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Chapter 1

Introduction

In this thesis we concentrate on two topics of graph colouring problems. We investigate the

asymptotic behaviour of colouring-related graph parameters for different graph powers. In addition,

we discuss problems on coverings with monochromatic components in edge-coloured graphs.

In the next two sections we give a short introduction to the two topics and state our results.

1.1 Asymptotic values of graph parameters

Several graph parameters show an interesting behaviour when they are investigated for different

powers of graphs. One of the most famous examples of such behaviour is that of the Shannon

capacity of graphs (introduced by Shannon [47], see Körner and Orlitsky [41] for a survey of

related topics) which is the theoretical upper limit of channel capacity for error-free coding in

information theory. This graph parameter is defined as the normalized limit of the independence

number under the so-called normal power and its exact value is not known even for small, simple

graphs (for example odd cycles with length more than five).

The normalized asymptotic value of the chromatic number with respect to the normal power is

the Witsenhausen rate. It is introduced by Witsenhausen in [52], where its information theoretic

relevance is also explained. If we investigate the chromatic number for the co-normal power we

get the fractional chromatic number as the corresponding limit by a famous theorem of McEliece

and Posner [46], cf. also Berge and Simonovits [14].

Similar questions arise when investigating the independence ratio and the Hall-ratio of a graph.

The independence ratio of a graph is the ratio of the independence number and the number of

vertices. Its asymptotic value with respect to the so-called Cartesian power is the ultimate inde-

pendence ratio which is introduced by Hell, Yu and Zhou [37]. Motivated by this concept Brown,

Nowakowski and Rall [15] considered the analogous, but significantly different parameter, the
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1.2 Monochromatic coverings in edge-coloured graphs

ultimate categorical independence ratio which is defined with respect to the so-called categorical

power. This parameter was also investigated by Alon and Lubetzky [11]. Based on the lower

bounds proven in [15] they settled a relatively easy general lower bound for the parameter, and

asked whether this bound always coincides with the ultimate categorical independence ratio.

In this thesis we answer this question affirmatively, and we obtain a solution for further open

problems related to this concept. For instance, for the conjecture of Brown, Nowakowski and

Rall, stating that the ultimate categorical independence ratio of the disjoint union of two graphs

is the maximum of the value of the parameter for the two graphs.

The Hall-ratio is closely related to the independence ratio, this parameter is the ratio of the

number of vertices and the independence number maximized over all subgraphs of the graph. It

was introduced in [21, 20] motivated by problems of list colouring. The (appropriately normal-

ized) asymptotic values of this graph parameter for different graph powers were investigated by

Simonyi in [49]. Considering for normal and co-normal power he proved that the corresponding

limit equals to the similar limit one obtains for the chromatic number.

In this thesis we prove that the asymptotic value of the Hall-ratio with respect to both the cate-

gorical power and the lexicographic power is equal to the fractional chromatic number, proving

the conjectures of Simonyi.

The ultimate categorical independence ratio is investigated in Chapter 2 which is based on

[1] and [2]. We deal with the asymptotic value of the Hall-ratio for the lexicographic and the

categorical power in Chapter 3, based on [3] and [4].

1.2 Monochromatic coverings in edge-coloured graphs

An equivalent form of Ryser’s conjecture [38] due to Gyárfás [30], states that if the edges of a

graph G are coloured with k colours then the vertex set can be covered by the vertices of at

most α(G)(k − 1) monochromatic components, where α(G) denotes the independence number.

(Given an edge colouring, a monochromatic component means a connected component of the

subgraph of any given colour.) It is known to be true for k = 2 (when it is equivalent to König’s

theorem). After partial results [36, 50], the case k = 3 was solved by Aharoni [8], relying on an

interesting topological method established in [9]. The important special case of Ryser’s conjec-

ture when the graph is complete is open for k ≥ 6.

Recently Király [40] showed, somewhat surprisingly, that an analogue of Ryser’s conjecture

holds for hypergraphs: for r ≥ 3, in every k-colouring of the edges of a complete r-uniform

hypergraph, the vertex set can be covered by at most bkr c monochromatic components, and this

bound is sharp.
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1 Introduction

Here we investigate similar covering problems of edge-coloured graphs. The first result is about

edge-colourings of graphs where the number of colours is not restricted but 3-edge-coloured

triangles are forbidden. We give a (finite) upper bound on the number of monochromatic com-

ponents needed in the covering in terms of the independence number of the graph. The second

problem is about coverings of complete bipartite graphs. In this case we try to give the best

upper bound on the size of the covering in terms of the number of colours used on the edges.

An edge-colouring of a graph is called a Gallai colouring if there is no completely multi-

coloured triangle. A basic property of Gallai-coloured complete graphs is that at least one of

the colour classes spans a connected subgraph on the entire vertex set. Gyárfás and Sárközy

proved that if we colour the edges of a not necessarily complete graph G so that no 3-coloured

triangles appear then there is still a large monochromatic component whose size is proportional

to the vertex number of G where the proportion depends on the independence number. In view

of this result it is natural to ask whether one can also span the whole vertex set with a con-

stant number of connected monochromatic subgraphs where the constant depends only on the

independence number of G. This question led to the following problem.

Assume that D is a digraph without cyclic triangles and its vertices are partitioned into classes

A1, . . . , At of independent vertices. A set U = ∪i∈SAi is called a dominating set of size |S| if for

any vertex v ∈ ∪i/∈SAi there is a w ∈ U such that (w, v) ∈ E(D). Let β(D) be the cardinality

of the largest independent set of D whose vertices are from different partite classes of D. We

show that there exists a h = h(β(D)) such that D has a dominating set of size at most h. From

this result we get an affirmative answer to the previous question.

We also extend the covering problem of Gallai-coloured graphs to partitioning.

We also address a conjecture of Gyárfás and Lehel (a variant of Ryser’s conjecture), stating

that in every r-colouring of the edges of a complete bipartite graph [X,Y ], the vertex set

can be covered by the vertices of at most 2r − 2 monochromatic components. We reduce this

conjecture to design-like conjectures, where the monochromatic components of the colour classes

are complete bipartite graphs [X ′, Y ′] with nonempty blocks X ′ and Y ′. It can also be assumed

that each colour class covers X ∪ Y , moreover, no two blocks properly contain each other. We

prove this reduced conjecture for r ≤ 5.

We also discuss about the possibilty of coverings with components in the same colour, and the

dual form of the conjecture which relates to transversals of hypergraphs.

The problems about Gallai colourings and domination in multipartite digraphs are discussed

in Chapter 4 based on [5] and [6]. The results on monochromatic coverings in complete bipartite

graphs are presented in Chapter 5 which is based on [7].
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Chapter 2

The ultimate categorical independence ratio

The independence ratio of a graph G is defined as i(G) = α(G)
|V (G)| , that is, as the ratio of the

independence number and the number of vertices.

Its asymptotic value with respect to what is called Cartesian graph exponentiation is the

ultimate independence ratio which was introduced by Hell, Yu and Zhou [37] and further in-

vestigated by Hahn, Hell and Poljak [35] and by Zhu [53]. Motivated by this concept Brown,

Nowakowski and Rall [15] considered the analogous, but significantly different parameter, the

ultimate categorical independence ratio which is defined with respect to the categorical power

of graphs.

For two graphs G and H, their categorical product (also called as direct or tensor product)

G × H is defined on the vertex set V (G × H) = V (G) × V (H) with edge set E(G × H) =

{{(x1, y1), (x2, y2)} : {x1, x2} ∈ E(G) and {y1, y2} ∈ E(H)}. The kth categorical power G×k is

the k-fold categorical product of G.

Definition ([15]). The ultimate categorical independence ratio of a graph G is defined as

A(G) = lim
k→∞

i(G×k).

Brown, Nowakowski and Rall in [15] proved that for any independent set U of G the inequal-

ity A(G) ≥ |U |
|U |+|NG(U)| holds, where NG(U) denotes the neighbourhood of U in G. Furthermore,

they showed that A(G) > 1
2 implies A(G) = 1.

The ultimate categorical independence ratio was also investigated by Alon and Lubetzky in [11],

where they defined the parameters a(G) and a∗(G) as follows

a(G) = max
U is independent set of G

|U |
|U |+ |NG(U)| and a∗(G) =

a(G) if a(G) ≤ 1
2

1 if a(G) > 1
2

,

and they proposed the following two questions.
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2.1

Question 1 (Alon, Lubetzky [11]). Does every graph G satisfy A(G) = a∗(G)? Or, equivalently,

does every graph G satisfy a∗(G×2) = a∗(G)?

Question 2 (Alon, Lubetzky [11]). Does the inequality i(G × H) ≤ max{a∗(G), a∗(H)} hold

for every two graphs G and H?

The mentioned lower bounds from [15] give us the inequality A(G) ≥ a∗(G). One can easily see

the equivalence between the two forms of Question 1, moreover it is not hard to show that an

affirmative answer to Question 1 would imply the same for Question 2 (see [11]).

Following [15] a graph G is called self-universal if A(G) = i(G). As a consequence, the

equality A(G) = a∗(G) in Question 1 is also satisfied for these graphs according to the chain

of inequalities i(G) ≤ a(G) ≤ a∗(G) ≤ A(G). Cliques, regular bipartite graphs, and Cayley

graphs of Abelian groups belong to this class (see [15]). In [1] the author proved that a complete

multipartite graph G is self-universal, except for the case when i(G) > 1
2 . Therefore the equality

A(G) = a∗(G) is also verified for this class of graphs. (In the latter case A(G) = a∗(G) = 1.) In

[11] it is shown that the graphs which are disjoint unions of cycles and complete graphs satisfy

the inequality in Question 2.

In this chapter first, in Section 2.1, we give a proof for the results of Brown, Nowakowski

and Rall about the lower bounds on A(G). Then, in Section 2.2 we sum up the results of the

author about the values of A(G) when G is a complete multipartite graph. The main result

of this chapter is that we answer Question 1 affirmatively. Thereby a positive answer also for

Question 2 is obtained. Moreover, it solves some other open problems related to A(G). In the

proofs we exploit an idea of Zhu [54] that he used on the way when proving the fractional version

of Hedetniemi’s conjecture. This tool is presented in Section 2.3. Then, in Section 2.4 first we

prove the inequality

i(G×H) ≤ max{a(G), a(H)}, for every two graphs G and H,

and give a positive answer to Question 2 (using a(G) ≤ a∗(G)). Afterwards we prove that

a(G×H) ≤ max{a(G), a(H)}, provided that a(G) ≤ 1

2
or a(H) ≤ 1

2
,

and from this result we conclude the affirmative answer to Question 1. (If a(G) > 1
2 then

a∗(G×2) = a∗(G) = 1. Otherwise applying the above result for G = H we get a(G×2) ≤ a(G),

while the reverse inequality clearly holds for every G. Thus we can conclude that a∗(G×2) =

a∗(G) for every graph G.) Finally, in Section 2.5, we discuss further open problems which are

solved by our result. For instance, we get a proof for the conjecture of Brown, Nowakowski and

Rall, stating that A(G ]H) = max{A(G), A(H)}, where G ]H denotes the disjoint union of

the graphs G and H. We also give a characterization of self-universal graphs.
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2 The ultimate categorical independence ratio

2.1 Results of Brown, Nowakowski and Rall: lower bounds on

the ultimate categorical independence ratio

Brown, Nowakowski and Rall [15] proved the following lower bounds on the ultimate categorical

independence ratio. These results are important also in our work, for this reason we give here

their proof. The following short arguments are essentially from [11].

Theorem 1 (Brown, Nowakowski, Rall [15]). For any independent set U of G we have

A(G) ≥ |U |
|U |+ |NG(U)| .

Proof. Let Uk be the set of those vertices of G×k which have a coordinate in U and before the

first such position all the coordinates are in V (G) \ (U ∪NG(U)). (Note that U1 = U .) It is easy

to see that Uk is an independent set of G×k. Indeed, any two elements of Uk are non-adjacent in

the first position where one of them contains an element of U . The ratio of the size of Uk and the

number of those vertices which have a coordinate in NG(U) and before the first such position

all the coordinates are in V (G) \ (U ∪ NG(U)) is clearly |U |
|NG(U)| . The remaining vertices have

all coordinates in V (G) \ (U ∪NG(U)), hence their ratio to the vertex number of G×k tends to

zero as k approaches infinity. Therefore |Uk|
|V (G×k)| tends to |U |

|U |+|NG(U)| , thus A(G) ≥ |U |
|U |+|NG(U)| .

�

Theorem 2 (Brown, Nowakowski, Rall [15]). If A(G) > 1
2 then A(G) = 1.

Proof. The condition A(G) > 1
2 implies that i(G×`) > 1

2 for some positive integer `. Set H =

G×`, we have A(H) = A(G). So there exists an independent set U of H such that |U |
|V (H)| >

1
2 ,

thus |U | > |NG(U)|. Let Uk be the set of those vertices of H×k all coordinates of whose belong to

U . Then NH×k(Uk) consists of the vertices of H×k all coordinates of whose are in NG(U). Since

the ratio |Uk|
|Uk|+|NG×k (Uk)| = |U |k

|U |k+|NG(U)|k tends to 1 as k approaches infinity, from Theorem 1 we

obtain that A(H) = A(H×k) = 1, implying also A(G) = 1. �

2.2 The ultimate categorical independence ratio for complete

multipartite graphs

As we mentioned at the beginning of this chapter, Brown, Nowakowski and Rall in [15] inves-

tigated graphs for which A(G) = i(G) holds and they called such graphs self-universal. In that

article it is proven that some interesting graph families, for example Cayley graphs of Abelian

groups, have this property. The paper [15] mentions complete multipartite graphs as one of
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2.3 A result of Zhu: nice partition of the independent sets of the product graph

those families of graphs for which the determination of the ultimate categorical independence

ratio remained an open problem. It follows from Theorem 1 and 2 that if the largest partite

class contains more than half of the vertices then the ultimate categorical independence ratio

equals to 1. In [1] it was proven that in all other cases, i.e., when none of the parts of the

complete multipartite graph has size greater than half the number of vertices, the graph is

self-universal. In particular, the author proved the following theorem, from which the result

on complete multipartite graphs can be obtained easily. We denote by d(v) the degree of the

vertex v.

