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Bevezetés

Jelen értekezés a szerzőnek a Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos-
mérnöki és Informatikai Karán indított habilitációs eljárásához készült. Célja, hogy a szerző
(részben társszerzőkkel közös), a PhD fokozat megszerzését követő tudományos eredményei-
nek egy részét egységes keretben mutassa be. Az eredményeket 11 tézispontban rendszerezzük.
Ezt követi a feldolgozott témakör áttekintése és az egyes eredmények bővebb kifejtése angol
nyelven. Szinte minden eredményhez közöljük a részletes bizonyításokat, kivételt csak a na-
gyon technikai, illetve más bizonyításokhoz rendkívül hasonlító esetekben teszünk. Természe-
tesen ezek a bizonyítások is megtalálhatók a szerző idevágó publikációiban. A tézisek a szerző
[4, 42, 60, 61, 62, 63, 64, 65] publikációira épülnek, melyek közül [4] és [65] társszerzője Ma-
koto Araya, [42] társzerzője Salamon Gábor. A [4, 61, 62, 63, 64, 65] publikációk az elmúlt 5
évben jelentek meg.

A gráfelméletben központi szerepet játszik a Hamilton-kör és a Hamilton-út probléma, vagyis
annak eldöntése, hogy egy adott gráfnak van-e Hamilton-köre, illetve -útja. Egyikükre sem
ismert jól használható szükséges és elégséges feltétel, sőt mindkét probléma NP-teljes. Hason-
lóan nehezek a gráfok egyéb hosszú köreivel és útjaival, illetve speciális feszítőfáival kapcso-
latos problémák is; ezek egy része speciális esetként tartalmazza a Hamilton-kör, illetve -út
problémát. A kapcsolódó kutatások ennek, és a téma fontosságának köszönhetően meglehető-
sen szerteágazók. Jelen disszertációban három különböző aspektusból vizsgáljuk a kérdést.

Az első fejezetben olyan gráfokat vizsgálunk, melyek maguk nem rendelkeznek Hamilton-
körrel (-úttal), de bármely csúcsukat elhagyva már olyan gráfot kapunk, melynek van
Hamilton-köre (-útja). Ezek az úgynevezett hypohamiltonian (hypotraceable) gráfok. (Magyar
nyelvű terminológia hiányában az angol elnevezéseket használjuk.) A legkisebb hypohamilto-
nian gráf a jól ismert Petersen-gráf. A téma vizsgálata Sousselier 1963-as cikkével [46] kez-
dődött, melyben a Petersen-gráf egy általánosítása segítségével végtelen sok hypohamiltonian
gráfot talált. 1964-ben Herz, Gaudin és Rossi [23] belátta, hogy a Petersen-gráfnál kisebb hy-
pohamiltonian gráf nem létezik. 1997-re sikerült meghatározni, hogy pontosan mely csúcsszá-
mokra létezik hypohamiltonian gráf (elsősorban Chvátal [11] és Thomassen [49] munkájának
köszönhetően, az i-re a pontot Aldred, McKay és Wormald [2] tette fel). Grötschel 1977-ben
megmutatta, hogy a hypohamiltonian gráfok használhatók az utazóügynök probléma egészér-
tékű programozási megoldásához (a Gomory-féle cutting-plane módszert használva), így alkal-
mazásaik rendkívül szerteágazók, a hálózatok és chipek tervezésétől a DNS-szekvenálásig. Ha-
tékony megoldást elsősorban kis méretű hypohamiltonian gráfok esetén kaphatunk. Bár számos
cikk foglalkozik hypohamiltonian gráfokkal (kiváló, bár nem kimondottan friss összefoglaló
Holton és Sheehan cikke [26]), valójában elég keveset tudunk róluk. Nem ismert például, hogy
létezik-e négyszeresen összefüggő hypohamiltonian gráf, sőt az sem, hogy létezik-e olyan,
amelynek nincs 3 fokú csúcsa (nyilvánvaló ugyanakkor, hogy minden hypohamiltonian gráf
háromszorosan összefüggő). A hypotraceable gráfokról még ennél is jóval kevesebbet tudunk.
Sokáig azt sejtették, hogy ilyenek nem is léteznek [30], sőt egy ideig az is kérdéses volt, hogy
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létezik-e olyan gráf, melyben egyik csúcson sem megy át az összes leghosszabb út (a kérdést
1966-ban vetette fel Gallai [17], 1969-ben válaszolta meg – igenlően – Walther [58]). Az első,
40 csúcsú hypotraceable gráfot Horton találta 1976-ban (ld. [67, 51]), a legkisebb ismert hypo-
traceable gráfnak 34 csúcsa van, ez Thomassen nevéhez fűződik [49]. Nem ismert érdemi alsó
becslés a legkisebb hypotraceble gráf méretére. Ennek az az egyik magyarázata, hogy az összes
ismert hypotraceable gráf hypohamiltonian gráfok segítségével készült, lényegében Thomas-
sen két módszerét használva [49, 51]. (Az ugyanakkor ismert, hogy ha n≥ 42, akkor létezik n
csúcsú hypotraceable gráf [49].)

Az 1976-ig ismert hypohamiltonian gráfok jórészt a Petersen-gráf általánosításaként, illetve
Chvátal úgynevezett flip-flopjainak segítségével [11] álltak elő és egyikük sem volt síkbaraj-
zolható. Ez motiválta Chvátalt, amikor felvetette, hogy egyáltalán léteznek-e síkbarajzolható
hypohamiltonian gráfok (és ha igen, léteznek-e ilyenek, amelyek még 3-regulárisak is). Az
első síkbarajzolható hypohamiltonian gráfot 1976-ban találta Thomassen [51], ennek 105 csú-
csa volt, 1979-ben pedig Hatzel [22] talált egy 57 csúcsú hypohamiltonian síkgráfot. 1993-ban
Holton és Sheehan [26] tette fel a kérdést, hogy vajon létezik-e ennél kisebb hypohamiltonian
síkgráf. C. Zamfirescu és T. Zamfirescu [68] 2007-ben talált egy 48 csúcsú ilyet, a szerző pedig
(Makoto Arayaval közösen) 2011-ben egy 42 csúcsút [65]. A legkisebb ismert hypohamilto-
nian síkgráf mérete 40, ezt Jooyandeh, McKay, Östergård, Pettersson és C. Zamfirescu [29]
találta 2014-ben.

A síkbarajzolható esetben még kevesebbet tudunk a hypohamiltonian és hypotraceable gráfok-
ról. 2011-ig még az sem volt ismert, hogy kellően nagy n-re létezik-e n csúcsú hypohamilto-
nian, illetve hypotraceable síkgráf (Holton és Sheehan meg is említi az előbbit a terület megol-
datlan problémái között [26]). 2011-ben Makoto Arayaval közösen sikerült megválaszolnunk
e kérdéseket: megmutattuk, hogy minden n≥ 76 esetén létezik n csúcsú síkbarajzolható hypo-
hamiltonian gráf, illetve minden n≥ 180 esetén létezik n csúcsú síkbarajzolható hypotraceable
gráf [65]. A becsléseket 2014-ben 42-re, illetve 156-ra javították Jooyandeh és szerzőtársai
[29].

A síkbarajzolható 3-reguláris gráfok Hamilton-köreinek problémája több, mint fél évszáza-
don át a gráfelmélet egyik központi kérdése volt, hiszen Tait sejtéséből, miszerint minden há-
romszorosan összefüggő, 3-reguláris síkgráfnak van Hamilton-köre, következett volna a híres
négyszín-sejtés [48]. Bár Tait sejtését 1946-ban megcáfolta Tutte [55], 1968-ig, a Grinberg-
tétel [19] felfedezéséig nagyon nehéz volt további ellenpéldákat találni. Chvátal 1973-as, 3-
reguláris hypohamiltonian síkgráfokra vonatkozó kérdése ennek megfelelően cseppet sem tűnt
könnyűnek. Az első ilyen gráfot Thomassen találta 1981-ben, ennek 94 csúcsa van. 2011-ig
nem is sikerült ennél kisebb példát találni és az sem volt ismert, hogy kellően nagy páros n
esetén létezik-e n csúcsú 3-reguláris hypohamiltonian síkgráf (mindkét kérdés szerepel Holton
és Sheehan cikkében [26] a megoldatlan problémák között.) Aldred, Bau, Holton és McKay
2000-es cikkéből [1] ugyanakkor következett, hogy nincs 42 vagy kevesebb csúcsú ilyen gráf.
Makoto Arayaval közösen 2011-ben sikerült mindkét kérdést megválaszolnunk: mutattunk egy
70 csúcsú 3-reguláris hypohamiltonian síkgráfot (melynél kisebb ma sem ismert) és bebizonyí-
tottuk, hogy minden n≥ 86 esetén létezik n csúcsú 3-reguláris hypohamiltonian síkgráf [4]. A
86-os korlátot 2015-ben 74-re javították [69].

A második fejezetben egy feszítőfa-optimalizálási problémára adunk közelítő algoritmuso-
kat. A feszítőfa-optimalizálási problémák tipikusan gyakorlatban felmerülő feladatokkal áll-
nak szoros kapcsolatban (pl. hálózatok tervezése, routing) [41, 18, 39, 45, 6]. A cél egy össze-
függő gráf valamilyen célfüggvény szerint optimális feszítőfájának megtalálása; nagyon gya-
kori, hogy a gráf egy Hamilton-útja (ha létezik) optimális feszítőfa, ilyenkor a feladat persze
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NP-nehéz, ezért a pontos (de lassú) megoldások helyett a közelítő algoritmusok kerülnek elő-
térbe. Az általunk vizsgált MINLST (Minimum Leaf Spanning Tree) probléma is ide tartozik: a
cél olyan feszítőfa megtalálása, melynek a lehető legkevesebb levele (vagyis 1 fokú csúcsa) van.
Lu és Ravi 1996-ban megmutatta [38], hogy erre az optikai hálózatok, vízgazdálkodási rend-
szerek tervezésekor is hasznos problémára még közelítő algoritmust sem lehet adni (hacsak
P = NP nem teljesül). Optimalizálási szempontból a MINLST feladat nyilván ekvivalens azzal
a problémával, amikor olyan feszítőfát keresünk, melynek a lehető legtöbb belső csúcsa (azaz
nem levele) van. Ez a probléma (Maximum Internal node Spanning Tree – MAXIST) azon-
ban már approximálható: 2008-ban Salamon Gáborral közösen lineáris idejű 2-approximációt
sikerült megadnunk, melynek finomításával 3

2 -approximációt kaptunk karom-mentes gráfokra
és lineáris futásidejű 6

5 -approximációt 3-reguláris gráfokra [42]. A cikk közlése óta az approxi-
mációs faktort számos alkalommal javították, a legjobb ismert faktor általános gráfokra 3

2 [35],
1 fokú csúcs nélküli gráfokra pedig 4

3 [36].

A harmadik fejezetben az első két fejezet megközelítéseit egyesítve a hypohamiltonian és hy-
potraceable tulajdonságokat kiterjesztjük az említett feszítőfa-optimalizálási problémára (és
egy útfedéssel kapcsolatos problémára is). Az egyesített megközelítés hatékonyságát mutatja,
hogy a segítségével sikerült megválaszolni Gargano, Hammar, Hell, Stacho és Vaccaro [18]
egy nyitott kérdését. Egy összefüggő gráf minimális levélszámát a feszítőfái levélszámának
minimumaként definiáljuk, azzal a kiegészítéssel, hogy ha a gráfnak van Hamilton-köre, akkor
a kérdéses szám nem 2, hanem 1. Egy gráfot l-levél-kritikusnak nevezünk, ha a minimális le-
vélszáma l és bármely csúcsát elhagyva a minimális levélszám l−1. Könnyen látható, hogy a
2-levél-kritikus gráfok épp a hypohamiltonian gráfok, a 3-levél-kritikus gráfok pedig a hypotra-
ceable gráfok. A 3.1 alfejezetben megmutatjuk, hogy nem csak l = 2,3, hanem tetszőleges l≥ 2
egész esetén léteznek l-levél-kritikus gráfok, sőt elegendően nagy n esetén létezik n csúcsú sík-
barajzolható, 3-reguláris l-levél-kritikus gráf is [62, 63]. A hypohamiltonian és hypotraceable
gráfok szerkezetéről nagyon keveset lehet tudni, az egyik ilyen eredmény Thomassen hypotra-
ceable 2-töredékeket karakterizáló lemmája [49]. Ennek egy levél-kritikus gráfokra vonatkozó
általánosítását bizonyítjuk be a 3.2 alfejezetben [62, 63].
A következő definíciók Garganotól és szerzőtársaitól származnak [18]. Egy fát póknak neve-
zünk, ha legfeljebb egy olyan csúcsa van, melynek foka nagyobb, mint 2; a pók középpontja a
2-nél nagyobb fokú csúcs (ha van ilyen, egyébként tetszőleges csúcs tekinthető a középpont-
nak). Egy gráf pókszerű, ha bármely v csúcsához létezik a gráfnak olyan feszítő pókja, melynek
középpontja v. Nyilvánvaló, hogy a Hamilton-úttal rendelkező gráfok pókszerűek és könnyen
látható, hogy ugyanez igaz a hypotraceable gráfokra is. Garganoék (egyik) kérdése az volt,
hogy léteznek-e egyéb pókszerű gráfok is. A 3.3 alfejezetben először megmutatjuk, hogy a
korábban talált levél-kritikus gráfok közül bizonyosak út-kritikusak is (vagyis bármely csúcsu-
kat elhagyva a csúcsok fedéséhez szükséges diszjunkt utak száma eggyel csökken – korábban
ilyen gráfok csak a 2 úttal fedhető esetben voltak ismertek) [64], majd ezt a tulajdonságot fel-
használva Hamilton-út nélküli, nem hypotraceable, pókszerű gráfokat konstruálunk. Sőt, azt is
megmutatjuk, hogy tetszőleges H gráf esetén létezik olyan Hamilton-út nélküli, nem hypotra-
ceable, pókszerű gráf, mely feszített részgráfként tartalmazza H-t [64].

A negyedik fejezet olyan, hipergráfok nyomairól szóló tételeket tartalmaz, melyek hálózatok
hibatűréséhez, precízebben a hiperkocka bizonyos (hibás) csúcsait elkerülő hosszú útjaihoz és
köreihez kapcsolódnak. Hipergráfok nyomait (vagyis az alaphalmaz valamely részhalmazára
vett megszorításait) régóta vizsgálják; Vapnik és Chervonenkis [56] klasszikus cikke 1971-ben
jelent meg. Ebben a cikkben már szerepel (implicit formában) a többnyire Sauer tételeként [43]
ismert állítás (melyet az említetteken kívül bebizonyított Perles és Shelah [44] is, de már Erdős
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is sejtette). A tétel szerint minden n elemű alaphalmazon adott, legalább ∑r−1
0

(n
i

)
+ 1 külön-

böző halmazt tartalmazó halmazrendszernek van olyan r elemű R halmazon vett nyoma, amely
R minden részhalmazát tartalmazza. Ennek az állításnak és Bondy egy tételének [8] közös ál-
talánosítását adjuk a 4.1 alfejezetben [60]. Ebből az általános állításból és Turán tételéből [54]
következik a 4.2 alfejezet fő eredménye, mely szerint m≥ 2n esetén minden n elemű alaphal-
mazon adott, m halmazt tartalmazó halmazrendszernek van olyan n2

2m−n−2 elemű halmazon vett

nyoma, melyben minden halmaz multiplicitása legfeljebb n2

2m−n−2 + 1 [60]. Ezt a tételt hasz-
nálta Fink és Gregor [14] annak bizonyítására, hogy elegendően nagy n esetén az n-dimenziós
hiperkockából egy legfeljebb n2

10 +
n
2 + 1 elemű X csúcshalmazt törölve, a kapott gráfnak van

2n− 2|X | hosszú köre (ennél hosszabb kör tetszőleges X esetén nem várható el, hiszen a hi-
perkocka páros gráf). Ez volt az első olyan eredmény, amelyben négyzetes nagyságrendű hibás
csúcsot engedtek meg (korábban X méretét (n−1)-gyel, (2n−4)-gyel, majd (3n−7)-tel kellett
felülről korlátozni). Hasonló, négyzetes nagyságrendű eredményt bizonyított az említett tétel
segítségével Dvořák és Koubek [13] körök helyett utakról.

