid graphs, but they also proposed the more general problem whether there exist arachnoid
graphs containing a vertex v, such that v is the center of only spanning spiders S, for which
dgs(v) > 4. This question is still open. Now that we have seen new arachnoid graphs it is worth
asking whether there are arachnoid graphs containing several vertices v, such that v is the center
of only spanning spiders S, for which dg(v) > d for some fixed d > 4.

There are many open questions concerning the graph families I1( j,m), among which the most
interesting one is maybe the conjecture that I1(2,2) is empty [21], see also [67].
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4. fejezet

Traces of hypergraphs

Traces of hypergraphs have been examined for more than 40 years. The classical paper of
Vapnik and Chervonenkis [56] that now plays a central role in computational learning theory,
statistics, and discrete geometry appeared in 1971. In an implicit form this paper contains the
proposition known now as Sauer’s theorem [43] (the theorem was also proved independently
by Perles and Shelah [44] and was conjectured by Erdés). Traces also have strong connections
with other hypergraph problems (e.g. Turdn type problems). However, the reason why this topic
is included here is that theorems concerning traces can be efficiently used in fault tolerance
problems concerning the hypercube (that is, finding long paths or cycles avoiding some faulty
vertices or edges of the hypercube), as it was showed by Fink and Gregor [14]. Given a set of
(faulty) vertices X of the n-dimensional hypercube, a cycle is said to be a long fault-tolerant
cycle if it contains no vertex from X and has length 2" — 2|X| (this is the maximum length
that one can expect, since the hypercube is bipartite). Fink and Gregor proved that if n > 15,
then for any X of size at most % + 5 + 1, there exists a long fault-tolerant cycle [14]. This was
the first result with a quadratic number of faulty vertices, which is known to be asimptotically
optimal (earlier results were about n — 1 faulty vertices, which was improved to 2n — 4 and
later 3n — 7). The key to this result is Theorem 4.6 of the author to be presented soon. A similar
result concerning long paths instead of long cycles was achieved by Dvoidk and Koubek [13],
they also used Theorem 4.6.

We denote the set of the first n positive integers by [n] and the complement of a set X C [n] by
X. Throughout this chapter the vertex set of a hypergraph is [n], unless it is stated otherwise.
We call a hypergraph simple if it does not contain multiple edges. Simple hypergraphs will
also be called set systems. If it does not cause any misunderstanding we identify hypergraphs
by their edge set. The multiplicity of a set of vertices X in a hypergraph 77 is the number
of occurences of X as an edge and is denoted by m _»(X). A hypergraph .7 is said to be
hereditary if A € 7 and B C A implies B € J#. The trace of a hypergraph . on R C [n],
denoted by 77|, is the not necessarily simple hypergraph obtained by intersecting the edges
of J# with the set R, i.e. 7| is the multiset {HNR : H € 5#}. An r-trace of a hypergraph
S is a trace of 2 on some R C [n], where |R| = r. The arrow-relation (n,m) — (r,s) means
that for every hypergraph .7 containing m distinct edges there exists an r-trace that contains
at least s distinct edges. Bondy [8] observed that (n,m) — (n— 1,m) holds if m < n. Bollobés
[7] showed that (n,m) — (n— 1,m — 1) holds if m < [3n]. Sauer [43] (and independently
Vapnik and Chervonenkis [56] and Perles and Shelah [44]) proved that (n,m) — (r,2") holds if
m> Zf;& (’l’) Frankl [15] and independently Alon [3] gave a common generalization of these
results. They showed that (n,m) — (r,s) holds if and only if for every hereditary hypergraph
€ containing m distinct edges there exists a subset R C [n], |R| = r such that /|g contains at
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least s distinct edges. (Actually, Alon proved the theorem in a more general setting.) It is easy
to check that the first three theorems follow directly from the latter one, indeed. All of these
theorems deal with the number of distinct edges of the trace. About other functions of traces
not much is known. In Section 4.1 we show that the maximum multiplicity of edges of trace
hypergraphs can be characterized using the number of distinct edges of traces of hereditary
hypergraphs and prove that Sauer’s theorem is an immediate corollary of this characterization.
We also obtain Theorem 4.6 as a corollary of this characterization.

4.1. Maximum multiplicity of edges

Definition 4.1 Let m,n,r,s be positive integers. The relation (n,m)> (r,s) holds if for any set
system F C 2l || = m there exists X C [n), |X| = r, such that VS C X : mjﬂy(S) <s.

For example (n,m)>(1,2) holds for every m and n obviously. Moreover, (n,m)>(1,1) holds
for m < n, this is just Bondy’s theorem and it is easy to show that (n,n+ 1) §(1,1) (consider
the system containing all 1-element sets and the empty set). More generally, (n,m)®>(r,2") and
(n,X7_o () #(r,2" —1) can be checked similarly. Now we present some further properties of
the relation > that can be readily proved.

