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In the thesis we concentrate on two topics of graph colouring problems. We investi-

gate the asymptotic behaviour of colouring-related graph parameters for different graph

powers. In addition, we discuss problems on coverings with monochromatic components

in edge-coloured graphs. In this booklet we give a short introduction to the two topics

and state our results.

Asymptotic values of graph parameters

Several graph parameters show an interesting behaviour when they are investigated for

different powers of graphs. One of the most famous examples of such behaviour is that of

the Shannon capacity of graphs which is the theoretical upper limit of channel capacity

for error-free coding in information theory. It was introduced by Shannon in [38] (see

Körner and Orlitsky [33] for a survey of related topics). This graph parameter is defined

as the normalized limit of the independence number under the so-called normal power

and its exact value is not known even for small, simple graphs (for example odd cycles

with length more than five).

The normalized asymptotic value of the chromatic number with respect to the normal

power is the Witsenhausen rate. It is introduced by Witsenhausen in [42], where its

information theoretic relevance is also explained. If we investigate the chromatic number

for the co-normal power we get the fractional chromatic number as the corresponding limit

by a famous theorem of McEliece and Posner [37] (cf. also Berge and Simonovits [14]).

Similar questions arise when investigating the independence ratio and the Hall-ratio

of a graph.

1 The asymptotic value of the independence ratio for

categorical graph power

The results of this section are based on [1] and [2].

The independence ratio of a graph G is defined as i(G) = α(G)
|V (G)| , that is, as the ratio

of the independence number and the number of vertices.

For two graphs F and G, their categorical product (also called as direct or tensor product)

F ×G is defined on the vertex set V (F ×G) = V (F )× V (G) with edge set E(F ×G) =

{{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G)}. The kth categorical power

G×k is the k-fold categorical product of G with itself, i.e, it can be defined on the k-length
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sequences over the vertex set of G, and two such sequences are connected iff their elements

form an edge in G at every coordinate.

Brown, Nowakowski and Rall in [15] considered the asymptotic value of the indepen-

dence ratio for the categorical graph power.

Definition ([15]). The ultimate categorical independence ratio of a graph G is defined as

A(G) = lim
k→∞

i(G×k).

The authors of [15] proved that for any independent set U of G the inequality A(G) ≥
|U |

|U |+|NG(U)| holds, where NG(U) denotes the neighborhood of U in G. Furthermore, they

showed that A(G) > 1
2

implies A(G) = 1.

The ultimate categorical independence ratio was also investigated by Alon and Lubetzky

in [11], where they defined the parameters imax(G) and i∗max(G) as follows

imax(G) = max
U is indep. set of G

|U |
|U |+ |NG(U)|

and i∗max(G) =

imax(G) if imax(G) ≤ 1
2

1 if imax(G) > 1
2

,

and they proposed the following two questions.

Question 1 (Alon, Lubetzky [11]). Does every graph G satisfy A(G) = i∗max(G)? Or,

equivalently, does every graph G satisfy i∗max(G
×2) = i∗max(G)?

Question 2 (Alon, Lubetzky [11]). Does the inequality i(F×G) ≤ max{i∗max(F ), i∗max(G)}
hold for every two graphs F and G?

The above results from [15] give us the inequality A(G) ≥ i∗max(G). One can easily see the

equivalence between the two forms of Question 1, moreover it is not hard to show that

an affirmative answer to Question 1 would imply the same for Question 2 (see [11]).

Following [15] a graph G is called self-universal if A(G) = i(G). As a consequence,

the equality A(G) = i∗max(G) in Question 1 is also satisfied for these graphs according to

the chain of inequalities i(G) ≤ imax(G) ≤ i∗max(G) ≤ A(G). Cliques, regular bipartite

graphs, and Cayley graphs of Abelian groups belong to this class (see [15]). In [1] the

author proved that a complete multipartite graph G is self-universal, except for the case

when i(G) > 1
2
. Therefore the equality A(G) = i∗max(G) is also verified for this class of

graphs. (In the latter case A(G) = i∗max(G) = 1.) In [11] it is shown that the graphs which

are disjoint unions of cycles and complete graphs satisfy the inequality in Question 2.
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1.1 Answer to the questions of Alon and Lubetzky

In the thesis we answer Question 1 affirmatively. Thereby a positive answer also for

Question 2 is obtained. Moreover it solves some other open problems related to A(G).