Jelölések. A disszertációban szereplő gráfok mind véges, egyszerű, irányítatlan, összefüggő
gráfok. A G gráf csúcshalamzát V (G), élhalmazát E(G) jelöli. Az a és b csúcsok közti élet
(a,b)-vel, az a1,a2, . . . ,ak csúcsokon átmenő kört (a1,a2, . . . ,ak)-val jelöljük. G[X ] jelöli a G
gráf Xcsúcshalmaza által feszített részgráfját, eG(X) a G[X ] gráf élszámát, G−X pedig azt
a gráfot, amit G-ből az X csúcshalmaz törlésével kapunk, G− v := G−{v}. Ha H részgráfja
G-nek ,akkor G\H az a gráf, melynek csúcshalmaza V (G), élhalmaza E(G)\E(H).
A v csúcs fokát a G gráfban dG(v) jelöli (ha világos, hogy melyik gráfról van szó, akkor
egyszerűen d(v)), az X és Y csúcshalmazok közt futó élek számát pedig dG(X ,Y ). dG(X) :=
dG(X ,V (G)\X), dG(X ,v) := dG(X ,{v}).
G∪H a G és H gráfok diszjunkt uniója, de használjuk a jelölést akkor is, ha G és H ugyanazon
gráf részgráfjai, ilyenkor G∪H csúcshalmaza V (G)∪V (H), élhalmaza E(G)∪E(H).
Legyen H a G gráf részgráfja, X ⊆V (G). Ekkor H +X jelöli G-nek azt a részgráfját, melynek
csúcsai V (H)∪X , élei pedig H és G[X ] élein kívül a V (H) és X közti G-beli élek; H + v :=
H +{v} bármely v ∈ V (G)-re. Legyen a és b a G gráf két csúcsa, ekkor G+(a,b) jelöli azt a
gráfot, melyet G-ből az (a,b) él G-hez adásával kapunk.
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Tézispontok

1. Minden elegendően nagy n egész esetén létezik n csúcsú síkbarajzolható hypohamilto-
nian, illetve hypotraceable gráf (sőt, az első esetben n≥ 76, a másodikban n≥ 180 elég) –
a hypohamiltonian eset Holton és Sheehan egy 1993-as problémájának [26] megoldása.
(Theorem 1.5 és Theorem 1.13. A 76-os korlátot azóta 42-re, a 180-as korlátot 156-ra
javították [28, 29].) (Forrás: [65], közös eredmények Makoto Arayaval.)

2. A legkisebb síkbarajzolható hypohamiltonian gráfnak legfeljebb 42, a legkisebb síkbaraj-
zolható hypotraceable gráfnak legfeljebb 162 csúcsa van. (Theorem 1.1, és Corollary 1.3.
A becsléseket azóta 40-re és 154-re javították [28, 29].) (Forrás: [65], közös eredmények
Makoto Arayaval.)

3. Minden elegendően nagy páros n egész esetén létezik n csúcsú 3-reguláris síkbarajzol-
ható hypohamiltonian, illetve hypotraceable gráf (sőt, az első esetben n≥ 86, a második
esetben n ≥ 356 elég) – a hypohamiltonian eset Holton és Sheehan egy 1993-as problé-
májának [26] megoldása. (Corollary 1.17 és Corollary 1.18. A 86-os korlátot azóta 74-re
javították [69].). (Forrás: [4], közös eredmények Makoto Arayaval.)

4. A legkisebb síkbarajzolható 3-reguláris hypohamiltonian gráfnak legfeljebb 70, a leg-
kisebb síkbarajzolható 3-reguláris hypotraceable gráfnak legfeljebb 340 csúcsa van – a
hypohamiltonian eset ugyancsak Holton és Sheehan egy 1993-as problémájának [26]
megoldása. (Theorem 1.16 és Corollary 1.18.) (Forrás: [4], közös eredmények Makoto
Arayaval.)

5. Lineáris futásidejű 2-approximációs algoritmus a MAXIST problémára (maximális belső
csúcsú feszítőfa keresése), 3

2-approximáció claw-free gráfokra, lineáris futásidejű 6
5 -

approximáció 3-reguláris gráfokra. (Algorithm 1, Theorem 2.4, Algorithm 2, Theorems
2.6, 2.8. Azóta az approximációs faktort általános gráfokra előbb 5

3 -ra [32], majd 3
2 -re

[35], 1 fokú csúcs nélküli gráfokra 7
4 -re [40], 5

3 -ra [32], 3
2 -re [35], majd 4

3 -ra [36] javítot-
ták. Forrás: [42], közös eredmények Salamon Gáborral.)

6. Minden l ≥ 2 egészre léteznek l-levél-kritikus és l-levél-stabil gráfok, sőt minden ele-
gendően nagy n-re létezik n csúcsú l-levél-kritikus és l-levél-stabil gráf. (Theorem 3.9,
Theorem 3.10, Remark, 33. oldal. Forrás: [62, 63])

7. l-levélkritikus 2-töredékek karakterizációja (Thomassen hypotraceable 2-töredékeket ka-
rakterizáló lemmájának [51] általánosítása). (Theorem 3.17. Forrás: [62, 63]).

8. Minden µ ≥ 2 egészre léteznek µ-út-kritikus gráfok, sőt minden elegendően nagy n-re
létezik n csúcsú µ-út-kritikus gráf. (Theorem 3.20. Forrás: [64])

9. Léteznek olyan nem hypotraceable arachnoid gráfok, amiknek nincs Hamilton-útja –
Gargano, Hammar, Hell, Stacho és Vaccaro 2002-es problémájának [18] megoldása. Sőt,
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tetszőleges H gráfhoz létezik olyan Hamilton-út nélküli, nem hypotraceable arachnoid
gráf, mely H-t feszített részgráfként tartalmazza. (Theorem 3.22, Remark, 40. oldal. For-
rás: [63, 64].)

10. Az (n,m)◃(r,s) reláció karakterizációja a letömörítési technika segítségével – Bondy [8]
és Sauer [43] tételeinek egy közös általánosítása. (Theorem 4.4. Forrás: [60].)

11. m ≥ 2n és r = ⌈ n2

2m−n−2⌉ esetén (n,m) ◃ (r,r+ 1). Sőt, minden A ∈ MSH(n,m) esetén

létezik olyan
⌈

n2

2m−n−2

⌉
elemű X ⊆ [n] halmaz, melyre A -t az [n]−X halmazra megszo-

rítva, a kapott hipergráfban minden él multiplicitása legfeljebb
⌈

n2

2m−n−2

⌉
+1. (Theorem

4.6, Theorem 4.7. Forrás: [60, 61].)
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1. fejezet

Hypohamiltonian and hypotraceable
graphs

A graph is called hypohamiltonian if it is not hamiltonian but deleting any vertex gives a ha-
miltonian graph; a well-known example is the Petersen graph. The study of hypohamiltonian
graphs started in 1963, with the paper of Sousselier [46], who managed to find an infinite sequ-
ence of hypohamiltonian graphs on 6k+10 vertices for every integer k≥ 0 by generalizing the
Peopen prob tersen graph. In 1975 Doyen and Van Dienst [12] found another generalization
and a sequence of hypohamiltonian graphs on 3k+10 vertices for every integer k ≥ 0. In 1973
Chvátal [11] invented the so-called flip-flops (that we will use in Chapter 3) and obtained many
new hypohamiltonian graphs.

Herz, Gaudin, and Rossi [23] in 1964 proved that the Petersen graph is the smallest hypoha-
miltonian graph, and Aldred, McKay, and Wormald [2] in 1997, finalizing the efforts of many
others (Herz, Duby, and Vigue [24], Chvátal [11], Thomassen [49], Collier and Scmeichel
[10]) proved that a hypohamiltonian graph on n vertices exists if and only if n = 10,13,15,16
or n≥ 18.

A graph is called hypotraceable if it is not traceable, but deleting any vertex gives a traceable
graph. The existence of such graphs was an open problem till 1975, when Horton found such
a graph on 40 vertices (see [67, 51]) disproving the conjecture of Kapoor, Kronk, and Lick
[30]. Actually, even the existence of graphs without concurrent longest paths was an open
question from 1966 to 1969 (raised by Gallai [17] and settled by Walther [58]). The smallest
known hypotraceable graph (having 34 vertices) is due to Thomassen [49], who also proved
that hypotraceable graphs on n vertices exist for every n≥ 42 [49].

Hypohamiltonian and hypotraceable graphs were extensively studied in the last five decades,
see e.g. the papers [50, 51, 52, 53, 22, 68, 28, 29] and the excellent survey by Holton and
Sheehan [26]. However, not much is known about their structure, especially in the case of hy-
potraceable graphs, e.g. all known hypotraceable graphs are constructed using hypohamiltonian
graphs. There are still a lot of open questions, even among the very natural ones, like whether
there exists a 4-connected hypohamiltonian or hypotraceable graph. Hypohamiltonian graphs
are easily seen to be 3-connected, hypotraceable graphs are easily seen to be 2-connected and
3-edge-connected, on the other hand no hypohamiltonian or hypotraceable graph without a
vertex of degree 3 is known.
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1.1. Planar hypohamiltonian and hypotraceable graphs
All graphs obtained by the flip-flop technique or generalizations of the Petersen graph are non-
planar. This fact led Chvátal to ask whether there exist planar hypohamiltonian graphs [11].
This was answered by Thomassen [51], who found such a graph on 105 vertices in 1976.
Hatzel [22] found a smaller planar hypohamiltonian graph, having 57 vertices in 1979. Holton
and Sheehan [26] asked about the minimum size of planar hypohamiltonian graphs. Hatzel’s
bound was improved to 48 by Zamfirescu and Zamfirescu [68] in 2007. M. Araya and the author
have found a planar hypohamiltonian graph on 42 vertices [65] in 2011 (see also Theorem 1.1)
and the currently known smallest such graph has 40 vertices [29, 28].
Using the graph in Theorem 1.1 and a theorem of Thomassen [49], M. Araya and the author
constructed a planar hypotraceable graph on 162 vertices (see [65] and Corollary 1.3) impro-
ving the (then) best known bound of 186, which was improved further to 154 by Jooyandeh et
al. [29, 28] recently.
We have mentioned that not much is known about hypohamiltonian and hypotraceable graphs.
This is even more true for the planar case (a nice exception is the theorem of Thomassen [52]
stating that every planar hypohamiltonian graph contains a vertex of degree 3); while since
1997 it has been known for which values of n exists a hypohamiltonian graph, Holton and
Sheehan [26] mention the open problem whether there exists a planar hypohamiltonian graph
on n vertices, provided n is sufficiently large. This problem has been settled in 2011 by M.
Araya and the author (see [65] and Theorem 1.5), moreover we proved a similar theorem for
hypotraceable graphs (Theorem 1.13). We showed that for every integer n ≥ 76 there exists
a planar hypohamiltonian graph on n vertices and for every integer n ≥ 180 there exists a
planar hypotraceable graph on n vertices. The bounds were improved recently to 42 and 156
by Jooyandeh et al. [29, 28].
Zamfirescu [66] denoted the smallest number of vertices of a planar k-connected graph, in
which every j vertices are omitted by some longest cycle (path) by C j

k (P j
k ). In this section we

also improve on the (then) best known bounds concerning the numbers C1
3 , C2

3 , P1
3 , P2

3 .
Let us consider now the following graph Γ.

Theorem 1.1 (Araya-Wiener, 2011 [65]) Γ is a planar hypohamiltonian graph.

Proof. Γ is obviously planar and has 42 vertices, 67 edges, and 27 faces, of which one is a
quadrilateral and the others are all pentagons. To prove that Γ is not hamiltonian we use a
theorem of Grinberg [19].
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Theorem 1.2 (Grinberg, 1968 [19]) Suppose a plane graph has a hamiltonian cycle, such
that there are fi i-gons in the exterior of the hamiltonian cycle and f ′i i-gons in the interior of
the hamiltonian cycle. Then

∑
i
(i−2)( fi− f ′i ) = 0.

For the graph Γ the sum in Grinberg’s theorem cannot be 0, since there is only one face of Γ
whose degree is not congruent to 2 modulo 3, from which the nonhamiltonicity of Γ follows.
To see that Γ is hypohamiltonian indeed, we have to show that the deletion of any vertex of Γ
gives a hamiltonian graph. Since the drawing of Γ in Figure 1 is centrally symmetric, we only
have to check 21 cases. The hamiltonian cycles of all graphs obtained by deleting one vertex
of Γ can be found in [65]. 2

An easy corollary of the above theorem is the existence of a planar hypotraceable graph on
162 vertices, improving the bound of 186 in [68]. The construction is based on graph Γ and a
method of Thomassen [49] for creating hypotraceable graphs using hypohamiltonian graphs.

Corollary 1.3 (Araya-Wiener, 2011 [65]) There exists a planar hypotraceable graph on 162
vertices.

Proof. Let Γ4 be the following graph. Let the neighbours of a vertex v of degree 3 in graph Γ be
x,y,z. Take 4 vertex-disjoint copies of Γ− v, and let the copies of x (resp. y,z) be x1,x2,x3,x4
(resp. y1,y2,y3,y4, z1,z2,z3,z4). Now identify the vertex x1 with x2 and the vertex x3 with x4
and add the edges (y1,y3),(z1,z3),(y2,y4),(z2,z4) to the graph.
It is obvious that Γ4 has 162 vertices and it is also easy to see that it is planar. By a theorem of
Thomassen [49] Γ4 is hypotraceable, since Γ is hypohamiltonian by Theorem 1.1. 2

Another corollary concerns some of the numbers C j
k (and P j

k ), that are defined in [66] as the
smallest number of vertices of a planar k-connected graph, in which every j vertices are omitted
by some longest cycle (path). In the book by Voss [57] the following bounds can be found for
C1

3 , C2
3 , P2

3 , and P1
3 : C1

3 ≤ 57, C2
3 ≤ 6758, P1

3 ≤ 224, P2
3 ≤ 26378. These bounds were improved

by Zamfirescu and Zamfirescu [68]: based on their 48 vertex hypohamiltonian planar graph they
showed that C1

3 ≤ 48, C2
3 ≤ 4277, P1

3 ≤ 188, and P2
3 ≤ 16926. Now using our graph Γ we can

derive even better bounds. The proof of the bounds is based on the technique of Corollary 2 in
[68].

Corollary 1.4 (Araya-Wiener, 2011 [65]) C1
3 ≤ 42, C2

3 ≤ 3701, P1
3 ≤ 164, P2

3 ≤ 14694.

Now we prove the main theorem of this section.

Theorem 1.5 (Araya-Wiener, 2011 [65]) There exists a planar hypohamiltonian graph on n
vertices for every integer n≥ 76.

We will use the following definition and lemma several times in the proof of Theorem 1.5.

Definition 1.6 Let G be a graph with a 4-cycle (a,b,c,d). Now Th(G,a,b,c,d) is the graph
obtained from G by deleting the edges (a,b) and (c,d) and adding a new 4-cycle (a′,b′,c′,d′)
and the edges (a,a′), (b,b′), (c,c′), (d,d′) to G.

We call the function Th the Thomassen operation, since it was introduced by Thomassen [53],
who used it to show that there exist infinitely many planar cubic hypohamiltonian graphs. The
next two lemmas are a slight modification of a claim of Thomassen [53] and the proof is almost
the same; we include it for completeness.
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Lemma 1.7 Let G be a planar nonhamiltonian graph having a 4-cycle (a,b,c,d). Then
Th(G,a,b,c,d) is also a planar nonhamiltonian graph.

Proof. We use the shorthand notation Th(G) for Th(G,a,b,c,d). It is obvious that Th(G) is
planar. Now suppose to the contrary that Th(G) contains a hamiltonian cycle C. C clearly
contains either all four or exactly two of the edges (a,a′), (b,b′), (c,c′), (d,d′). In the first
case there exist two vertex-disjoint paths covering all vertices of G with endvertices a,b,c,d,
which together with two of the edges (a,b), (b,c), (c,d), (d,a) gives a hamiltonian cycle of G,
a contradiction. In the second case there exists a hamiltonian path P of G with its endvertices
among a,b,c,d. We show that the endvertices are neighbours, thus again we have a hamiltonian
cycle in G, a contradiction. If the endvertices of the path were (say) a and c, then the deletion
of a′ and c′ from the hamiltonian cycle C would give a graph having three components ({b′},
{d′}, and P), which is clearly impossible. 2

Lemma 1.8 Let G be a planar hypohamiltonian graph having a 4-cycle (a,b,c,d) and suppose
that the degrees of the vertices a,b,c,d are 3. Then Th(G,a,b,c,d) is also a planar hypoha-
miltonian graph.

Proof. By Lemma 1.7,Th(G) is planar and nonhamiltonian. We have to show that the deletion
of any vertex of Th(G) gives a hamiltonian graph.
First let us suppose that we delete one of the new vertices a′,b′,c′,d′, let it be (say) a′. Consider
now a hamiltonian cycle Cd of the graph G− d. Since a has degree 3 in G and d is one of its
neighbours, Cd uses the edge (a,b). Now it is easy to see that by deleting this edge from Cd and
adding the path (b,b′,c′,d′,d,a), we obtain a hamiltonian cycle of Th(G)−a′.
Now suppose we delete a vertex v of G from Th(G). Without loss of generality we may assume
that v ̸= a. Let us consider a hamiltonian cycle Cv of G− v. Since a is in the cycle and has
degree 3 in G (and therefore degree at most 3 in G− v), Cv contains at least one of the edges
(a,d), (a,b).
If Cv contains both (a,b) and (c,d), then replace these edges by the paths (a,a′,b′,b) and
(c,c′,d′,d); if Cv contains (a,b) and does not contain (c,d), then replace (a,b) by the path
(a,a′,d′,c′,b′,b); if Cv contains (c,d) and does not contain (a,b), then replace (c,d) by the path
(c,c′,b′,a′,d′,d); finally if Cv contains none of (a,b) and (c,d), then it contains the edge (a,d)
and now replace this edge by the path (a,a′,b′,c′,d′,d). In any case we obtain a Hamiltonian
cycle of Th(G)− v. 2

Now we prove Theorem 1.5 through a sequence of lemmas.

Lemma 1.9 There exists a planar hypohamiltonian graph on 42+4m vertices for every integer
m≥ 0.

