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Abstract

For r ≥ 2, α ≥ r − 1 and k ≥ 1, let c(r, α, k) be the smallest integer c such that the

vertex set of any non-trivial r-uniform k-edge-colored hypergraph H with α(H) = α can be

covered by c monochromatic connected components. Here α(H) is the maximum cardinality

of a subset A of vertices in H such that A does not contain any edges. An old conjecture

of Ryser is equivalent to c(2, α, k) = α(r − 1) and a recent result of Z. Király states that

c(r, r − 1, k) = dkr e for any r ≥ 3.

Here we make the first step to treat non-complete hypergraphs, showing that c(r, r, r) = 2

for r ≥ 2 and c(r, r, r + 1) = 3 for r ≥ 3.

1 Introduction and results

A conjecture generally attributed to Ryser (appeared in his student, Henderson’s thesis, [5])

states that for k-uniform k-partite hypergraphs τ ≤ (k − 1)ν. Here τ denotes the minimum

number of vertices which covers all the edges, and ν is the maximum number of disjoint edges

in the hypergraph. A k-uniform hypergraph is k-partite if the vertices can be paritioned into

k disjoint sets such that every edge meets all of them. The following equivalent formulation is

from [3, 4].

Conjecture 1. In every k-coloring of the edges of a graph G, the vertex set of G can be covered

by the vertices of at most α(G)(k − 1) monochromatic connected components.
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For k = 2 Conjecture 1 is equivalent to König theorem [7] and the case k = 3 is solved by

a celebrated theorem of Aharoni using new and significant ideas [1]. In the special case when

α(G) = 1, i.e. for complete graphs, the cases k = 3, 4 are solved in [4] and [2], and the case

k = 5 in [2] and [8]. Thus we know the following results.

Theorem 2. Let k ∈ {2, 3}. Then the vertex set of any k-edge-colored graph G can be covered

by (k − 1)α(G) monochromatic connected components, and this bound is sharp.

Theorem 3. Let k ∈ {2, 3, 4, 5}. Then the vertex set of any k-edge-colored complete graph can

be covered by k − 1 monochromatic connected components, and this bound is sharp.

The senior author initiated the study of the analogue of Ryser’s conjecture for r-uniform

hypergraphs and the following result of Z. Király [6] answered completely the case of complete

r-uniform hypergraphs. Connected components of hypergraphs are defined as the connected

components of the graph defined by the pairs of vertices that are covered by some edge of the

hypergraph. One-vertex components are called trivial components.

Theorem 4. Let r ≥ 3. If the edges of a complete r-uniform hypergraph H are k-colored then

V (H) can be covered by dk/re monochromatic connected components, and this bound is sharp.

The special case k = r of Theorem 4 was known before [4]. In this note we make the first

step to move from complete hypergraphs to general ones. A subset of vertices in a hypergraph

is independent if it does not contain any edge of the hypergraph. The maximum number of

independent vertices in a hypergraph H is denoted by α(H).

For an edge-colored hypergraph H, let c(H) be the minimal c such that V (H) can be covered

by the vertices of c monochromatic components. For r ≥ 2, α ≥ r−1 and k ≥ 1, let c(r, α, k) be

the smallest integer c such that c(H) ≤ c for all non-trivial r-uniform k-edge-colored hypergraph

H with α(H) = α. The hypergraph is called non-trivial if it has at least one edge.

Our main result is the following theorem.

Theorem 5. Let r ≥ 2. Let H be an r-uniform hypergraph with α(H) = r, |V (H)| > r, and its

edges are colored with k ≤ r colors. Then V (H) can be covered by at most two monochromatic

components. That is, c(r, r, r) ≤ 2.