Theorem 3 ([1]). Let G be a graph for which d(v) ≥ |V (G)| − α(G) holds for all vertices v of

G and i(G) ≤ 1
2 holds. Then i(G×k) = i(G) holds for every integer k ≥ 1.

Here we omit the proof of this theorem given in [1], but in Section 2.5 we will obtain this

statement as a consequence of a more general result on self-universal graphs.

Corollary 4 ([1]). Let G = K`1,`2,...,`m be a complete multipartite graph. Let n =
∑m

i=1 `i be the

number of vertices and let ` = max1≤i≤m `i be the size of the largest partite class. If ` ≤ n
2 then

A(G) = i(G) = `
n , so G is self-universal, otherwise A(G) = 1.

We remark that there are graphs which satisfy the conditions of Theorem 3 other than complete

multipartite graphs. An example is given by the graph consisting of a 5-length cycle and three

additional points joint to every vertex of the cycle.

2.3 A result of Zhu: nice partition of the independent sets of

the product graph

In this section we present a result of Zhu [54] about the independent sets of categorical product

of graphs. This will be a key tool for answering the questions of Alon and Lubetzky.

Let U be an independent set of G×H. Zhu considered the partition of U into two sets, let

A = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G)},
B = {(x, y) ∈ U : ∃(x′, y) ∈ U s.t. {x, x′} ∈ E(G)}.

(2.1)

We have U = A ]B, where A ]B denotes the disjoint union of the sets A and B.

In the sequel, we keep using the following notations for any Z ⊆ V (G×H).

For any y ∈ V (H), let

ZG(y) = {x ∈ V (G) : (x, y) ∈ Z}.

12



2 The ultimate categorical independence ratio

Similarly, for any x ∈ V (G), let

ZH(x) = {y ∈ V (H) : (x, y) ∈ Z}.

And, let

MG(Z) = {(x, y) ∈ V (G×H) : x ∈ NG(ZG(y))}.

In words, MG(Z) means that we decompose V (G × H) into sections corresponding to the

elements of V (H), and for each y ∈ V (H) we pick those points from the corresponding section

which are neighbours of the elements of ZG(y) in the graph G. Similarly, let

MH(Z) = {(x, y) ∈ V (G×H) : y ∈ NH(ZH(x))}.

Keep in mind, that ZG(y) ⊆ V (G) and ZH(x) ⊆ V (H), while MG(Z),MH(Z) ⊆ V (G × H).

(See Figure 1.)

∈Z

∈MH(Z)

∈MG(Z)

V (G)

V (H)

x

∈ZG(y)
x′

∈NG(Z
G(y))

ZH(x)3 y

NH(ZH(x))3 y′

Figure 1: The elements of Z, Z(x), Z(y), MG(Z) and MH(Z).

For the partition of U defined in (2.1) Zhu showed the following properties.

Lemma 5 (Zhu [54]). The following holds:

(i) For every y ∈ V (H), AG(y) is an independent set of G. For every x ∈ V (G), BH(x) is

an independent set of H.

(ii) A, B, MG(A) and MH(B) are pairwise disjoint subsets of V (G×H).

For the sake of completeness we prove this lemma.

Proof. We show the statements in (i). AG(y) is independent for every y ∈ V (H) by definition.

If for any x ∈ V (G) the set BH(x) was not independent in H, that is ∃y, y′ ∈ BH(x), {y, y′} ∈
E(H), then from (x, y′) ∈ B we would get that ∃(x′, y′) ∈ U , {x, x′} ∈ E(G). But this would
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2.4 A result of Zhu: nice partition of the independent sets of the product graph

be a contradiction, because (x, y) ∈ B and (x′, y′) ∈ U were two adjacent elements of the

independent set U .

We turn to the proof of (ii). By definition A ∩ B = ∅. The first part of the lemma implies

that the pair (A,MG(A)) is also disjoint, as well as the pair (B,MH(B)).

We shall see that the pairs (A,MH(B)), (MG(A),MH(B)) and (B,MG(A)) are also disjoint.

(See also Figures 2, 3 and 4.)

If (x, y) ∈ A ∩ MH(B) then (by the definition of MH(B))

∃(x, y′) ∈ B, {y, y′} ∈ E(H), and so (by the definition of

B) ∃(x′, y′) ∈ U , {x, x′} ∈ E(G), which is a contradiction:

(x, y) ∈ A and (x′, y′) ∈ U are adjacent vertices in the indepen-

dent set U .

∈A∩MH(B)

∈B ∈U

V (G)

V (H)

x x′

y

y′

Figure 2: A ∩MH(B) = ∅.

∈MG(A)∩MH(B)

∈B⊆U

∈A⊆U

V (G)

V (H)

x x′

y

y′

Figure 3: MG(A) ∩MH(B) = ∅.

Similarly, if (x, y) ∈ MG(A) ∩MH(B) then (by the

definition of MG(A)) ∃(x′, y) ∈ A ⊆ U , {x, x′} ∈
E(G) while (by the definition of MH(B)) ∃(x, y′) ∈
B ⊆ U , {y, y′} ∈ E(H), which contradicts the inde-

pendence of U .

Finally, (x, y) ∈ B ∩MG(A) implies that ∃(x′, y) ∈ A, {x, x′} ∈
E(G) (by the definition of MG(A)), which is in contradiction

with the definition of A: there should not be an (x, y) ∈ B ⊆ U
satisfying {x, x′} ∈ E(G).

∈B∩MG(A)
∈A

V (G)

V (H)

x x′

y

Figure 4: B ∩MG(A) = ∅.

�
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2 The ultimate categorical independence ratio

2.4 Answer to the questions of Alon and Lubetzky

In this section we answer Question 2 and 1 from the beginning of this chapter. In Subsection 2.4.1

we give an upper bound for i(G×H) in terms of a(G) and a(H). In Subsection 2.4.2 we prove

that the same upper bound holds also for a(G × H) provided that a(G) ≤ 1
2 or a(H) ≤ 1

2 .

Thereby we will obtain our main result, which states that A(G) = a∗(G) for every graph G.

2.4.1 Upper bound for i(G×H)

As a simple consequence of Zhu’s result the following inequality is obtained.

Theorem 6. For every two graphs G and H we have

i(G×H) ≤ max{a(G), a(H)}.

Proof. Let U be a maximum-size independent set of G×H, then we have

i(G×H) =
α(G×H)

|V (G×H)| =
|U |

|V (G×H)| . (2.2)

We partition U into U = A ] B according to (2.1). We also use the notations AG(y) for every

y ∈ V (H), BH(x) for every x ∈ V (G), and MG(A), MH(B) defined in the previous section.

It is clear that |U | = |A| + |B|. From the second part of Lemma 5 we have that |A| +

|B| + |MG(A)| + |MH(B)| ≤ |V (G ×H)|. Observe that |MG(A)| =
∑

y∈V (H) |NG(AG(y))| and

|MH(B)| = ∑x∈V (G) |NH(BH(x))|. Hence we get

|U |
|V (G×H)| ≤

|A|+ |B|
|A|+ |B|+ |MG(A)|+ |MH(B)| =

=

∑
y∈V (H) |AG(y)|+∑x∈V (G) |BH(x)|∑

y∈V (H)(|AG(y)|+ |NG(AG(y))|) +
∑

x∈V (G)(|BH(x)|+ |NH(BH(x))|) . (2.3)

From the first part of Lemma 5 and by the definition of a(G), a(H) we have |AG(y)|
|AG(y)|+|NG(AG(y))| ≤

a(G) for every y ∈ V (H), and |BH(x)|
|BH(x)|+|NH(BH(x))| ≤ a(H) for every x ∈ V (G), respectively.

Using the fact that if t1
s1
≤ r and t2

s2
≤ r then t1+t2

s1+s2
≤ r, this yields∑

y∈V (H) |AG(y)|+∑x∈V (G) |BH(x)|∑
y∈V (H)(|AG(y)|+ |NG(AG(y))|) +

∑
x∈V (G)(|BH(x)|+ |NH(BH(x))|) ≤ max{a(G), a(H)}.

(2.4)

Equality (2.2) and inequalities (2.3), (2.4) together give us the stated inequality,

i(G×H) ≤ max{a(G), a(H)}.

�

From Theorem 6 it follows that the answer to Question 2 is positive, as it is already stated.
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2.4 Answer to the questions of Alon and Lubetzky

2.4.2 Upper bound for a(G×H)

In this subsection we answer Question 1 affirmatively. To show that a∗(G×2) = a∗(G) holds for

every graph G it is enough to prove that a(G×2) ≤ a(G) if a(G) ≤ 1
2 . (This is because every G

satisfies a(G×2) ≥ a(G), and in addition if a(G) > 1
2 then a∗(G×2) = a∗(G) = 1.) A bit more

general, we prove the following theorem.

Theorem 7. If a(G) ≤ 1
2 or a(H) ≤ 1

2 then

a(G×H) ≤ max{a(G), a(H)}.

Proof. Let G and H be two graphs satisfying a(G) ≤ 1
2 or a(H) ≤ 1

2 . Without loss of generality,

we may assume that a(G) ≥ a(H). Therefore a(H) ≤ 1
2 .

We need to show that for every independent set U of G×H we have

|U |
|U |+ |NG×H(U)| ≤ a(G).

Observe that it can be rewritten as follows. Set b(G) = 1−a(G)
a(G) . It is enough to prove that

|NG×H(U)| ≥ b(G)|U |.

The definition of a(G) means that |NG(P )| ≥ b(G)|P | for any independent set P of G (and there

is an independent set R of G such that |NG(R)| = b(G)|R|). Similarly, using b(H) = 1−a(H)
a(H) we

have |NH(Q)| ≥ b(H)|Q| for any independent set Q of H.

First, we need some notations. Let Â, B̂ and C be the following subsets of U .

Â = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G), but ∃(x, y′) ∈ U s.t. {y, y′} ∈ E(H)},
B̂ = {(x, y) ∈ U : @(x, y′) ∈ U s.t. {y, y′} ∈ E(H), but ∃(x′, y) ∈ U s.t. {x, x′} ∈ E(G)},
C = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G), and @(x, y′) ∈ U s.t. {y, y′} ∈ E(H)}.

(See the rules for these sets on Figure 5.)

∈ Â

∈U

∈U

V (G)

V (H)

x x′

y

y′

∈B̂

∈U

∈U

V (G)

V (H)

x x′

y

y′

∈C

∈U

∈U

V (G)

V (H)

x x′

y

y′

Figure 5: The elements of sets Â, B̂ and C.
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2 The ultimate categorical independence ratio

We will also use the notations ZH(x), ZG(y), MG(Z) and MH(Z) for any Z ⊆ V (G × H),

x ∈ V (G), y ∈ V (H) defined in Section 2.3. We partition MG(Â ∪ C) into two parts, let

N1 = MG(Â ∪ C) ∩NG×H(U) and L = MG(Â ∪ C) \NG×H(U).

And let

N2 = MH(B̂ ∪ L).

The above subsets of V (G×H) will play an important role in the proof. (See the rules for them

on Figure 6.)

∈N1

∈U

∈ Â∪C

V (G)

V (H)

x x′

y
∈L

∈U

∈ Â∪C

V (G)

V (H)

x x′

y ∈N2

∈B̂∪L

V (G)

V (H)

x

y

y′

Figure 6: The elements of N1, L and N2.

We obtain the desired lower bound for NG×H(U) in the following main steps.

(i) We show that U is partitioned into U = Â ] B̂ ] C.

(ii) We consider the elements of Â and C for every y ∈ V (H), and prove that

(a) (Â ∪ C)G(y) is independent in G,

(b) |N1| ≥ b(G)
(
|Â|+ |C|

)
− |L|.

(iii) We consider the elements of B̂ and L for every x ∈ V (G), and prove that

(a) B̂(x) ∩ L(x) = ∅,
(b) (B̂ ∪ L)H(x) is independent in H,

(c) |N2| ≥ b(H)
(
|B̂|+ |L|

)
.

(iv) For the sets N1, N2 we show that

(a) N1, N2 ⊆ NG×H(U),

(b) N1 ∩N2 = ∅,
(c) |NG×H(U)| ≥ |N1|+ |N2|.

(v) Finally, we prove that

|NG×H(U)| ≥ b(G)|U |.
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2.4 Answer to the questions of Alon and Lubetzky

Now we prove the statements above.

(i) It is clear that Â, B̂ and C are pairwise disjoint. In addition, there is no (x, y) ∈ U for

which ∃(x′, y), (x, y′) ∈ U such that {x, x′} ∈ E(G) and {y, y′} ∈ E(H), because this would

imply that {(x′, y), (x, y′)} ∈ E(G × H), but U is an independent set. Hence U is partitioned

into U = Â] B̂ ]C. (The connection with the partition of Zhu described in (2.1) is clearly the

following, A = Â ] C and B = B̂.)