Let a,b,c,d be the vertices of the quadrilateral of graph Γ. Then the graph Th(Γ,a,b,c,d) is
the following:
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By Lemma 1.7, Th(Γ,a,b,c,d) is planar and nonhamiltonian. To see that it is also hypohamil-
tonian we have to find hamiltonian cycles of all of its vertex-deleted subgraphs – these can be
found in [65]. Since it is obvious that Th(G) always contains a 4-cycle with vertices of degree
3, applying the Thomassen operation iteratively we obtain planar hypohamiltonian graphs on
42+4m vertices for every integer m≥ 0, by Lemma 1.8. 2

Lemma 1.10 There exists a planar hypohamiltonian graph on 48+4m vertices for every inte-
ger m≥ 0.

Now we apply the Thomassen operation on the Zamfirescu graph [68]: let a,b,c,d be the
vertices of the quadrilateral of the Zamfirescu graph Z. The resulting graph is the following:

By Lemma 1.7, Th(Z,a,b,c,d) is planar and nonhamiltonian. To see that it is also hypoha-
miltonian again we have to find H hamiltonian cycles of all of its vertex-deleted subgraphs –
these can be found in [65]. Now applying the Thomassen operation iteratively we obtain planar
hypohamiltonian graphs on 48+4m vertices for every integer m≥ 0, by Lemma 1.8. 2

Lemma 1.11 There exists a planar hypohamiltonian graph on 57+4m vertices for every inte-
ger m≥ 0.

Proof. We apply the Thomassen operation on the Hatzel graph [22]: let a,b,c,d be the vertices
of the quadrilateral of the Hatzel graph H, the resulting graph can be seen here:
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By Lemma 1.7, Th(H,a,b,c,d) is planar and nonhamiltonian. The hamiltonian cycles of its
vertex-deleted subgraphs again can be found in [65]. Now applying the Thomassen operation
iteratively we obtain planar hypohamiltonian graphs on 57+4m vertices for every integer m≥
0, by Lemma 1.8. 2

Lemma 1.12 There exists a planar hypohamiltonian graph on 79+4m vertices for every inte-
ger m≥ 0.

Proof. Let T be the following graph. Let us take two vertex-disjoint copies of graph Γ and delete
a vertex of degree 3 in both copies. Now we identify the neighbours of the deleted vertices (that
is, if they are α,β ,γ in one of the copies and α ′,β ′,γ ′ in the other, then we identify α with
α ′, β with β ′, γ with γ ′). The graph T has 79 vertices. It is easy to see that T is planar and
by Lemma 2.1. of [49], T is hypohamiltonian. To obtain a planar hypohamiltonian graph on
79+ 4m vertices for some m ≥ 1, we just have to change one of the copies of Γ to a planar
hypohamiltonian graph on 42+4m vertices (such a graph exists by Lemma 1.9). 2

Proof of Theorem 1.5: Now the proof is easy: since (42,48,57,79) is a complete residue system
modulo 4, by Lemmas 1.9, 1.10, 1.11, and 1.12, there exists a planar hypohamiltonian graph
on n vertices for every integer n≥ 76. 2

Now we prove a similar theorem concerning hypotraceable graphs.

Theorem 1.13 (Araya-Wiener, 2011 [65]) There exists a planar hypotraceable graph on n
vertices for every integer n≥ 180.

Proof. We use the same method of Thomassen [49] as we used in the proof of Corollary 1.3.
Let G1, G2, G3, G4 be planar hypohamiltonian graphs and let vi be a vertex of degree 3 in Gi
(i = 1,2,3,4). (Such a vertex always exists, see [52].) Let the neighbours of vi in Gi be xi,yi,zi.
Now consider the union of the graphs Gi− vi (i = 1,2,3,4) and identify the vertices x1,x2 and
the vertices x3,x4 and add to the graph the edges (y1,y3), (z1,z3), (y2,y4), and (z2,z4). The
resulting graph G is easily seen to be planar and by Lemma 3.1 of [49] also hypotraceable.
We distinguish 4 cases according to the residue of n modulo 4.
Case 1. n = 4k for some k≥ 42. Let G1 and G2 be the graph Γ, G3 the Zamfirescu graph Z, and
G4 be a planar hypohamiltonian graph on 4k− 126 vertices (4k− 126 ≥ 42, thus by Lemma
1.9, such a graph exists). Now G has 4k vertices.
Case 2. n = 4k+1 for some k≥ 44. Let G1 and G2 be the graph Γ, G3 the Hatzel graph H, and
G4 be a planar hypohamiltonian graph on 4k− 134 vertices (4k− 134 ≥ 42, thus by Lemma
1.9, such a graph exists). Now G has 4k+1 vertices.
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Case 3. n = 4k+ 2 for some k ≥ 40. Let G1, G2, and G3 be the graph Γ, and G4 be a planar
hypohamiltonian graph on 4k−118 vertices (4k−118≥ 42, thus by Lemma 1.9, such a graph
exists). Now G has 4k+2 vertices.
Case 4. n = 4k+3 for some k ≥ 45. Let G1 be the graph Γ, G2 the Zamfirescu graph Z, G3 the
Hatzel graph H, and G4 be a planar hypohamiltonian graph on 4k−138 vertices (4k−138≥ 42,
thus by Lemma 1.9, such a graph exists). Now G has 4k+3 vertices. 2

1.2. Cubic planar hypohamiltonian and
hypotraceable graphs

Hamiltonian properties of planar cubic graphs have been investigated extensively since Tait’s
attempt to prove the four color conjecture based on the proposition that every 3-connected
cubic planar graph has a hamiltonian cycle. This proposition was disproved by Tutte [55] in
1946. However, until 1968, when Grinberg [19] proved his famous theorem (Theorem 1.2),
such graphs were quite difficult to find. Grinberg’s theorem can be easily used to create non-
hamiltonian planar cubic graphs, like graph Γ of the previous section. Since 1968, several
non-hamiltonian 3-connected planar cubic graphs have been found, the smallest of them is the
Barnette-Bosák-Lederberg graph on 38 vertices [9, 33], see also [20]. The graph was discovered
by the three scientists independently, about the same time. It is worth mentioning that Lederberg
was not a mathematician or a computer scientist, but a molecular biologist (a really succesful
one – he won a Nobel Prize in Phisiology or Medicine at the age of 33.) In 1986, Holton
and McKay [25] (extending the results of many researchers) showed that there exists no 3-
connected cubic planar non-hamiltonian graph on fewer vertices.
Chvátal [11] raised the question in 1973 whether there exists a cubic planar hypohamiltonian
graph. This was answered by Thomassen [53], who found a sequence of such graphs on 94+4k
vertices for every integer k≥ 0 in 1981. However, the question whether there exist smaller cubic
hypohamiltonian graphs and whether there exists a positive integer N, such that for every inte-
ger n≥ N there exists a cubic planar hypohamiltonian graph on n vertices remained open (both
questions appear in the survey paper of Holton and Sheehan [26]). From the results of Aldred et
al. [1] follows that there is no cubic planar hypohamiltonian graph on 42 or fewer vertices. They
showed that every 3-connected, cyclically 4-connected cubic planar non-hamiltonian graph has
at least 42 vertices and presented all such graphs on exactly 42 vertices. Since hypohamiltonian
graphs are easily seen to be 3-connected and cyclically 4-connected, they must have at least 42
vertices in the cubic case. Moreover, all 42-vertex graphs presented in [1] have exactly one
face with a degree not congruent to 2 modulo 3, and it is easy to see that cubic graphs with this
property cannot be hypohamiltonian, as was observed by Thomassen [49].
Here we present a cubic planar hypohamiltonian graph on 70 vertices. Using the method of
Thomassen for creating an n+ 4 vertex cubic hypohamiltonian graph from an n vertex cubic
hypohamiltonian graph [53] this also shows that cubic planar hypohamiltonian graphs on 70+
4m vertices exist for every even integer m ≥ 0. Since 70 ≡ 94 (mod 4), this is not enough to
answer the second open question, however we also give a cubic planar hypohamiltonian graph
on 88 vertices, thus proving that cubic planar hypohamiltonian graphs on n vertices exist for
every even number n ≥ 86. Using our graphs on 70 and 88 vertices and another construction
method of Thomassen [49], we can also show that a cubic planar hypotraceable graph exists on
340 vertices and on n vertices for every even number n≥ 356.
Using the 70-vertex cubic planar hypohamiltonian graph, the bounds on the numbers C2

3 and
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P2
3 we have seen in the previous section are also improved.

We have seen that the size of the smallest cubic planar hypohamiltonian graph is at least 44 and
at most 70. The next claims (that are extensions of the observation of Thomassen) may help to
obtain a better lower bound. Let us denote the number of edges of a face T by d(T ) and for the
sake of simplicity let us call a face F an i-face (i = 0,1,2), if d(F)≡ i (mod 3) and call the 0-
and 1-faces together non-2-faces.

Claim 1.14 A cubic planar hypohamiltonian graph has at least three non-2-faces.

Proof. Let D be an arbitrary cubic planar hypohamiltonian graph. If D has only 2-faces, then the
deletion of any vertex gives a graph D′ with exactly one non-2-face, so D′ is not hamiltonian, a
contradiction. D cannot have exactly one non-2-face by the observation of Thomassen [49]. So
let us assume that D has two non-2-faces A and B. It is easy to see that both A and B should be
0-faces, because the deletion of a vertex that is in one 1-face and two 2-faces gives a graph with
exactly one non-2-face. Now the deletion of a vertex not in any of the 0-faces, but adjacent to a
vertex that is in exactly one of the 0-faces gives a graph with exactly three 0-faces, of which two
have two common edges. These cannot be on the same side of a hamiltonian cycle, therefore
the equality in Grinberg’s theorem cannot be satisfied, which finishes the proof. 2

The following claim can be proved similarly.

Claim 1.15 If a cubic planar hypohamiltonian graph has exactly three non-2-faces, then the
three non-2-faces do not have a common vertex, moreover two 1-faces or a 1-face and a 0-face
cannot be adjacent.

Now we construct our (relatively) small cubic planar hypohamiltonian graphs. Let G be the
following cubic planar graph on 70 vertices:

and let H be the following cubic planar graph on 88 vertices:
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Theorem 1.16 (Araya-Wiener, 2011 [4]) G and H are cubic planar hypohamiltonian graphs.

Proof. Both G and H are obviously cubic and planar. Both have one face of degree 4, and four
faces of degree 7, such that the face of degree 4 is adjacent to all faces of degree 7 and the
degrees of the other faces are congruent to 2 modulo 3. By Proposition 2.1. of [53], G and H
are non-hamiltonian (the proof is quite easy using Grinberg’s theorem: in order to satisfy the
equality in Grinberg’s theorem modulo 3, a hamiltonian cycle should separate one of the five
faces of degree 4 or 7 from the others, which is impossible in the case of G and H).
Now it remains to show that every vertex-deleted subgraph of G and H is hamiltonian. This can
be found in [4]. 2

Now we show some corollaries of the previous theorem. The most important corollary is the
existence of cubic planar hypohamiltonian graphs on n vertices for every even number n≥ 86.
This settles an open question in [26].

Corollary 1.17 (Araya-Wiener, 2011 [4]) There exists a cubic planar hypohamiltonian graph
on n vertices for every even number n≥ 86.

Proof. The proof is quite obvious using a method of Thomassen [53]. Let T be a cubic planar
hypohamiltonian graph on n vertices having a 4-cycle (a,b,c,d). The graph T ′ obtained from
T by deleting the edges (a,b) and (c,d) and adding a new 4-cycle (a′,b′,c′,d′) and the edges
(a,a′), (b,b′), (c,c′), (d,d′) to T . Now it is easy to see that T ′ is also a cubic planar hypohamil-
tonian graph on n+ 4 vertices having a 4-cycle. By applying this operation iteratively on the
graphs G and H we obtain cubic planar hypohamiltonian graphs on n vertices for every even
number n≥ 86. 2

Using another construction of Thomassen [51] a similar corollary for hypotraceable graphs can
also be proved.

Corollary 1.18 (Araya-Wiener, 2011 [4]) There exists a cubic planar hypotraceable graph
on 340 vertices and on n vertices for every even number n≥ 356.

Proof. We use a construction of Thomassen [51]. Let T1, T2, T3, T4, T5 be cubic planar hy-
pohamiltonian graphs and let xi and yi be adjacent vertices of Ti (i = 1,2,3,4,5). Let fur-
thermore the neighbours of xi (resp. yi), other than yi (resp. xi) be ai and bi (resp. ci and
di). Consider the disjoint union of the graphs Ti − {xi,yi} and add to this graph the ed-
ges (c1,a2),(c2,a3),(c3,a4),(c4,a5),(c5,a1) and the edges (d1,b2), (d2,b3), (d3,b4), (d4,b5),
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(d5,b1). Now the resulting graph T is easily seen to be planar and cubic and by Lemma 3.1.
of [51], it is also hypotraceable. If we choose each Ti to be isomorphic with G, then we obtain
a cubic planar hypotraceable graph on 340 vertices. To obtain a cubic planar hypotraceable
graph on 2k vertices for any k ≥ 178 we just have to change T1 in this construction to a cu-
bic planar hypohamiltonian graph on 2k−270 vertices (such a graph exists by Corollary 1.17,
since 2k−270≥ 86). 2

The next corollaries concern planar 3-connected graphs, in which every two vertices or edges
are omitted by some longest cycle or path. First we improve a theorem of Schauerte and C.
Zamfirescu. In [47] they showed (using a computer) that for any pair of edges e, f there exists
a longest cycle in Thomassen’s 94-vertex cubic planar hypohamiltonian graph [53] avoiding e
and f . Using this observation and a method of T. Zamfirescu [67] they proved that there exists
a cubic planar 3-connected graph on 8742 vertices, such that any pair of vertices is missed by
a longest cycle.
The same property can also be checked easily for graph G by a computer, i.e. using a software
like Mathematica or Maple.

Claim 1.19 Let e and f be arbitrary edges of G. Then there exists a longest cycle in G that
does not contain e and f .

Corollary 1.20 (Araya-Wiener, 2011 [4]) There exists a cubic planar 3-connected graph on
4830 vertices, such that any pair of vertices is missed by a longest cycle.

Proof. We create a graph with the desired properties using a method of T. Zamfirescu [67].
Consider the 70-vertex cubic planar hypohamiltonian graph G, and let V (G)= {a1,a2, . . . ,a70}.
Let furthermore G′ be the graph obtained from G by the deletion of a70 and assume that the
neighbours of a70 are a1,a2, and a3 in G. Now consider the graph Z consisting of 70 copies of
G′: G′1,G

′
2, . . . ,G

′
70, such that we draw an edge between two copies G′i and G′j if and only if ai

and a j are adjacent in G. These additional edges are always drawn between two vertices having
degree 2 in the copies (that is, copies of a1,a2, or a3). It is easy to see that Z is a cubic planar 3-
connected graph on 69 ·70 = 4830 vertices. By Theorem 1.16, Proposition 1.19, and a theorem
of T. Zamfirescu [67], any pair of vertices is missed by a longest cycle in Z. For completeness’
sake we reformulate here the proof of Zamfirescu. Since G is hypohamiltonian, it is easy to see
that the longest cycle of Z has length 68 · 69 = 4692 (one copy and one vertex of every other
copy must be avoided, otherwise G would be hamiltonian, and a cycle of length 4692 is easy
to find using the hypohamiltonicity of G). If the two vertices x and y we would like to avoid by
a longest cycle are in the same copy, then simply consider a longest cycle avoiding this copy
completely. Thus we may assume that x and y are in different copies. It is easy to see that there
is a hamiltonian path between two of the vertices a1,a2,a3 in every vertex-deleted subgraph
of G′. Let x′ (y′) be that copy of a1,a2, or a3 that is not the endvertex of such a hamiltonian
path if we delete x (y). Now let us delete x, y, and one vertex from every other copy of G′

from Z. Let us delete furthermore the additional edges incident to x′ and y′. By Theorem 1.16
and Proposition 1.19 there is a cycle of length 4692 in the remaining graph, which proves the
corollary. 2

Finally, we improve the bounds of the previous section concerning the numbers C2
3 and P2

3 .

Corollary 1.21 (Araya-Wiener, 2011 [4]) C2
3 ≤ 2765, P2

3 ≤ 10902.