The bound in Theorem 5 is sharp, c(r, r, r) ≥ 2. A trivial example is the complete r-uniform

hypergraph plus one isolated vertex. Color its edges with r colors arbitrarily. This H satisfies

α(H) = r and one needs two monochromatic components to cover all vertices because H is not

connected. Another example is the following. Set V = {1, 2, . . . , r + 2}, and let E(H) be all

the r-sized subsets of V except {1, 2, . . . , r}, and color the edge E with the smallest element

of V \ E (this is at most r). It is easy to check that α(H) = r, and it cannot be covered by

one monochromatic connected component, because for any i ∈ {1, 2, . . . , r} the vertex i is not

covered by any edge in color i. A less trivial example is the r-uniform hypergraph with vertices
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partitioned into r classes and having all edges that do not meet all classes. The color of an edge

E is the smallest index i for which E does not meet class i. For this hypergraph H, α(H) = r

and one monochromatic component does not cover its vertices.

The theorem is also sharp in other sense, namely c(r, r + 1, r) > 2 and c(r, r, r + 1) > 2.

The first is shown by the example of a complete r-uniform hypergraph and two isolated vertices

with an arbitrary coloring of the edges. To see the second inequality, take a complete r-uniform

hypergraph on r+1 vertices whose r+1 edges colored with different colors and add one isolated

vertex.

Our second result makes one more step (we do not have a reasonable conjecture for c(r, α, k)

in general).

Theorem 6. Let r ≥ 3 and H be an r-uniform hypergraph with α(H) = r, |V (H)| > r,

and its edges are colored with k ≤ r + 1 colors. Then V (H) can be covered by at most three

monochromatic components. That is, c(r, r, r + 1) ≤ 3.

For r = 2 Theorem 6 is not true, c(2, 2, 3) = 4, in fact c(2, α, 3) = 2α follows from the

result of Aharoni [1]. To see that Theorem 6 is sharp, partition V into r+ 2 nonempty sets Ai,

|Ar+2| = 1. The edges are defined as r-element subsets T ⊂ V not covering Ar+2 and the color

of T is defined as the smallest i such that Ai ∩ T = ∅. Since each independent set must contain

the vertex in Ar+2, the independence number of this hypergraph is r and it is immediate that

two monochromatic components cannot cover V .

We present the proof of Theorem 6 first (although it uses Theorem 5 for r = 3) because its

proof is easier.

2 Proof of Theorem 6

LetH be a non-trivial r-uniform (r+1)-edge-colored hypergraph with α(H) = r. We distinguish

two cases.

Case 1: r = 3. If each edge E of H in color 1 is covered by a monochromatic component of

some color c(E) different from 1 then we can recolor all edges E of color 1 with c(E) and apply

Theorem 5 to cover H with c(3, 3, 3) = 2 monochromatic components. Thus we may assume

that there is an edge E in color 1, such that E is not covered by any component of color different

from 1.

For each 2-element subset Y of E, let CY be the set of colors i for which there exists a

monochromatic connected component of color i which contains Y . Since E has color 1, 1 ∈ CY

for every Y ⊂ E. Note that for two different 2-element subsets Y1, Y2 ⊂ E, (CY1∩CY2)−{1} = ∅
from the definition of E. Using that H is 4-edge-colored one can easily see that there is a

Y0 ⊂ E, |Y0| = 2 with |CY0 | ≤ 2. Let H1 be the component of color 1 containing E and H2 be

the component containing Y0 in the color of CY0 different from 1, say 2. In case of CY0 = {1}
let H2 be empty. Set Z = V (H)− (V (H1) ∪ V (H2)).
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Observe that for any two vertices z1, z2 ∈ Z, the triples Y0 ∪ z1, Y0 ∪ z2 cannot be edges

of H from the definition of Y0 and Z. Thus, in the quadruple Y0, z1, z2 one of the triples

containing both z1, z2 must be edges of H, because α(H) = 3. This induces a coloring on the

complete graph with vertex set Z, with 2 colors (colors 3, 4) if H2 is nonempty, or with 3 colors

(colors 2, 3, 4) if H2 is empty. Using Theorem 3, Z can be covered by the vertices of one (if

H2 is nonempty) or two monochromatic connected components and they obviously subsets of

components in the same color in H as well. Together with H1, H2 (if H2 is nonempty) or with

H1 (if H2 is empty) we have the required cover with three monochromatic components.