(ii) We consider the elements of Â and C for every y ∈ V (H).

(ii/a) By definition (Â ∪ C)G(y) is independent in G.

(ii/b) From (ii/a) and by the definition of b(G) it follows that |NG((Â ∪C)G(y))| ≥ b(G)|(Â ∪
C)G(y)|. Considering the sum for all y ∈ V (H) we have |MG(Â∪C)| ≥ b(G)

(
|Â|+ |C|

)
. By the

definition of N1 and L this yields |N1| ≥ b(G)
(
|Â|+ |C|

)
− |L|.

(iii) We consider the elements of B̂ and L for every x ∈ V (G).

(iii/a) By the definition of Â and C, the sets B̂H(x) and LH(x) are disjoint. Indeed, if (x, y) ∈
M ⊆MG(Â ∪ C) then ∃(x′, y) ∈ Â ∪ C, {x, x′} ∈ E(G) and so (x, y) cannot be in B̂ ⊆ U .

(iii/b) We claim that (B̂ ∪ L)H(x) is independent in H

for every x ∈ V (G). Clearly, B̂H(x) is independent by def-

inition. Furthermore, if y, y′ ∈ LH(x), {y, y′} ∈ E(H) then

from (x, y) ∈ L we get that ∃(x′, y) ∈ Â∪C, {x, x′} ∈ E(G),

hence (x, y′) ∈ L is a neighbour of (x′, y) ∈ U which con-

tradicts to L ∩NG×H(U) = ∅. Similarly if y ∈ B̂H(x), y′ ∈
MH(x), {y, y′} ∈ E(H) then from (x, y) ∈ B̂ it follows that

∃(x′, y) ∈ U, {x, x′} ∈ E(G), but again, as (x, y′) ∈ L is a

neighbour of (x′, y) ∈ U it is in contradiction with the def-

inition of L. (Figure 7 illustrates the steps of the argument

of this part.)

∈L

∈L

∈ Â∪C
(∈B̂) (∈U)

V (G)

V (H)

x x′

y

y′

Figure 7: (B̂ ∪ L)H(x) is

independent.

(iii/c) From (iii/b) and by the definition of b(H) it follows that |NH((B̂∪M)H(x))| ≥ b(H)|(B̂∪
M)H(x)|. Considering the sum for all x ∈ V (G) we get that |MH(B̂ ∪ L)| ≥ b(H)|B̂ ∪ L|. By

the definition of N2 and the statement (iii/a) we obtain |N2| ≥ b(H)
(
|B̂|+ |L|

)
.

(iv) Next, we investigate the sets N1, N2.

18



2 The ultimate categorical independence ratio

(iv/a) We have N1 ⊆ NG×H(U), by definition. We claim

that N2 ⊆ NG×H(U). On the one hand, MH(B̂) ⊆
NG×H(U). Indeed, if y ∈ B̂H(x) and y′ is a neighbour

of y in H, and so (x, y′) ∈ MH(B̂) then by the defini-

tion of B̂, ∃(x′, y) ∈ U, {x, x′} ∈ E(G). Hence (x, y′) is

a neighbour of (x′, y) ∈ U , that is, (x, y′) ∈ NG×H(U).

On the other hand, if y ∈ LH(x) and y′ is a neighbour

of y in H, and so (x, y′) ∈ MH(L) then by the defi-

nition of L, ∃(x′, y) ∈ Â ∪ C, {x, x′} ∈ E(G), therefore

{(x′, y), (x, y′)} ∈ E(G×H), thus (x, y′) ∈ NG×H(U). This

yields MH(L) ⊆ NG×H(U). (See Figure 8.)

∈N2=MH(B̂∪L)

∈B̂ ∈U

(∈L) (∈ Â∪C)

V (G)

V (H)

x x′

y

y′

Figure 8: N2 ⊆ NG×H(U).

(iv/b) We claim that N1∩N2 = ∅. Suppose indirectly, that ∃(x, y) ∈ N1∩N2. Then (x, y) ∈ N1

implies that ∃(x′, y) ∈ Â∪C, {x, x′} ∈ E(G). While from (x, y) ∈ N2 we get that ∃(x, y′) ∈ B̂ or

∃(x, y′) ∈ L, {y, y′} ∈ E(H). It is a contradiction since (x′, y) and (x, y′) are adjacent in G×H,

but no edge can go between Â∪C and B̂ ∪L by the independence of U and the definition of L.

(iv/c) The statements (iv/a), (iv/b) give |NG×H(U)| ≥ |N1|+ |N2|.
(v) From (ii/b), (iii/c) and (iv/c) we get that

|NG×H(U)| ≥ |N1|+ |N2| ≥
(
b(G)

(
|Â|+ |C|

)
− |L|

)
+

(
b(H)

(
|B̂|+ |L|

))
. (2.5)

From the assumption a(G) ≥ a(H) it follows b(G) ≤ b(H). We also have a(H) ≤ 1
2 , that is

b(H) ≥ 1. Thus we obtain(
b(G)

(
|Â|+ |C|

)
− |L|

)
+

(
b(H)

(
|B̂|+ |L|

))
≥

≥ b(G)

(
|Â|+ |B̂|+ |C|

)
+
(
b(H)− 1

)
|L| ≥ b(G)|U |. (2.6)

Combining the inequalities (2.5) and (2.6) we conclude |NG×H(U)| ≥ b(G)|U |.

Consequently, for every independent set U of G×H we showed that

|U |
|U |+ |NG×H(U)| ≤ a(G),

and the proof is complete. �

We mentioned in the introduction part of this chapter that the two forms of Question 1 are

equivalent. Hence from the equality a∗(G×2) = a∗(G) for every graph G we obtain the following

corollary. (Indeed, suppose on the contrary that G is a graph with a∗(G) < A(G) then ∃k such
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2.5 Further consequences

that a∗(G) < i(G×k) ≤ a∗(G×k), and as the sequence {a∗(G×`)}∞`=1 is monotone increasing, it

follows that ∃m for which a∗(G×m) < a∗((G×m)×2), giving a contradiction.)

Corollary 8. For every graph G we have A(G) = a∗(G), that is

A(G)(= lim
k→∞

i(G×k)) =


a(G)

(
= max

U is independent in G

|U |
|U |+|NG(U)|

)
, if a(G) ≤ 1

2 ,

1, otherwise.

�

2.5 Further consequences

Brown, Nowakowski and Rall in [15] asked whether A(G]H) = max{A(G), A(H)}, where G]H
is the disjoint union of G and H. This equality immediately follows from Corollary 8 since the

analogous statement, a∗(G ] H) = max{a∗(G), a∗(H)} is straightforward. In [11] it is shown

that A(G ]H) = A(G×H), therefore we get the following result.

Corollary 9. For every two graphs G and H we have

A(G ]H) = A(G×H) = max{A(G), A(H)}.

�

The authors of [15] also addressed the question whether A(G) is computable, and if so what

is its complexity. They showed that in the case when G is bipartite then A(G) = 1
2 if G has a

perfect matching, and A(G) = 1 otherwise. Hence for bipartite graphs A(G) can be determined

in polynomial time. Furthermore, it is proven in [11] that a(G) ≤ 1
2 if and only if G contains a

fractional perfect matching. Therefore given an input graph G, determining whether A(G) = 1

or A(G) ≤ 1
2 can be done in polynomial time. From Corollary 8 we can conclude that the

problem of deciding whether A(G) > t for a given graph G and a given value t, is in NP.

Moreover it is not hard to prove that it is in fact NP-complete. (The maximum independent

set problem has a Karp-reduction to this problem, by adding sufficiently many vertices to the

graph which are connected to each other and every other vertex of the graph, and choosing t

appropriately.)

Any rational number in (0, 12 ] ∪ {1} is the ultimate categorical independence ratio for some

graph G, as it is shown in [15]. Here we remark that we obtained that A(G) cannot be irrational,

solving another problem mentioned in [15].

As a consequence of Corollary 8 we also have the following characterization of self-universal

graphs. We call a graph empty if it has no edge. For every other graph G it holds that i(G) < 1.
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2 The ultimate categorical independence ratio

Corollary 10. A non-empty graph G is self-universal if and only if a(G) = i(G) and i(G) ≤ 1
2 .

�

In other words, a nonempty graph G is self-universal iff the expression |U |
|U |+|NG(U)| reach its

maximum (also) for maximum-sized independent sets among all independent sets of G and this

maximum is at most 1
2 . Clearly, from this result Theorem 3 of Section 2.2 also follows.
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Chapter 3

The asymptotic value of the Hall-ratio for

categorical and lexicographic power

The Hall-ratio of a graph G was investigated in [20, 21] where it is defined as

ρ(G) = max

{ |V (H)|
α(H)

: H ⊆ G
}
,

that is, as the ratio of the number of vertices and the independence number maximized over all

subgraphs of G. (See also [23] and some of the references therein for an earlier appearance of the

same notion on a different name.) The asymptotic values of the Hall-ratio for different graph

powers were investigated by Simonyi [49]. He considered the (appropriately normalized) asymp-

totic values of the Hall-ratio for the exponentiations called normal, co-normal, lexicographic

and categorical, respectively.

All the above four graph powers of the graph G are defined on the k-length sequences over

V (G). In the normal power G�k two sequences are adjacent iff their elements at every coordinate

are either equal or form an edge in G. In the co-normal power Gk two such sequences are

connected iff there is some coordinate where the corresponding elements of the two sequences

form an edge of G. The asymptotic value of the Hall-ratio with respect to the co-normal power is

defined as h(G) = lim
k→∞

k
√
ρ(Gk), the analogous asymptotic value for the normal power is denoted

by h�(G). Simonyi [49] proved that h(G) = χf (G), where χf (G) is the fractional chromatic

number of graph G, while h�(G) = R(G), where R(G) denotes the so-called Witsenhausen

rate. The latter is the normalized asymptotic value of the chromatic number with respect to

the normal power and is introduced by Witsenhausen in [52] where its information theoretic

relevance is also explained. The fractional chromatic number is the well-known graph invariant

one obtains from the fractional relaxation of the integer program defining the chromatic number.
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3.1

That is,

χf (G) = inf

{ ∑
U∈S(G)

f(U) : f is a fractional colouring of G

}
, where

f is a fractional colouring of G if f : S(G)→ [0, 1] and

∀v ∈ V (G) :
∑

v∈U∈S(G)

f(U) ≥ 1,

S(G) denotes the set of the independent sets of G.

In the lexicographic power G◦k two sequences of the original vertices are adjacent iff they are

adjacent in the first coordinate where they differ. The ultimate lexicographic Hall-ratio of graph

G is h◦(G) = lim
k→∞

k
√
ρ(G◦k). In the categorical power G×k two sequences of the original vertices

are connected iff their elements form an edge in G at every coordinate. The ultimate categorical

Hall-ratio of graph G is h×(G) = lim
k→∞

ρ(G×k). (Note, that we do not need any normalization

here.) Simonyi [49] conjectured that also for the lexicographic power and for the categorical

power we get the fractional chromatic number as the asymptotic value. In this chapter we

prove both of his conjectures. In Section 3.1 and 3.2 the ultimate lexicographic Hall-ratio, in

Section 3.3, 3.4 and 3.5 the ultimate categorical Hall-ratio is discussed.

In the proofs we will also need the fractional relaxation of the clique number. A func-

tion g : V (G) → [0, 1] for which ∀U ∈ S(G) :
∑
v∈U

g(v) ≤ 1 is a fractional clique of G

with value z(g) =
∑

v∈V (G)

g(v). The fractional clique number of G is ωf (G) = sup{z(g) :

g is a fractional clique of G with value z(g)}. A fractional clique of G is called optimal if its

value is ωf (G). (Figure 9 illustrates a fractional colouring and a fractional clique of a graph.)

The duality theorem of linear programming implies that χf (G) = ωf (G) for every graph G.

See [48] for more details.

1/2

1/2

1/21/2

1/2

1

χf =
7
2

1/2

1/2

1/21/2

1/2

1

ωf = 7
2

Figure 9: An optimal fractional colouring and an optimal fractional clique of a wheel graph.
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

3.1 The ultimate lexicographic Hall-ratio

For two graphs F and G, their lexicographic product F ◦G is defined on the vertex set V (F ◦G) =

V (F ) × V (G) with edge set E(F ◦ G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ), or u1 =

u2 and {v1, v2} ∈ E(G)}. The lexicographic product F ◦G is also known as the substitution of

G into all vertices of F , the name we use follows the book [39]. The nth lexicographic power

G◦n is the n-fold lexicographic product of G. That is, the lexicographic power is defined on the

vertex sequences of the original graph and we connect two such sequences iff they are adjacent

in the first coordinate where they differ. (See Figure 10.)

G

G◦2

Figure 10: The lexicographic square of a graph. (Double lines mean that

the corresponding vertex classes are totally connected.)

Definition ([49]). The ultimate lexicographic Hall-ratio of graph G is

h◦(G) = lim
n→∞

n
√
ρ(G◦n).

The normal and co-normal products of two graphs F and G are also defined on V (F )×V (G)

as vertex sets and their edge sets are such that E(F � G) ⊆ E(F ◦ G) ⊆ E(F · G) holds,

where F � G denotes the normal, F · G the co-normal product of F and G. (In particular,

{(u1, v1), (u2, v2)} ∈ E(F � G) if {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G), or {u1, u2} ∈ E(F )

and v1 = v2, or u1 = u2 and {v1, v2} ∈ E(G), while {(u1, v1), (u2, v2)} ∈ E(F ·G) if {u1, u2} ∈
E(F ) or {v1, v2} ∈ E(G).)