Proof. The method is similar to the one used in Corollary 1.20. Recall that Γ is the planar hypo-
hamiltonian graph on 42 vertices described in the precious section. The graph Γ′ is obtained by
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deleting any vertex of degree 3 from Γ. Now consider the graph Y consisting of 70 copies of Γ′:
Γ′1,Γ

′
2, . . . ,Γ

′
70, such that we draw an edge between two copies Γ′i and Γ′j if and only if ai and

a j are adjacent in G. These additional edges are always drawn between two vertices that are
copies of the neighbours of the deleted vertex. It is easy to see that Y is a planar 3-connected
graph on 41 ·70 = 2870 vertices. From the hypohamiltonicity of Γ and G, Proposition 1.19, and
the mentioned theorem of Zamfirescu [67], any pair of vertices is missed by a longest cycle in
Y . None of these properties are lost if we now contract the additional edges of Y (see [67]),
obtaining a graph on 41 ·70−105 = 2765 vertices, which proves the first upper bound.
The second bound is proved similarly. First we take four copies of G′ and an additional edge
between any two copies (these edges are drawn between copies of a1,a2, or a3 again). Denote
the graph obtained in this way by X . Now we execute the same procedure as above, but this
time we put the copies of Γ′ into the graph X and then contract the additional edges to obtain
a 3-connected planar graph, where every pair of vertices is missed by a longest path in 69 ·4 ·
41− ((105−3) ·4+6) = 10902 vertices (see [67]). 2
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2. fejezet

Minimum leaf spanning trees

Spanning tree optimization problems naturally arise in many applications, such as network de-
sign and connection routing. Several of these problems have an objective function based on the
degrees of nodes of the spanning tree. This model is extremely useful when designing networks
where the cost of devices to install depends highly on the needed routing functionality (end-
ing, forwarding, or routing a connection). Typical examples are cost-efficient optical networks
[41, 18, 39, 45] and water management systems [6].
In this chapter we are dealing with a problem of this kind. The problem MINLST (Minimum
Leaf Spanning Tree) is to find a spanning tree of a given graph having a minimum number
of leaves. Since hamiltonian paths (if exist) are the only spanning trees with exactly 2 leaves,
MINLST is a generalization of the Hamiltonian path problem and therefore is NP-hard. Mo-
reover, it is even hard to approximate: using a result of Karger, Motwani, and Ramkumar [31]
concerning the problem of finding the longest path of a graph, Lu and Ravi [38] showed that
no constant-factor approximation exists for the problem MINLST, unless P = NP.
From an optimization point of view, MINLST is equivalent to the problem of finding a span-
ning tree with a maximum number of internal nodes (non-leaves). However, we show that this
latter problem (called MAXIST – Maximum Internal node Spanning Tree) has much better
approximability properties. In Section 2.1 we give a linear time 2-approximation algorithm for
the MAXIST problem based on depth first search. In Section 2.2 we show that a refined vers-
ion of the depth first search algorithm provides a 3

2 -approximation on claw-free graphs (graphs
not containing K1,3 as an induced subgraph) and a 6

5 -approximation on cubic graphs. It is worth
mentioning that for the problem of finding a spanning tree having a maximum number of leaves
Lu and Ravi [38] gave a constant factor approximation algorithm, followed by a more efficient,
near-linear time approximation [39].
One year after our paper was published, Salamon found the first approximation with a factor of
less than 2 [40, 41] for graphs without degree 1 vertices, while the best known approximation
has a factor of 3

2 and is due to Li, Chen, and Wang [35]. For graphs without degree 1 vertices
the best known approximation ratio is 4

3 [36].

2.1. Maximizing the Number of Internal Nodes

In this section, we first give a linear-time algorithm (Algorithm ILST) that finds either a hamil-
tonian path of a given graph G or a spanning tree of G with independent leaves. Then we prove
that such a tree has at least half times as many internal nodes as the optimal one. This shows
that Algorithm ILST is a linear-time 2-approximation algorithm for the MAXIST problem.
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The number of vertices of graph G is denoted by n, the number of edges by m. Vi(G) (V≥i(G))
denotes the set of nodes having degree exactly i (at least i) in a graph G. compG(X) denotes the
number of the connected components of G[X ]. Finally, given two nodes u and v of a tree T we
denote by PT (u,v) the unique path in T connecting u and v.

Our algorithm is basically a depth-first search. However, it can happen that the leaves of a DFS-
tree T are not independent. Thus, a single additional local replacement step might be needed to
execute on T .
For a detailed discussion, let us recall that depth first search (DFS) (see for example [34]) is a
traversal, that is, it visits the nodes of the graph one by one, such producing a spanning tree (the
so-called DFS-tree) T of G rooted at some node r. We assign a unique DFS number to each
node v, which is the rank of v in the order of visiting. Each non-root node v has a unique parent
u, namely the node succeeding v on the path PT (v,r). The node v is called a child of u, and the
nodes of the path PT (u,r) are the ancestors of v. A node having no child is called a d-leaf. Note
that all d-leaves of T are also leaves of T , and only the root r can be a leaf of T without being
a d-leaf. We recall a well-known property of DFS-trees.

Claim 2.1 Let T be a DFS-tree of the undirected graph G. Then each edge of G connects two
nodes of which one is an ancestor of the other in T . This implies that the d-leaves of T form an
independent set of G. 2

Though the d-leaves of a DFS-tree T are independent, it may happen that the root of T is a leaf
and is adjacent to some d-leaves of T . In this case, an additional replacement step is executed
that decreases the number of leaves by one and also makes the leaves independent.

Algorithm 1: Independent Leaves Spanning Tree (ILST)
Input: An undirected graph G = (V,E)
Output: A spanning tree T of G with independent leaves
T ← DFS(G) ; // an arbitrary DFS tree of G
r← the root of T ;
if T is not a hamiltonian path and dT (r) = 1 and l is a d-leaf such that (r, l) ∈ E(G) then

// r is a leaf and is adjacent to an other leaf l
x← the branching node being closest to l in T ;
y← the neighbor of x on the path (l,x);
Add edge (l,r) to T ;
Delete edge (x,y) from T ;

return T ;

Algorithm ILST produces a spanning tree, as the replacement step first creates a unique cycle
by adding an edge to the DFS-tree and then removes an edge of this cycle. If the replacement
step is applied then l and r become internal nodes and y becomes a leaf. Since y is not an
ancestor of the other leaves, the spanning tree returned has independent leaves. The DFS-tree
can be found in linear time. If we check (r, l) ∈ E(G) for each d-leaf l during the traversal then
the evaluation of the "if" condition needs only constant extra time. Once l is found, finding x
and y and executing the replacement need linear time. Thus we have proved

Claim 2.2 The algorithm ILST gives either a hamiltonian path or a spanning tree whose leaves
form an independent set of G in O(m) time. 2
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In order to show that ILST is a 2-approximation, first we introduce the cut-asymmetry of a
graph G = (V,E) as ca(G) = maxX⊂V,X ̸= /0 (compG(X)− compG(V \X)). Lemma 2.3 shows a
connection between cut-asymmetry and the number of leaves of trees.

Lemma 2.3 Let T be an arbitrary tree on at least 3 vertices. Then ca(T ) = |V1(T )|−1.

Proof. First observe that compT (V1(T ))− compT (V \V1(T )) = |V1(T )|− 1, since V1(T ) is an
independent set and V \V1(T ) spans a subtree. This implies ca(T )≥ |V1(T )|−1.
To show that ca(T )≤ |V1(T )|−1 let X ⊂V be a set of vertices for which ca(T ) = compT (X)−
compT (V \X). For the sake of convenience, let x = compT (X) and x = compT (V \X). Then
eT (X) = |X |− x, and eT (V \X) = n−|X |− x, thus

∑
v∈X

dT (v) = 2eT (X)+ eT (X ,V \X) = 2eT (X)+n−1− (eT (X)+ eT (V \X))

= 2(|X |− x)+ x+ x−1 = 2|X |− x+ x−1. (2.1)

Observe that each internal node of X contributes to ∑v∈X dT (v) by at least 2, yielding

|V1(T )∩X | ≥ 2|X |−∑
v∈X

dT (v) (2.2)

Therefore, by (2.1) and (2.2), for the number of leaves of T , we have |V1(T )| ≥ |V1(T )∩X | ≥
2|X |−∑v∈X dT (v)≥ x− x+1 = ca(T )+1, finishing the proof of the lemma. 2

Now we apply the above lemma to prove the approximation ratio.

Theorem 2.4 (Salamon-Wiener, 2008 [42]) The algorithm ILST is a 2-approximation for the
MAXIST problem.

Proof. We have seen that the algorithm is polynomial (actually, linear), so we only have to
prove the approximation factor. Let T ∗ be a spanning tree with a maximum number of internal
nodes, and let T be a spanning tree given by the algorithm. If T is a hamiltonian path, we are
done, otherwise we apply Lemma 2.3: |V1(T ∗)|= ca(T ∗)+1≥ compT ∗(V1(T ))−compT ∗(V \
V1(T ))+ 1 ≥ |V1(T )|− |V \V1(T )|+ 1 = 2|V1(T )|− n+ 1, since V1(T ) is an independent set
of G (and thus also of T ∗) by Claim 2.2. Thus |V≥2(T ∗)| = n− |V1(T ∗)| ≤ 2(n− |V1(T )|) =
2|V≥2(T )|, proving the theorem. 2

Notice that in DFS – and so in Algorithm ILST – the way of selecting the next node to visit is
not fully specified. It says only that an unvisited neighbor of the currently visited node must be
chosen. In Section 2.2, we present a refined version of DFS, which applies a node selection rule
to (partially) resolve the non-deterministic behaviour of the original algorithm. We can profit
of this refinement by obtaining a better approximation ratio for claw-free and cubic graphs.

2.2. Claw-free and Cubic Graphs
In this section, we deal with claw-free graphs (graphs not containing K1,3 as an induced sub-
graph), and cubic graphs (3-regular graphs). First we present a refined version of the original
DFS algorithm, called RDFS. Then we prove that RDFS approximates the MAXIST problem
within a factor of 3

2 for claw-free graphs, and within a factor of 6
5 for cubic graphs.

RDFS is a depth first search in which we specify how to choose the next node of the traversal
in the cases when DFS itself would choose arbitrarily from several candidates. The main idea
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Algorithm 2: Refined DFS (RDFS)
Input: An undirected graph G = (V,E)
Output: An RDFS tree T of G
begin

T ← (V, /0);
foreach v ∈V (G) do

dfs[v]← 0 ; // the DFS number of v
actdeg[v]← dG(v) ; // the number of non-visited neighbors
of v

k← 0 ; // the number of already visited vertices
r← a random vertex of G;
RDFSNode(r);
return T ;

// Traversing from a node v
function RDFSNode(v)
begin

k← k+1;
dfs[v]← k;
foreach neighbor w of v do actdeg[w]← actdeg[w]−1;
;
while actdeg[v]> 0 do

// We refine the original DFS by specifying how to
choose

// the next node to visit.
△ w← a neighbor of v that has not been visited yet and that minimizes actdeg[.];

Add edge (v,w) to T ;
RDFSNode (w);
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is to select the vertex that has the minimum number of non-visited neighbors. For this purpose,
we use the array "actdeg" to maintain the number of non-visited neighbors of each node.
RDFS differs from DFS only at line (△), where this latter one would choose a non-visited
neighbor of v arbitrarily. Recall that DFS runs in linear time. At line (△) we make at most ∆
steps to find the minimum, and this line is executed at most once for each edge of G. Thus the
total running time is O(∆m), where ∆ is the maximum node-degree of G.
A tree produced by RDFS is called an RDFS-tree. We use the following notation. Let T be an
RDFS-tree, and let l be a d-leaf of T such that dG(l)≥ 2. c(l) stands for the neighbor of l having
the greatest DFS number such that (l,c(l)) ∈ E(G)\E(T ) (c(l) exists, because dG(l)≥ 2). Let
g(l) denote the neighbor of c(l) along the path PT (c(l), l). We also use the shorthand notions
v1,v2,v3 for the numbers |V1(T )|, |V2(T )|, and |V1(T )|, respectively.
Now we prove a useful lemma concerning the degree of the node g(l) in T .

Lemma 2.5 Let T be an RDFS-tree and let l be a d-leaf of T . Then dT (g(l)) = 2.

Proof. Let us denote the set of vertices having DFS number greater than or equal to the DFS
number of a vertex v by Yv. It is obvious that l ∈ Yc(l).
Consider now that step of RDFS when we choose g(l) to be the next visited vertex. By Rule
(△) of RDFS, dG[(Yg(l)]

(g(l))≤ dG[Yg(l)](l). By the definition of c(l) and g(l), dG[(Yg(l)]
= 1, thus

dG[(Yg(l)]
(g(l)) = 1 (since dG[(Yg(l)]

(g(l))≥ 1 is obvious). Therefore g(l) has only one child (and
one parent, namely c(l)), so dT (g(l)) = 2 indeed. 2

Now we prove the approximation ratio for claw-free graphs.

Theorem 2.6 (Salamon-Wiener, 2008 [42]) RDFS is a 3
2-approximation for the MAXIST

problem for claw-free graphs.

Proof. We have seen that the algorithm is polynomial, so we have to check the approximation
ratio. Let G be an arbitrary connected claw-free graph on n vertices and let T be an RDFS-tree
of G. First notice that dT (v)≤ 3 for any v∈V (T ) =V (G), otherwise the node v and three of its
children would induce a subgraph K1,3 in G, because of Claim 2.1. Thus our aim is to show that
v2+v3 ≥ 2

3 iopt , where iopt is the number of internal nodes of an optimal spanning tree. Since T
is a tree, we have v1 = v3 +2.
Now we would like to find many nodes of degree 2 in T in order to show that the number of
internal nodes is large.
For this we use Lemma 2.5. The problem is that in general, the nodes g(l) (having degree 2 in
T ) are not necessarily distinct. However, we show that for claw-free graphs this is not the case.

Lemma 2.7 Let T be an RDFS-tree of G and let l and l′ be d-leaves of T , such that dG(l)≥ 2
and dG(l′)≥ 2. Then g(l) ̸= g(l′).

Proof of Lemma 2.7. Suppose to the contrary that g(l)= g(l′). It is obvious that c(l) and c(l′) are
ancestors of l and l′, respectively, thus from dT (g(l)) = 2 (Lemma 2.5) follows that c(l) = c(l′).
Now consider the induced subgraph S = G[{c(l), l, l′,g(l)}]. The vertices l, l′ and g(l) are all
adjacent to c(l) in G. On the other hand, l and l′ are d-leaves of T , thus cannot be adjacent in
G. Moreover, g(l) cannot be adjacent to either l or l′ in G\T , because g(l) clearly has greater
DFS number than c(l) = c(l′). Since (l,g(l)) and (l′,g(l)) are not edges of T either (otherwise
g(l) could not be a common ancestor of l and l′), the induced subgraph S is isomorphic to K1,3,
a contradiction. 2

Thus we have found as many nodes of degree 2 in T as the number of those d-leaves that has
degree at least 2 in G. Let us denote the number of vertices having degree 1 in G by w. These
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vertices are clearly leaves of any spanning tree of G, so the optimal spanning tree has at most
min(n−w,n−2) internal nodes.
Now we consider two cases.
Case 1. w= 0. Now every d-leaf has degree at least two in G, thus v2≥ v1−1. Since v1 = v3+2
and n = v1 + v2 + v3, we have v2 + v3 ≥ 2

3(n−2)m≥ 2
3 iopt .

Case 2. w≥ 1. It suffices to show that v2+v3 ≥ 2
3(v1+v2+v3−w). Since now the graph G has

a vertex of degree one, the root of T has degree one in G, because of Rule (△) of RDFS. Thus
now we have v2 ≥ v1−w, so it is enough to show that v2 + v3 ≥ 2

3(2v2 + v3), that is, v3 ≥ v2,
which is equivalent to v1− 2 ≥ v2. If this latter inequality holds then we are done. Otherwise
v2 ≥ v1−1 holds, from which v2 + v3 ≥ 2

3(n−2)m≥ 2
3 iopt follows just like in Case 1. 2

Theorem 2.8 (Salamon-Wiener, 2008 [42]) RDFS is a 6
5 -approximation algorithm for the

MAXIST problem for cubic graphs.

Proof. We have to check the approximation ratio. Let G be an arbitrary connected cubic graph
on n vertices and let T be a spanning tree of G given by RDFS. Obviously dT (v) ≤ 3 for
any v ∈ V (T ) = V (G), thus v1 = v3 + 2. We show that v2 ≥ 4v1− 6, then some elementary
computation gives |V≥2(T )| ≥ 5

6n− 4
3 ≥

5
6(n−2), from which the theorem follows.

Let l be a d-leaf of T . Now l has two neighbors in G \T , one of them is c(l), call the other
one c′(l). It is obvious that dT (c(l)) = 2 and also dT (c′(l)) = 2 if c′(l) is not the root. Further-
more, dT (g(l)) = 2 by Lemma 2.5. Now let h(l) be the only neighbor of g(l) in G \T . As a
consequence of Rule (△) of RDFS and of Claim 2.1 we obtain that h(l) is an ancestor of g(l).
Then either h(l) is the root or dT (h(l)) = 2. It is easy to check that if l and l′ are two distinct
d-leaves, then the sets {c(l),c′(l),g(l),h(l)} and {c(l′),c′(l′),g(l′),h(l′)} can have only the
root as a common element.
In this way to every d-leaf l we have associated 4 nodes (namely c(l),c′(l),g(l), and h(l)).
Among these nodes only the root can occur more than once and all the other nodes have degree
2. Since the root can occur at most twice (because of the 3-regularity) and the number of
d-leaves is at least v1− 1, we have found 4(v1− 1)− 2 distinct nodes of degree 2, that is,
v2 ≥ 4v1−6. 2

Remark Actually, we have proved v1 ≤ n
6 +

4
3 for any spanning tree T obtained by RDFS for

cubic graphs.

28



3. fejezet

Leaf-critical and leaf-stable graphs

In this chapter we unify the approaches of Chapter 1 and Chapter 2. More precisely, we extend
the notions of hypohamiltonicity and hypotraceablity to spanning tree and path cover optimiza-
tion problems, where a hamiltonian path (if exists) gives the optimum value (like the problems
MINLST and MAXIST of Chapter 2). The usefulness of this unified approach is demonstrated
by settling an open question of Gargano, Hammar, Hell, Stacho, and Vaccaro [18].
The leaf number of a graph G, denoted by l(G) is the number of vertices of degree 1 in G, that
is l(G) = |V1(G)|. The minimum leaf number of a connected graph G, denoted by ml(G) is the
minimum number of leaves of the spanning trees of G if G is not hamiltonian and 1 if G is
hamiltonian.
We study nonhamiltonian graphs, whose vertex-deleted subgraphs have the same minimum
leaf number. The deletion of a vertex obviously may increase the minimum leaf number of the
graph, but there are vertices (e.g. leaves of an optimum spanning tree) whose deletion does
not increase, or even decrease ml(G). However, it is easy to see that by deleting a vertex of
a connected graph G, ml(G) can be decreased by at most one. Thus if G is nonhamiltonian
and ml(G− v) does not depend on v, then either ml(G− v) = ml(G) for every v ∈ V (G) or
ml(G− v) = ml(G)−1 for every v ∈V (G).