Case 2: r > 3. Set t = d r2e. If there is a t-element set S that is uncovered by any monochro-

matic component, consider T ⊂ V − S such that |T | = r + 1 − t. From the assumption of the

theorem, the set S ∪ T must contain an edge E ∈ H and since S is not covered by E from the

choice of S, T ⊂ E. Thus we may color the complete hypergraph H∗ on the (r+ 1− t)-element

subsets of V − S by the color of E. Since r + 1− t = r + 1− d r2e ≥ 3 for r ≥ 4, we can apply

Theorem 4 to H∗. Observing that 2(r + 1 − t) ≥ r + 1, H∗ can be covered by two connected

monochromatic components and (since the r-sets defining the colors cover S apart from possibly

one vertex) these two components must cover S also, apart from at most one vertex. Thus,

with this possible uncovered vertex of S, we have the required cover with three components.

If all t-element subsets S of vertices of H are covered by some monochromatic component,

then we may color the complete hypergraph H∗∗ of the t-sets H with r + 1 colors. For r ≥ 5

we have t = d r2e ≥ 3 and can apply Theorem 4 again and, since 3t = 3d r2e ≥ r+ 1 we can cover

H∗∗ with at most three components, and this obviously induces the required cover for H.

The only remaining case is when r = 4 and every pair of vertices is covered by a monochro-

matic component. First suppose that there is a pair of vertices x, y contained in just one

monochromatic component C1. Then we color every triple T in Z = V (H)\C1 with the color of

the edge of H in T ∪{x, y} containing T and one of x, y. The used color must be different from

the color of C1 therefore the obtained complete 3-uniform hypergraph will be colored with 4 col-

ors. By Theorem 4 it can be covered by at most two monochromatic components which expand

to monochromatic components of H, and with C1 they form the required covering. Similarly, if

there is a pair of vertices x, y contained in exactly two monochromatic components C1, C2, then

again, we color the triples of Z = V (H)\(C1∪C2) as we did before. In this case the triples could

get just three colors so by Theorem 4, Z can be covered by one monochromatic component, and

with C1, C2 we get the required covering of H. Note that (in both cases) if there is no triple in

Z, that is |Z| ≤ 2, then our argument still works since we need only one monochromatic com-

ponent to cover Z (because every pair of vertices is covered by a monochromatic component).

Finally, when every pair of vertices is contained in at least three monochromatic components,

we pick an arbitrary vertex x and choose three colors whose monochromatic components cover

x. These components must cover the whole vertex set of H because if any vertex z would be

uncovered, the pair x, z would be in at most two monochromatic components. 2
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3 Proof of Theorem 5

The statement for r = 2 is a solved special case of Conjecture 1. Let r ≥ 3.

We may assume that c(H) ≥ 2 allowing us to define t as the smallest positive integer such that

there are t vertices of H which are not contained in any non-trivial monochromatic component

of H. We may also assume that t ≥ 2, otherwise we would have an isolated vertex, and then

the remaining at least r vertices form a complete r-uniform hypergraph colored with r colors.

Then, by the case k = r of Theorem 4 it can be spanned by one monochromatic component.

Adding the isolated vertex as a single component we have a cover with two components.

In the following we consider three cases according to the value of t (and r), and handle them

separately.

Case 1: t ≥ max{ r
2

+ 1, 4}, or (r, t) = (3, 3).

Proof in case 1. By the definition of t we know that for every (t− 1)-element subset S of V (H)

there is a monochromatic component CS containing S. We color any S with the color of CS ,

and obtain a complete (t − 1)-uniform hypergraph on V (H), whose edges are colored with k

colors. This hypergraph is denoted by H∗. Any monochromatic component of H∗ is a subset

of a monochromatic component of H.

When t − 1 ≥ 3, we can use Theorem 4, so H∗ can be covered by at most dk/(t − 1)e
monochromatic components. Also, t ≥ r

2 + 1, this gives us a covering with dk/(t − 1)e ≤
dr/(r/2 + 1− 1)e = 2 monochromatic components.

When t− 1 = 2 and k ≤ r = 3, we apply Theorem 3, and obtain that H∗ can be covered by

at most k − 1 ≤ 2 monochromatic components. 2

Case 2: t = 2.