In the proofs we exploit an idea of Zhu [43] that he used on the way when proving the

fractional version of Hedetniemi’s conjecture, i.e., that χf (F ×G) = min{χf (F ), χf (G)}.
First we give an upper bound for i(F ×G) in terms of imax(F ) and imax(G). From the

inequality the positive answer to Question 2 follows (using imax(G) ≤ i∗max(G)).

Theorem 1. For every two graphs F and G we have

i(F ×G) ≤ max{imax(F ), imax(G)}.

Next, we prove that the same upper bound holds also for imax(F ×G) provided that

imax(F ) ≤ 1
2

or imax(G) ≤ 1
2
.

Theorem 2. If imax(F ) ≤ 1
2

or imax(G) ≤ 1
2

then

imax(F ×G) ≤ max{imax(F ), imax(G)}.

From this result we conclude the affirmative answer to Question 1. (If imax(G) > 1
2

then i∗max(G
×2) = i∗max(G) = 1. Otherwise applying the above result for F = G we get

imax(G
×2) ≤ imax(G), while the reverse inequality clearly holds for every G. Thus we can

conclude that i∗max(G
×2) = i∗max(G) for every graph G.)

As we mentioned, the two forms of Question 1 are equivalent. Hence from the equal-

ity i∗max(G
×2) = i∗max(G) for every graph G we obtain the following main result. (Indeed,

suppose on the contrary that G is a graph with i∗max(G) < A(G) then ∃k such that

i∗max(G) < i(G×k) ≤ i∗max(G
×k), and as the sequence {i∗max(G

×`)}∞`=1 is monotone increas-

ing, it follows that ∃m for which i∗max(G
×m) < i∗max((G

×m)×2), giving a contradiction.)

Theorem 3. For every graph G we have A(G) = i∗max(G).

1.2 Further consequences

We also discuss some other open problems related to the ultimate categorical indepen-

dence ratio which are settled by our main result.

Brown, Nowakowski and Rall in [15] asked whether A(F ] G) = max{A(F ), A(G)},
where F ]G is the disjoint union of F and G. From Theorem 3 we immediately receive

this equality since the analogous statement, i∗max(F ] G) = max{i∗max(F ), i∗max(G)} is

straightforward. In [11] it is shown that A(F ] G) = A(F × G), therefore we get the

following result.
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Corollary 4. For every two graphs F and G we have

A(F ]G) = A(F ×G) = max{A(F ), A(G)}.

The authors of [15] also addressed the question whether A(G) is computable, and if

so what is its complexity. They showed that for bipartite graphs A(G) can be determined

in polynomial time. (This is because in the case when G is bipartite, we have A(G) = 1
2

if G has a perfect matching, and A(G) = 1 otherwise.) Furthermore, it is proven in [11]

that given an input graph G, determining whether A(G) = 1 or A(G) ≤ 1
2

can also

be done in polynomial time. (They showed that imax(G) ≤ 1
2

if and only if G contains

a fractional perfect matching.) From Theorem 3 we can conclude that the problem of

deciding whether A(G) > t for a given graph G and a given value t, is in NP. Moreover

it is not hard to prove that it is in fact NP-complete.

Any rational number in (0, 1
2
]∪ {1} is the ultimate categorical independence ratio for

some graph G, as it is shown in [15]. Here we remark that we obtained that A(G) cannot

be irrational, solving another problem mentioned in [15].

As a consequence of Theorem 3 we also have the following characterization of self-

universal graphs. We call a graph empty if it has no edge. For every other graph G it

holds that i(G) < 1.

Corollary 5. A non-empty graph G is self-universal if and only if imax(G) = i(G) and

i(G) ≤ 1
2
.

In other words, a nonempty graph G is self-universal iff the expression |U |
|U |+|NG(U)| reach

its maximum (also) for maximum-sized independent sets among all independent sets of

G and this maximum is at most 1
2
.