As we have seen at the beginning of this chapter, denoting by h�(G) and h(G) the normalized

asymptotic values analogous to h◦(G) for the normal and co-normal power, respectively, Simonyi

[49] proved that h(G) = χf (G), where χf (G) is the fractional chromatic number of graph G,

while h�(G) = R(G), where R(G) denotes the Witsenhausen rate.

It follows from the above discussion that the value of h◦(G) falls into the interval [R(G), χf (G)].

We remark that the lower bound R(G) is sometimes better but sometimes worse than the easy
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3.2 Proof of the result in Section 3.1

lower bound ρ(G), cf. [49]. Thus we know that

max {ρ(G), R(G)} ≤ h◦(G) ≤ χf (G).

For some types of graphs the upper and lower bounds are equal, so this formula gives the

exact value of the ultimate lexicographic Hall-ratio. For instance, if G is a perfect graph, then

χf (G) = χ(G) = ω(G) ≤ ρ(G). If G is a vertex-transitive graph, then χf (G) = |V (G)|
α(G) ≤ ρ(G).

(The proof of the fact that χf (G) = |V (G)|
α(G) holds for vertex-transitive graphs, can be found for

example in [48].)

The length of the interval [max{ρ(G), R(G)}, χf (G)] is positive in general. An example is

the 5-wheel, W5 consisting of a 5-length cycle and an additional point joint to every vertex of the

cycle. It is clear that ρ(W5) = 3. To get an upper bound for R(W5), one can find a colouring of

C�25 with 5 colours (see [52]) which can be completed to a colouring of W�25 with 12 colours, so

χ(W�25 ) ≤ 12. Since χ(G�n) ≤ (χ(G))n (see, e.g., [39] for the easy proof) and by the definition

of R(G) we get R(W5) ≤
√

12. Furthermore, χf (W5) = χf (C5) + 1 = 7
2 > max{3,

√
12}.

It was conjectured in [49], that in fact, h◦(G) always coincides with the larger end of the

above interval. The goal of this part is to prove this conjecture.

Theorem 11. The ultimate lexicographic Hall-ratio equals to the fractional chromatic number

for every graph G, that is

h◦(G) = χf (G).

3.2 Proof of the result in Section 3.1

We know h◦(G) ≤ χf (G) thus it is enough to prove the reverse inequality.

3.2.1 Definition of pG(k, α) and qG(k, α), formula for h◦(G) in terms of qG(k, α)

Preparing for the proof we introduce some notations. Let k be a positive integer and let α be a

positive real number. Denote by pG(k, α) the number of vertices maximized over all subgraphs

of G◦k with independence number at most α, that is

pG(k, α) = max
{
|V (H)| : H ⊆ G◦k, α(H) ≤ α

}
and let

qG(k, α) =
pG(k, α)

α
.

Clearly, pG(k, α) = pG(k, bαc) and qG(k, α) ≤ qG(k, bαc). In spite of this fact it will be useful

that pG(k, α) is defined also for non-integral α values.

Now we are going to prove some technical lemmas.
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

Lemma 12. The ultimate lexicographic Hall-ratio can be expressed by the values of qG(k, α) as

follows.

h◦(G) = lim
k→∞

max
{

k
√
qG(k, α) : α ∈ R+

}
(3.1)

Proof. The Hall-ratio of the kth lexicographic power of G can be calculated by the above terms

the following simple way:

ρ(G◦k) = sup{qG(k, α) : α ∈ R+}.

Since pG(k, α) is a bounded, monotone increasing function and qG(k, α) is the ratio of this and

the strictly monotone increasing identity function, the above supremum is always reached. Since

qG(k, α) ≤ qG(k, bαc), it is reached at some integer value of α, so the maximum value belongs

to one of the subgraphs of G◦k.

Thus we get h◦(G) = lim
k→∞

k
√
ρ(G◦k) = lim

k→∞
max

{
k
√
qG(k, α) : α ∈ R+

}
. �

Thus our aim is to show that lim
k→∞

max
{

k
√
qG(k, α) : α ∈ R+

}
≥ χf (G).

3.2.2 Recursive lower bound for qG(k, α) from an optimal fractional clique

Let g : V (G) → R+,0 be an optimal fractional clique of G. That is, (denoting the set of

independent sets in G by S(G)) it is a fractional clique:

∀U ∈ S(G) :
∑
v∈U

g(v) ≤ 1, (3.2)

and it is optimal: ∑
v∈V (G)

g(v) = χf (G). (3.3)

(See Figure 11.)

2
10

2
10

2
10

2
10

2
10

3
10

3
10

3
10

3
10

3
10

4
10

ωf (G) = 29
10

G

Figure 11: An optimal fractional clique of a graph.
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3.2 Proof of the result in Section 3.1

We may assume that g(v) 6= 0 for any v ∈ V (G). (Otherwise we can consider the subgraph G′ of

G induced by those vertices v of G for which g(v) 6= 0. As ωf (G′) = ωf (G) and h◦(G′) ≤ h◦(G),

if we show h◦(G′) ≥ χf (G′) then h◦(G) ≥ χf (G) also follows.)

Lemma 13.

qG(k, α) ≥
∑

v∈V (G)

g(v)qG (k − 1, g(v)α)

Proof. Every subgraph of G◦k can be imagined as if the vertices of G would be substituted by

subgraphs of G◦(k−1). Furthermore, every independent set of G◦k can be thought of as having

the vertices of an independent set of G substituted by independent sets of (the above subgraphs

of) G◦(k−1).

If we substitute every vertex v of G by a subgraph of G◦(k−1) with independence number at most

g(v)α, then we get a subgraph of G◦k with independence number at most max
U∈S(G)

∑
v∈U

g(v)α ≤
α · max

U∈S(G)

∑
v∈U

g(v) ≤ α, because of (3.2). (See Figure 12.)

pG(k − 1, 2
10α)

pG(k − 1, 2
10α)

pG(k − 1, 2
10α)pG(k − 1, 2

10α)

pG(k − 1, 2
10α)

pG(k − 1, 3
10α)

pG(k − 1, 3
10α)

pG(k − 1, 3
10α)pG(k − 1, 3

10α)

pG(k − 1, 3
10α)

pG(k − 1, 4
10α)

G◦k

Figure 12: Number of vertices of the subgraphs of G◦(k−1) substituted in the vertices of G.

Thus we get

pG(k, α) ≥
∑
v∈G

pG (k − 1, g(v)α) .
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

It follows from this inequality and the definition of qG(k, α) that

qG(k, α) =
pG(k, α)

α
≥ 1

α

∑
v∈G

pG (k − 1, g(v)α) =

=
∑
v∈G

g(v)α

α

pG (k − 1, g(v)α)

g(v)α
=

∑
v∈V (G)

g(v)qG (k − 1, g(v)α) .

�

3.2.3 Further transformations, definition of rG(k, α) and sG(k, α)

Next we bound the qG(k, α) function from below, it will be important for later calculations. Let

us define function rG(k, α) as follows.

rG(1, α) =

{
cG, if 1 ≤ α ≤ m = |V (G)|
0, otherwise

where cG is a positive constant, which bounds qG(1, α) from below for all 1 ≤ α ≤ m = |V (G)|.
Such cG exists, for example cG = 1

m is a good choice.

For k ≥ 2 let

rG(k, α) =
∑

v∈V (G)

g(v)rG (k − 1, g(v)α) .

By Lemma 13 and by the construction of rG(k, α) it holds for all positive integer k and all

positive real number α that

rG(k, α) ≤ qG(k, α). (3.4)

Thus it is enough to show that lim sup
k→∞

max
{

k
√
rG(k, α) : α ∈ R+

}
≥ χf (G).

To make the calculations simpler, we express α as mβ, that is β = logm α and introduce

sG(k, β) = rG(k,mβ),

where k is a positive integer, β is a real number. Since this transformation does not change the

maximum value of the function (only its place), it holds that

max
{

k
√
rG(k, α) : α ∈ R+

}
= max

{
k
√
sG(k, β) : β ∈ R

}
. (3.5)

Thus it is enough to prove that lim sup
k→∞

max
{

k
√
sG(k, β) : β ∈ R

}
≥ χf (G).
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3.2 Proof of the result in Section 3.1

3.2.4 Recursive formula for sG(k, α) and the desired lower bound

Observe that the following equalities hold.

sG(1, β) =

{
cG, if 0 ≤ β ≤ 1

0, otherwise

sG(k, β) =
∑

v∈V (G)

g(v)sG (k − 1, logm g(v) + β) , k ≥ 2.

We get the formula for sG(1, β) from the definition of the function sG(k, β). The second equality

follows by writing

sG(k, β) = rG(k,mβ) =
∑

v∈V (G)

g(v)rG

(
k − 1, g(v)mβ

)
=

=
∑

v∈V (G)

g(v)sG

(
k − 1, logm(g(v)mβ)

)
=

∑
v∈V (G)

g(v)sG (k − 1, logm g(v) + β) .

Lemma 14. It holds for all graphs G that

lim sup
k→∞

max
{

k
√
sG(k, β) : β ∈ R

}
≥ χf (G). (3.6)

Proof. Let us determine the integral of the function sG(k, β).

∞∫
β=−∞

sG(1, β) dβ = cG

∞∫
β=−∞

sG(k, β) dβ =

∞∫
β=−∞

∑
v∈V (G)

g(v)sG (k − 1, logm g(v) + β) dβ =

=
∑

v∈V (G)

g(v)

∞∫
β=−∞

sG(k − 1, logm g(v) + β) dβ

 =

=
∑

v∈V (G)

g(v)

∞∫
β=−∞

sG(k − 1, β) dβ

 =

=

 ∑
v∈V (G)

g(v)

 ∞∫
β=−∞

sG(k − 1, β) dβ =

= χf (G)

∞∫
β=−∞

sG(k − 1, β) dβ, k ≥ 2,
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

where in the last equation we used (3.3). Hence,

∞∫
β=−∞

sG(k, β) dβ = cG(χf (G))k−1.

For a function f(x) we call the support of f(x), denoted by T (f(x)), the set of reals x for

which f(x) 6= 0. Let us determine T (sG(k, β)).

T (sG(1, β)) = [0, 1]. Let gG be any real value satisfying gG ≤ logm g(v) ≤ 0 for all v ∈
V (G). Such gG exists, for example gG = min{logm g(v) : v ∈ V (G)} is a good choice. Thus

T (sG(k, β)) ⊆ [0, 1− (k − 1)gG].

It is clear from the above discussion that
∫∞
β=−∞ sG(k, β) dβ asymptotically equals to (χf (G))k,

i.e., the limit of their ratio equals 1 as k goes to infinity. The length of the support of sG(k, β)

can be bounded from above by a linear function of k, let this function be dGk where dG is a con-

stant. These facts imply that lim sup
k→∞

max
{

k
√
sG(k, β) : β ∈ R

}
≥ χf (G). Suppose indirectly

that there is an ε > 0 and N ∈ N+, for which ∀k > N , ∀β ∈ R: sG(k, β) < (χf (G)− ε)k, then∫∞
β=−∞ sG(k, β) dβ < dGk(χf (G)− ε)k. Since lim

k→∞
dGk(χf (G)−ε)k

χf (G)k
= lim

k→∞
(1− ε

χf (G))
k = 0, it is in

contradiction with the statement at the beginning of this paragraph. �

3.2.5 Summary of the proof

By now we have essentially proved Theorem 11, it needs only to be summarized.

Proof of Theorem 11. The preceding lemmas imply that

h◦(G) = lim
k→∞

max
{

k
√
qG(k, α) : α ∈ R+

}
≥ lim sup

k→∞
max

{
k
√
rG(k, α) : α ∈ R+

}
=

= lim sup
k→∞

max
{

k
√
sG(k, β) : β ∈ R

}
≥ χf (G),

where the stated relations follow from (3.1), (3.4), (3.5) and (3.6), respectively.

Thus we have proved

h◦(G) = χf (G).

�

3.2.6 Remarks

Concerning Theorem 11 we have the following remarks.

Remark 1. There are graphs for which the sequence
{

k
√
ρ(G◦k)

}∞
k=1

does not reach its limit

χf (G) for any finite k. The 5-wheel is an example for which no t attains t
√
ρ(W ◦t5 ) = χf (W5) = 7

2 .
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3.3 The ultimate categorical Hall-ratio

This is because if there was such a t then there must be a subgraph H of W ◦t5 for which
|V (H)|
α(H) =

(
7
2

)t
= 7t

2t , but this fraction is irreducible and |V (H)| ≤ |V (W ◦t5 )| = 6t. ♦

Remark 2. It is known from the theorem of McEliece and Posner [46] (cf. also in [48]) that the

normalized asymptotic value of the chromatic number with respect to the co-normal product

is the fractional chromatic number. This theorem with the result proven here implies that the

normalized asymptotic value of each of the Hall-ratio, the fractional chromatic number and the

chromatic number with respect to both the co-normal and the lexicographic power equals to the

fractional chromatic number. This is because ρ(G) ≤ χf (G) ≤ χ(G) holds for every graph G and

the lexicographic power of a graph is a subgraph of its co-normal power. These relations were

already known except for the asymptotic value of the Hall-ratio for the lexicographic power.

