The asymptotic value of the independence ratio for the direct graph power

Ágnes Tóth

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences

CanaDAM 2013

The asymptotic value of the independence ratio for the direct graph power

independence ratio of a graph $G: i(G) = \frac{\alpha(G)}{|V(G)|}$

direct product of two graphs G and H: the graph $G \times H$ for which $V(G \times H) = V(G) \times V(H)$, and $\{(x_1, y_1), (x_2, y_2)\} \in E(G \times H)$, iff $\{x_1, x_2\} \in E(G)$ and $\{y_1, y_2\} \in E(H)\}$.

 $G^{\times k}$ denotes the *k*th direct power of *G*

The asymptotic value of the independence ratio for the direct graph power

independence ratio of a graph $G: i(G) = \frac{\alpha(G)}{|V(G)|}$

direct product of two graphs G and H: the graph $G \times H$ for which $V(G \times H) = V(G) \times V(H)$, and $\{(x_1, y_1), (x_2, y_2)\} \in E(G \times H)$, iff $\{x_1, x_2\} \in E(G)$ and $\{y_1, y_2\} \in E(H)\}$.

 $G^{\times k}$ denotes the *k*th direct power of *G*

The asymptotic value of the independence ratio for the direct graph power

independence ratio of a graph $G: i(G) = \frac{\alpha(G)}{|V(G)|}$

direct product of two graphs G and H: the graph $G \times H$ for which $V(G \times H) = V(G) \times V(H)$, and $\{(x_1, y_1), (x_2, y_2)\} \in E(G \times H)$, iff $\{x_1, x_2\} \in E(G)$ and $\{y_1, y_2\} \in E(H)\}$.

 $G^{\times k}$ denotes the *k*th direct power of *G*

Definition (Brown, Nowakowski, Rall - 1996.): The asymptotic value of the independence ratio for the direct graph power is defined as

$$A(G) = \lim_{k \to \infty} i(G^{\times k}).$$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

there exists an independent set U_k of $G^{\times k}$ such that

$$\frac{|U_k|}{|U_k| + |N_{G \times k}(U_k)|} \ge \frac{|U|}{|U| + |N_G(U)|}$$

and

$$\lim_{k \to \infty} \frac{|U_k|}{|V(G^{\times k})|} = \frac{|U|}{|U| + |N_G(U)|}$$

 $0 < i(G) \le i(G^{\times 2}) \le i(G^{\times 3}) \le \cdots \le A(G) \le 1$

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Example: bipartite graphs

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Example: bipartite graphs for bipartite G we have $i(G) \ge \frac{1}{2}$ and so $A(G) \ge \frac{1}{2}$

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Example: bipartite graphs for bipartite G we have $i(G) \ge \frac{1}{2}$ and so $A(G) \ge \frac{1}{2}$ if $\alpha(G) > \frac{1}{2}|V(G)|$ then A(G) = 1

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Example: bipartite graphs for bipartite *G* we have $i(G) \ge \frac{1}{2}$ and so $A(G) \ge \frac{1}{2}$ if $\alpha(G) > \frac{1}{2}|V(G)|$ then A(G) = 1 *G* if $\alpha(G) = \frac{1}{2}|V(G)|$ then *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has one $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has $(\forall k)$ *G* has a perfect matching, therefore $G^{\times k}$ are also has $(\forall k)$ *G* has a perfect matching has a perfect

<ロト < @ ト < 注 ト < 注 ト 三 の < 0</p>

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Theorem (Brown, Nowakowski, Rall - 1996.): For any independent set U of G we have $A(G) \ge \frac{|U|}{|U|+|N_G(U)|}$, where $N_G(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G) > \frac{1}{2}$, then A(G) = 1.