2 The asymptotic value of the Hall-ratio for lexico-

graphic and categorical powers

The results of this section are based on [3] and [4].

The Hall-ratio is closely related to the independence ratio. It was introduced in [18, 19]

motivated by problems of list colouring. The Hall-ratio of a graph G is defined as

ρ(G) = max

{
|V (H)|
α(H)

: H ⊆ G

}
,

that is, as the ratio of the number of vertices and the independence number maximized

over all subgraphs of G. The asymptotic values of the Hall-ratio for different graph powers
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were investigated by Simonyi [39]. He considered the (appropriately normalized) asymp-

totic values of the Hall-ratio for the exponentiations called normal, co-normal, lexico-

graphic and categorical, respectively.

All the above four graph powers of the graph G are defined on the k-length sequences

over V (G). In the normal power G�k two sequences are adjacent iff their elements at every

coordinate are either equal or form an edge in G. In the co-normal power Gk two such

sequences are connected iff there is some coordinate where the corresponding elements of

the two sequences form an edge of G. The asymptotic value of the Hall-ratio with respect

to the co-normal power is defined as h(G) = lim
k→∞

k
√
ρ(Gk), the analogous asymptotic value

for the normal power is denoted by h�(G). Simonyi [39] proved that h(G) = χf (G), where

χf (G) is the fractional chromatic number of graph G, while h�(G) = R(G), where R(G)

denotes the Witsenhausen rate that was already mentioned in the introduction. Recall

that the latter is the normalized asymptotic value of the chromatic number with respect

to the normal power and is introduced by Witsenhausen in [42] where its information

theoretic relevance is also explained. The fractional chromatic number is the well-known

graph invariant one obtains from the fractional relaxation of the integer program defining

the chromatic number. That is,

χf (G) = inf

{ ∑
U∈S(G)

f(U) : f is a fractional colouring of G

}
, where

f is a fractional colouring of G if f : S(G)→ [0, 1] and ∀v ∈ V (G) :
∑

v∈U∈S(G)

f(U) ≥ 1,

and S(G) denotes the set of the independent sets of G.

Simonyi [39] conjectured that also for the lexicographic and for the categorical powers

we get the fractional chromatic number as the (appropriately normalized) asymptotic

value. In the thesis we prove both of his conjectures.

2.1 The ultimate lexicographic Hall-ratio

For two graphs F and G, their lexicographic product F ◦ G is defined on the vertex set

V (F ◦ G) = V (F ) × V (G) with edge set E(F ◦ G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈
E(F ), or u1 = u2 and {v1, v2} ∈ E(G)}. (The lexicographic product F ◦G is also known

as the substitution of G into all vertices of F . The name we use follows the book [31].)

The kth lexicographic power G◦k is the k-fold lexicographic product of G. That is, the

lexicographic power is defined on the vertex sequences of the original graph and we connect

two such sequences iff they are adjacent in the first coordinate where they differ.
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Definition ([39]). The ultimate lexicographic Hall-ratio of graph G is

h◦(G) = lim
k→∞

k
√
ρ(G◦k).

As we can see from their definitions, the normal and co-normal power of a graph

G satisfy that E(G�k) ⊆ E(G◦k) ⊆ E(Gk), therefore the value of h◦(G) falls into the

interval [R(G), χf (G)], using the mentioned results from [39]. We remark that the lower

bound R(G) is sometimes better but sometimes worse than the easy lower bound ρ(G),

cf. [39]. Thus we know that

max {ρ(G), R(G)} ≤ h◦(G) ≤ χf (G).

For some types of graphs the upper and lower bounds are equal, so this formula gives

the exact value of the ultimate lexicographic Hall-ratio. (For instance, if G is a perfect

graph, then χf (G) = χ(G) = ω(G) ≤ ρ(G). If G is a vertex-transitive graph, then

χf (G) = |V (G)|
α(G)

≤ ρ(G).) The length of the interval [max{ρ(G), R(G)}, χf (G)] is positive

in general. (An example is the 5-wheel, W5 consisting of a 5-length cycle and an additional

point joint to every vertex of the cycle. One can show that ρ(W5) = 3, χf (W5) = 7
2

and

R(W5) ≤
√

12, cf. [39].)

