The asymptotic value of the independence ratio for the direct graph power

Ágnes Tóth

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences

CanaDAM 2013

The asymptotic value of the independence ratio

for the direct graph power

independence ratio of a graph $G: i(G)=\frac{\alpha(G)}{|V(G)|}$

$$
H \quad G \times H
$$

direct product of two graphs G and H : the graph $G \times H$ for which

$$
\begin{aligned}
& V(G \times H)=V(G) \times V(H) \text {, and } \\
& \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \times H) \text {, if } \\
& \left.\left\{x_{1}, x_{2}\right\} \in E(G) \text { and }\left\{y_{1}, y_{2}\right\} \in E(H)\right\} .
\end{aligned}
$$

- G
$G^{\times k}$ denotes the k th direct power of G

The asymptotic value of the independence ratio

for the direct graph power

independence ratio of a graph $G: i(G)=\frac{\alpha(G)}{|V(G)|}$

$$
H
$$

$$
G \times H
$$

direct product of two graphs G and H : the graph $G \times H$ for which

$$
\begin{aligned}
& V(G \times H)=V(G) \times V(H) \text {, and } \\
& \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \times H), \text { iff } \\
& \left.\quad\left\{x_{1}, x_{2}\right\} \in E(G) \text { and }\left\{y_{1}, y_{2}\right\} \in E(H)\right\} .
\end{aligned}
$$

$G^{\times k}$ denotes the k th direct power of G

The asymptotic value of the independence ratio

for the direct graph power

independence ratio of a graph $G: i(G)=\frac{\alpha(G)}{|V(G)|}$

$$
H \quad G \times H
$$

direct product of two graphs G and H : the graph $G \times H$ for which

$$
\begin{aligned}
& V(G \times H)=V(G) \times V(H), \text { and } \\
& \left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\} \in E(G \times H) \text {, iff } \\
& \left.\quad\left\{x_{1}, x_{2}\right\} \in E(G) \text { and }\left\{y_{1}, y_{2}\right\} \in E(H)\right\} .
\end{aligned}
$$

$G^{\times k}$ denotes the k th direct power of G
Definition (Brown, Nowakowski, Rall - 1996.):
The asymptotic value of the independence ratio for the direct graph power is defined as

$$
A(G)=\lim _{k \rightarrow \infty} i\left(G^{\times k}\right)
$$

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{\left|U+\left|N_{G}(U)\right|\right.}$, where
$N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

there exists an independent set U_{k} of $G^{\times k}$ such that

$$
\frac{\left|U_{k}\right|}{\left|U_{k}\right|+\left|N_{G \times k}\left(U_{k}\right)\right|} \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}
$$

and

$$
\lim _{k \rightarrow \infty} \frac{\left|U_{k}\right|}{|V(G \times k)|}=\frac{|U|}{\left|U+\left|N_{G}(U)\right|\right.}
$$

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{\left|U+\left|N_{G}(U)\right|\right.}$, where
$N_{G}(U)$ denotes the neighbourhood of U in G.

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Example: bipartite graphs

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Example: bipartite graphs for bipartite G we have $i(G) \geq \frac{1}{2}$ and so $A(G) \geq \frac{1}{2}$

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Example: bipartite graphs
for bipartite G we have $i(G) \geq \frac{1}{2}$ and so $A(G) \geq \frac{1}{2}$
if $\alpha(G)>\frac{1}{2}|V(G)|$ then $A(G)=1$

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Example: bipartite graphs
for bipartite G we have $i(G) \geq \frac{1}{2}$ and so $A(G) \geq \frac{1}{2}$
if $\alpha(G)>\frac{1}{2}|V(G)|$ then $A(G)=1$
if $\alpha(G)=\frac{1}{2}|V(G)|$ then
G has a perfect matching, therefore $G^{\times k}$ also has one $(\forall k)$ and $i\left(G^{\times k}\right) \leq \frac{1}{2}$ thus $A(G)=\frac{1}{2}$

Results of Brown, Nowakowski and Rall

$0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1$
Theorem (Brown, Nowakowski, Rall-1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Results of Brown, Nowakowski and Rall

$$
0<i(G) \leq i\left(G^{\times 2}\right) \leq i\left(G^{\times 3}\right) \leq \cdots \leq A(G) \leq 1
$$

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have $A(G) \geq \frac{|U|}{|U|+\left|N_{G}(U)\right|}$, where $N_{G}(U)$ denotes the neighbourhood of U in G.

Theorem (BNR): If $A(G)>\frac{1}{2}$, then $A(G)=1$.