Claim 4.2 Let m,n,r,s be positive integers.
1. (n,m)>(r,8) = (n,m)>(r,s+1).

2. (n,m)>(r,s) = (n,m—1)>(r,s).
3. (nym)>(n—1,m—1). O
In order to give a characterization of the relation >, we need the following lemma.

Lemma 4.3 The relation (n,m)®> (r,s) holds if and only if for any hereditary set system 7 C
21 || = m there exists X C [n], |X| = r, such that ¥S C X : m | (S) < s.

Proof. The only if direction is trivial, now we prove the if direction. A set system .7 C 2l s
said to be a counterexample for (n,m)>(r,s) if it contains m sets but the condition of Definition
4.1 is not fulfilled for .7#. We show that if a counterexample for (n,m) > (r,s) exists, then a
hereditary counterexample also exists, thus proving the if direction of the lemma.

Let 27 C 21" be a counterexample for (n,m)> (r,s) and consider the following functions D; :
A =20 (i=1,2,...n).

Di(H) { Z\{i}, if i € H and H\{i} ¢ A,
, otherwise.

The set system D;(7) = {D;(H) : H € 5} is called the down-compression of 7 on element
i. It is obvious that Vi : |D;(¢)| = || and that Vi : D;(7¢) = 2 holds if and only if 7
is hereditary. Moreover, it is also easy to see that if .77 is not hereditary, then there exists an
i € [n], such that ¥ pc - |Di(H)| < Yy |H|. Thus for any set system .7 C 21" there is a
hereditary system 7" C 211 obtained by a sequence of down-compressions from .7, such that
| #"| = || = m. Now we show that 7#” is a counterexample for (n,m)> (r,s).

Since /7 is a counterexample and .77 is obtained by a sequence of down-compressions from
J, it suffices to show that the down-compression of a counterexample is also a counter-
example. So let ¢ C 217 be a counterexample, that is, for any set X C [n] of size r there
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isaset SCX: mg|(S) > 5. Now we show that mp, ) (S\ {i}) = mg(S) > s for every
i € [n]. This proves that any down-compression of ¢’ is a counterexample, as we have seen that
Di(C)| =[] =m.

To verify mp, ()| (S \ {i}) = me (S), first let us assume that i ¢ S. In this case

mp, ) (S\{i}) = mp,¢) (S) = {D € Di(€) : DNX =S }| =

=|{Di(C) : Ce€,Di(C)NX =S }| > |{Ce¥ : CNX =S }| =my (S),
where the inequality holds because i ¢ S C X and CNX = S implies D;(C) N X. Now let us
assume that i € S. Then

mp, ) (S\{i}) = {D € D{(€) : DNX =5\ {i} }| >

>|{C\{i} : Ce?, (C\{iH)NX =S\{i} }| > {C € ¥ : CNX =S }| =my,(S),

because D;(¢’) contains C \ {i} for every C € € (first inequality) and CNX = S implies (C\
{i})NX = S\ {i} and the sets C\ {i} are all distinct for C € ¢,CNX = S (second inequality).
This completes the proof of the lemma. O

Notice that Bondy’s theorem follows directly from Lemma 4.3.

Theorem 4.4 (Wiener, 2007 [60]) The relation (n,m) > (r,s) holds if and only if for any here-
ditary set system 7 C 21", || = m there exists X C [n], |X| = r, such that |x contains at
most s distinct edges.

Proof. By Lemma 4.3 we only have to prove that the statements

(A) for any hereditary set system .77 C 21", | 7| = m there exists X C [n], |X| = r, such that
VSCX: m e (S) <s

and

(B) for any hereditary set system .7 C 2", |J#| = m there exists X C [n], |X| = r, such that
J€|x contains at most s distinct edges

are equivalent. Because .7 is hereditary, m | (S) < m | (0) for any S C X, thus (A) is
equivalent to the statement

(A’) for any hereditary set system . C 21", || = m there exists X C [n], |X| = r, such that
m i (0) < s.

The empty set can occur more than s times as an edge of .77 | only if 77 |x contains more than
s distinct edges, because the sets whose restriction to X is the empty set must be different on

X. This proves (B) = (A’). To show (A’) = (B), assume that (A’) is true and consider the set
X C [n] for which m | _(0) < s. Since 7 is hereditary, distinct edges of 7’| are also distinct

edges of 7. The restriction of each of these edges to X is the empty set, so their number is at
most s, thus (B) is true, indeed. O

4.2. Corollaries

Corollary 4.5 (Wiener, 2007 [60]) (n,Y/_, (}) — 1)>(r,2" — 1) holds for any r < n positive
integers.
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Proof. By Theorem 4.4 we only have to show that for any hereditary set system .77 C 2l
|| =Y, (}) — 1 there exists X C [n], |X| =r, such that #’|x contains at most 2" — 1 distinct
edges. This is quite easy to verify: since 7 is hereditary, there exists a set X C [n] of cardinality
r, such that X & J# (otherwise |.7#| > Y/_ ('}) would follow). Now the trace .#’|x does not
contain X, thus % |x contains at most 2" — 1 distinct edges. O

We have already seen that (n, Y/ (})) #(r,2" —1), so Corollary 4.5 is sharp. It is also worth
mentioning that Corollary 4.5 and Sauer’s theorem are equivalent: we just have to consider the
complement of a set system .7# and notice that a trace .7 |g contains 2Rl distinct edges if and
only if 7| contains no edge of multiplicity 2"=IRl Another easy corollary of Theorem 4.4 is
that the relation > is transitive.