First we need some definitions and a lemma.

A bipartite hypergraph [A,B] is a hypergraph whose vertex set is partitioned into nonempty

sets A,B and for every edge E, E ∩ A,E ∩ B are both nonempty. An r-uniform bipartite

hypergraph [A,B] is complete if its edge set is all r-element sets of A ∪ B that meet both

A,B. An r-edge-coloring of a complete r-uniform bipartite hypergraph [A,B] is special if the

following holds. One of A,B is specified as the kernel and the other contains disjoint subsets

Xi, i ∈ {1, 2, . . . , r}. For every i, the edges of color i form only one non-trivial component, Ci,

with vertex set V (H) \Xi. When r = 2 we extend the notation of special as follows. We call a

2-edge-coloring of a bipartite graph special also when A and B are divided into two nonempty

parts A = A1 ∪A2, B = B1 ∪B2 and the edges between Ai and Bj are colored according to the

parity of i+ j.
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Lemma 1. Let F = [A,B] be a complete bipartite r-uniform hypergraph, and r ≥ 2. If the

edges of F are colored with r − 1 colors then some color class spans a connected hypergraph on

V (F). This remains true even for r-edge-colorings of F unless the coloring is special.

Proof of Lemma 1. Suppose that the edges of F are colored with r− 1 colors. We add every r-

subsets of A and B to the edge set, and color them with a new color. The r-uniform hypergraph

so obtained is complete, and its edges are colored with r colors. By Theorem 4 one color spans a

connected component on the whole vertex set, but this cannot be in the new color. This shows

that the first part of the lemma is true.

Now we consider an r-edge-coloring of F . We may assume that for any color c, there is a

component in c which is not contained by any other component. (Otherwise, the color c could

be eliminated, by recoloring each edge in color c to the color of the component which contains

them.)

Claim 1. Let r ≥ 3. For any color c, there is just one non-trivial component in c, and it

contains A or B.

Proof. Let C be a component in color c which is not contained by any other component, so

assume that ∃a ∈ A, ∃b ∈ B: a, b /∈ C. We define a complete (r − 1)-uniform hypergraph on C

colored with r − 1 colors, in the following way. For any X ⊆ C, |X| = r − 1, the set X ∪ {a}
or X ∪ {b} is an edge EX of F , and we transfer the color of EX to X. By Theorem 4 (using

r−1 ≥ 2) this hypergraph spanned by one monochromatic component D in color d 6= c. But D

is a monochromatic component also of F which contains C (and also at least one of a, b), this

contradicts the choice of C. Therefore C contains A or B. The other components in c must be

in the other part of the bipartite hypergraph, and so they must be trivial. 2

Claim 2. All the non-trivial components defined in Claim 1 contain A or all of them contain B.

Proof. Let ui be any isolated vertex in color i, for i = 1, 2, . . . , r. (For every color i we have such

a vertex, otherwise the non-trivial component in color i would span a connected component on

the whole vertex set.) Take the set of all ui-s, and extend it to an r-element set if some of the

ui-s are equal. This set is not an edge of F because it cannot be colored by any color. Therefore

all the possible ui-s are in the same side of the bipartite hypergraph, proving the statement. 2

If r ≥ 3 and the hypergraph cannot be covered by a single monochromatic component then

by Claims 1 and Claim 2, every monochromatic component contains one of the parts of the

bipartite hypergraph, say A. Moreover, we have r non-trivial monochromatic components and

their intersections with B must be disjoint, otherwise we could choose at most r − 1 vertices

from B such that from every monochromatic component we picked at least one, and by adding

a vertex from A the formed r-tuple cannot be colored by any of the r colors. Therefore in this

case the coloring is special with exactly r colors.
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Suppose that r = 2. Since the statement of Claim 1 holds only for r ≥ 3, besides the

structure described above, it also could happen that there is a component C = A′ ∪ B′ in

color 1 where A′ ⊆ A, B′ ⊆ B, and none of A′, A \ A′, B′, B \ B′ is empty. In this case the

edges between A and B′ are colored with color 2 as well as the edges between A′ and B. The

remaining edges must be colored with 1, otherwise one component would cover the whole vertex

set. Hence also in this case the coloring is special. This completes the proof of Lemma 1. 2

Proof in case 2. Since t = 2, we have two vertices, a, b such that {a, b} is not covered by

any monochromatic component of H, but (as any vertex) each of them is covered by some

monochromatic component. Set X = V (H) \ {a, b}.
Let C be a maximal monochromatic component containing a, say in color 1 (clearly b /∈ C).