It was conjectured in [39], that in fact, h◦(G) always coincides with the larger end of

the above interval. In the thesis we prove this conjecture.

Theorem 6. The ultimate lexicographic Hall-ratio equals to the fractional chromatic

number for every graph G, that is

h◦(G) = χf (G).

2.2 The ultimate categorical Hall-ratio

Recall that, the categorical power of a graph is defined on the vertex sequences of the

original graph and we connect two such sequences iff they are adjacent in every coordinate.

Definition. ([39]) The ultimate categorical Hall-ratio of graph G is

h×(G) = lim
k→∞

ρ(G×k).

Note that in this case we do not need any normalization on the sequence.

It is shown in [39] that this graph parameter is bounded from above by the fractional

chromatic number and conjectured that equality holds for all graphs.
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The conjecture can be shown easily for perfect and for vertex-transitive graphs. It is

proven in [39] that it is also true for wheel graphs constructed from a cycle and an

additional point joint to every vertex of the cycle. By using a similar argument which was

used in the proof of that result the following generalization was also proven by the author

in [3]. Let G be a graph for which h×(G) = χf (G) holds and let Ĝ be the graph we obtain

from G by connecting each of its vertices to an additional vertex. Then h×(Ĝ) = χf (Ĝ)

also holds.

In the thesis we prove the above conjecture in general.

Theorem 7. The ultimate categorical Hall-ratio equals to the fractional chromatic num-

ber for every graph G, that is

h×(G) = χf (G).

The proof uses a recent result of Zhu [43] that he proved on the way when proving the

fractional version of Hedetniemi’s conjecture.
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Monochromatic coverings in edge-coloured

graphs

An equivalent form of Ryser’s conjecture [30] due to Gyárfás [25], states that if the edges

of a graph G are coloured with k colours then the vertex set can be covered by the

vertices of at most α(G)(k − 1) monochromatic components, where α(G) denotes the

independence number. It is known to be true for k = 2 (when it is equivalent to König’s

theorem). After partial results [29, 40], the case k = 3 was solved by Aharoni [8], relying

on an interesting topological method established in [9]. The important special case of

Ryser’s conjecture when the graph is complete is open for k ≥ 6.

Recently Király [32] showed, somewhat surprisingly, that an analogue of Ryser’s con-

jecture holds for hypergraphs. For r ≥ 3, in every k-colouring of the edges of a complete

r-uniform hypergraph, the vertex set can be covered by at most bk
r
c monochromatic

components, and this bound is sharp.

In the thesis we investigate similar covering problems of edge-coloured graphs.

3 Gallai colourings and domination in multipartite

digraphs

The results of this section are based on [5] which is joint work with A. Gyárfás and

G. Simonyi and on [6] which is joint work with S. Fujita, M. Furuya and A. Gyárfás.

Investigating comparability graphs Gallai [23] proved an interesting theorem about

edge-colourings of complete graphs that contain no triangle for which all three of its edges

receive distinct colours. (Note that here and in the sequel edge-colouring just means a

partition of the edge set rather than a proper colouring of it.) Such colourings turned

out to be relevant and Gallai’s theorem proved to be useful also in other contexts, see

e.g., [13, 16, 17, 22, 24, 27, 28, 34, 35]. Honoring the above mentioned work of Gallai,

an edge-colouring of the complete graph is called a Gallai colouring if there is no com-

pletely multicoloured triangle. Recently this notion was extended to other (not necessarily

complete) graphs in [26].

A basic property of Gallai-coloured complete graphs is that at least one of the colour

classes spans a connected subgraph on the entire vertex set. In [26] it was proved that

if we colour the edges of a not necessarily complete graph G so that no completely

multicoloured triangles appear then there is still a large monochromatic component whose
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size is proportional to the number of vertices of G where the proportion depends on the

independence number, α(G). Another, in a sense stronger possible generalization of the

above basic property of Gallai colourings is also suggested by this result. Gyárfás proposed

the following problem at a workshop at Fredericia, Denmark in November, 2009.

Problem 3 (Gyárfás). Suppose that the edges of a graph G are coloured so that no

triangle is coloured with three distinct colours. Is it true that the vertices of G can be

covered by the vertices of at most k monochromatic components where k depends only on

α(G)?