Observation (Alon, Lubetzky): $A(G) \geq i_{\max }^{*}(G)$, where

$$
i_{\max }(G)=\max _{U \text { independent in } G} \frac{|U|}{|U|+\left|N_{G}(U)\right|}
$$

$$
i_{\max }^{*}(G)= \begin{cases}i_{\max }(G), & \text { if } i_{\max }(G) \leq \frac{1}{2} \\ 1, & \text { if } i_{\max }(G)>\frac{1}{2}\end{cases}
$$

Questions of Alon and Lubetzky

$i(G) \stackrel{\exists G:<}{\leq} i_{\max }(G) \stackrel{\exists G:<}{\leq} i_{\max }^{*}(G) \leq A(G)$
Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy $A(G)=i_{\text {max }}^{*}(G)$?

Questions of Alon and Lubetzky

$i(G) \stackrel{\exists G:<}{\leq} i_{\text {max }}(G) \stackrel{\exists G:<}{\leq} i_{\max }^{*}(G) \leq A(G)$
Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy $A(G)=i_{\text {max }}^{*}(G)$?

Theorem (Á. Tóth - 2012.): $A(G)=i_{\max }^{*}(G)$, for any graph G.

Questions of Alon and Lubetzky

$i(G) \stackrel{\exists G:<}{\leq} i_{\text {max }}(G) \stackrel{\exists G:<}{\leq} i_{\max }^{*}(G) \leq A(G)$
Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy $A(G)=i_{\text {max }}^{*}(G)$?

Theorem (Á. Tóth - 2012.): $A(G)=i_{\max }^{*}(G)$, for any graph G.
It easily follows from the inequality

$$
i_{\max }^{*}(G \times H) \leq \max \left\{i_{\max }^{*}(G), i_{\max }^{*}(H)\right\} .
$$

Questions of Alon and Lubetzky

$i(G) \stackrel{\exists G:<}{\leq} i_{\text {max }}(G) \stackrel{\exists G:<}{\leq} i_{\max }^{*}(G) \leq A(G)$
Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy $A(G)=i_{\text {max }}^{*}(G)$?

Theorem (Á. Tóth - 2012.): $A(G)=i_{\max }^{*}(G)$, for any graph G.
It easily follows from the inequality

$$
i_{\max }^{*}(G \times H) \leq \max \left\{i_{\max }^{*}(G), i_{\max }^{*}(H)\right\} .
$$

Proposition (weaker inequality): $i(G \times H) \leq \max \left\{i_{\max }^{*}(G), i_{\max }^{*}(H)\right\}$

Consequences

Conjecture (BNR): $A(G \cup H)=\max \{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Consequences

Conjecture $(B N R): A(G \cup H)=\max \{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Theorem (BNR):
For any rational $r \in\left(0, \frac{1}{2}\right] \cup\{1\}$ there exists a graph G with $A(G)=r$.
Question (BNR): Can the value of $A(G)$ be irrational?

Consequences

Conjecture $(B N R): A(G \cup H)=\max \{A(G), A(H)\}$, where $A \cup G$ denotes the disjoint union of G and H.

Theorem (BNR):
For any rational $r \in\left(0, \frac{1}{2}\right] \cup\{1\}$ there exists a graph G with $A(G)=r$.
Question (BNR): Can the value of $A(G)$ be irrational?

From $A(G)=i_{\text {max }}^{*}(G)$ we obtain that:
$A(G \cup H)=\max \{A(G), A(H)\}$.
$A(G)$ cannot be irrational.

Algorithmic aspects

Question (BNR): Is $A(G)$ computable? And if so, what is its complexity?

Algorithmic aspects

Question (BNR): Is $A(G)$ computable?
And if so, what is its complexity?

Theorem (BNR):
If G is bipartite then $A(G)$ can be determined in polynomial time.

Algorithmic aspects

Question (BNR): Is $A(G)$ computable?
And if so, what is its complexity?
Theorem (BNR):
If G is bipartite then $A(G)$ can be determined in polynomial time.
Theorem (AL):
Determining whether $A(G)=1$ or $A(G) \leq \frac{1}{2}$ can be also done in polynomial time.

Algorithmic aspects

Question (BNR): Is $A(G)$ computable?
And if so, what is its complexity?
Theorem (BNR):
If G is bipartite then $A(G)$ can be determined in polynomial time.
Theorem (AL):
Determining whether $A(G)=1$ or $A(G) \leq \frac{1}{2}$ can be also done in polynomial time.

From $A(G)=i_{\text {max }}^{*}(G)$ we also obtain that:
The problem of deciding whether $A(G)>t$ for a given graph G and a value t, is NP-complete.

The Hedetniemi conjecture

Hedetniemi's conjecture - 1966.:
For every graph G and H we have

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

The Hedetniemi conjecture

Hedetniemi's conjecture - 1966.:
For every graph G and H we have

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\} .
$$

The Hedetniemi conjecture

Hedetniemi's conjecture - 1966.:
For every graph G and H we have

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

The fractional version of the conjecture:
(χ_{f} denotes the fractional chromatic number of the graph.)

$$
\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\} .
$$

$\chi_{f}(G \times H) \leq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$ is easy.
Tardif, 2005.: $\chi_{f}(G \times H) \geq \frac{1}{4} \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$.