Set A = V (C) ∩X, B = X \ A, we may clearly assume that B is nonempty, otherwise C and

{b} cover V (H).

Let H∗ be the complete (r−1)-uniform bipartite hypergraph [A,B] on vertex set X. For any

S ⊆ X with |S| = r−1, the set S∪{a} or S∪{b} is an edge of H, otherwise the (r+1)-sized set

S ∪ {a, b} would be an independent set in H, contradicting the assumption α(H) = r. Transfer

the color of S ∪ {a} or S ∪ {b} to S. From the definition of C, the color of the the edges of H∗

in the transferred coloring cannot be 1, therefore H∗ is colored with r − 1 colors: 2, . . . , r.

Apply Lemma 1 to H∗ (which is (r − 1)-uniform, and r − 1 ≥ 2). If some color class spans

a connected component in H∗ covering A ∪ B then clearly at least one of {a, b} extends this

component to a component of H and with the trivial component on the remaining vertex we

have the required cover. Otherwise we have a special coloring of H∗ with exactly r − 1 colors

(2, . . . , r).

Case 2.a. First consider the case r − 1 ≥ 3 when there is just one special structure. Observe

that for every 2 ≤ i ≤ r the non-trivial component D∗i in this special coloring is part of a

component Di of H. For example, a or b is in Di for every i ∈ {2, . . . , r}. In addition, edges

of color i inside X may also contribute to the extension of D∗i to Di. For convenience, we keep

the notation Xi used for the exceptional part in X, thus for each i, Di covers V (H) with the

exception of Xi and exactly one vertex from {a, b}. If the kernel of the special coloring is A

(reps. B) then ∪ri=2Xi ⊆ B (resp. ∪ri=2Xi ⊆ A).

Suppose that ∪ri=2Xi ⊆ B (kernel isA). Consider the (r+1)-element setW = {a, y, x2, . . . , xr},
where y ∈ A, xj ∈ Xj . The sets W \ {a},W \ {y} cannot be edges of H since any color on them

would contradict the definition of A or Di. By the same reason, if W \ {xj} is an edge of H for

some j > 1 then its color can be only j. But in this case C ⊂ Dj with a proper containment,

contradicting the definition of C. Therefore W is independent set in H, contradicting α(H) = r.

Suppose that ∪ri=2Xi ⊆ A (kernel is B). If b is covered by some Di (i > 1) then C∪Di covers

V (H). Thus we may assume that b is not covered by any Di. Consider the (r + 1)-element set

W = {b, y, x2, . . . , xr}, where y ∈ B, xj ∈ Xj . The set W \ {b} cannot be an edge of H since
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any color on it would contradict the definition of A or Di. Suppose W \ {y} is an edge of H
and its color is i. Since b /∈ C, i > 1, but then Di ∪ C cover V (H). Thus we may assume that

W \ {y} is not an edge of H. However, W \ {xj} cannot be an edge of H either, because b is

not covered by Dj . Therefore W is independent set in H, contradicting α(H) = r.

Case 2.b. When r−1 = 2 and the special coloring has a kernel then the same argument shows

that c(H) ≤ 2. In the case of the other special coloring, H∗ has two non-trivial components in

both colors, and these components cover X in both colors. Consider the two components in H∗

in color 2. These components are either joined by one of a, b then this component cover all the

vertices of H but at most one of a, b; or one of them with a and the other with b cover all the

vertices of H.

Thus we have finished the proof in Case 2. 2

Case 3: r ≥ 4 and 3 ≤ t ≤ r
2

+ 1.

We need yet another lemma.