As we mentioned, it is proven in [49] that the normalized asymptotic value of the Hall-ratio

for the co-normal power equals to the fractional chromatic number. The multiplicativity of the

fractional chromatic number for the lexicographic product is a theorem in [39]. ♦

3.3 The ultimate categorical Hall-ratio

Recall that, for two graphs F and G, their categorical product (also called direct product)

F × G is defined on the vertex set V (F × G) = V (F ) × V (G) with edge set E(F × G) =

{{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G)}. The kth categorical power G×k

is the k-fold categorical product of G. That is, the categorical power is defined on the vertex

sequences of the original graph and we connect two such sequences iff they are adjacent in every

coordinate. (See Figure 13.)

G

H G×H

Figure 13: The categorical product of two graphs.
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

Definition. ([49]) The ultimate categorical Hall-ratio of graph G is

h×(G) = lim
k→∞

ρ(G×k).

Note that in this case we do not need any normalization on the sequence. It is shown in [49] that

this graph parameter is bounded from above by the fractional chromatic number and conjectured

that equality holds for all graphs. This conjecture can be shown easily for perfect and for vertex-

transitive graphs. It is proven in [49] that it is also true for wheel graphs constructed from a

cycle and an additional point joint to every vertex of the cycle. Using a similar argument which

was used in the proof of that result the following generalization was also proven by the author

in [3]. Let G be a graph for which h×(G) = χf (G) holds and let Ĝ be the graph we obtain from

G by connecting each of its vertices to an additional vertex, then h×(Ĝ) = χf (Ĝ) holds, too.

Here we prove the above conjecture in general.

Theorem 15. The ultimate categorical Hall-ratio equals to the fractional chromatic number for

every graph G, that is

h×(G) = χf (G).

The proof uses a recent result of Zhu [54] that he proved on the way when proving the fractional

version of Hedetniemi’s conjecture, i.e., that χf (G×H) = min{χf (G), χf (H)}.

3.4 A result of Zhu: a nice fractional clique of the product graph

In this section we present the result of Zhu that we will use in the proof of Theorem 15. (In the

proof of this lemma we apply Lemma 5 that we used in the previous chapter, in Section 2.3, on

page 12.)

Let g : V (G) → [0, 1] and h : V (H) → [0, 1] be an optimal fractional clique of G and H,

respectively. Define f : V (G×H)→ [0, 1] as follows,

f((x, y)) =
g(x)h(y)

max{ωf (G), ωf (H)} . (3.7)

Lemma 16 (Zhu [54]). The function defined in (3.7) is a fractional clique of G×H with value

min{ωf (G), ωf (H)}.

For the sake of completeness we give a proof for this result. Let f : X → R. For any Y ⊆ X
we use the notation f(Y ) =

∑
y∈Y f(y).
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3.4 A result of Zhu: a nice fractional clique of the product graph

Proof of Lemma 16. Let f be the weight function on V (G × H) defined in (3.7). Firstly, we

prove that the sum of the weights on the vertex set is min{ωf (G), ωf (H)}. Indeed,

f(V (G×H)) =
∑

(x,y)∈V (G×H)

f((x, y)) =
∑

(x,y)∈V (G×H)

g(x)h(y)

max{ωf (G), ωf (H)} =

=
ωf (G)ωf (H)

max{ωf (G), ωf (H)} = min{ωf (G), ωf (H)}.
(3.8)

Secondly, we show that the function f is a fractional clique of G×H. To this, we shall use

the following claim.

Claim. Let g : V (G)→ [0, 1] be an optimal fractional clique of G. Then

g(U) ≤ g(U ∪NG(U))

ωf (G)
,

for any independent set U of G.

Proof. Assume on the contrary that there exists an independent set U of G such that g(U ∪
NG(U)) < g(U)ωf (G). This means that g(V (G) \ (U ∪ NG(U))) > ωf (G)(1 − g(U)), using

g(V (G)) = ωf (G). Set G′ = G[V (G) \ (U ∪ NG(U))], and consider the values of g on the

vertices of G′. From g(V (G′)) > ωf (G)(1 − g(U)) and ωf (G′) ≤ ωf (G) it follows that there

is an independent set U ′ of G′ with g(U ′) > 1 − g(U). (Otherwise, assuming g(U) 6= 1, the

function g′(v) = g(v)
1−g(U) would be a fractional clique of G′ with value greather than ωf (G′). If

g(U) = 1 then U ′ = {v} is a good choice for any vertex v of G′ with g(v) > 0.) As U ∪ U ′ is an

independent set of G, the inequality g(U ∪ U ′) > 1 gives a contradiction, proving the Claim. �

Let U be an independent set of G×H. We prove that f(U) ≤ 1. Partition U according to

(2.1) into U = A ∪B, recall that

A = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G)},
B = {(x, y) ∈ U : ∃(x′, y) ∈ U s.t. {x, x′} ∈ E(G)}.

We have

f(U) = f(A) + f(B). (3.9)

Using the Claim and the statement (i) of Lemma 5 we obtain the following upper bound for f(A).
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

(See the meaning of the notation of AG(y), MG(A) and MH(B) in Section 2.3.)

f(A) =
∑

y∈V (H),x∈AG(y)

f(x, y) =
∑

y∈V (H),x∈AG(y)

1

max{ωf (G), ωf (H)}h(y)g(x) =

=
1

max{ωf (G), ωf (H)}
∑

y∈V (H)

h(y)g(AG(y)) ≤

≤ 1

max{ωf (G), ωf (H)}
∑

y∈V (H)

h(y)
g(AG(y) ∪NG(AG(y)))

ωf (G)
=

=
1

ωf (G)
f(A ∪MG(A)),

(3.10)

Similarly,

f(B) ≤ 1

ωf (H)
f(B ∪MH(B)). (3.11)

From (3.9), (3.10), (3.11) and the statement (ii) of Lemma 5 we get that

f(U) ≤ 1

ωf (G)
f(A ∪MG(A)) +

1

ωf (H)
f(B ∪MH(B)) ≤

≤ 1

min{ωf (G), ωf (H)} (f(A ∪MG(A)) + f(B ∪MH(B))) =

=
1

min{ωf (G), ωf (H)}f(A ∪MG(A) ∪B ∪MH(B)) ≤

≤ 1

min{ωf (G), ωf (H)}f(V (G×H)) = 1,

as we needed, using also (3.8). �

From this lemma, the fractional version of Hedetniemi’s conjecture easily follows.

Theorem 17 (Zhu [54]). For every two graphs G and H we have

χf (G×H) = min{χf (G), χf (H)}.

Proof. Clearly, we have χf (G ×H) ≤ min{χf (G), χf (H)}. The reverse inequality, in the form

ωf (G×H) ≥ min{ωf (G), ωf (H)}, follows from Lemma 16. �

3.5 Proof of the result in Section 3.3

It is shown in [49] that the sequence {ρ(G×k)}∞k=1 is monotone increasing (we get this from

G×k ⊆ G×(k+1)) and is bounded from above by the fractional chromatic number (which is

a consequence of the easy facts that ρ(G) ≤ χf (G) and χf (G×k) = χf (G)). Thus finding
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3.5 Proof of the result in Section 3.3

a finite k0 for which ρ(G×k0) ≥ χf (G) proves that the limit of the sequence equals to the

fractional chromatic number.

Let g : V (G)→ R+,0 be an optimal fractional clique of G. We may assume that the weights

of the vertices are rationals, moreover g(v) = s(v)
r , where s(v) for ∀v ∈ V (G) and r are integrals.

(See Figure 14.) Set s =
∑

v∈V (G)

s(v) and let F be the induced subgraph of G×s on the vertices

which have exactly s(v) coordinates equal to v for every vertex v of G. F is vertex-transitive, that

is its automorphism group acts transitively upon its vertices. We will show that χf (F ) = χf (G),

and this will imply that ρ(G×s) ≥ |V (F )|
α(F ) = χf (F ) = χf (G) using the well-known fact that for

every vertex-transitive graph H we have χf (H) = |V (H)|
α(H) . This idea of the proof was suggested

by Simonyi [49].
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Figure 14: An optimal fractional clique of a graph G with value 29
10 .

The resulting graph F has 29!
(2!)5(3!)54!

vertices.

Thus it remains to prove the following lemma. (Actually we only need that χf (F ) ≥ χf (G).

Nevertheless, the reverse inequality clearly holds since χf (F ) > χf (G) would imply h×(G) >

χf (G) contradicting the upper bound of the monotone increasing sequence defining h×(G).)

Lemma 18. For F obtained from G as described above we have

χf (F ) = χf (G).

We split the proof into the following smaller parts. In the first two subsections we will define

operations on fractional cliques. Then using them (aside from some technical details described

in the third subsection) we will construct a fractional clique of F with value χf (G) in the last

subsection. From this we will conclude that χf (F ) = ωf (F ) ≥ χf (G).
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

3.5.1 Equally distributed fractional cliques

We will use Lemma 16 in the following special case. Denote by IX the indicator function on the

set X, that is IX(x) = 1 if x ∈ X, IX(x) = 0 otherwise.

Lemma 19. Assume that for i = 1, 2 the function gHi = ci · IUi is an optimal fractional clique

of Hi with value z, where ci is a constant number (ci = z
|Ui|), Ui is a subset of V (Hi). Then

gH1×H2 = c12 · IU1×U2 is a fractional clique of H1 ×H2 with value z for c12 = c1c2
z = z

|U1||U2| . �

In other words this lemma states that if the value of the optimal fractional clique gH1 and gH2 is

equally distributed on the vertices of U1 in H1 and U2 in H2, respectively, then distributing the

same value to the vertices of U1 × U2 in H1 ×H2 also with equal portions we get a(n optimal)

fractional clique of H1 ×H2.

3.5.2 Further operations with fractional cliques

As a consequence of the fact that the graph H is a subgraph of H×m we get a fractional clique

of H×m concentrated on its diagonal in the following way.

Lemma 20. If gH(u) = c,∀u ∈ V (H) is a fractional clique of H with value z for some con-

stant c(= z
|V (H)|) then the function gH×m(u1, u2, . . . , um) = c for u1 = u2 = . . . = um, and

gH×m(u1, u2, . . . , um) = 0 otherwise, is a fractional clique of H×m also with value z.

We need yet another operation.

Lemma 21. If g
(1)
H = c1 · IU1, g

(2)
H = c2 · IU2 are fractional cliques of H with value z(g

(1)
H ) =

z(g
(2)
H ) = z and U1 ( U2 ⊆ V (H) then g

(3)
H = c3 · IU2\U1

, where c3 = c1c2
c2−c1 , is also a fractional

clique of H with value z.

Indeed, let g
(3)
H be a linear combination of g

(1)
H and g

(2)
H , such that g

(3)
H = αg

(1)
H + (1 − α)g

(2)
H .

Choosing α = c2
c2−c1 it satisfies αc1 + (1− α)c2 = 0. (We know c1 6= c2 from |U1| 6= |U2|.) Thus

g
(3)
H (u) = 0 if u ∈ U1 ∪ (V (H) \ U2) = V (H) \ (U2 \ U1) and g

(3)
H (u) = c1c2

c2−c1 = c3 if u ∈ U2 \ U1.

The value of g
(3)
H is clearly αz(g

(1)
H ) + (1− α)z(g

(2)
H ) = z.

3.5.3 Graph products and blown up graphs

To prove Lemma 18 technically it is easier to estimate the fractional chromatic number of a blown

up version of F which one gets by substituting every vertex of F by
∏

v∈V (G)

s(v)! independent

copies of it. The graph so obtained we denote by F̂ .
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3.5 Proof of the result in Section 3.3

Blowing up vertices does not change the fractional chromatic number. (The blown up graph

contains the original graph as an induced subgraph, while from any fractional colouring of the

original graph we can get a fractional colouring of the blown up graph with the same value just

by replacing the blown up vertices with all their independent copies in the weighted independent

sets.) Thus we have χf (F ) = χf (F̂ ).

We will also use the blown up version of the original graph, so let Ĝ be the graph which

one gets from G by substituting every vertex v by s(v) independent copies of it. Similarly,

χf (Ĝ) = χf (G). Furthermore the constant function gĜ(v) = 1
r , for ∀v ∈ V (Ĝ) is an optimal

fractional clique of Ĝ. (See Figure 15.)
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Figure 15: The graph Ĝ, it has 29 vertices. The graph F̂ has 29! vertices.

We consider the graph F̂ as a subgraph of Ĝ×s which is induced by such vertices of Ĝ×s

whose coordinate sequences are permutations of V (Ĝ). (|V (Ĝ)| = s by definition, and F̂ has
s!∏

v∈V (G) s(v)!

∏
v∈V (G) s(v)! = s! vertices.) In the next subsection we will construct an optimal

fractional clique of Ĝ×s which gets non-zero value just on the vertices of F̂ . This will imply

ωf (F̂ ) ≥ ωf (Ĝ×s). As ωf (F̂ ) = χf (F̂ ) = χf (F ) and ωf (Ĝ×s) = χf (Ĝ×s) = χf (Ĝ) = χf (G)

this means that χf (F ) ≥ χf (G) as stated. (The fractional clique of F with value χf (G) can be

easily derived from the above fractional clique of Ĝ×s.)

