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Outline of the talk

Outline of the talk

» Shannon-capacity (information theoretic background, graphthe-
oretical definition),

» The ultimate categorical independence ratio (definition, open
problems related to the paremeter, my results),

» Comparing the two graph invariants.



Shannon capacity

The Shannon-capacity is the theoretical upper limit of channel capa-
city for error-free coding in information theory.

Let us consider a channel on which one can
transmit five characters. Because of the noise

()
in the channel some pairs of characters may be / \
O ()

confused during the transmission.

The graph on the figure represents the channel:
the vertices are the characters, and
two vertices are connected with an edge if @ @

they can be confused.

Our aim is to transmit on the channel as much information as we can
(in a unit of time).



Shannon capacity

We can send at most 2 distinguishable characters,

(&)
@/ \@ e.g. k', 'n".
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Shannon capacity

@ We can send at most 2 distinguishable characters,
@/ \@ e.g. ,k,, ,n’.

We can create 4 distinguishable character pairs:

'kk’, 'kn’”, 'nk’, 'nn’
Moreover, we can create 5 distinguishable cha-
@ @ racter pairs: 'kk’, "hn’, 'nb’, 'ph’, 'bp’.

Using t characters we can transmit 5¢/2 different messages.

It was an open problem for a long time whether this is the optimum,
and a celebrated result of Lovasz is that the Shannon-capacity of the
pentagon is v/5, that is, on this channel one cannot send more then
\/gt distinguishable messages with t characters.



Shannon capacity

The independence number of a
graph is the size of the largest sub-
set of the vertex set which contains no
edge. The parameter is denoted by a(G).
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Shannon capacity

The independence number of a
graph is the size of the largest sub-
set of the vertex set which contains no
edge. The parameter is denoted by a(G).

The normal product of two graphs is de-
fined on set of pairs formed by the vertex
set of the two base graphs, and we con-
nect two pairs if the corresponding ele-
ments are equal or form an edge in both
coordinates.
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Shannon capacity
The independence number of a

graph is the size of the largest sub- @m@

set of the vertex set which contains no —

edge. The parameter is denoted by a(G). Q%
The normal product of two graphs is de- @% !
fined on set of pairs formed by the vertex [ @) | i @ \
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set of the two base graphs, and we con-
nect two pairs if the corresponding ele-
ments are equal or form an edge in both
coordinates.
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Shannon capacity
The independence number of a
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Shannon-capacity of a graph is defined as the normalized limit of
the independence number under the normal power. That is,

c(G) = lim ¢/a(GY).
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The asymptotic value of the independence ratio for
categorical product
The independence ratio of a graph G: i(G) = % where
a(G) denotes the independence number of G.

The categorical product of graphs F and G: .
F x G, where
V(F x G) = V(F) x V(G),
{(u1,v1), (w2, v2)} € E(F x G), if
{u1,up} € E(F) and {v1,n} € E(G)}.

The kth categorical power of a graph G is denoted by GXk.

Definition (Brown, Nowakowski, Rall - 1996.):
The ultimate categorical independence ratio:

A(G) = lim i(G*¥)
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(0 < i(G) < A(G) < 1)



The results of Brown, Nowakowski and Rall

Theorem (Brown, Nowakowski, Rall - 1996.):
A(G) > m if Uis an independen.t set of G, and
N(U) denotes the neighbourhoodset of U.

Theorem (BNR): A(G) € (0, 3] U {1}, for any graph G.

Conjecture (BNR): A(F U G) = max{A(F), A(G)}.
Further questions (BNR):
e Is it possible that A(G) is irrational for some G7

e |s the problem of deciding whether A(G) > ¢, for a given graph G
and value t, decidable? If so, what is its complexity?



Questions of Alon and Lubetzky
Observation (Alon, Lubetzky): A(G) > i, (G), where

: _ U] e _ imax(G)» if imax(G) <
/max(G) - U ing;gxin G [UI+IN (V)] o ImaX(G) - {17 if imax(G) >

(iI(G) < imax(G) < imax(G) < A(G))

Question (Alon, Lubetzky - 2007.):
1. Does every graph G satisfy A(G) = i, (G)?

2. Does the inequality i(F x G) < max{i} . (F), i (G)} holds
for every two graphs F and G?

Theorem (AL): If F is a complete graph or a cycle (and G is arbitrary),
then the inequality of Question 2 holds.

N|= N



Answer to the questions of Alon and Lubetzky

Theorem (A. Téth):
o i(F x G) < max{imax(F), imax(G)}.

® imax(F X G) < max{imax(F), imax(G)}, provided that imax(F) < %
or imax(G) < %
Corollary: A(G) = i}.4(G), for every graph G.

Thus the answer for both questions of Alon and Lubetzky is positive.

Further consequences:
e A(FU G) = max{A(F),A(G)}.

e A(G) cannot be irrational.



Complexity aspects

Theorem (BNR): If G is a bipartite graph, then A(G) can be deter-
mined in polynomial time.

Theorem (AL) Given an input graph G, determining whether A(G) = 1
or A(G) < % can be done in polynomial time.

Theorem (A. Téth):
Given an input graph G and value t, deciding whether A(G) > t is
an NP-complete problem.



The Hedetniemi conjecture

Hedetniemi’s conjecture - 1966.:
For every two graphs F and G we have

X(F x 6) = min{x(F), x(G)}-

The fractional version of Hedetniemi's conjecture:

xf(F x G) =min{x¢(F), x¢(G)}.

(xr denotes the fractional chromatic number)

Xf(F x G) < min{xf(F), xr(G)} is easy.
Tardif, 2005.: x¢(F x G) > X min{x¢(F), x(G)}.

In 2010 Zhu proved the fractional version of Hedetniemi's conjecture.
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Ultimate categorical
independence ratio

e the asymptotic value of the in-
dependence ratio for the catego-
rical graph product:

A(G) = limyg_, o0 i(G*K)

e it can be expressed by a simple
formula for every graph

o A(F U G) = max{A(F), A(G)}

e computable (NP-complete)

Comparing the Shannon-capacity and the ultimate
categorical independence ratio

Shannon capacity

e the asymptotic value of the in-
dependence number for the nor-
mal graph product:

c(G) = lim¢_o0 v/ GY)

e it is not known even for small
simple graphs

e c(FUG) # c(F)+¢(G)

e computable?



Thank you for your attention!

The talk is based on the following paper:

A. Téth, Answer to a question of Alon and Lubetzky about the ulti-
mate categorical independence ratio,

submitted to Journal of Combinatorial Theory, Series B.
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