By Bondy’s theorem, (n,m)>(1,1) for m < n, but we have seen that (n,n+1) (1, 1). By point
2 of Proposition 4.2, this implies (n,m) §(1,1) for m > n. From this relation and (r,r)> (1, 1),
by the transitivity of the relation > follows that (n,m) §(r,r) for m > n.

Hence for m > n, the smallest s for which (n,m) > (r,s) can be true for some r,is s = r+ 1. If we
are interested in those numbers r for which (n,m)®> (r,r+ 1) holds (for fixed m and n, m > n) we
only have to find the maximum r having this property, since by point 3 of Proposition 4.2, all
positive integers smaller than r also have this property. The next theorem gives a lower bound
on this maximum, which is sharp for infinitely many values of m and n.

Theorem 4.6 (Wiener, 2007 [60]) Let m > 2n be positive integers and r = [ﬁ} Then
(n,m)> (r,r+1).

Proof. We use induction on n. For n = 1 we have to check (1,2)>(1,2), which is obvious. Now

let ¥/ = (%} (obviously ¥ < r) and let us assume that (n— 1,m)> (¥, +1) holds. We
have to show that (n,m)> (r,r+1).

Because of Theorem 4.4, we only have to prove that for any hereditary set system .5 C 20"
of m sets there exists an r-element set X C [n], such that 7|y contains at most r+ 1 distinct

edges. So let .77 C 21" be a hereditary system of m sets. Now we consider two cases.

Case 1 For every i € [n], {i} € 5. This means that the number of sets of at least 2 elements in
JC is m—n— 1 (since 77 contains n 1-element sets and also the empty set). Consider now that
graph G on the vertex set [n] whose edges are the 2-element sets of 7. G has n vertices and
at most m —n — 1 edges. A corollary of Turdn’s theorem [54], [5, p. 282.] states that a graph
having n vertices and e edges has a stable set of size at least % Thus the graph G contains a

stable set X of size |—2(m—22—1)+n—| = (meifﬂ =r.
If i,j € X (i # j), then {i, j} ¢ 7, since X is stable in G. Furthermore, there is no set in .77
that contains both i/ and j, because .7 is hereditary. Thus .7 |x does not contain sets of size

greater than 1, so the number of distinct sets in .7 |x is at most |X|+ 1 =r+ 1.

Case 2 There is an i € [n] such that {i} ¢ 7. Then there is no set in ¢ that contains the
element i, because .77 is hereditary, thus we can delete the element i from the underlying set
[n] without changing . Now we use the induction hypothesis: (n — 1,m) > (#/,r/ + 1). This
implies that a set X C [n] \ {i} of size / exists, such that .7|x contains at most 7’ 4 1 distinct
edges.
Now for the set X’ = X U {i} we have J# |y = J|x, hence |y also contains at most ' + 1
distinct edges. Since ' < r, it only remains to show that either X or X’ has r elements.
Because |X| =/ <rand |X'| = |X|+ 1, it is enough to prove that ¥’ + 1 > r. That is, we have
to show that 5 )
Ul D R T S
2m—(n—1)—-2 2m—n—2

[ I
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This holds if
(n—1)? n?
+1> —F.
2m—(n—1)—2 2m—n—2

Eliminating the fractions we obtain

(2m —3n)(2m —n—2) > n?,

which is true, since m > 2n and n > 2.

Note that the lower bound % following from Turdn’s theorem is sharp for the graphs whose
components are complete graphs of the same size. Therefore considering the hypergraph con-
taining the empty set, all the 1-element sets, and the edges of such a graph we can see that

(n,m) Y(r+1,r+2) forr = [#1 , that is, our bound is sharp in these cases. O

For a somewhat stronger form of the previous theorem we need the following definitions. A
hypergraph J¢ is a minimal simple hypergraph if it is simple but for every subset X of the
vertices the restriction of 7 to X is not simple. The set of all minimal simple hypergraphs on
the vertex set [n] having m hyperedges is denoted by MSH (n,m).

Theorem 4.7 (Wiener, 2013 [61]) Let <7 € MSH (n,m). Then there exists a subset X C [n] of
cardinality {mf—i—z—‘ , such that by deleting X we obtain a hypergraph where every hyperedge

has multiplicity at most {ﬁ-‘ +1.

The proof of this theorem is pretty similar to the proof of Theorem 4.6 and is therefore omitted.
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