3.5.4 Constructing the optimal fractional clique

For a vertex v = (v1, v2, . . . , vk) of Ĝ×k we call the type of v the partition P = {P1, P2, . . . , Pt}
of the set {1, 2, . . . , k} for which vi = vj iff ∃l : i, j ∈ Pl. We denote by V (Ĝ×k)[P ] the vertices

of Ĝ×k whose type is P . With this notation the vertex set of F̂ is V (Ĝ×s)[{{1}, {2}, . . . , {s}}].
(Note that this definition of type is similar but not equivalent to the well-known concept often

used in information theory under this name [22].)
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

Let S be the set of partitions of S = {1, 2, . . . , s}. For two partitions P and Q we say that

Q is coarser than P (and P is a refinement of Q), if every partition class of P is a subset

of some partition class of Q. The coarser-than relation is a partial order on S and defines a

lattice. Denote by S[P≥] the set of partitions Q which are coarser than the partition P , and by

V (Ĝ×s)[P≥] the vertices of Ĝ×s whose type is in S[P≥].

Now we construct in two steps the promised optimal fractional clique of Ĝ×s which gets

non-zero value just on the vertices of F̂ . (See also Figure 16.)

{1}, {2}, {3}, {4}

{1}, {2}, {3, 4} {3}, {4}, {1, 2} {1}, {3}, {2, 4} {2}, {4}, {1, 3} {1}, {4}, {2, 3} {2}, {3}, {1, 4}

{1}, {2, 3, 4} {1, 2}, {3, 4} {2}, {1, 3, 4} {1, 3}, {2, 4} {3}, {1, 2, 4} {1, 4}, {2, 3} {4}, {1, 2, 3}

{1, 2, 3, 4}S[{{1}, {2}, {3, 4}}≥]

Figure 16: The lattice on S with the coarser-than relation for s=4.

Step 1. We give an optimal fractional clique of Ĝ×s concentrated on V (Ĝ×s)[P≥] for any P ∈ S.

This function will be constant on the set V (Ĝ×s)[P≥] and zero outside of it.

Let Ĝk for k = 1, 2, . . . , s be disjoint copies of Ĝ. For every Pm ∈ P we consider Ĝ×Pm as

the categorical product of the graphs Ĝk for k ∈ Pm. First we construct an optimal fractional

clique of Ĝ×Pm concentrated on its diagonal elements. Lemma 20 gives us this function from

the constant fractional clique of Ĝ. Formally for the partition class Pm = {im1 , im2 , . . . , imtm} we

get gĜ×Pm ((vim1 , vim2 , . . . , vimtm )) = 1
r · IV [Ĝ×Pm ][{{im1 ,im2 ,...,imtm}}]

as an optimal fractional clique of

Ĝ×Pm . After that from these fractional cliques we construct an optimal fractional clique of Ĝ×s

concentrated on the vertices of Ĝ×s with type in S[P≥] using Zhu’s result. So applying Lemma

19 repeatedly we get that gĜ×s((v1, v2, . . . , vs)) = c · IV (Ĝ×s)[P≥] is an optimal fractional clique

of Ĝ×s for some constant c. (The appropriate value of c is s
r
1
st = 1

rst−1 .) If the vertex v =

(v1, v2, . . . , vs) is an element of the categorical product of the sets V (Ĝ×Pm)[{{im1 , im2 , . . . , imtm}}]
then i, j ∈ Pl for Pl ∈ P forces vi = vj , but also other equalities may arise causing the type of v to

be coarser than P . Hence the support of the constructed fractional clique is not just V (Ĝ×s)[P ],

but V (Ĝ×s)[P≥] as stated.
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3.6 Further remarks on the asymptotic values of the independence ratio and the Hall-ratio

Step 2. We construct for any type P such an optimal fractional clique of Ĝ×s which is concen-

trated on just V (Ĝ×s)[P ] and it is constant on this set.

We get these fractional cliques for the partitions of S in an order with increasing number

of classes. We obtain the one for P = {{1, 2, . . . , s}} from Lemma 20 applied for H = Ĝ,

m = s and gĜ(v) = 1
r , so gĜ×s(v) = 1

r · IV (Ĝ×s)[{{1,2,...,s}}] is an optimal fractional clique of

Ĝ×s. For further types P we get the desired fractional clique from the ones corresponding to

the partitions Q 6= P which are coarser than P and from the fractional clique concentrated on

V (Ĝ×s)[P≥]. (If Q 6= P is coarser than P then Q has a smaller number of partition classes than

P has.) In more detail, we have fractional cliques g0
Ĝ×s

((v1, v2, . . . vs)) = c0 · IV (Ĝ×s)[P≥], and

gi
Ĝ×s

((v1, v2, . . . vs)) = ci · IV (Ĝ×s)[Qi]
for all partitions Qi ∈ S[P≥] \ {P}. Since V (Ĝ×s)[P≥]

is a disjoint union of V (Ĝ×s)[Qi] for all Qi ∈ S[P≥] using Lemma 21 several times we get an

optimal fractional clique of Ĝ×s in the form gĜ×s((v1, v2, . . . vs)) = c · IV (Ĝ×s)[P ] for some appro-

priate constant c. (We take the elements of S[P≥]\{P} in some order: Q1, Q2, . . . , Ql and apply

Lemma 21 with U1 = V (Ĝ×s)[Qi] and U2 = V (Ĝ×s)[P≥] \⋃j<i V (Ĝ×s)[Qj ], for i = 1, 2, . . . , l.)

At the end we get the optimal fractional clique of Ĝ×s concentrated on V (Ĝ×s)[{{1}, {2}, . . . , {s}}] =

V (F̂ ) proving that ωf (F̂ ) ≥ ωf (Ĝ×s), which implies χf (F ) ≥ χf (G).

Thus we have finished the proof of Lemma 18, and as we have seen before this implies

that h(G×s) ≥ χf (G) and so that the ultimate categorical Hall-ratio equals to the fractional

chromatic number for every graph G, as stated in Theorem 15. �

Remark 3. While in the case of lexicographic power the example of odd wheels showed that we

cannot expect that k
√
ρ(G◦k) reaches its limit for any finite k, considering the categorical power

we reached the corresponding limit for a finite k. ♦

3.6 Further remarks on the asymptotic values of the indepen-

dence ratio and the Hall-ratio

The asymptotic value for the independence ratio and the Hall-ratio for the Cartesian product

are closely related. For two graphs F and G, their Cartesian product F�G is defined on the

vertex set V (F�G) = V (F )× V (G) with edge set E(F�G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈
E(F ) and v1 = v2, or u1 = u2 and {v1, v2} ∈ E(G)}. The kth Cartesian power G�k is the k-fold

Cartesian product of G. That is, the Cartesian power is also defined on the vertex sequences of

the original graph and two such sequences form an edge iff they differ at exactly one place and

at that place the corresponding coordinates form an edge of the original graph.
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3 The asymptotic value of the Hall-ratio for categorical and lexicographic power

The ultimate (Cartesian) independence ratio introduced in [37] as I(G) = lim
k→∞

i(G�k), and it

was studied in [35]. The ultimate Cartesian Hall-ratio was introduced by Simonyi in [49] as

h�(G) = lim
k→∞

ρ(G�k). It is shown in [49] (based on a result of Hahn, Hell and Poljak [35]) that

h�(G) = 1
I(G) for every graph G. (It is also known about h�(G) that χf (G) ≤ h�(G) ≤ χ(G) and

h�(G) can be strictly between the two bounds. Furthermore h�(G) = lim
k→∞

χf (G�k). See [49],

[35, 37], [53].)

One can also investigate the asymptotic value of the independence number for the normal,

co-normal and lexicographic power. The asymptotic value of the independence number for the

normal product, lim
k→∞

k
√
α(G�k) is the well-studied graph parameter, the Shannon-capacity,

denoted by c(G). So the asymptotic value for the independence ratio, lim
k→∞

k
√
i(G�k) equals to

c(G)
|V (G)| . The analogous asymptotic value for the co-normal and lexicographic power equals to the

independence ratio of the original graph, because the independence number for both of these

products are multiplicative.
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Chapter 4

Gallai colourings and domination in

multipartite digraphs

Investigating comparability graphs Gallai [28] proved an interesting theorem about edge-colourings

of complete graphs that contain no triangle for which all three of its edges receive distinct colours.

(Note that here and in the sequel edge-colouring just means a partition of the edge set rather

than a proper colouring of it.) Such colourings turned out to be relevant and Gallai’s theorem

proved to be useful also in other contexts, see e.g., [13, 16, 17, 27, 29, 33, 34, 42, 43].

Honoring the above mentioned work of Gallai, an edge-colouring of the complete graph is

called a Gallai colouring if there is no completely multicoloured triangle. Recently this notion

was extended to other (not necessarily complete) graphs in [32].

A basic property of Gallai-coloured complete graphs is that at least one of the colour classes

spans a connected subgraph on the entire vertex set. In [32] it was proved that if we colour the

edges of a not necessarily complete graph G so that no 3-coloured triangles appear then there

is still a large monochromatic component whose size is proportional to the number of vertices

of G where the proportion depends on the independence number, α(G).

In view of this result it is natural to ask whether one can also span the whole vertex set with

a constant number of connected monochromatic subgraphs where the constant depends only on

α(G). This question led to a problem about the existence of dominating sets in directed graphs

that we believe to be interesting in itself. In this chapter we solve this latter problem thereby

giving an affirmative answer to the previous question.

The chapter is organized as follows. In Section 4.1 we describe our digraph problem and

state our results on it. In Section 4.2 the connection with Gallai colourings will be explained.

Then, Section 4.3 contains the proofs of the results in Section 4.1. We finish this chapter by

extending the covering problem of Gallai-coloured graphs to partitioning in Section 4.4.
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4.1 Dominating multipartite digraphs

4.1 Dominating multipartite digraphs

We consider multipartite digraphs, i.e., digraphs D whose vertices are partitioned into classes

A1, . . . , At of independent vertices. (Note that here we consider directed graphs without pairs

of edges connecting the same two vertices in opposite direction.) Suppose that S ⊆ [t]. A set

U = ∪i∈SAi is called a dominating set of size |S| if for any vertex v ∈ ∪i/∈SAi there is a w ∈ U
such that (w, v) ∈ E(D). The smallest |S| for which a multipartite digraph D has a dominating

set U = ∪i∈SAi is denoted by k(D). Let β(D) be the cardinality of the largest independent set

of D whose vertices are from different partite classes of D. (Such independent sets we sometimes

refer to as transversal independent sets.) An important special case is when |Ai| = 1 for each

i ∈ [t]. In this case β(D) = α(D) and k(D) = γ(D), the usual domination number of D, the

smallest number of vertices in D whose closed outneighbourhoods cover V (D). The main result

in this section is the following theorem.

Theorem 22. For every integer β there exists an integer h = h(β) such that the following

holds. If D is a multipartite digraph without cyclic triangles and β(D) = β, then k(D) ≤ h.

Notice that the condition forbidding cyclic triangles in D is important even when |Ai| = 1

for all i and β(D) = 1, i.e. for tournaments. It is well known that γ(D) can be arbitrarily large

for tournaments (see, e.g., in [12]), so h(1) would not exist without excluding cyclic triangles.

From the proof of Theorem 22 we will get a factorial upper bound for k(D) from the

recurrence formula h(β) = 3β + (2β + 1)h(β − 1). We have relatively small upper bounds

on k only for β = 1, 2.

Theorem 23. Suppose that D is a multipartite digraph without cyclic triangles. If β(D) = 1

then k(D) = 1 and if β(D) = 2 then k(D) ≤ 4.

Though the upper bound on h(β) obtained from our proof of Theorem 22 is much weaker

we could not even rule out the existence of a bound that is linear in β. We cannot prove a

linear upper bound even in the special case when every partite class consists of only one vertex.

Nevertheless, we treat this case also separately and provide a slightly better bound than the

one following from Theorem 22. The class of digraphs we have here, i.e., those with no directed

triangles, is called the class of clique-acyclic digraphs, see [10]. These digraphs have been well-

studied also because of the Caccetta-Häggkvist Conjecture, see, e.g., in [18].

Theorem 24. Let f(1) = 1 and for α ≥ 2, f(α) = α + αf(α − 1). If D is a clique-acyclic

digraph then γ(D) ≤ f(α(D)).

Apart from the obvious case α(D) = 1 (when D is a transitive tournament) we know the

best possible bound only for α(D) = 2.

44



4 Gallai colourings and domination in multipartite digraphs

Theorem 25. If D is a clique-acyclic digraph with α(D) = 2, then γ(D) ≤ 3.

Note that Theorem 25 is sharp as shown by the cyclically oriented pentagon. Moreover, the

union of t vertex disjoint cyclic pentagons shows that we can have α(D) = 2t and γ(D) = 3t.

Thus in case a linear upper bound would be valid at least in the special case of clique-acyclic

digraphs, it could not be smaller than 3
2α(D). There are some easy subcases though when the

bound is simply α(D).

Proposition 26. If D is an acyclically oriented graph or a clique-acyclic perfect graph then

γ(D) ≤ α(D).

Note that Proposition 26 is sharp in the sense that every graph G has a clique-acyclic

orientation resulting in digraph D with γ(D) = α(G) = α(D). Indeed, an acyclic orientation

of G where every vertex of a fixed maximum independent set has indegree zero shows this. It

is worth noting the interesting result of Aharoni and Holzman [10] stating that a clique-acyclic

digraph always has a fractional kernel, i.e., a fractional independent set, which is also fractionally

dominating.

We will see in Section 4.3 from the proof of Theorems 22 and 23 that the dominating sets

we find there contain two kinds of partite classes. The first kind could be substituted by just

one vertex in it, while the second kind is chosen not so much to dominate others but because it

is itself not dominated by others. That is, apart from a bounded number of exceptional partite

classes we will dominate the rest of our digraph with a bounded number of vertices. In the last

subsection of Section 4.3 we will prove another theorem showing that the exceptional classes

are indeed needed.