The Hedetniemi conjecture

Hedetniemi's conjecture - 1966.:
For every graph G and H we have

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\}
$$

The fractional version of the conjecture:
(χ_{f} denotes the fractional chromatic number of the graph.)

$$
\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\} .
$$

$\chi_{f}(G \times H) \leq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$ is easy.
Tardif, 2005.: $\chi_{f}(G \times H) \geq \frac{1}{4} \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$.
Theorem (Zhu - 2010.):
The fractional version of Hedetniemi's conjecture is true.
Corollary: The Burr-Erdős-Lovász conjecture is true.

The idea of the proof - Zhu's lemma

Mone. G

The idea of the proof - Zhu's lemma

N

The idea of the proof - Zhu's lemma

Moneon G
any independent set U of $G \times H$

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G,

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G,

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H;

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H;

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H;

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H;

The idea of the proof - Zhu's lemma

$$
\begin{aligned}
& M A=\{(x, y) \in V(G \times H): \\
& \left.\quad \exists\left(x^{\prime}, y\right) \in A,\left\{x, x^{\prime}\right\} \in E(G)\right\}
\end{aligned}
$$

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where
for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A,

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A,

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A,

The idea of the proof - Zhu's lemma

$$
\begin{aligned}
& M B=\{(x, y) \in V(G \times H): \\
& \left.\exists\left(x, y^{\prime}\right) \in B,\left\{y, y^{\prime}\right\} \in E(H)\right\}
\end{aligned}
$$

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where
for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H;
furthermore if MA denotes the G-neighbourhood of A, and MB denotes the H-neighbourhood of B,

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A, and MB denotes the H-neighbourhood of B,
$A, B, M A, M B$ are pairwise disjoint subsets of $V(G \times H)$.

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A, and MB denotes the H-neighbourhood of B,
$A, B, M A, M B$ are pairwise disjoint subsets of $V(G \times H)$.

The idea of the proof - Zhu's lemma

any independent set U of $G \times H$
can be partitioned into the union of \mathbf{A} and \mathbf{B}, where for $\forall y \in V(H)$ the projection of the y-slice of A is independent in G, for $\forall x \in V(G)$ the projection of the x-slice of B is independent in H; furthermore if MA denotes the G-neighbourhood of A, and MB denotes the H-neighbourhood of B,
$A, B, M A, M B$ are pairwise disjoint subsets of $V(G \times H)$.

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\text {max }}^{*}(G), i_{\text {max }}^{*}(H)\right\}$:

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\max }^{*}(G), i_{\max }^{*}(H)\right\}:$

$$
i(G \times H)=\frac{\alpha(G)}{|V(G \times H)|}=\frac{|U|}{|V(G \times H)|}
$$

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\text {max }}^{*}(G), i_{\text {max }}^{*}(H)\right\}$:

$$
i(G \times H)=\frac{\alpha(G)}{|V(G \times H)|}=\frac{|U|}{|V(G \times H)|}
$$

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\max }^{*}(G), i_{\max }^{*}(H)\right\}$:

$$
\begin{aligned}
& i(G \times H)=\frac{\alpha(G)}{|V(G \times H)|}=\frac{|U|}{|V(G \times H)|} \\
& |A||M A| \leq i_{\max }(G),
\end{aligned}
$$

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\text {max }}^{*}(G), i_{\text {max }}^{*}(H)\right\}$:

$$
\begin{aligned}
& i(G \times H)=\frac{\alpha(G)}{|V(G \times H)|}=\frac{|U|}{|V(G \times H)|} \\
& \frac{|A|}{|A|+|M A| \mid} \leq i_{\max }(G), \frac{|| |}{|B|+|M B|} \leq i_{\text {max }}(H)
\end{aligned}
$$

Cos

The idea of the proof - proof of the weaker proposition Zhu's lemma $\Rightarrow i(G \times H) \leq \max \left\{i_{\text {max }}^{*}(G), i_{\text {max }}^{*}(H)\right\}$:

$$
\begin{aligned}
& i(G \times H)=\frac{\alpha(G)}{|V(G \times H)|}=\frac{|U|}{|V(G \times H)|} \\
& \frac{|A|}{|A|+|M A|} \leq i_{\max }(G), \frac{|B|}{|B|+|M B|} \leq i_{\max }(H) \\
& |A|+|B|=|U|,|A|+|B|+|M A|+|M B| \leq|V(G \times H)|
\end{aligned}
$$

Thank you for your attention!