This question led to a problem about the existence of dominating sets in directed

graphs that we believe to be interesting in itself. In the thesis we solve this latter problem

thereby giving an affirmative answer to the previous question.

3.1 Dominating multipartite digraphs

We consider multipartite digraphs, i.e., digraphs D whose vertices are partitioned into

classes A1, . . . , At of independent vertices. (Note that here we consider directed graphs

without pairs of edges connecting the same two vertices in opposite direction.) Suppose

that S ⊆ [t]. A set U = ∪i∈SAi is called a dominating set of size |S| if for any vertex

v ∈ ∪i/∈SAi there is a w ∈ U such that (w, v) ∈ E(D). The smallest |S| for which a

multipartite digraph D has a dominating set U = ∪i∈SAi is denoted by k(D). Let β(D)

be the cardinality of the largest independent set of D whose vertices are from different

partite classes of D. An important special case is when |Ai| = 1 for each i ∈ [t]. In this

case β(D) = α(D) and k(D) = γ(D), the usual domination number of D, the smallest

number of vertices in D whose closed outneighborhoods cover V (D).

Our main result is the following theorem.

Theorem 8. For every integer β there exists an integer h = h(β) such that the follow-

ing holds. If D is a multipartite digraph without cyclic triangles and β(D) = β, then

k(D) ≤ h. If β(D) = 1 then k(D) = 1 and if β(D) = 2 then k(D) ≤ 4.

Notice that the condition forbidding cyclic triangles in D is important even when

|Ai| = 1 for all i and β(D) = 1, i.e. for tournaments. It is well known that γ(D) can

be arbitrarily large for tournaments (see, e.g., in [12]), so h(1) would not exist without

excluding cyclic triangles.

From the proof of Theorem 8 we get a factorial upper bound for k(D) from the

recurrence formula h(β) = 3β + (2β + 1)h(β − 1). Though this upper bound on h(β) is
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much weaker we could not even rule out the existence of a bound that is linear in β.

We cannot prove a linear upper bound even in the special case when every partite class

consists of only one vertex. Nevertheless, we treat this case also separately and provide

a slightly better bound than the one following from Theorem 8. The class of digraphs

we have here, i.e., those with no directed triangles, is called the class of clique-acyclic

digraphs, see [10]. The union of t vertex disjoint cyclic pentagons shows that we can have

α(D) = 2t and γ(D) = 3t. Thus in case a linear upper bound would be valid at least in

the special case of clique-acyclic digraphs, it could not be smaller than 3
2
α(D).

One can see from the proofs that the dominating sets we find there contain two

kinds of partite classes. The first kind could be substituted by just one vertex in it,

while the second kind is chosen not so much to dominate others but because it is itself

not dominated by others. That is, apart from a bounded number of exceptional partite

classes we dominate the rest of our digraph with a bounded number of vertices. We also

prove another theorem showing that the exceptional classes are indeed needed.

3.2 Monochromatic coverings and partitions of Gallai-coloured

graphs

Theorem 8 implies an affirmative answer to Problem 3. Let g(1) = 1 and for α ≥ 2, let

g(α) = g(α− 1) + h(α) where h is the function given by Theorem 8.

Theorem 9. Suppose that the edges of a graph G are coloured so that no triangle is

coloured with three distinct colours. Then the vertex set of G can be covered by the vertices

of at most g(α(G)) monochromatic components. In case α(G) = 2 at most five components

are enough.

We also extend the statement of Theorem 9 from covering to partitioning. We say

that the vertex set of an edge-coloured graph G can be partitioned into ` monochromatic

connected parts, if there is a partition {V1, . . . , V`} of V (G) such that every G[Vi] (1 ≤ i ≤
`) is connected in some colour, where G[S] denotes the induced subgraph by the subset

S of the vertex set in G. (Note that, arbitrary subsets of the monochromatic connected

components may not be used as parts of our partition because they can be disconnected

in the corresponding colour.)

Let ĝ(1) = 1 and for α ≥ 2, let ĝ(α) = max{h(α)(α2+α−1), 2h(α)ĝ(α−1)+h(α)+1}
where h is the function given by Theorem 8.