Definition 3.1 Let l≥ 2 be an arbitrary integer. A graph G is called l-leaf-critical, if ml(G)= l,
but for every vertex v of G, ml(G− v) = l−1. A graph G is called l-leaf-stable, if ml(G) = l,
and for every vertex v of G, ml(G− v) = l.

At first sight it is not obvious whether such graphs exist at all. Actually, 2-leaf-critical and
hypohamiltonian graphs are the same. This follows immediately from the definitions and the
obvious fact that every hypohamiltonian graph is traceable. 3-leaf-critical graphs are also easy
to find: they are the hypotraceable graphs; this also follows immediately from the definitions
and the obvious fact that every hypotraceable graph has a spanning tree with 3 leaves.
Having seen that 2-leaf-critical and 3-leaf-critical graphs exist, one might expect that 2-leaf-
stable and 3-leaf-stable graphs also exist. Actually, in Section 3.1 we show that l-leaf-stable
and l-leaf-critical graphs exist for every integer l ≥ 2, moreover we show that for n suffici-
ently large, planar 3-connected l-leaf-stable and l-leaf-critical graphs exist on n vertices and
for n even and sufficiently large, cubic planar 3-connected l-leaf-stable and l-leaf-critical gra-
phs exist on n vertices. Our construction is a generalization of a construction of Thomassen
[49] that we have already used to obtain cubic hypotraceable graphs from cubic hypohamilto-
nian graphs (Corollary 1.18). In Section 3.2 we explore some properties of leaf-critical graphs
of connectivity 2. Sections 3.3 and 3.4 show some interesting connections between our gra-
phs and some known graph classes. Actually, in Section 3.3 we settle an open problem of
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Gargano, Hammar, Hell, Stacho, and Vaccaro [18] concerning the existence of non-traceable,
non-hypotraceable arachnoid graphs and in Section 3.4 we show that the graphs constructed
in Section 3.1 belong to a family of graphs introduced by Grünbaum [21] in connection with
the problem of finding graphs without concurrent longest paths. We conclude the chapter by
discussing some open problems.

3.1. Constructions
To construct l-leaf-critical and l-leaf-stable graphs for l ≥ 3 we use the notion of J-cells [27].

Definition 3.2 A pair of vertices (a,b) of a graph G is said to be good if there exists a hamil-
tonian path of G between them. A pair of pairs of vertices of G ((a,b),(c,d)) is said to be good
if there exists a spanning subgraph of G consisting of two vertex-disjoint paths, one between a
and b and another one between c and d.

Definition 3.3 (Hsu, Lin [27]) The quintuple (H,a,b,c,d) is a J-cell if H is a graph and
a,b,c,d ∈V (H), such that

1. The pairs (a,d), (b,c) are good in H.

2. None of the pairs (a,b), (a,c), (b,d), (c,d), ((a,b),(c,d)), ((a,c),(b,d)) are good in H.

3. For each v ∈ V (H) there is a good pair in H − v among (a,b), (a,c), (b,d), (c,d),
((a,b),(c,d)), ((a,c),(b,d)).

It is worth mentioning that flip-flops used by Chvátal (see page 11) to obtain many hypoha-
miltonian graphs [11] are special J-cells: in flip-flops the pair ((a,d),(b,c)) is also good in
H and for each v ∈ V (H) there is a good pair in H − v among (a,c), (b,d), ((a,b),(c,d)),
((a,c),(b,d)). J-cells can be obtained by deleting two adjacent vertices of degree 3 from a hy-
pohamiltonian graph, as was observed by Thomassen, who used them to construct 3-connected
hypotraceable graphs [51]. Our graphs are generalizations of this construction. (Actually, Tho-
massen did not name these graphs and used a somewhat different notation.) It is also easy to
see that by adding two vertices u and v and the edges (u,a),(u,d),(v,c),(v,d),(u,v) to a J-cell
we obtain a hypohamiltonian graph (this is observed for flip-flops in [11], but the proof also
works for J-cells). Thus the smallest J-cell is obtained from the Petersen graph by deleting two
adjacent vertices (this J-cell is also a flip-flop).
Let Fi = (Hi,ai,bi,ci,di) be J-cells for i = 1,2, . . . ,k. Now we define the graphs Gk as follows.
Gk consists of vertex-disjoint copies of the graphs H1,H2, . . . ,Hk, the edges (bi,ai+1),(ci,di+1)
for all i = 1,2, . . .k− 1, and the edges (bk,a1),(ck,d1). We will consider the graphs Hi as
(induced) subgraphs of Gk.
First we prove some useful properties of spanning trees of Gk.

Claim 3.4 Let l ≥ 2 and k ∈ {2l− 1,2l}. Let furthermore A be an arbitrary subset of B =
{(bk,a1),(ck,d1)}. Then Gk has a spanning tree T with l leaves, such that E(T )∩B = A.

Proof. Since the pairs (ai,di) and (bi,ci) are good in Hi, the graphs Hi∪Hi+1 are hamiltonian
for each i = 1,2, . . . ,k (where Hk+1 is considered to be H1). Let Ci be a hamiltonian cycle of
Hi∪Hi+1. First let us consider the case k = 2l. Let

E1 =
l−1∪
j=0

E(C2 j+1)∪
l−1∪
j=1

(b2 j,a2 j+1), E2 =
l−1∪
j=0

E(C2 j+1)∪
l−2∪
j=1

(b2 j,a2 j+1)∪ (b2l,a1),
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E3 =
l∪

j=1

E(C2 j)∪
l−2∪
j=0

(b2 j+1,a2 j+2), E4 =
l−1∪
j=0

E(C2 j+1)∪
l−2∪
j=1

(c2 j,d2 j+1)∪ (c2l,d1).

Now the graphs Di =V (G2l,Ei) are connected subgraphs of G2l for i = 1,2,3,4 and it is easy
to see that for i = 1,2,3,4, Di contains a spanning tree Si with l leaves, such that E(S1)∩B = /0,
E(S2)∩B = (b2l,a1), E(S3)∩B = B, E(S4)∩B = (c2l,d1).
For k = 2l−1 let Pi be a hamiltonian path of Hi between the vertices bi and ci for i = 1,2 and
let

E5 = E(P1)∪
l−1∪
j=1

E(C2 j)∪
l−1∪
j=1

(b2 j−1,a2 j),

E6 = E(P1)∪
l−1∪
j=1

E(C2 j)∪
l−2∪
j=1

(b2 j−1,a2 j)∪ (b2l−1,a1),

E7 = E(P2)∪
l−1∪
j=1

E(C2 j+1)∪
l−1∪
j=1

(b2 j,a2 j−1)∪ (b1,a2),

E8 = E(P1)∪
l−1∪
j=1

E(C2 j)∪
l−2∪
j=1

(c2 j−1,d2 j)∪ (c2l−1,d1).

Now the graphs Di = V (G2l−1,Ei) are connected subgraphs of G2l−1 for i = 5,6,7,8 and it
is easy to see that for i = 5,6,7,8, Di contains a spanning tree Si with l leaves, such that
E(S5)∩B = /0, E(S6)∩B = (b2l−1,a1), E(S7)∩B = B, E(S8)∩B = (c2l−1,d1). 2

Corollary 3.5 Let l ≥ 2. Then ml(G2l)≤ l and ml(G2l+1)≤ l +1. 2

Claim 3.6 Let T be a spanning tree of Gk. Then there are at most two indices i, such that all
vertices in V (Hi) has degree 2 in T .

Proof. Suppose that all vertices in (say) V (H1) has degree 2 in T . Then dT (H1) must be even
(since dT (H1) = ∑v∈V (H1) d(v)− 2|E(T [H1])| = 2|V (H1)|− 2|E(T [H1])|), thus dT (H1) is 2 or
4. If dT (H1) = 2, then T [H1] is a hamiltonian path of H1 and by the second property of J-
cells the endvertices of the path are either a1 and d1 or b1 and c1 (w.l.o.g. assume they are
a1 and d1). Therefore the edges leaving V (H1) in T are (bk,a1) and (ck,d1), thus there are no
edges between V (H1) and V (H2) in T . If dT (H1) = 4, then T [H1] is a spanning subgraph of
H1 consisting of two vertex-disjoint paths. By the second property of J-cells, the endvertices of
one of the paths are a1 and d1 and the endvertices of the other path are b1 and c1. Thus in this
case there is no path between a1 and b1 in T [H1]. It is clear now that if there is an index i ̸= 1,2,
such that all vertices in V (Hi) has degree 2 in T , then T is not connected, a contradiction. 2

Claim 3.7 Let l ≥ 2. Then ml(G2l+1) = l +1 and ml(G2l) = l.

Proof. We have seen (Corollary 3.5) that ml(G2l+1)≤ l+1 and ml(G2l)≤ l, so we have to show
that ml(G2l+1)≥ l +1 and ml(G2l)≥ l. Let us start by proving ml(G2l+1)≥ l +1. Assume to
the contrary that G2l+1 has a spanning tree T with at most l leaves. Then the number of vertices
of degree at least 3 in T is at most l− 2, thus the number of vertices not having degree 2 is
at most 2l−2. This means that there are at least three indices i, such that V (Hi) only contains
vertices of degree 2 in T , a contradicition by Claim 3.6. The proof of ml(G2l) ≥ l is the same
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for l ≥ 3: if G2l has a spanning tree T with at most l−1 leaves, then the number of vertices of
degree at least 3 in T is at most l−3, thus the number of vertices not having degree 2 is at most
2l−4. This means that there are at least four indices i, such that V (Hi) only contains vertices of
degree 2 in T , once again a contradicition by Claim 3.6. For the case l = 2 we have to show that
G4 is not hamiltonian. This also follows easily from Claim 3.6: if C is a hamiltonian cycle of G4
and e is an edge of H1[C] (that clearly exists, provided C exists), then C− e is a spanning tree
of G4, such that V (Hi) only contains vertices of degree 2 in C−e for i = 1,2,3, a contradiction.
2

Lemma 3.8 Let k≥ 4 and v be an arbitrary vertex of Gk. Then Gk−v has a spanning tree with
ml(Gk−1) leaves.

Proof. Let l := ml(Gk−1) and let us suppose w.l.o.g. that v ∈ Hk. Since Fk is a J-cell, at least
one of the pairs (ak,bk), (ck,dk), (ak,ck), (bk,dk), ((ak,bk),(ck,dk)), ((ak,ck),(bk,dk)) is good
in Hk− v. We distinguish six cases, based on which pair is good and construct a spanning tree
T ′ of Gk− v with l leaves in each case.
Case 1: (ak,bk) is good in Hk−v. Let P be a hamiltonian path between ak and bk in Hk−v. By
Claims 3.4 and 3.7 there exists an l-leaf spanning tree T of Gk−1, such that (bk−1,a1) ∈ E(T )
and (ck−1,d1) ̸∈ E(T ). Now let E(T ′) = E(T ) \ (bk−1,a1)∪ (bk−1,ak)∪E(P)∪ (bk,a1). It is
easy to verify that T ′ is a spanning tree of Gk− v with l leaves.
Case 2: (ck,dk) is good in Hk− v. The construction is similar to that of the previous case. Let
P be a hamiltonian path between ck and dk in Hk− v. By Claims 3.4 and 3.7 there exists an
l-leaf spanning tree T of Gk−1, such that (ck−1,d1) ∈ E(T ) and (bk−1,a1) ̸∈ E(T ). Let now
E(T ′) = E(T ) \ (ck−1,d1)∪ (ck−1,dk)∪E(P)∪ (ck,d1). Again, it is easy to verify that T ′ is a
spanning tree of Gk− v with l leaves.
Case 3: (ak,ck) is good in Hk− v. Let P be a hamiltonian path between ak and ck in Hk− v. By
Claims 3.4 and 3.7 there exists an l-leaf spanning tree T of Gk−1, such that (bk−1,a1) ∈ E(T )
and (ck−1,d1) ̸∈E(T ), just like in Case 1. Actually, now we need that T possesses the additional
property that dT (a1) = 3. It is easy to see that T can be chosen this way (consider the edge sets
E2 and E6 in the proof of Claim 3.4). Let E(T ′) = E(T ) \ (bk−1,a1)∪ (bk−1,ak)∪ E(P)∪
(ck,d1). It is easy to verify that T ′ is a spanning tree of Gk−v with l leaves (since a1 has degree
2 in T ′).
Case 4: (bk,dk) is good in Hk− v. Again, the construction is similar to that of the previous
case. Let P be a hamiltonian path between bk and dk in Hk− v. By Claims 3.4 and 3.7 there
exists an l-leaf spanning tree T of Gk−1, such that (ck−1,d1) ∈ E(T ) and (bk−1,a1) ̸∈ E(T ),
and we choose T , such that it has the additional property that dT (d1) = 3. It is easy to see that
T can be chosen this way (consider now the edge sets E4 and E8 in the proof of Claim 3.4). Let
E(T ′) = E(T )\(ck−1,d1)∪(ck−1,dk)∪E(P)∪(bk,a1). It is easy to verify that T ′ is a spanning
tree of Gk− v with l leaves (since d1 has degree 2 in T ′).
Case 5: ((ak,bk),(ck,dk)) is good in Hk− v. Let S be a spanning subgraph of Hk− v consisting
of two vertex-disjoint paths, one between ak and bk and the other one between ck and dk. By
Claims 3.4 and 3.7 there exists an l-leaf spanning tree T of Gk−1, such that (bk−1,a1) ∈ E(T )
and (ck−1,d1) ∈ E(T ). Let E(T ′) = E(T ) \ (bk−1,a1) \ (ck−1,d1)∪ (bk−1,ak)∪ (ck−1,dk)∪
E(S)∪ (bk,a1)∪ (ck,d1). Again, it is easy to verify that T ′ is a spanning tree of Gk− v with l
leaves.
Case 6: ((ak,ck),(bk,dk)) is good in Hk− v. Let S be a spanning subgraph of Hk− v consisting
of two vertex-disjoint paths, one between ak and ck and the other one between bk and dk. If k
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is odd, then k = 2l + 1 and if k is even, then k = 2l by Claim 3.7. Suppose first that k is odd.
Let us consider now the l-leaf spanning tree S3 of G2l , constructed in the proof of Claim 3.4.
S3 contains the edges (b2l,a1) and (c2l,d1), moreover by deleting these two edges from S3 we
obtain the following three components: a hamiltonian path of H2l between b2l and c2l , a path
inside H1 starting at either a1 or d1 (say a1) and a third component that contains d1 and all other
vertices of H1 not contained in the previous path and all vertices of H2,H3, . . . ,H2l−1. Let now
E(T ′) = E(S3)\(b2l,a1)\(c2l,d1)∪(b2l,a2l+1)∪(c2l,d2l+1)∪E(S)∪(b2l+1,a1)∪(c2l+1,d1).
It can be easily seen that the paths of S connect the components of S3− (b2l,a1)− (c2l,d1)
without creating a cycle, and therefore T ′ is a spanning tree of G2l+1− v with l leaves. Let us
suppose now that k is even and let us consider the l-leaf spanning tree S7 of G2l−1, constructed
in the proof of Claim 3.4. S7 contains the edges (b2l−1,a1) and (c2l−1,d1), moreover by deleting
these two edges from S7 we obtain three components just like in the previous case. Let now
E(T ′) = E(S7)\(b2l−1,a1)\(c2l−1,d1)∪(b2l−1,a2l)∪(c2l−1,d2l)∪E(S)∪(b2l,a1)∪(c2l,d1).
The same argument we have seen in the previous case shows that T ′ is a spanning tree of G2l−v
with l leaves. 2

Theorem 3.9 (Wiener, 2015 [62, 63]) G2l+1 is (l +1)-leaf-critical for l ≥ 2.

Proof. We have seen that ml(G2l+1) = l +1 (Claim 3.7), so we have to show that ml(G2l+1−
v) = l for every vertex v ∈ V (G2l+1). ml(G2l+1 − v) ≤ l follows from Lemma 3.8, while
ml(G2l+1− v)≥ l is obvious. 2

Theorem 3.10 (Wiener, 2015 [62, 63]) G2l is l-leaf-stable for l ≥ 2.