4.2 Monochromatic coverings of Gallai-coloured graphs

Recall that Gallai colourings are originally defined as edge-colourings of complete graphs where

no triangle gets three different colours. As already mentioned earlier, one of the basic properties

of Gallai colourings is that at least one colour spans a connected subgraph, i.e. forms a com-

ponent covering all vertices of the underlying complete graph. In [32] the notion was extended

to arbitrary graphs and it was proved that in this setting there is still a large monochromatic

component. More precisely the following was proved.

Theorem 27 (Gyárfás, Sárközy [32]). Suppose that the edges of a graph G are coloured so that

no triangle is coloured with three distinct colours. Then there is a monochromatic component in

G with at least |V (G)|
α2(G)+α(G)−1 vertices.
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4.2 Monochromatic coverings of Gallai-coloured graphs

Another, in a sense stronger possible generalization of the above basic property of Gal-

lai colourings is also suggested by Theorem 27. Gyárfás proposed the following problem at a

workshop at Fredericia, Denmark in November, 2009.

Problem 3. Suppose that the edges of a graph G are coloured so that no triangle is coloured

with three distinct colours. Is it true that the vertices of G can be covered by the vertices of at

most k monochromatic components where k depends only on α(G)?

We remark that an example in [32] shows that even if the k of Problem 3 exists, it must be at

least cα2(G)
logα(G) where c is a small constant.

Theorem 22 implies an affirmative answer to Problem 3. Let g(1) = 1 and for α ≥ 2, let

g(α) = g(α− 1) + h(α) where h is the function given by Theorem 22.

Theorem 28. Suppose that the edges of a graph G are coloured so that no triangle is coloured

with three distinct colours. Then the vertex set of G can be covered by the vertices of at most

g(α(G)) monochromatic components. In case α(G) = 2 at most five components are enough.

Note that the last statement of Theorem 28 generalizes Theorem 27 in the case α(G) = 2.

In the sequel we will use the notation G[A] that denotes the subgraph of graph G induced by

A ⊆ V (G).

Proof of Theorem 28. For α(G) = 1 the result is obvious by the mentioned property of Gallai-

coloured complete graphs. For α(G) ≥ 2, suppose that v ∈ V (G) and let X be the set of

vertices in G that are not adjacent to v. By induction, the subgraph G[X] can be covered by

the vertices of g(α(G) − 1) monochromatic components. Let ` be the number of colours used

v

. . .

X

H

A1 A2 A3 A`

Figure 17: Construction of H. (The waved lines with different frequencies

mean different colours.)
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4 Gallai colourings and domination in multipartite digraphs

on edges of G incident to v and let Ai be the set of vertices incident to v in colour i. Observe

that the condition on the colouring implies that edges of G between Ai, Aj are coloured with

either colour i or colour j whenever 1 ≤ i < j ≤ `. (See Figure 17.) Thus orienting all edges of

colour i outward from Ai for every i, all edges of G between different classes Aj are oriented.

Moreover, in this orientation there are no cyclic triangles. Thus Theorem 22 is applicable to

the oriented subgraph H spanned by the union of the classes Aj after the edges inside the Aj ’s

are removed. As β(H) ≤ α(G), we obtain at most h(α(G)) dominating sets Ai and each set

v ∪ Ai together with the vertices that Ai dominates form a connected subgraph of G in colour

i. Thus all vertices of G can be covered by at most g(α(G)− 1) +h(α(G)) = g(α(G)) connected

components. In case of α(G) = 2 we can use Theorem 23 to get a covering with at most five

monochromatic components. �

Remark 4. Gyárfás and Simonyi in [34] proved that in a Gallai colouring of a complete graph

there is a monochromatic spanning tree with height at most two. This result can also be gen-

eralized for non-complete graphs. From the previous proof we easily obtain that each of the

g(α(G)) monochromatic components which cover the vertex set of G have a spanning tree with

height at most two. ♦

In Section 4.4 we will extend the statement of Theorem 28 from covering to partitioning.

4.3 Proofs of the results in Section 4.1

We will use the following notation throughout. If D is a digraph and U ⊆ V (D) is a subset of

its vertex set then N+(U) = {v ∈ V (D) : ∃u ∈ U (u, v) ∈ E(D)} is the outneighbourhood of U .

The closed outneighbourhood N̂+(U) of U is meant to be the set U ∪ N+(U). When U = {u}
is a single vertex we also write N+(u) and N̂+(u) for N+(U) and N̂+(U), respectively. When

(u, v) ∈ E(D), we will often say that u sends an edge to v.

We first deal with the case β(D) = 1 and prove the first statement of Theorem 23. As it will

be used several times later, we state it separately as a lemma.

Lemma 29. Let D be a multipartite digraph with no cyclic triangle. If β(D) = 1 then k(D) = 1.

Proof. Let K be a partite class for which |N̂+(K)| is largest. We claim that K is a dominating

set. Suppose on the contrary, that there is a vertex l in a partite class L 6= K, which is not

dominated by K. Since all edges between distinct partite classes are present in D with some

orientation, l must send an edge to all vertices of K. Furthermore, if a vertex m in a partite

class M 6= K,L is an outneighbour of some k ∈ K then it is also an outneighbour of l, otherwise
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4.3 Proofs of the results in Section 4.1

m, l and k would form a cyclic triangle. Thus N̂+(K) ⊆ N̂+(L). Moreover, l ∈ N̂+(L) \ N̂+(K),

so |N̂+(L)| > |N̂+(K)| contradicting the choice of K. This completes the proof of the lemma. �

In the following two subsections we prove Theorems 23 and 22, respectively.

4.3.1 At most 2 independent vertices

To prove the second statement of Theorem 23 we will need the following stronger variant of

Lemma 29.

Lemma 30. Let D be a multipartite digraph with no cyclic triangle and β(D) = 1. Then

there is a partite class K which is a dominating set, and there is a vertex k ∈ K such that

V (D) \ (K ∪ L) ⊆ N+(k) for some partite class L 6= K.

Thus Lemma 30 states that the dominating partite class K has an element that alone

dominates almost the whole of D, there may be only one exceptional partite class L whose

vertices are not dominated by this single element of K.

For proving Lemma 30, the following observations will be used, where X,Y, Z will denote

partite classes.

Observation 31. Let D be a multipartite digraph with no cyclic triangle and β(D) = 1.

Suppose that for vertices x1, x2 ∈ X and y ∈ Y the edges (x2, y) and (y, x1) are present in D.

Then for every z ∈ Z 6= X,Y with (x1, z) ∈ E(D) we also have (x2, z) ∈ E(D).

Proof. Assume on the contrary that for some z ∈ Z the orientation is such that we have (x1, z),

(z, x2) ∈ E(D). Then the edge connecting z and y cannot be oriented either way: (z, y) ∈ E(D)

would give a cyclic triangle on vertices z, y, x1, while (y, z) ∈ E(D) would create one on y, z, x2.

(Figure 18 illustrates the statement of this observation.)

x1

x2

y

z

X Y Z

Figure 18: A simple configuration: if x1 dominates z then x2 also dominates z.

�
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4 Gallai colourings and domination in multipartite digraphs

Observation 32. Let D be a multipartite digraph with no cyclic triangle and β(D) = 1. Sup-

pose that for vertices x1, x2 ∈ X and y1, y2 ∈ Y the edges (x1, y2), (y2, x2), (x2, y1), (y1, x1) are

present in D forming a cyclic quadrangle. Then in every partite class Z 6= X,Y the outneigh-

bourhood of these four vertices is the same.

Proof. Let z be an element of Z ∩N+(x1). By (y1, x1) ∈ E(D) we must have z ∈ Z ∩N+(y1),

otherwise y1, x1, z would form a cyclic triangle. Thus we have Z ∩ N+(x1) ⊆ Z ∩ N+(y1).

Now shifting the role of vertices along the oriented quadrangle backwards we similarly get

Z ∩ N+(x1) ⊆ Z ∩ N+(y1) ⊆ Z ∩ N+(x2) ⊆ Z ∩ N+(y2) ⊆ Z ∩ N+(x1) proving that we have

equality everywhere. (Figure 19 illustrates the statement of this observation.)

x1

x2

y1

y2
z

X Y Z

Figure 19: If x1 dominates z then x2, y1, y2 also dominate z.

�

Note that in Observation 32, as β(D) = 1, the inneighbourhood of the vertices x1, x2, y1, y2

is also the same, so these vertices split to out- and inneighbourhood in the same way every

partite class Z 6= X,Y .

Proof of Lemma 30. We know from Lemma 29 that there is a partite class K which is a domi-

nating set. (Figure 20 shows the main steps of the proof.)

Let k be an element of K for which |N+(k)| is maximal. If k itself dominates all the vertices

not in K then we are done. (In that case we do not even need an exceptional class L.) Otherwise,

there is a vertex l1 in a partite class L 6= K for which the edge between l1 and k is oriented

towards k. As L ⊆ N+(K), there must be a vertex k1 ∈ K which sends an edge to l1.

Using Observation 31 for the vertices k, k1 and l1, we obtain that k1 sends an edge not just

to l1 but to every vertex in N+(k) \ L. By the choice of k this implies the existence of a vertex

l2 ∈ L for which (k, l2), (l2, k1) ∈ E(D). Thus the vertices k, l2, k1, l1 form a cyclic quadrangle.

Applying Observation 32 this implies that these four vertices have the same outneighbourhood

in V (D) \ (K ∪ L).
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4.3 Proofs of the results in Section 4.1

K L M

k

l1

k1 l2

m1

k2 m2

Figure 20: Two cyclic quadrangles give a contradiction.

We claim that N+(k) contains all vertices of D \ (K ∪ L). Assume on the contrary, that

there is a vertex m1 in a partite class M 6= K,L which is not dominated by k. We can argue

similarly as we did for l1. Namely, since M ⊆ N+(K) there is some k2 ∈ K (perhaps iden-

tical to k1) dominating m1. Applying Observation 31 to the vertices k,m1 and k2, we obtain

(N+(k) \M) ⊆ N+(k2). Then by the choice of k we must have a vertex m2 ∈ M for which

(k,m2), (m2, k2) ∈ E(D). So vertices k,m2, k2,m1 also form a cyclic quadrangle, and Observa-

tion 32 gives us that Z ∩ N+(k) = Z ∩ N+(m2) = Z ∩ N+(k2) = Z ∩ N+(m1) for all partite

classes Z 6= K,M .

The contradiction will be that the edge between l1 and m1 should be oriented both ways.

Indeed, since (l1, k) ∈ E(D) and in L the inneighbours of k and m1 are the same, we must have

(l1,m1) ∈ E(D). However, (m1, k) ∈ E(D) and the fact that k and l1 split M in the same way

implies (m1, l1) ∈ E(D). This contradiction completes the proof of the lemma. �

Remark 5. It is easy to see that in the proof of this lemma if there is a vertex l1 ∈ L 6= K

which is not dominated by k ∈ K then we can change the roles of the dominating vertex and

the exceptional partite class, namely it is also true that V (D) \ (L ∪K) ⊆ N+(l1). ♦

Now we are ready to prove the second statement of Theorem 23.

Proof of Theorem 23. We have already proven the first statement of the theorem. To prove the

second part let D be a multipartite digraph without cyclic triangles and β(D) = 2. We use

induction on the number of vertices. The base case is obvious. Let p be a vertex of D and

consider the subdigraph D̂ = D \ {p}. (One can follow the proof on Figure 21.)

By induction k(D̂) ≤ 4. Let K, L, M and N be four partite classes of D̂ that form a

dominating set in D̂. If p ∈ N̂+(K ∪ L ∪M ∪ N) then we are done, the same four sets also

dominate D. If p /∈ N̂+(K ∪L∪M ∪N) then we will choose four other partite classes that will
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4 Gallai colourings and domination in multipartite digraphs

dominate D. First we choose P , the class of p. We partition every other partite class into three

parts according to how it is connected to p. For any class Z, let Z1 denote the set of vertices in

Z dominated by p, let Z2 be the set of vertices in Z nonadjacent to p, and let Z3 denote the set

of remaining vertices of Z, i.e., those which send an edge to p. We will refer to Zi as the i-th

part of the partite class Z, where i = 1, 2, 3. Note that K3, L3,M3, N3 are all empty, otherwise

we would have p ∈ N̂+(K ∪ L ∪M ∪N).

Let D2 be the subdigraph of D induced by the vertices in the second part of the partite

classes of D \ P in their partition above. This graph is also a multipartite digraph with no

cyclic triangle and β(D2) = 1. The latter follows from the fact that the vertices of D2 are all

nonadjacent to p and β(D) = 2. Thus by Lemma 29 the vertices of D2 can be dominated by one

partite class Q2, the second part of some partite class Q of D. We choose Q to be the second

partite class in our dominating set. Observe that all vertices of D not dominated so far, i.e.,

those not in N̂+(P ∪Q) should belong to the third part of their partite classes. Let u be such a

vertex. (If there is none, then we are done.) We know u /∈ K ∪L∪M ∪N as none of these four

classes has a third part. Since K ∪ L ∪M ∪N is a dominating set in D̂ there is a vertex k in

one of these four classes for which (k, u) is an edge of D. No vertex in the first part of a class

can send an edge to a vertex lying in the third part of some other class, otherwise the latter

two vertices would form a cyclic triangle with p. Thus, since K,L,M,N has no third parts, k

must be in the second part of one of them.

p

q
k

u

PK L M N Q

Q2R2

Figure 21: Domination of a multipartite digraph D with β(D) = 2.