10



Theorem 10. Suppose that the edges of a graph G are coloured so that no triangle is

coloured with three distinct colours. Then, the vertex set of G can be partitioned into at

most ĝ(α(G)) monochromatic connected parts.

4 Monochromatic covering of complete bipartite graphs

The results of this section are based on [7] which is joint work with G. Chen, S. Fujita,

A. Gyárfás and J. Lehel.

A special case of Ryser’s conjecture states that intersecting r-partite hypergraphs have

a transversal of at most r − 1 vertices. This conjecture is open for r ≥ 6. It is trivially

true for r = 2, the cases r = 3, 4 are solved in [25] and in [20], and for the case r = 5,

see [20] and [41]. The following equivalent formulation is from [25],[21]. In the sequel let

r ≥ 2.

Conjecture 4 ([25], [21]). In every r-colouring of the edges of a complete graph, the

vertex set can be covered by the vertices of at most r − 1 monochromatic components.

Gyárfás and Lehel proposed a bipartite version of this conjecture [25], [36]. A complete

bipartite graph G with nonempty vertex classes X and Y is referred to here as a biclique

[X, Y ].

Conjecture 5 (Gyárfás [25], Lehel [36]). In every r-colouring of the edges of a biclique,

the vertex set can be covered by the vertices of at most 2r−2 monochromatic components.

Gyárfás showed in [25] that if Conjecture 5 is true, it is best possible. It is also

worth noting that the statement becomes obviously true if the number of monochromatic

components is just one larger than stated in the conjecture.

In the thesis we show that Conjecture 5 can be reduced to design-like conjectures. For

example, one can assume that all components of all colour classes are complete bipartite

graphs. (Similar reduction is not known for Conjecture 4.) We prove the conjecture for

r = 2, 3, 4, 5, in fact in a stronger form. The possibility of coverings with components

in the same colour, and the dual form of the conjecture which relates to transversals of

hypergraphs are also discussed in the thesis.

4.1 An equivalent formulation

Let us call a graph partition G1, . . . , Gr of biclique G a spanning partition if each vertex

v ∈ V (G) is included in every V (Gi), i = 1, . . . , r. A bi-equivalence graph is a bipartite

11



graph whose connected components are bicliques. The width of a bi-equivalence graph

is the number of its components. (A graph whose connected components are complete

graphs, i.e. cliques, is usually called equivalence graph, that is the reason of this name.)

Let a biclique [X, Y ] be partitioned into the bi-equivalence graphs G1, G2, . . . , Gr. Any

connected component of Gi is a biclique, its vertex classes will be called blocks in colour i.

Let us call a spanning bi-equivalence graph partition G1, . . . , Gr of biclique G an antichain

partition if no blocks (in different colours) properly contain each other.

We show that the following is an equivalent form of Conjecture 5.

Conjecture 6. If a biclique has an antichain partition into r bi-equivalence graphs, then

its vertex set can be covered by at most 2r − 2 biclique components.

4.2 Bi-equivalence partitions for small r values

In the thesis we prove Conjecture 6 for r = 2, 3, 4, 5, in fact in the following stronger

forms.

Theorem 11. Let 2 ≤ r ≤ 4. If a biclique has an antichain partition into r bi-equivalence

graphs, then its vertex set can be covered by at most r monochromatic components of the

same colour, or equivalently, one of the bi-equivalence graphs has width at most r.

Theorem 12. If a biclique has an antichain partition into 5 bi-equivalence graphs, then

its vertex set can be covered by at most 8 monochromatic components of the same colour.

4.3 Homogeneous coverings

Chen asked (in 1998) whether a stronger version of Conjecture 5 can be true, i.e. whether

2r− 2 monochromatic components of the same colour can cover the vertex set. Call such

a cover a homogeneous cover. Although it is proven in [7] that there are no homogeneous

covers with 2r− 2 bicliques in general for spanning bi-equivalence partitions, they might

exist for antichain partitions.

Question 7. Suppose that a biclique has an antichain partition into r bi-equivalence

graphs. Is it true that some of them has width at most 2r − 2?
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