Lemma 2. Let F be an r-uniform complete hypergraph with an edge-coloring. Then no matter

how the color set is partitioned into at most r disjoint parts, one of them must contain such

colors whose non-trivial components cover the vertex set of F .

Note, that in this case we do not restrict the number of components just the number of

colors used in them.

Proof of Lemma 2. Let S be the set of colors used in the coloring of F , and consider its partition

into disjoint r′ ≤ r subsets S1, S2, . . . , Sr′ . If the non-trivial components in colors belonging to Si

do not cover the vertex set of F then there is a vertex ui which is not covered by any edge colored

with any element of Si. If it holds for every i ∈ {1, 2, . . . , r′} then let U = {u1, u2, . . . , ur′},
and extend it to an r-sized set if necessary. But U cannot be colored by any color, and it

contradicts the definition of F . Thus there must be an i ∈ {1, 2, . . . , r′} such that the non-

trivial components in the colors belonging to Si cover the whole vertex set of F , completing the

proof. 2

Proof in case 3. Let T = {v1, v2, . . . , vt} be a set of vertices not covered by any non-trivial

monochromatic component of H. We know by the definition of t that for any Ti = T \ {vi},
1 ≤ i ≤ t, there is at least one monochromatic component covering it. For any X ⊆ V (H),

let s(X) be the set of colors c for which there is a monochromatic non-trivial component in

color c containing X. It is clear that s(Ti) 6= ∅ for any i ∈ {1, 2, . . . , t}. For different i and j

the color sets s(Ti) and s(Tj) must be disjoint, otherwise the whole T would be covered by a

monochromatic component, since Ti and Tj are intersecting (using t ≥ 3). Set X = V (H) \ T .

Consider any (r − t + 1)-element subset S of X. Using |S ∪ T | = r + 1, α(H) ≤ r and the
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definition of T there must be an edge ES = S ∪ Ti for some i ∈ {1, 2, . . . , t}. Define H∗ be a

complete (r − t+ 1)-uniform hypergraph on X, and color the edge S with the color of ES .

We shall find either one color whose non-trivial monochromatic component in H∗ covers X

or two colors whose non-trivial monochromatic components cover the vertices of X and whose

components can be extended to different (t − 1)-element subsets of T . This will be enough,

because every monochromatic component of H∗ in a fixed color can be extended to the same

(t− 1)-element subset of T , joining in a monochromatic component of H.

Let K ′ be the union of the t nonempty disjoint sets, s(T1), s(T2), . . . , s(Tt), and let k′ = |K ′|.
We have k′ ≤ k ≤ r, t ≤ r

2 + 1.

Claim 3. K ′ can be partitioned into r − t + 1 parts, whose sizes are at most 2 (the empty set

is also allowed) and the elements of all 2-sized parts are in different s(Ti)-s.

Proof. We have to create at least M = k′ − (r + 1 − t) parts with size 2. Pick one element

from each s(Ti), i = 1, 2, . . . , t and form the set K1, and put the remaining ones into the set

K2. Construct the 2-sized disjoint sets by taking repeatedly one element from K2, and its

mate from K1, so that they are from different s(Ti)-s. When we have M 2-sized parts or K2

is exhausted, we make the remaining parts arbitrarily (selecting empty or one-element sets).

Since M = k′ − (r + 1− t) < t = |K1| (because k′ ≤ r), this process can be done. 2

Using Claim 3 we partition the color set into r − t + 1 parts, Z1, . . . , Zr−t+1, with size at

most 2, so that the elements of any part of size two are in different s(Ti)-s. Now we apply

Lemma 2 to H∗, which is an (r − t + 1)-uniform hypergraph. Lemma 2 states that for some i

the part Zi contains such colors whose non-trivial components cover the vertex set of H∗. The

component colored with the same color extend to the same monochromatic component of H,

and together they also cover the vertices of T . Hence we obtain at most two monochromatic

components of H which together cover all vertices of H.

Thus we have finished the proof in Case 3. 2

We covered all cases: Case 2 solves t = 2 and Case 3 cover the range 3 ≤ t ≤ r
2 + 1 except

when r = 3. The rest is covered by Case 1. Thus Theorem 5 is proven. 2
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