Observation (Alon, Lubetzky): $A(G) \ge i_{max}^{*}(G)$, where $i_{max}(G) = \max_{\substack{U \text{ independent in } G}} \frac{|U|}{|U|+|N_{G}(U)|}$ $i_{max}^{*}(G) = \begin{cases} i_{max}(G), & \text{if } i_{max}(G) \le \frac{1}{2} \\ 1, & \text{if } i_{max}(G) > \frac{1}{2} \end{cases}$.

$$i(G) \stackrel{\exists G:<}{\leq} i_{max}(G) \stackrel{\exists G:<}{\leq} i^*_{max}(G) \leq A(G)$$

Question (Alon, Lubetzky - 2007.): Does every graph G satisfy $A(G) = i_{max}^*(G)$?

$$i(G) \stackrel{\exists G:<}{\leq} i_{max}(G) \stackrel{\exists G:<}{\leq} i^*_{max}(G) \leq A(G)$$

Question (Alon, Lubetzky - 2007.): Does every graph G satisfy $A(G) = i_{max}^*(G)$?

Theorem (Á. Tóth - 2012.): $A(G) = i_{max}^*(G)$, for any graph G.

$$i(G) \stackrel{\exists G:<}{\leq} i_{max}(G) \stackrel{\exists G:<}{\leq} i^*_{max}(G) \leq A(G)$$

Question (Alon, Lubetzky - 2007.): Does every graph G satisfy $A(G) = i_{max}^*(G)$?

Theorem (Á. Tóth - 2012.): $A(G) = i_{max}^*(G)$, for any graph G.

It easily follows from the inequality

 $i_{max}^*(G \times H) \leq \max\{i_{max}^*(G), i_{max}^*(H)\}.$

$$i(G) \stackrel{\exists G:<}{\leq} i_{max}(G) \stackrel{\exists G:<}{\leq} i^*_{max}(G) \leq A(G)$$

Question (Alon, Lubetzky - 2007.): Does every graph G satisfy $A(G) = i_{max}^*(G)$?

Theorem (Á. Tóth - 2012.): $A(G) = i_{max}^*(G)$, for any graph G.

It easily follows from the inequality

 $i_{max}^*(G \times H) \leq \max\{i_{max}^*(G), i_{max}^*(H)\}.$

Proposition (weaker inequality): $i(G \times H) \leq \max\{i_{max}^*(G), i_{max}^*(H)\}$

Consequences

Conjecture (BNR): $A(G \cup H) = \max\{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Consequences

Conjecture (BNR): $A(G \cup H) = \max\{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Theorem (BNR): For any rational $r \in (0, \frac{1}{2}] \cup \{1\}$ there exists a graph G with A(G) = r. **Question** (BNR): Can the value of A(G) be irrational?

Consequences

Conjecture (BNR): $A(G \cup H) = \max\{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Theorem (BNR): For any rational $r \in (0, \frac{1}{2}] \cup \{1\}$ there exists a graph G with A(G) = r. **Question** (BNR): Can the value of A(G) be irrational?

From $A(G) = i_{max}^*(G)$ we obtain that: $A(G \cup H) = \max\{A(G), A(H)\}.$ A(G) cannot be irrational.

Question (BNR): Is A(G) computable? And if so, what is its complexity?

Question (BNR): Is A(G) computable? And if so, what is its complexity?

Theorem (BNR): If G is bipartite then A(G) can be determined in polynomial time.

Question (BNR): Is A(G) computable? And if so, what is its complexity?

Theorem (BNR): If G is bipartite then A(G) can be determined in polynomial time.

Theorem (AL): Determining whether A(G) = 1 or $A(G) \le \frac{1}{2}$ can be also done in polynomial time.

Question (BNR): Is A(G) computable? And if so, what is its complexity?

Theorem (BNR): If G is bipartite then A(G) can be determined in polynomial time.

Theorem (AL): Determining whether A(G) = 1 or $A(G) \le \frac{1}{2}$ can be also done in polynomial time.

From $A(G) = i_{max}^*(G)$ we also obtain that: The problem of deciding whether A(G) > t for a given graph G and a value t, is NP-complete.