Proof. We have seen that ml(G2l) = l (Claim 3.7), so we only have to show that ml(G2l−v) = l
for every vertex v ∈ V (G2l). ml(G2l − v) ≤ l follows from Lemma 3.8. Now we prove that
ml(G2l−v)≥ l. Let us suppose w.l.o.g. that v ∈H2l and let us assume to the contrary that there
exists a spanning tree T of G2l − v with at most l− 1 leaves. Let a be an arbitrary neighbour
of v in H2l . Then T ′ := T +(a,v) is a spanning tree of G2l with at most l leaves. The number
of vertices of degree at least 3 in T ′ is therefore at most l−2, thus the number of vertices not
having degree 2 is at most 2l−2. It is easy to see that two of these vertices, namely a and v are
in H2l: v is a leaf of T ′ and a has degree at least 3 in T ′, since a cannot be a leaf of T , otherwise
T ′ would also have at most l− 1 leaves, which is impossible by Claim 3.7. Thus there are at
least 3 of the Hi’s contain only vertices of degree 2 in T , which is a contradiction by Claim 3.6.
2

Remark. By choosing the J-cells approprietly, we obtain l-leaf-critical and l-leaf-stable graphs
possessing some additional properties. It is easy to see that the graphs Gk are 3-connected for
k ≥ 4. A J-cell is said to be cubic, if the vertices a,b,c,d have degree 2 and the other verti-
ces have degree 3. It is straightforward that if all J-cells used in the construction are cubic,
then Gk is also cubic, while if all J-cells used are planar, then Gk is also planar. Since J-cells
can be obtained from hypohamiltonian graphs by deleting two neighbouring vertices of deg-
ree 3 and planar hypohamiltonian graphs containing neighbouring vertices of degree 3 exist
on n vertices for every n sufficiently large [65], it is easy to see that for n sufficiently large,
planar l-leaf-stable and l-leaf-critical graphs exist on n vertices. Since J-cells obtained from
a cubic hypohamiltonian graph are cubic and for n even and sufficiently large, cubic, planar
hypohamiltonian graphs exist on n vertices [4], for n even and sufficiently large, cubic, planar
l-leaf-stable and l-leaf-critical graphs also exist on n vertices. The smallest l-leaf-critical (l-
leaf-stable) graph that can be obtained using our construction has 16l− 8 (16l) vertices for
l ≥ 3 (for l ≥ 2), using the J-cell obtained from the Petersen graph as Fi for all i.
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3.2. Leaf-critical graphs of connectivity 2
We have seen that not much is known about the structure of hypohamiltonian and hypotraceable
graphs, and obviously the same holds for leaf-critical graphs as well. (Though it is easy to
see that all leaf-critical graphs are 2-connected and 3-edge-connected, but not necessarily 3-
connected). In this section we give a characterization of the so-called 2-fragments of leaf-
critical graphs generalizing a lemma of Thomassen (Lemma 5.1 of [51]).

Definition 3.11 Let G be a non-complete graph with connectivity k and X = {x1,x2, . . . ,xk}
be a cut of G. Let furthermore H be one of the components of G−X. Then H +X is called a
k-fragment of G, and X is called the vertices of attachment of H.

Definition 3.12 Let G be a graph, a,b ∈ V (G). A subgraph F of G is said to be (a,b)-nice if
at least one of the following three properties hold.

1. F is a tree and l(F)≤ ml(G−a)−1.

2. F is a tree, l(F)≤ ml(G−a) and a or b is a leaf of F.

3. F is a forest with two components, such that l(F) ≤ ml(G− a)+ 1, both a and b are
leaves of F and they are in different components of F.

If it does not cause any misunderstanding we just use the shorthand term nice, instead of (a,b)-
nice.

Lemma 3.13 Let G be a leaf-critical graph of connectivity 2 and {a,b} a cut of G. Then
G−a−b has two components.

Proof. Let the components of G−a−b be H1, . . . ,Hr and assume to the contrary that r≥ 3. Let
l = ml(G)−1. Since G is leaf-critical, G−a has a spanning tree Fb and G−b has a spanning
tree Fa with l leaves. Let Ai = Fa[Hi+a] and Bi = Fb[Hi+b] for i = 1,2, . . . ,r. Let furthermore
li(a) = 1 if a is a leaf of Ai for i= 1,2, . . . ,r and let li(a) = 0 otherwise. Similarly, let li(b) = 1 if
b is a leaf of Bi and li(b) = 0 otherwise. A1∪A2∪ . . .∪Ar = Fa and B1∪B2∪ . . .∪Br = Fb, thus
∑r

i=1 l(Ai) = l +∑r
i=1 li(a) and ∑r

i=1 l(Bi) = l +∑r
i=1 li(b). Let e be an edge between b and H1

and f be an edge between a and H1 (such edges clearly exist). Now A1∪A2∪ . . .∪Ar−1∪Br+e
is a spanning tree of G with ∑r−1

i=1 l(Ai)+ l(Br)−∑r−1
i=1 li(a)− lr(b) leaves and B1 ∪B2 ∪ . . .∪

Br−1∪Ar + f is a spanning tree of G with ∑r−1
i=1 l(Bi)+ l(Ar)−∑r−1

i=1 li(b)− lr(a) leaves (since
none of a and b is a leaf of any of the two spanning trees, because r− 1 ≥ 2). Thus these
two spanning trees of G have ∑r

i=1(l(Ai)+ l(Bi))−∑r
i=1(li(a)+ li(b)) = 2l leaves altogether.

Therefore (at least) one of them has at most l leaves, a contradiction, since l = ml(G)−1. 2

Lemma 3.14 Let G1 be a 2-fragment of the (l + 1)-leaf-critical graph G with vertices of at-
tachment a and b. Then G1 has no (a,b)-nice spanning forest, but for any v ∈ V (G1), G1− v
has an (a,b)-nice spanning forest.

Proof. We start along the same lines as in the previous proof. Let l1 = ml(G1− a) and let the
other 2-fragment of G with vertices of attachment a and b be G2 (by Lemma 3.13 there are no
more 2-fragments with the same vertices of attachment). Since G is (l +1)-leaf-critical, G−a
has a spanning tree Fb with l leaves and G− b has a spanning tree Fa with l leaves. Let A1 =
Fa[V (G1− b)],A2 = Fa[V (G2− b)],B1 = Fb[V (G1− a)],B2 = Fb[V (G2− a)]. Let furthermore
li(a) = 1 if a is a leaf of Ai for i = 1,2 and let li(a) = 0 otherwise. Similarly, let li(b) = 1 if
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b is a leaf of Bi for i = 1,2 and let li(b) = 0 otherwise. A1 ∪A2 = Fa and B1 ∪B2 = Fb, thus
l(A1)+ l(A2) = l + l1(a)+ l2(a) and l(B1)+ l(B2) = l + l1(b)+ l2(b). Now we show that a
and b are not adjacent in G. Suppose they are and consider the spanning trees A1∪B2 +(a,b)
and A2∪B1 +(a,b) of G. These two trees have l(A1)+ l(A2)+ l(B1)+ l(B2)− l1(b)− l2(b)−
l1(a)− l2(a) = 2l leaves altogether, thus (at least) one of them has at most l leaves, which
contradicts the fact that G is (l +1)-leaf-critical.
Now let e be an edge between a and B2 if a is a leaf of A1 and let e be an edge bet-
ween A1 and b otherwise. Similarly, let f be an edge between a and B1 if a is a leaf of
A2 and let f be an edge between A2 and b otherwise. (such edges clearly exist, since G
is 2-connected). Consider now the spanning trees A1 ∪ B2 + e and A2 ∪ B1 + f of G. Since
a and b are not adjacent we have l(A1 ∪ B2 + e) = l(A1) + l(B2)−max(l2(b), l1(a)) and
l(A2 ∪B1 + f ) = l(A2)+ l(B1)−max(l2(a), l1(b)). Therefore these two spanning trees have
l(A1) + l(B2)−max(l2(b), l1(a)) + l(A2) + l(B1)−max(l2(a), l1(b)) = 2l + l1(b) + l2(b) +
l1(a)+ l2(a)−max(l2(b), l1(a))−max(l2(a), l1(b)) ≤ 2l + 2 leaves altogether. Since none of
these trees can have at most l leaves, both of them have exactly l + 1 leaves, which implies
l(B1)+ l(A2) = l(A1)+ l(B2) = l+2 and l1(b) = l2(b) = l1(a) = l2(a) = 1, that is a is a leaf of
both A1 and A2 and b is a leaf of both B1 and B2. We claim that B1 is a minimum leaf spanning
tree of G1− a. Indeed, if a spanning tree T of G1− a with less than l(B1) leaves exists, then
the spanning tree T ∪A2 + f of G has less than l(B1)+ l(A2)− 1 = l + 1 leaves (since a is a
leaf of A2 and the edge f is incident to a), a contradiction. It can be similarly shown that A1
is a minimum leaf spanning tree of G1− b. A1 ∪A2 is a spanning tree of G− b and B1 ∪B2
is a spanning tree of G− a, therefore l(A1 ∪A2) ≥ l and l(B1 ∪B2) ≥ l. Since a is a leaf of
both A1 and A2 and b is a leaf of both B1 and B2, we have l(A1∪A2) = l(A1)+ l(A2)−2 and
l(B1∪B2) = l(B1)+ l(B2)−2, that is l(A1)+ l(A2)≥ l+2 and l(B1)+ l(B2)≥ l+2. Since we
have l(B1)+ l(A2) = l(A1)+ l(B2) = l+2, this implies l(B1) = l(A1) and l(B2) = l(A2). Thus
both A1 and B1 have l1 = l(G1−a) leaves. It is obvious now (by symmetry) that A2 and B2 are
minimum leaf spanning trees of G2−b and G2−a, respectively. Let l2 = l(A2) = l(B2), then
we have ml(G2−a) = l2 and l1 + l2 = l +2.
Now we prove that G1 has no nice spanning forest. First let us show that ml(G1)≥ l1. Assume
to the contrary that a spanning tree T of G1 with less than l1 leaves exists. Then the spanning
tree T ∪A2 of G has at most l1−1+ l2−1 = l leaves (since a is a leaf of A2), a contradiction.
The proof of the fact that G1 has no spanning tree with at most l1 leaves where a or b is a leaf
is basically the same: if T is such a spanning tree, then T ∪A2 or T ∪B2 is a spanning tree of
G with at most l1− 1+ l2− 1 = l leaves, a contradiction. Finally let us show that G1 has no
spanning forest with at most l1 +1 leaves consisting of two trees, such that a is a leaf of one of
the trees and b is a leaf of the other tree. Suppose F is such a forest and consider the spanning
tree F ∪B2 +e of G. This has at most (l1 +1)+ l2−2−1 = l leaves, a contradiction. It is now
obvious by symmetry that G2 has no nice spanning forest either.
Let us prove now that G1−v has a nice spanning forest for each v∈V (G1). If v = a then B1 is a
nice spanning tree of G1−v, since it has l1 leaves and b is a leaf of B1. If v = b then A1 is a nice
spanning tree of G1− v, since it has l1 leaves and a is a leaf of A1. Suppose now that v ̸= a,b.
Since G is (l+1)-leaf-critical, G−v has a spanning tree F with l leaves. Let F1 = F [V (G1−v)]
and F2 = F[V (G2)]. Since (a,b) ̸∈ E(G), exactly one of F1 and F2 is connected (the one which
contains the unique a−b path in F). It is also obvious that the Fi that is not connected has two
components: one containing a and the other one containing b. Now we distinguish two cases
based on whether F1 is connected.
Case 1: F1 is connected. F1 is obviously a spanning tree of G1−v and F2 is a spanning forest of
G2 with two components, one containing a and the other one containing b. Thus either F2 has
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at least l2 + 2 leaves or (at least) one of a and b is not a leaf of F2. Now we distinguish three
cases and show that in each case F has at most l1−2 leaves in G1− v.
Case 1.1: l(F2)≥ l2 +2. Then F has at most l− ((l2 +2)−2) = l1−2 leaves in G1− v, since
the leaves of F2 different from a and b are also leaves of F .
Case 1.2: l(F2)< l2 +2 and exactly one of a and b is a leaf of F2. W. l. o. g. assume b is a leaf
and a is not. Then l(F2) ≥ l2 +1, since G2 has no spanning tree with at most l2 leaves, where
b is a leaf and therefore G2 obviously has no spanning forest with at most l2 leaves, where b
is a leaf. Thus F has at most l− (l2 + 1)− 1) = l1− 2 leaves in G1− v, since the leaves of F2
different from b are also leaves of F .
Case 1.3: l(F2) < l2 + 2 and none of a and b is a leaf of F2. Now l(F2) ≥ l2 (since G2 has no
spanning tree with less than l2 leaves, therefore G2 obviously has no spanning forest with less
than l2 leaves). F has at most l− l2 = l1− 2 leaves in G1− v, because now each leaf of F2 is
also a leaf of F .
F has at most l1−2 leaves in G1−v, l(F1)≤ l1 (the leaves of F1 different from the leaves of F
can only be a and b) and l(F1) = l1 is possible only if both a and b are leaves of F1, therefore
F1 is nice. (Actually, it is easy to check that l(F1)< l1 is not possible.)
Case 2: F1 has two components: one containing a and the other one containing b. Now F2 is
a spanning tree of G2, thus either l(F2) ≥ l2 + 1 or none of a and b is a leaf of F2. Here we
distinguish two cases, depending on l(F2).
Case 2.1 l(F2)≥ l2 +1. Then F has at most l− ((l2 +1)−2) = l1−1 leaves in G1− v, since
the leaves of F2 different from a and b are also leaves of F . Now if both a and b are leaves
of F1, then l(F1) ≤ l1 + 1 and F1 is a nice spanning forest. If exactly one of a and b is a leaf,
then l(F1) ≤ l1. Now we can add an edge to F1 to obtain a spanning tree of G1− v with l1−1
leaves or with l1 leaves, such that a or b is a leaf. In both cases the spanning tree obtained is
nice. Finally, if none of a and b is a leaf, then l(F1)≤ l1−1 and therefore a spanning tree T of
G1− v with at most l1−1 leaves exists; by definition T is nice.
Case 2.2: l(F2) < l2 +1. Then none of a and b is a leaf of F2 and since ml(G2) ≥ l2, we have
l(F2) = l2. Then F has at most l− l2 = l1− 2 leaves in G1− v, since the leaves of F2 are also
leaves of F . This means that l(F1)≤ l1 and l(F1) = l1 is possible only if both a and b are leaves
of F1. Now by adding an edge between the components of F1 we obtain a nice spanning tree of
G1− v and the proof is finished. 2

The properties of Lemma 3.14 characterize the leaf-critical 2-fragments. In order to prove this,
we still have to show that every graph possessing these properties is a 2-fragment of some
leaf-critical graph. We prove a somewhat stronger lemma.

Claim 3.15 Let G be a graph, a,b ∈ V (G). If G has no nice spanning forest, but both G− a
and G− b have a nice spanning forest, then (a,b) ̸∈ E(G), ml(G− b) = ml(G− a), and any
nice spanning forest Fb (Fa) of G−a (G−b) is a tree, such that b (a) is a leaf of Fb (Fa).

Proof. Let Fb and Fa be a nice spanning forest of G− a and G− b, respectively. Since b (a)
cannot be a leaf of Fa (Fb), Fa and Fb are trees, thus by definition l(Fa) ≤ ml(G− b) and
l(Fb)≤ml(G−a). On the other hand, clearly l(Fa)≥ml(G−b) and l(Fb)≥ml(G−a) (since
Fa and Fb are spanning trees), therefore l(Fb) = ml(G− a) and l(Fa) = ml(G− b) and by the
definition of nice subgraphs b is a leaf of Fb, a is a leaf of Fa. If (a,b) ∈ E(G) then Fb +(a,b)
is a nice spanning tree of G, a contradiction. ml(G−b) = ml(G−a) is also easy to prove: no
spanning tree F of G− b can have less than ml(G− a) leaves, otherwise by adding an edge
between F and b to F we would obtain a spanning tree of G with at most ml(G− a) leaves,
where b is a leaf, a contradiction. Thus ml(G− b) ≥ ml(G− a), and ml(G− a) ≥ ml(G− b)
can be proved similarly. 2
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Lemma 3.16 (Wiener, 2015 [62, 63]) Let G be a graph of connectivity 2 and {a,b} a cut in
G. Let G1 and G2 be 2-fragments of G with vertices of attachment a,b, such that Gi has no
(a,b)-nice spanning forest, but for any v ∈V (Gi), Gi−v has an (a,b)-nice spanning forest for
i = 1,2. Then G is l-leaf-critical, where l = ml(G1−a)+ml(G2−a)−1.

