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The asymptotic value of the independence ratio
for the direct graph power

independence ratio of a graph G : i(G ) = α(G)
|V (G)|

direct product of two graphs G and H:
the graph G × H for which
V (G × H) = V (G )× V (H), and
{(x1, y1), (x2, y2)} ∈ E (G × H), i�
{x1, x2} ∈ E (G ) and {y1, y2} ∈ E (H)}.

G

H G×H

G×k denotes the kth direct power of G

De�nition (Brown, Nowakowski, Rall - 1996.):
The asymptotic value of the independence ratio for the direct graph
power is de�ned as

A(G ) = lim
k→∞

i(G×k).
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Results of Brown, Nowakowski and Rall

0 < i(G ) ≤ i(G×2) ≤ i(G×3) ≤ · · · ≤ A(G ) ≤ 1

Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have A(G ) ≥ |U|

|U|+|NG (U)| , where
NG (U) denotes the neighbourhood of U in G .

U NG (U)

U
N
G
(U

)

U

NG
(U
)

there exists an independent set
Uk of G×k such that

|Uk |
|Uk |+|NG×k (Uk)|

≥ |U|
|U|+|NG (U)|

and

lim
k→∞

|Uk |
|V (G×k)| =

|U|
|U|+|NG (U)|
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Example: bipartite graphs

for bipartite G we have i(G ) ≥ 1
2
and so A(G ) ≥ 1

2

if α(G ) > 1
2
|V (G )| then A(G ) = 1

if α(G ) = 1
2
|V (G )| then

G has a perfect matching,
therefore G×k also has one (∀k)
and i(G×k) ≤ 1

2
thus A(G ) = 1

2 G

G G×2
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Observation (Alon, Lubetzky): A(G ) ≥ i∗max(G ), where

imax(G ) = max
U independent in G

|U|
|U|+|NG (U)|

i∗max(G ) =

{
imax(G ), if imax(G ) ≤ 1

2

1, if imax(G ) > 1
2

.



Questions of Alon and Lubetzky

i(G )
∃G :<
≤ imax(G )

∃G :<
≤ i∗max(G ) ≤ A(G )

Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy A(G ) = i∗max(G )?

Theorem (Á. Tóth - 2012.): A(G ) = i∗max(G ), for any graph G .

It easily follows from the inequality

i∗max(G × H) ≤ max{i∗max(G ), i∗max(H)}.

Proposition (weaker inequality): i(G×H) ≤ max{i∗max(G ), i∗max(H)}
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Consequences

Conjecture (BNR): A(G ∪ H) = max{A(G ),A(H)}, where
A ∪ G denotes the disjoint union of G and H.

Theorem (BNR):
For any rational r ∈ (0, 1

2
]∪{1} there exists a graph G with A(G ) = r .

Question (BNR): Can the value of A(G ) be irrational?

From A(G ) = i∗max(G ) we obtain that:

A(G ∪ H) = max{A(G ),A(H)}.
A(G ) cannot be irrational.
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Algorithmic aspects

Question (BNR): Is A(G ) computable?
And if so, what is its complexity?

Theorem (BNR):
If G is bipartite then A(G) can be determined in polynomial time.

Theorem (AL):
Determining whether A(G ) = 1 or A(G ) ≤ 1

2
can be also done in

polynomial time.

From A(G ) = i∗max(G ) we also obtain that:
The problem of deciding whether A(G ) > t for a given graph G and
a value t, is NP-complete.
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The Hedetniemi conjecture

Hedetniemi's conjecture - 1966.:
For every graph G and H we have

χ(G × H) = min{χ(G ), χ(H)}.

G

H G×H

The fractional version of the conjecture:

(χf denotes the fractional chromatic number of the graph.)

χf (G × H) = min{χf (G ), χf (H)}.

χf (G × H) ≤ min{χf (G ), χf (H)} is easy.
Tardif, 2005.: χf (G × H) ≥ 1

4
min{χf (G ), χf (H)}.

Theorem (Zhu - 2010.):
The fractional version of Hedetniemi's conjecture is true.
Corollary: The Burr-Erd®s-Lovász conjecture is true.
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The idea of the proof - Zhu's lemma

G

H

any independent set U of G × H
can be partitioned into the union of A and B, where
for ∀y ∈ V (H) the projection of the y -slice of A is independent in G ,
for ∀x ∈ V (G ) the projection of the x-slice of B is independent in H;
furthermore if MA denotes the G -neighbourhood of A,
and MB denotes the H-neighbourhood of B,

A, B, MA, MB are pairwise disjoint subsets of V (G × H).
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Thank you for your attention!