Hedetniemi's conjecture - 1966.: For every graph *G* and *H* we have

 $\chi(G \times H) = \min\{\chi(G), \chi(H)\}.$

Hedetniemi's conjecture - 1966.: For every graph G and H we have

$$\chi(G \times H) = \min\{\chi(G), \chi(H)\}.$$

Hedetniemi's conjecture - 1966.: For every graph *G* and *H* we have

$$\chi(G \times H) = \min\{\chi(G), \chi(H)\}.$$

The fractional version of the conjecture: (χ_f denotes the fractional chromatic number of the graph.)

$$\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}.$$

 $\chi_f(G \times H) \le \min\{\chi_f(G), \chi_f(H)\} \text{ is easy.}$ Tardif, 2005.: $\chi_f(G \times H) \ge \frac{1}{4}\min\{\chi_f(G), \chi_f(H)\}.$

Hedetniemi's conjecture - 1966.: For every graph *G* and *H* we have

$$\chi(G \times H) = \min\{\chi(G), \chi(H)\}.$$

The fractional version of the conjecture: (χ_f denotes the fractional chromatic number of the graph.)

$$\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}.$$

 $\chi_f(G \times H) \le \min\{\chi_f(G), \chi_f(H)\} \text{ is easy.}$ Tardif, 2005.: $\chi_f(G \times H) \ge \frac{1}{4}\min\{\chi_f(G), \chi_f(H)\}.$

Theorem (Zhu - 2010.): The fractional version of Hedetniemi's conjecture is true. **Corollary**: The Burr-Erdős-Lovász conjecture is true.

any independent set U of $G \times H$

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G,

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G,

any independent set U of $G \times H$ can be partitioned into the union of A and B, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G. for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the *G*-neighbourhood of *A*,

 $\exists (x', y) \in A, \{x, x'\} \in E(G)\}$

 $MB = \{(x, y) \in V(G \times H) :$ $\exists (x, y') \in B, \{y, y'\} \in E(H)\}$

any independent set U of $G \times H$ can be partitioned into the union of A and B, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G. for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the *G*-neighbourhood of *A*, and MB denotes the H-neighbourhood of B,

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if **MA** denotes the G-neighbourhood of A, and **MB** denotes the H-neighbourhood of B, A, B, MA, MB are pairwise disjoint subsets of $V(G \times H)$.

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if **MA** denotes the G-neighbourhood of A, and **MB** denotes the H-neighbourhood of B, A, B, MA, MB are pairwise disjoint subsets of $V(G \times H)$.

any independent set U of $G \times H$ can be partitioned into the union of **A** and **B**, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if **MA** denotes the G-neighbourhood of A, and **MB** denotes the H-neighbourhood of B, A, B, MA, MB are pairwise disjoint subsets of $V(G \times H)$. The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max\{i^*_{max}(G), i^*_{max}(H)\}$:

$$i(G \times H) = \frac{\alpha(G)}{|V(G \times H)|} = \frac{|U|}{|V(G \times H)|}$$

$$i(G \times H) = \frac{\alpha(G)}{|V(G \times H)|} = \frac{|U|}{|V(G \times H)|}$$

$$i(G \times H) = \frac{\alpha(G)}{|V(G \times H)|} = \frac{|U|}{|V(G \times H)|}$$
$$\frac{|A|}{|A| + |MA|} \le i_{max}(G),$$

$$i(G \times H) = \frac{\alpha(G)}{|V(G \times H)|} = \frac{|U|}{|V(G \times H)|}$$
$$\frac{|A|}{|A| + |MA|} \le i_{max}(G), \quad \frac{|B|}{|B| + |MB|} \le i_{max}(H)$$

$$i(G \times H) = \frac{\alpha(G)}{|V(G \times H)|} = \frac{|U|}{|V(G \times H)|}$$
$$\frac{|A|}{|A| + |MA|} \le i_{max}(G), \quad \frac{|B|}{|B| + |MB|} \le i_{max}(H)$$
$$|A| + |B| = |U|, \ |A| + |B| + |MA| + |MB| \le |V(G \times H)$$

Thank you for your attention!