Proof. By Lemma 3.13, G = G1 ∪G2. Let us prove first that ml(G) ≤ l. We have to find a
spanning tree of G with at most l leaves: let F1 be a nice spanning forest of G1−a and F2 be a
nice spanning forest of G2−b. Then by Claim 3.15, F1 and F2 are trees and b is a leaf of F1 and
a is a leaf of F2. By adding an edge between a and F1 to F1∪F2 we obtain a spanning tree of G
with at most l(F1)+ l(F2)−1 leaves. By Claim 3.15, l(F1)=ml(G1−a) and l(F2)=ml(G2−a)
and we are done.
Now we prove ml(G) ≥ l. Let T be an arbitrary spanning tree of G. Then T1 = T [V (G1)]
and T2 = T [V (G2)] are spanning forests of G1 and G2, respectively, such that one of them
(say T1) is a tree and the other one (T2 then) consists of two trees, such that a and b are in
different components. Since G1 has no nice spanning forest, l(T1)≥ml(G1−a) and if l(T1) =
ml(G1− a), then none of a and b is a leaf. Since G2 has no nice spanning forest, l(T2) ≥
ml(G2− a), furthermore if l(T2) = ml(G2− a), then none of a and b is a leaf and if l(T2) =
ml(G2− a) + 1, then at most one of a and b is a leaf. Thus T has at least ml(G1− a)− 1
leaves in V (G1−a−b) and at least ml(G2−a) leaves in V (G2−a−b), that is T has at least
l =ml(G1−a)+ml(G2−a)−1 leaves altogether, which proves ml(G)≥ l and we have proved
ml(G) = l.
Now let us prove that for an arbitrary v ∈ V (G) we have ml(G− v) = l − 1. Obviously, it
suffices to prove that ml(G− v) ≤ l− 1, that is G− v has a spanning tree with l− 1 leaves.
W.l.o.g. assume v ∈ V (G1). Suppose first that v = a. G1− a and G2− a have nice spanning
forests N1 = F1 and N2. By Claim 3.15, N1 and N2 are trees with at most ml(G1− a) and
ml(G2− a) leaves, respectively and b is a leaf of both N1 and N2. Thus N1∪N2 is a spanning
tree of G−a with at most ml(G1−a)+ml(G2−a)−2 = l−1 leaves. The case v = b is proved
similarly. Let us suppose now that v ∈ V (G1− a− b). G1− v has a nice spanning forest H.
Now we distuingish three cases, based on whether the first, second, or third property of nice
subgraphs holds for H.
Case 1: H is a tree and l(H)≤ml(G1−a)−1. Then H ∪N2 is a spanning tree of G−v with at
most (ml(G1−a)−1)+ml(G2−a)−1 = l−1 leaves.
Case 2: H is a tree, l(H) ≤ ml(G1− a) and a or b is a leaf of H. Then H ∪F2 and H ∪N2
are spanning trees of G− v and one of them has at most ml(G1−a)+ml(G2−a)−2 = l−1
leaves.
Case 3: H is a forest with two components, such that l(H)≤ml(G1−a)+1, both a and b are
leaves of H and they are in different components of H. Let g be an edge between b and F2. Then
H∪F2∪g is a spanning tree of G−v with at most (ml(G1−a)+1)+ml(G2−a)−2−1= l−1
leaves and the proof is complete. 2

Now the following generalization of Lemma 5.1 of [49] is an immediate consequence of Lem-
mas 3.14 and 3.16.

Theorem 3.17 (Wiener, 2015 [62, 63]) Let G be a graph, a,b ∈ V (G). G is a 2-fragment of
a leaf-critical graph with vertices of attachment a and b if and only if G has no (a,b)-nice
spanning forest, but for any v ∈V (G), G− v has an (a,b)-nice spanning forest. 2

Another interesting corollary is that leaf-critical graphs contain 2-fragments of other leaf-
critical graphs with a much smaller minimum leaf number.
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Corollary 3.18 If G is an l-leaf-critical graph of connectivity 2, then it contains an r-leaf-
critical 2-fragment, where r ≤

⌊ l+3
2

⌋
.

Proof. Let {a,b} be a cut in G and let G1 and G2 be the 2-fragments of G with vertices of
attachment a,b (by Lemma 3.13, G = G1∪G2). Suppose w.l.o.g. that ml(G1−a)≤ml(G2−a)
and let G3 be a 2-fragment of a 3-leaf-critical (that is, hypotraceable) graph with vertices of
attachment x,y (Such a 2-fragment exists [49]). Let H be the graph obtained by identifying the
vertices a and x and the vertices b and y of the graph G1 ∪G3. By Lemma 3.14 and Lemma
3.16 H is (ml(G1−a)+1)-leaf-critical. Since ml(G1−a)≤ l+1

2 and G1 is a 2-fragment of H,
the proof is finished. 2

3.3. Path-critical and arachnoid graphs
The path-covering number of G, denoted by µ(G) is the minimum number of vertex-disjoint
paths that cover the vertices of G (a path may consist of just one vertex). The branch number
of G, denoted by s(G) is the minimum number of branch vertices (vertices of degree at least
3) of the spanning trees of G. Gargano, Hammar, Hell, Stacho, and Vaccaro [18] defined the
notion of spanning spiders: these are spanning trees with at most one branch. The spider is
said to be centred at the branch vertex (if there is any, otherwise the spider is centred at any
of the vertices). They studied the parameter s(G) and graphs with s(G)≤ 1. They also defined
arachnoid graphs; these are graphs that have a spanning spider centred at any of their vertices.
Traceable graphs are obviously arachnoid, and Gargano et al. observed that hypotraceable gra-
phs are also easily seen to be arachnoid [18]. However, they did not find any other arachnoid
graphs, and asked the question whether they exist. In this section we answer this question in the
affirmative, moreover, we show that for any prescribed graph H, there exists a non-traceable,
non-hypotraceable, arachnoid graph that contains H as an induced subgraph. To this end we
introduce path-critical graphs.

Definition 3.19 Let µ ≥ 2 be an integer. A graph G is µ-path-critical if µ(G) = µ and µ(G−
v) = µ−1 for each v ∈V (G).

It is easy to see that the 2-path-critical graphs are the hypotraceable graphs, but the existence of
µ-path-critical graphs for µ ≥ 3 is far from from obvious. The next theorem shows that some
of the leaf-critical graphs Gk we have constructed in Section 3.1 are also path-critical.

Theorem 3.20 (Wiener, 2015 [64]) Let k ≥ 0 be an integer. Then for any v ∈ V (G4k+5) we
have µ(G4k+5− v) = µ(G4k+5)−1 = k+1, thus G4k+5 is (k+2)-path-critical.

Proof. We need the following lemma.

Lemma 3.21 G4 has a hamiltonian path P, such that there is no edge of P between H1 and H4
and for any vertex v ∈V (G5) there is a hamiltonian path P of G5−v, such that there is no edge
of P between H1 and H5.

Proof. The first part of the claim is easy to see: there is a hamiltonian path of Hi between bi
and ci and a hamiltonian path of Hi+1 between ai+1 and di+1, by the first property of J-cells,
thus H1∪H2 and H3∪H4 are hamiltonian, therefore there is a hamiltonian path P1 of H1∪H2
starting at b2 and a hamiltonian path P3 of H3∪H4 starting at a3. Now E(P1)∪ (b2,a3)∪E(P3)
is a hamiltonian path of G4 without edges between H1 and H4. Let now F =(H,a,b,c,d) be any
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of the J-cells used in the construction of G5 and let us check whether (a,b), (a,c), (b,d), (c,d),
((a,b),(c,d)), or ((a,c),(b,d)) is good in H− v. Let us number the J-cells used to construct
G5, such that H3 =H in the first four cases, and H2 =H in the last two cases. If (a,b) = (a3,b3)
is good in H3− v, then let P be a hamiltonian path of H3− v between a3 and b3. We have seen
that Hi∪Hi+1 is hamiltonian, therefore Hi∪Hi+1 has a hamiltonian path starting at any of its
vertices. Let P1 be a hamiltonian path of H1∪H2 starting at b2 and let P4 be a hamiltonian path
of H4 ∪H5 starting at a4. Then E(P1)∪ (b2,a3)∪E(P)∪ (b3,a4)∪E(P4) is the edge set of a
hamiltonian path of G5−v and does not contain any edges between H1 and H5. The cases when
(a,c), (b,d), or (c,d) is good is dealt with similarly. If ((a,b),(c,d)) = ((a2,b2),(c2,d2)) is
good in H2− v, then let Q be the union of the vertex-disjoint a− b and c− d paths that cover
all vertices of H2− v. Let furthermore Q1 be a hamiltonian path between b1 and c1 in H1,
and Q3 be a hamiltonian path between d3 and either b3 or c3 (say w.l.o.g. b3) in G3− a3. Q1
and Q3 exist since F1 and F3 are J-cells. Then E(Q1)∪ (b1,a2)∪ (c1,d2)∪E(Q)∪ (b2,a3)∪
(c2,d3)∪E(Q3)∪ (b3,a4)∪E(P4) is again the edge set of a hamiltonian path of G5− v that
does not contain any edges between H1 and H5. The case when ((a,c),(b,d)) is good is dealt
with similarly. 2

Now let us denote G4k+5[∪m
i=nV (Hi)] by G(n,m) for 1 ≤ n < m ≤ 4k + 5. It is obvious that

if n ̸= 1 or m ̸= 4k+ 5, then G(n,m) is isomorphic to some graph Gm−n+1− (bm−n+1,a1)−
(cm−n+1,d1), thus G(n,m) is traceable if m = n + 3 and G(n,m)− v is traceable for any
v ∈ G(n,m) if m = n + 4 by Lemma 3.21. Since G(1,4),G(5,8), . . . ,G(4k − 3,4k) and
G(4k+1,4k+5)−v are all traceable, the vertices of G4k+5−v can be covered by k+1 vertex-
disjoint paths, that is µ(G4k+5− v)≤ k+1 for any v ∈V (G). On the other hand, we show that
µ(G4k+5)≥ k+2. Assume to the contrary that there are at most k+1 vertex-disjoint paths that
cover the vertices of G4k+5. Since G4k+5 is connected, it is possible to add some (at most k, but it
is irrelevant) edges to these paths to obtain a spanning tree of G4k+5 with at most 2k+2 leaves.
On the other hand, by Lemma 3.7, ml(G4k+5)≥ 2k+3, a contradiction. Since for any graph G,
µ(G)≤ µ(G− v)+1 is obvious, we have k+1≤ µ(G4k+5)−1≤ µ(G4k+5− v)≤ k+1, and
the theorem is proved. 2

Now we are ready to construct non-traceable, non-hypotraceable, arachnoid graphs. Let G j
k be

the graph obtained from Gk by adding j new vertices u1,u2, . . . ,u j and edges between ui and
every vertex of Gk to Gk for i = 1,2, . . . , j.

Theorem 3.22 (Wiener, 2015 [63, 64]) Gk
4k+5 is an arachnoid graph that is neither traceable,

nor hypotraceable for any k ≥ 1.

Proof. Let G = Gk
4k+5. We have to show that for any w∈V (G), G has a spanning spider centred

at w. Let v be a neighbour of w, such that v ∈G4k+5 (such a v clearly exists). Now by Theorem
3.20, the vertices of G4k+5− v can be covered by k + 1 vertex-disjoint paths, thus using the
vertices u1, . . . ,uk (that are all connected to all vertices of G4k+5) a hamiltonian path of G− v
is easy to obtain. Now by adding the edge (v,w) to this path we obtain a spanning spider of G
centred at w, therefore G is arachnoid, indeed.
Now we show that G is not traceable. Assume to the contrary that there exists a hamiltonian
path P of G and let us delete the vertices u1, . . . ,uk from P. We obtain at most k+ 1 vertex-
disjoint paths, such that they cover the vertices of G4k+5, which is a contradiction, by Theorem
3.20.
Finally, we have to show that G is not hypotraceable. It is easy to see that G−ui is not traceable,
the proof is the same as the proof of the non-traceablity of G (by deleting the ui’s we would
obtain at most k paths, instead of at most k+1). 2
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Remark. It is easy to see that adding any edges between the ui’s does not make the graph either
traceable or hypotraceable (while the arachnoid property is obviously preserved), therefore we
can obtain a non-traceable, non-hypotraceable, arachnoid graph that contains any prescribed
graph H as an induced subgraph.

3.4. Longest paths avoiding certain vertices
We have mentioned that Walther [58] settled Gallai’s problem whether there exist graphs with-
out concurrent longest paths. Exploring this area further, T. Zamfirescu [66] and Grünbaum [21]
defined several numbers and graph families based on properties of longest paths and cycles, of
which we have already studied the numbers C1

3 , C2
3 , P1

3 , P2
3 in Section 1.1 and the numbers C2

3

and P2
3 again in Section 1.2. Now we are dealing with the graph family Π( j,m) introduced by

Grünbaum [21]. This family consists of graphs having m more vertices than their longest paths
have, such that for each j vertices there is a longest path missing these j vertices; e.g. Π(1,1)
is the class of hypotraceable graphs.

Theorem 3.23 (Wiener, 2015 [63]) Gk+4 ∈Π(1,k) for all k ≥ 1.

Proof. First we prove that for any v ∈ V (Gk+4) there is a path in Gk+4 that misses exactly
k vertices, one of which is v. W.l.o.g. we may suppose that v ∈ H3. Since F3 is a J-cell, at
least one of the pairs (a3,b3), (a3,c3), (b3,d3), (c3,d3), ((a3,b3),(c3,d3)), ((a3,c3),(b3,d3)) is
good in H3− v. It is easy to see that by symmetry reasons we may suppose that either (a3,b3)
or ((a3,b3),(c3,d3)) is good in H3− v.
If (a3,b3) is good, then let P3 be a hamiltonian path between a3 and b3 in H3− v and P2 be a
hamiltonian path of H1 ∪H2 starting at b2 (since H1 ∪H2 is hamiltonian, such a path exists).
If k ≥ 2 then let us consider now the graph H4−d4. Since F4 is a J-cell, this graph contains a
hamiltonian path between a4 and either b4 or c4. By symmetry reasons we may suppose that
there is a hamiltonian path between a4 and b4 in H4− d4, let us call it P4. If k ≥ 3 then the
paths Pi are defined similarly for i = 5,6, . . . ,k+ 2. Finally, let Pk+3 be a hamiltonian path of
Hk+3∪Hk+4 starting at ak+4 (since Hk+3∪Hk+4 is hamiltonian, such a path exists). Now

P2∪ (b2,a3)∪P3∪ (b3,a4)∪ . . .∪ (bk+2,ak+3)∪Pk+3

is a path in Gk+4 missing exactly k vertices, one of which is v.
If ((a3,b3),(c3,d3)) is good in H3− v, then let Q be a spanning subgraph of H3− v consisting
of two vertex-disjoint paths, one between a3 and b3 and the other one between c3 and d3. Let
P2 be a hamiltonian path between b2 and c2 in H2 (since F2 is a J-cell, such a hamiltonian path
exists). Since F4 is a J-cell, H4−d4 contains a hamiltonian path between a4 and either b4 or c4.
By symmetry reasons we may suppose that there is a hamiltonian path between a4 and b4 in
H4−d4, let it be P4. If k≥ 2 then the paths Pi are defined similarly for i= 5,6, . . . ,k+3. Finally,
let Pk+4 be a hamiltonian path of Hk+4∪H1 starting at ak+4 (since Hk+4∪H1 is hamiltonian,
such a path exists). Now

P2∪ (b2,a3)∪ (c2,d3)∪Q∪ (c3,d4)∪ (b3,a4)∪P4∪ (b4,a5)∪ . . .∪ (bk+3,ak+4)∪Pk+4

is a path in Gk+4 missing exactly k vertices, one of which is v.
Now we have to show that there is no path in Gk+4 that misses only k−1 vertices. Assume to
the contrary that such a path P exists. If there are at least 5 indices i, such that P contains all
vertices of Hi, then there are 3 such i’s with the additional property that all vertices in Hi have
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degree 2 in P. In this case it is possible to add some edges to P to obtain a spanning tree T
of Gk+4 such that all vertices in V (Hi) has degree 2 in T , which is impossible by Claim 3.6.
Therefore there are at most 4 such indices, thust there are at least k indices i, for which P does
not contain all vertices of Hi. This means that there are at least k vertices of Gk+4 missing from
P, a contradiction. 2

Walther [58] constructed connected graphs belonging to Π(1,m) for every m≥ 4, and T. Zamfi-
rescu [67] constructed 2-connected planar graphs and 3-connected graphs belonging to Π(1,m)
for every m≥ 1. Actually, using one of Thomassen’s 3-connected planar hypotraceable graphs
[51] instead of Horton’s graph in Zamfirescu’s construction one obtains 3-connected planar
graphs belonging to Π(1,m) for every m≥ 1. The graphs Gk seem to give the smallest known
3-connected graphs in Π(1,m) (using the 8 vertex flip-flop obtained from the Petersen graph as
Fi for i = 1,2, . . . ,k = m+4) and also the smallest known 3-connected planar graphs in Π(1,m)
(using a J-cell obtained from a 40 vertex planar hypohamiltonian graph of Jooyandeh et al. [29]
as Fi for i = 1,2, . . . ,m+4).

3.5. Open problems
Here we mention some open questions related to leaf-critical and leaf-stable graphs and some
other topics covered. We have constructed (l+1)-leaf-critical and l-leaf-stable graphs for every
l ≥ 2 and explored some properties of leaf-critical graphs of connectivity 2. However, all leaf-
critical and leaf-stable graphs we have constructed have connectivity 3. While the 2-leaf-critical
(hypohamiltonian) graphs are all 3-connected, there exist 3-leaf-critical (hypotraceable) graphs
of connectivity 2 [49] and it is not so difficult to construct 2-leaf-stable graphs of connectivity
2:

Theorem 3.24 (Wiener, 2015 [63]) Let G be a hypotraceable graph with a cut {a,b}. Then
(a,b) ̸∈ E(G) and G+(a,b) is 2-leaf-stable.

