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Definition (Brown, Nowakowski, Rall - 1996.):
The asymptotic value of the independence ratio for the direct graph

power is defined as

A(G) = lim i(G*¥).
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Theorem (Brown, Nowakowski, Rall - 1996.):
For any independent set U of G we have A(G) > m where
N¢(U) denotes the neighbourhood of U in G.
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Theorem (Brown, Nowakowski, Rall - 1996.):

For any independent set U of G we have A(G) > m where
N¢(U) denotes the neighbourhood of U in G.

Theorem (BNR): If A(G) > 3, then A(G) = 1.

Observation (Alon, Lubetzky): A(G) > i, (G), where
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Question (Alon, Lubetzky - 2007.):
Does every graph G satisfy A(G) = i, (G)?

Theorem (A. Téth - 2012.): A(G) = i%,.(G), for any graph G.

max

It easily follows from the inequality
imax(G X H) < max{ima, (G), imax (H)}-

Proposition (weaker inequality): /(G x H) < max{i}..(G), im.(H)}
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Conjecture (BNR): A(G U H) = max{A(G), A(H)}, where
AU G denotes the disjoint union of G and H.

Theorem (BNR):

For any rational r € (0, 5]U{1} there exists a graph G with A(G) = r.

Question (BNR): Can the value of A(G) be irrational?

From A(G) = i¥..(G) we obtain that:
A(G U H) = max{A(G),A(H)}.

A(G) cannot be irrational.
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Question (BNR): Is A(G) computable?
And if so, what is its complexity?

Theorem (BNR):
If G is bipartite then A(G) can be determined in polynomial time.

Theorem (AL):
Determining whether A(G) = 1 or A(G) < 3 can be also done in
polynomial time.

From A(G) = i},,,(G) we also obtain that:
The problem of deciding whether A(G) > t for a given graph G and
a value t, is NP-complete.
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X(G x H) = min{x(G), x(H)}.

s ©
The fractional version of the conjecture:
(s denotes the fractional chromatic number of the graph.)

xf(G x H) = min{x¢(G), xr(H)}.

Xf(G x H) < min{xf(G), xr(H)} is easy.
Tardif, 2005.: x¢(G x H) > 1 min{x+(G), xr(H)}.

Theorem (Zhu - 2010.):
The fractional version of Hedetniemi's conjecture is true.
Corollary: The Burr-ErdGs-Lovasz conjecture is true.
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max ) 'max
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max ) 'max

. ao(G U
i(G x H) = \V(C(§><)H)| = \V(‘G>|<H)|

A : B :
W < /max(G)y W < /max(H)

Al + Bl = Ul, |A] + |B| + [MA| + [MB| < |V(G x H)|
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Thank you for your attention!