Proof. Let us denote G+(a,b) by G′. Let G1 and G2 be the 2-fragments of G with vertices of
attachment a,b (by Lemma 3.13, G = G1 ∪G2). First we show that G′ is traceable (this also
implies that (a,b) ̸∈ E(G)). Let P be a hamiltonian path of G− a and Q a hamiltonian path
of G−b. Then P[V (G1−a)]∪Q[V (G2−b)]+ (a,b) is a hamiltonian path of G′. On the other
hand, G′ is not hamiltonian, otherwise G would be traceable. Now we have to show that for any
vertex v∈V (G′) G′−v is traceable, but not hamiltonian. The former is obvious, since G−v is a
subgraph of G′−v and is traceable. Now assume to the contrary that there exists a hamiltonian
cycle of G′− v. This cycle must contain the edge (a,b), since G− v cannot have a hamiltonian
cycle, otherwise G would be traceable. This means that there is a hamiltonian path between a
and b in G− v, but in this case G−a−b would be connected, a contradiction. 2

It would be interesting to construct (l+1)-leaf-critical and l-leaf-stable graphs of connectivity
2 with l ≥ 3.
A pretty natural question concerns the size of the smallest l-leaf-critical and l-leaf-stable
graphs. This is known only for hypohamiltonian graphs. Probably it is even more difficult
for planar graphs; the size of the smallest planar hypohamiltonian graph is only known to be
between 18 and 40 [2], [29].
The next question is about the structure of leaf-critical and leaf-stable graphs. All such graphs
known (except the hypohamiltonian graphs) are constructed using hypohamiltonian graphs as
building blocks. Is it possible to construct such graphs without using hypohamiltonian graphs or

41



do these graphs always contain J-cells or other graphs obtained from hypohamiltonian graphs
(like vertex-deleted hypohamiltonian graphs)? We have mentioned that planar hypohamiltonian
graphs contain a vertex of degree 3 [52]. Using the constructions known this property is inhe-
rited for leaf-critical and leaf-stable graphs. Are there planar leaf-critical or leaf-stable graphs
without a degree 3 vertex?
One of the classical open problems concerning hypohamiltonicity (that we have already men-
tioned earlier) is whether there exist hypohamiltonian graphs without a degree 3 vertex or even
of connectivity at least 4.
We have settled an open problem of Gargano et al. [18] concerning spanning spiders and arach-
noid graphs, but they also proposed the more general problem whether there exist arachnoid
graphs containing a vertex v, such that v is the center of only spanning spiders S, for which
dS(v)≥ 4. This question is still open. Now that we have seen new arachnoid graphs it is worth
asking whether there are arachnoid graphs containing several vertices v, such that v is the center
of only spanning spiders S, for which dS(v)≥ d for some fixed d ≥ 4.
There are many open questions concerning the graph families Π( j,m), among which the most
interesting one is maybe the conjecture that Π(2,2) is empty [21], see also [67].
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4. fejezet

Traces of hypergraphs

Traces of hypergraphs have been examined for more than 40 years. The classical paper of
Vapnik and Chervonenkis [56] that now plays a central role in computational learning theory,
statistics, and discrete geometry appeared in 1971. In an implicit form this paper contains the
proposition known now as Sauer’s theorem [43] (the theorem was also proved independently
by Perles and Shelah [44] and was conjectured by Erdős). Traces also have strong connections
with other hypergraph problems (e.g. Turán type problems). However, the reason why this topic
is included here is that theorems concerning traces can be efficiently used in fault tolerance
problems concerning the hypercube (that is, finding long paths or cycles avoiding some faulty
vertices or edges of the hypercube), as it was showed by Fink and Gregor [14]. Given a set of
(faulty) vertices X of the n-dimensional hypercube, a cycle is said to be a long fault-tolerant
cycle if it contains no vertex from X and has length 2n− 2|X | (this is the maximum length
that one can expect, since the hypercube is bipartite). Fink and Gregor proved that if n ≥ 15,
then for any X of size at most n2

10 +
n
2 +1, there exists a long fault-tolerant cycle [14]. This was

the first result with a quadratic number of faulty vertices, which is known to be asimptotically
optimal (earlier results were about n− 1 faulty vertices, which was improved to 2n− 4 and
later 3n−7). The key to this result is Theorem 4.6 of the author to be presented soon. A similar
result concerning long paths instead of long cycles was achieved by Dvořák and Koubek [13],
they also used Theorem 4.6.

We denote the set of the first n positive integers by [n] and the complement of a set X ⊆ [n] by
X . Throughout this chapter the vertex set of a hypergraph is [n], unless it is stated otherwise.
We call a hypergraph simple if it does not contain multiple edges. Simple hypergraphs will
also be called set systems. If it does not cause any misunderstanding we identify hypergraphs
by their edge set. The multiplicity of a set of vertices X in a hypergraph H is the number
of occurences of X as an edge and is denoted by mH (X). A hypergraph H is said to be
hereditary if A ∈H and B ⊆ A implies B ∈H . The trace of a hypergraph H on R ⊆ [n],
denoted by H |R, is the not necessarily simple hypergraph obtained by intersecting the edges
of H with the set R, i.e. H |R is the multiset {H ∩R : H ∈H }. An r-trace of a hypergraph
H is a trace of H on some R ⊆ [n], where |R|= r. The arrow-relation (n,m)→ (r,s) means
that for every hypergraph H containing m distinct edges there exists an r-trace that contains
at least s distinct edges. Bondy [8] observed that (n,m)→ (n−1,m) holds if m≤ n. Bollobás
[7] showed that (n,m)→ (n− 1,m− 1) holds if m ≤ ⌈3

2n⌉. Sauer [43] (and independently
Vapnik and Chervonenkis [56] and Perles and Shelah [44]) proved that (n,m)→ (r,2r) holds if
m > ∑r−1

i=0
(n

i

)
. Frankl [15] and independently Alon [3] gave a common generalization of these

results. They showed that (n,m)→ (r,s) holds if and only if for every hereditary hypergraph
H containing m distinct edges there exists a subset R⊆ [n], |R|= r such that H |R contains at
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least s distinct edges. (Actually, Alon proved the theorem in a more general setting.) It is easy
to check that the first three theorems follow directly from the latter one, indeed. All of these
theorems deal with the number of distinct edges of the trace. About other functions of traces
not much is known. In Section 4.1 we show that the maximum multiplicity of edges of trace
hypergraphs can be characterized using the number of distinct edges of traces of hereditary
hypergraphs and prove that Sauer’s theorem is an immediate corollary of this characterization.
We also obtain Theorem 4.6 as a corollary of this characterization.

4.1. Maximum multiplicity of edges
Definition 4.1 Let m,n,r,s be positive integers. The relation (n,m) ◃ (r,s) holds if for any set
system H ⊆ 2[n], |H |= m there exists X ⊆ [n], |X |= r, such that ∀S⊆ X : mH |X (S)≤ s.

For example (n,m) ◃ (1,2) holds for every m and n obviously. Moreover, (n,m) ◃ (1,1) holds
for m ≤ n, this is just Bondy’s theorem and it is easy to show that (n,n+1) ̸ ◃(1,1) (consider
the system containing all 1-element sets and the empty set). More generally, (n,m)◃ (r,2r) and
(n,∑r

i=0
(n

i

)
) ̸ ◃(r,2r−1) can be checked similarly. Now we present some further properties of

the relation ◃ that can be readily proved.

Claim 4.2 Let m,n,r,s be positive integers.

1. (n,m)◃ (r,s)⇒ (n,m)◃ (r,s+1).

2. (n,m)◃ (r,s)⇒ (n,m−1)◃ (r,s).

3. (n,m)◃ (n−1,m−1). 2

In order to give a characterization of the relation ◃, we need the following lemma.

Lemma 4.3 The relation (n,m)◃ (r,s) holds if and only if for any hereditary set system H ⊆
2[n], |H |= m there exists X ⊆ [n], |X |= r, such that ∀S⊆ X : mH |X (S)≤ s.

Proof. The only if direction is trivial, now we prove the if direction. A set system H ⊆ 2[n] is
said to be a counterexample for (n,m)◃(r,s) if it contains m sets but the condition of Definition
4.1 is not fulfilled for H . We show that if a counterexample for (n,m) ◃ (r,s) exists, then a
hereditary counterexample also exists, thus proving the if direction of the lemma.
Let H ⊆ 2[n] be a counterexample for (n,m) ◃ (r,s) and consider the following functions Di :
H → 2[n] (i = 1,2, . . . ,n).

Di(H) =

{
H \{i}, if i ∈ H and H \{i} /∈H ,
H, otherwise.

The set system Di(H ) = {Di(H) : H ∈H } is called the down-compression of H on element
i. It is obvious that ∀i : |Di(H )| = |H | and that ∀i : Di(H ) = H holds if and only if H
is hereditary. Moreover, it is also easy to see that if H is not hereditary, then there exists an
i ∈ [n], such that ∑H∈H |Di(H)| < ∑H∈H |H|. Thus for any set system H ⊆ 2[n] there is a
hereditary system H ′ ⊆ 2[n] obtained by a sequence of down-compressions from H , such that
|H ′|= |H |= m. Now we show that H ′ is a counterexample for (n,m)◃ (r,s).
Since H is a counterexample and H ′ is obtained by a sequence of down-compressions from
H , it suffices to show that the down-compression of a counterexample is also a counter-
example. So let C ⊆ 2[n] be a counterexample, that is, for any set X ⊆ [n] of size r there

44



is a set S ⊆ X : mC |X (S) > s. Now we show that mDi(C )|X (S \ {i}) ≥ mC |X (S) > s for every
i ∈ [n]. This proves that any down-compression of C is a counterexample, as we have seen that
|Di(C )|= |C |= m.
To verify mDi(C )|X (S\{i})≥ mC |X (S), first let us assume that i /∈ S. In this case

mDi(C )|X (S\{i}) = mDi(C )|X (S) =
∣∣{D ∈ Di(C ) : D∩X = S }

∣∣=
=
∣∣{Di(C) : C ∈ C ,Di(C)∩X = S }

∣∣≥ ∣∣{C ∈ C : C∩X = S }
∣∣= mC |X (S),

where the inequality holds because i /∈ S ⊆ X and C∩X = S implies Di(C)∩X . Now let us
assume that i ∈ S. Then

mDi(C )|X (S\{i}) =
∣∣{D ∈ Di(C ) : D∩X = S\{i} }

∣∣≥
≥
∣∣{C \{i} : C ∈ C , (C \{i})∩X = S\{i} }

∣∣≥ ∣∣{C ∈ C : C∩X = S }
∣∣= mC |X (S),

because Di(C ) contains C \ {i} for every C ∈ C (first inequality) and C∩X = S implies (C \
{i})∩X = S\{i} and the sets C \{i} are all distinct for C ∈ C ,C∩X = S (second inequality).
This completes the proof of the lemma. 2

Notice that Bondy’s theorem follows directly from Lemma 4.3.

Theorem 4.4 (Wiener, 2007 [60]) The relation (n,m)◃ (r,s) holds if and only if for any here-
ditary set system H ⊆ 2[n], |H |= m there exists X ⊆ [n], |X |= r, such that H |X contains at
most s distinct edges.

Proof. By Lemma 4.3 we only have to prove that the statements
(A) for any hereditary set system H ⊆ 2[n], |H | = m there exists X ⊆ [n], |X | = r, such that
∀S⊆ X : mH |X (S)≤ s

and
(B) for any hereditary set system H ⊆ 2[n], |H | = m there exists X ⊆ [n], |X | = r, such that
H |X contains at most s distinct edges
are equivalent. Because H is hereditary, mH |X (S) ≤ mH |X ( /0) for any S ⊆ X , thus (A) is
equivalent to the statement
(A’) for any hereditary set system H ⊆ 2[n], |H |= m there exists X ⊆ [n], |X |= r, such that
mH |X ( /0)≤ s.
The empty set can occur more than s times as an edge of H |X only if H |X contains more than
s distinct edges, because the sets whose restriction to X is the empty set must be different on
X . This proves (B)⇒ (A’). To show (A’)⇒ (B), assume that (A’) is true and consider the set
X ⊆ [n] for which mH |X ( /0)≤ s. Since H is hereditary, distinct edges of H |X are also distinct
edges of H . The restriction of each of these edges to X is the empty set, so their number is at
most s, thus (B) is true, indeed. 2

4.2. Corollaries
Corollary 4.5 (Wiener, 2007 [60]) (n,∑r

i=0
(n

i

)
− 1) ◃ (r,2r− 1) holds for any r ≤ n positive

integers.
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Proof. By Theorem 4.4 we only have to show that for any hereditary set system H ⊆ 2[n],
|H |= ∑r

i=0
(n

i

)
−1 there exists X ⊆ [n], |X |= r, such that H |X contains at most 2r−1 distinct

edges. This is quite easy to verify: since H is hereditary, there exists a set X ⊆ [n] of cardinality
r, such that X ̸∈H (otherwise |H | ≥ ∑r

i=0
(n

i

)
would follow). Now the trace H |X does not

contain X , thus H |X contains at most 2r−1 distinct edges. 2

We have already seen that (n,∑r
i=0

(n
i

)
) ̸ ◃(r,2r−1), so Corollary 4.5 is sharp. It is also worth

mentioning that Corollary 4.5 and Sauer’s theorem are equivalent: we just have to consider the
complement of a set system H and notice that a trace H |R contains 2|R| distinct edges if and
only if H |R contains no edge of multiplicity 2n−|R|. Another easy corollary of Theorem 4.4 is
that the relation ◃ is transitive.
By Bondy’s theorem, (n,m)◃(1,1) for m≤ n, but we have seen that (n,n+1) ̸ ◃(1,1). By point
2 of Proposition 4.2, this implies (n,m) ̸ ◃(1,1) for m > n. From this relation and (r,r)◃ (1,1),
by the transitivity of the relation ◃ follows that (n,m) ̸ ◃(r,r) for m > n.
Hence for m > n, the smallest s for which (n,m)◃(r,s) can be true for some r, is s = r+1. If we
are interested in those numbers r for which (n,m)◃(r,r+1) holds (for fixed m and n, m> n) we
only have to find the maximum r having this property, since by point 3 of Proposition 4.2, all
positive integers smaller than r also have this property. The next theorem gives a lower bound
on this maximum, which is sharp for infinitely many values of m and n.

Theorem 4.6 (Wiener, 2007 [60]) Let m ≥ 2n be positive integers and r = ⌈ n2

2m−n−2⌉. Then
(n,m)◃ (r,r+1).

Proof. We use induction on n. For n = 1 we have to check (1,2)◃ (1,2), which is obvious. Now
let r′ = ⌈ (n−1)2

2m−(n−1)−2⌉ (obviously r′ ≤ r) and let us assume that (n−1,m)◃(r′,r′+1) holds. We
have to show that (n,m)◃ (r,r+1).
Because of Theorem 4.4, we only have to prove that for any hereditary set system H ⊆ 2[n]

of m sets there exists an r-element set X ⊆ [n], such that H |X contains at most r+ 1 distinct
edges. So let H ⊆ 2[n] be a hereditary system of m sets. Now we consider two cases.
Case 1 For every i ∈ [n], {i} ∈H . This means that the number of sets of at least 2 elements in
H is m−n−1 (since H contains n 1-element sets and also the empty set). Consider now that
graph G on the vertex set [n] whose edges are the 2-element sets of H . G has n vertices and
at most m− n− 1 edges. A corollary of Turán’s theorem [54], [5, p. 282.] states that a graph
having n vertices and e edges has a stable set of size at least n2

2e+n . Thus the graph G contains a

stable set X of size ⌈ n2

2(m−n−1)+n⌉= ⌈
n2

2m−n−2⌉= r.
If i, j ∈ X (i ̸= j), then {i, j} /∈H , since X is stable in G. Furthermore, there is no set in H
that contains both i and j, because H is hereditary. Thus H |X does not contain sets of size
greater than 1, so the number of distinct sets in H |X is at most |X |+1 = r+1.
Case 2 There is an i ∈ [n] such that {i} /∈H . Then there is no set in H that contains the
element i, because H is hereditary, thus we can delete the element i from the underlying set
[n] without changing H . Now we use the induction hypothesis: (n− 1,m) ◃ (r′,r′+ 1). This
implies that a set X ⊆ [n]\{i} of size r′ exists, such that H |X contains at most r′+1 distinct
edges.
Now for the set X ′ = X ∪{i} we have H |X ′ = H |X , hence H |X ′ also contains at most r′+1
distinct edges. Since r′ ≤ r, it only remains to show that either X or X ′ has r elements.
Because |X |= r′ ≤ r and |X ′|= |X |+1, it is enough to prove that r′+1≥ r. That is, we have
to show that

⌈ (n−1)2

2m− (n−1)−2
⌉+1≥ ⌈ n2

2m−n−2
⌉.
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This holds if
(n−1)2

2m− (n−1)−2
+1≥ n2

2m−n−2
.

Eliminating the fractions we obtain

(2m−3n)(2m−n−2)≥ n2,

which is true, since m≥ 2n and n≥ 2.
Note that the lower bound n2

2e+n following from Turán’s theorem is sharp for the graphs whose
components are complete graphs of the same size. Therefore considering the hypergraph con-
taining the empty set, all the 1-element sets, and the edges of such a graph we can see that
(n,m) ̸ ◃(r+1,r+2) for r = ⌈ n2

2m−n−2⌉, that is, our bound is sharp in these cases. 2

For a somewhat stronger form of the previous theorem we need the following definitions. A
hypergraph H is a minimal simple hypergraph if it is simple but for every subset X of the
vertices the restriction of H to X is not simple. The set of all minimal simple hypergraphs on
the vertex set [n] having m hyperedges is denoted by MSH(n,m).

Theorem 4.7 (Wiener, 2013 [61]) Let A ∈MSH(n,m). Then there exists a subset X ⊆ [n] of
cardinality

⌈
n2

2m−n−2

⌉
, such that by deleting X we obtain a hypergraph where every hyperedge

has multiplicity at most
⌈

n2

2m−n−2

⌉
+1.

The proof of this theorem is pretty similar to the proof of Theorem 4.6 and is therefore omitted.
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