Lemma 30 implies that there is a vertex q ∈ Q2 with V (D2)∩N̂+(q) containing V (D2) except

one exceptional class R2. We choose R, the partite class of R2, to be the third partite class in

our dominating set. If u /∈ N̂+(R), then k /∈ R and so q dominates k, i.e. k is an outneighbour of

q. Observe that (u, q) cannot be an edge of D, otherwise q, k and u would form a cyclic triangle.

But (q, u) cannot be an edge either, as u /∈ N+(Q). Thus u and every so far undominated vertex

is nonadjacent to q. Thus the set U of undominated vertices induces a subgraph D[U ] with

β(D[U ]) = 1, otherwise adding q we would get β(D) ≥ 3. But then by Lemma 29 all vertices in

U can be dominated by one additional, fourth class. �
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4.3 Proofs of the results in Section 4.1

Remark 6. It is not difficult to show that we only need the partite class R for the domination

if it coincides with K, L, M or N . (Otherwise k cannot be an element of R hence q surely

sends an edge to k and is nonadjacent to every u /∈ N̂+(P ∪Q).) Also, obviously if in D2 we do

not need the exceptional partite class, that is the vertex q dominates every other partite class

except for Q2, then we can dominate D with three partite classes.

Moreover, from the remark after the proof of Lemma 30 it follows that in the proof of this

theorem if R ∈ {K,L,M,N} but Q /∈ {K,L,M,N} then P , R and one additional partite class

for the undominated vertices are enough for domination. Thus we only need four partite classes

in the dominating set if both Q and R are equal to one of the dominating partite classes of

D \ {p}. This observation may be useful in deciding whether there is a multipartite digraph D

with no cyclic triangle for which β(D) = 2 and k(D) = 4. ♦

4.3.2 General case

Surprisingly, our proof of Theorem 22 is not a direct generalization of the argument proving

Theorem 23 in the previous subsection. In fact, in a way it is conceptually simpler.

Proof of Theorem 22. We have seen that h(1) = 1 (and h(2) = 4) is an upper bound for k(D)

if β(D) = 1 (and if β(D) = 2). Now we prove that h(β) = 3β + (2β + 1)h(β − 1) is an upper

bound on k(D) if β(D) = β ≥ 2. Let D be a multipartite digraph without cyclic triangles and

β(D) = β. (See Figure 22.) Let k1, k2, . . . , k2β be vertices of D, each from a different partite

class, such that |N̂+(∪2βi=1{ki})| is maximal. Let the partite class of ki be Ki for all i and let K
denote ∪2βi=1{ki}. First we declare the 2β partite classes of these vertices ki to be part of our

dominating set. Next we partition every other partite class into 2β + 2 parts. For an arbitrary

partite class Z 6= Ki (i = 1, . . . , 2β) we denote by Z0 the set Z ∩N+(K). For i = 1, 2, . . . , 2β let

Zi be the set of vertices in Z \ Z0 that are not sending an edge to ki, but are sending an edge

to kj for all j < i. Finally, we denote by Z2β+1, the remaining part of Z, that is the set of those

vertices of Z that send an edge to all vertices k1, k2, . . . , k2β. (As in the proof of Theorem 23 we

will refer to the set Zi as the i-th part of Z.) The subgraph Di of D induced by the i-th parts

of the partite classes of D \ (∪2βi=1Ki) is also a multipartite digraph with no cyclic triangle. For

1 ≤ i ≤ 2β it satisfies β(Di) ≤ β − 1, since adding ki to any transversal independent set of Di

we get a larger transversal independent set. So by induction on β, each of these 2β digraphs

Di can be dominated by at most h(β − 1) partite classes. We add the appropriate 2βh(β − 1)

partite classes to our dominating set.

If β(D2β+1) ≤ β−1 also holds then the whole graph can be dominated by choosing h(β−1)

additional partite classes. Otherwise let L = {l1, l2, . . . , lβ} be an independent set of size β
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4 Gallai colourings and domination in multipartite digraphs

with all its vertices in V (D2β+1) belonging to distinct partite classes (of D), that are denoted

by L1, L2, . . . , Lβ, respectively. We claim that in the remaining part of D2β+1, i.e., in D2β+1 \
(∪βi=1Li) there is no other independent set of size β with all elements belonging to different

partite classes. Assume on the contrary that m1 ∈ M1,m2 ∈ M2, . . . ,mβ ∈ Mβ form such an

independent set M. As L is a maximal transversal independent set, every element of a partite

class different from L1, . . . , Lβ is connected to at least one of the li’s. And since every element

of L sends an edge to all the vertices k1, . . . , k2β, we must have N+(K) \ (∪βi=1Li) ⊆ N+(L)

otherwise a cyclic triangle would appear. (The latter is because if ki (i ∈ {1, 2, . . . , 2β}) sends

an edge to v, and lj (j ∈ {1, 2, . . . , β}) sends an edge to ki, moreover lj is connected with v then

the edge between lj and v must be oriented towards v.)

K1 K2 K2β L1 Lβ M1 Mβ

k1 k2 k2β

l1 lβ m1 mβ

D0

D1

D2β

D2β+1

Figure 22: Domination of a multipartite digraph in the general case.

Similarly, we have N+(K) \ (∪βi=1Mi) ⊆ N+(M). Thus if such an M exists then N̂+(K) ⊆
N+(L ∪M) while N̂+(L ∪M) also contains the additional vertices belonging to L ∪M. This

contradicts the choice of K. (Note that L∪M dominates also the vertices in (K1 ∪ · · · ∪K2β)∩
(N+(k1)∪ · · · ∪N+(k2β)).) Thus if we add the classes L1, . . . , Lβ to our dominating set, the still

not dominated part of D can be dominated by h(β − 1) further classes. So we constructed a

dominating set of D containing at most 2β+ 2βh(β− 1) +β+h(β− 1) = 3β+ (2β+ 1)h(β− 1)

partite classes. This proves the statement. �

Note that we have proved a little bit more than stated in Theorem 22. Namely, we showed

that there is a set of at most h1(β) vertices of D which dominates the whole graph except

perhaps their own partite classes and at most h2(β) other exceptional classes. From the proof

we obtain the recursion formula h1(β) ≤ 2β+(2β+1)h1(β−1) and h2(β) ≤ β+(2β+1)h2(β−1).
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4.3 Proofs of the results in Section 4.1

4.3.3 Clique-acyclic digraphs

For the proof of Theorem 24 we will use the following theorem due to Chvátal and Lovász [19].

Theorem 33 (Chvátal, Lovász [19]). Every directed graph D contains a semi-kernel, that is an

independent set U satisfying that for every vertex v ∈ D there is an u ∈ U such that one can

reach v from u via a directed path of at most two edges.

Proof of Theorem 24. The statement is trivial for α(D) = 1, since a transitive tournament is

dominated by its unique vertex of indegree 0. We use induction on α = α(D). Assume the

theorem is already proven for α− 1. Consider D with α(D) = α and a semi-kernel U in D that

exists by Theorem 33. (Figure 23 illustrates the proof.)

Uu

Lu

Figure 23: Domination of a clique-acyclic digraph.

We define a set S with |S| ≤ f(α) elements dominating each vertex. Let U ⊆ S. Then S

already dominates the outneighbourhood of U . Denote by T the second outneighbourhood of

U (i.e., the set of all vertices not in U and not yet dominated). Observe that for every vertex

w ∈ T there is a vertex u ∈ U such that neither (u,w) nor (w, u) is an edge. Indeed, let u be the

vertex of U from which w can be reached by traversing two directed edges. Then (w, u) /∈ E(D)

otherwise we would have a cyclic triangle. But (u,w) /∈ E(D) is immediate from knowing that

w is not in the first outneighbourhood of U . Partition T into |U | ≤ α classes Lu indexed by

the elements of U where w ∈ Lu means that u and w are nonadjacent. Thus all vertices in

each class Lu are independent from the same vertex in U implying that the induced subgraph

D[Lu] has independence number at most α − 1. Thus D[Lu] can be dominated by at most

f(α− 1) vertices. Add these to S for every u ∈ U . So all vertices can be dominated by at most

α+ αf(α− 1) = f(α) vertices completing the proof. �
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4 Gallai colourings and domination in multipartite digraphs

For α(D) = 2 the above theorem gives γ(D) ≤ f(2) = 4. Compared to this the improvement

of Theorem 25 is only 1, but as already mentioned, the cyclically oriented five-cycle shows that

γ(D) ≤ 3 is the best possible upper bound.

The proof of Theorem 25 goes along similar lines as the proof we had for the second statement

of Theorem 23.

Proof of Theorem 25. We use induction on the number of vertices in D. Let p be a vertex of D,

and partition the remaining vertices of D into three parts. (See Figure 24.) Let V1 be the set of

vertices that are dominated by p, V2 the set of vertices nonadjacent to p, and let V3 be the set

of vertices which send an edge to p. We assume by induction that D \ {p} can be dominated by

three vertices. (The base case is obvious.) If at least one of these is located in V3 then p is also

dominated by them and we are done. Otherwise we create a new dominating set.

p

q k

u

r

V1

V2

V3

Figure 24: Domination of a clique-acyclic digraph D with α(D) = 2.

First we choose p, and by p we dominate all the vertices in V1. Observe that any two

vertices in V2 must be connected, because two nonadjacent vertices of V2 and p would form an

independent set of size 3. Thus D[V2] is a transitive tournament and so it can be dominated

by just one vertex, let it be q ∈ V2. Let U be the set of remaining undominated vertices. That

is, U = V3 \ N+(q). Consider an arbitrary element u ∈ U . We know that u is dominated by a

vertex of the dominating set of D \ {p}. Let this vertex be k, it does not belong to V3 as we

assumed above. We also have k /∈ V1, otherwise there is a cyclic triangle on the vertices p, k and

u. So k ∈ V2, and thus q sends an edge to k. Since u is undominated, (q, u) is not an edge of D.

With the edge (u, q), we would get a cyclic triangle on u, q and k. So u and all the vertices in

U are nonadjacent to q, therefore α(D[U ]) = 1 and thus U can be dominated by one vertex r.

Thus all vertices of D are dominated by the 3-element set {p, q, r}. This completes the proof. �
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4.3 Proofs of the results in Section 4.1

To prove Proposition 26 we formulate the following simple observation. Let χ(F ) denote the

chromatic number of graph F .

Observation 34. Let D be a directed graph and D̄ the complementary graph of the undirected

graph underlying D. If D is clique-acyclic, then γ(D) ≤ χ(D̄).

Proof. It follows from the definition of χ(D̄) that the vertex set of D can be covered by χ(D̄)

complete subgraphs of D. Since D is clique-acyclic, all these complete subgraphs can be dom-

inated by one of their vertices. Thus all vertices are dominated by these χ(D̄) chosen vertices.

�

Proof of Proposition 26. If the orientation of D is acyclic, then consider those vertices that have

indegree zero. Let these form the set U0. Delete these vertices and all vertices they dominate.

Let set U1 contain the indegree zero vertices of the remaining graph, and delete the vertices in

U1∪N+(U1). Proceed this way to form the sets U2, . . . , Us, where finally there are no remaining

vertices after Us and its neighbours are deleted. It follows from the construction that U0 ∪U1 ∪
· · · ∪ Us is an independent set and dominates all vertices not contained in it.

The second statement immediately follows from Observation 34 and the fact that χ(D̄) =

α(D) if D is perfect, an immediate consequence of the Perfect Graph Theorem [45]. �

4.3.4 On the exceptional classes

As already mentioned after the proof of Theorem 22, the statement of Theorem 22 could be

formulated in a somewhat stronger form. Namely, we do not only dominate our multipartite

digraph D by h(β) partite classes, we actually dominate almost all of D by h1(β) vertices, where

“almost” means that there is only a bounded number h2(β) of partite classes not dominated this

way. The first appearance of this phenomenon is in Lemma 30 where we showed that if β(D) = 1

then a single vertex dominates the whole graph except at most one class. To complement this

statement we show below that this exceptional class is indeed needed, we cannot expect to

dominate the whole graph by a constant number of vertices. In other words, if we want to

dominate with a constant number of singletons (and not by simply taking a vertex from each

partite class), then we do need exceptional classes already in the β(D) = 1 case.

For a bipartite digraph D with partite classes A and B let γA(D) denote the minimum

number of vertices in A that dominate B and similarly let γB(D) denote the minimum number

of vertices in B dominating A. Let γ0(D) = min{γA(D), γB(D)}.

Theorem 35. There exists a sequence of oriented complete bipartite graphs {Dk}∞k=1 satisfying

γ0(Dk) > k.
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4 Gallai colourings and domination in multipartite digraphs

We note that the existence of Dk with n vertices in each partite class and satisfying γ0(Dk) >

k follows by a standard probabilistic argument provided that 2
(
n
k

)
(1− 2−k)n < 1. Our proof

below is constructive, however.

Proof of Theorem 35. We give a simple recursive construction for Dk in which we blow up the

vertices of a cyclically oriented cycle C2k+2 and connect the blown up versions of originally

nonadjacent vertices that are an odd distance away from each other by copies of the already

constructed digraph Dk−1.

Let D1 be a cyclic 4-cycle, i.e., a cyclically oriented K2,2. It is clear that neither partite class

in this digraph can be dominated by a single element of the other partite class. Thus γ0(D1) > 1

holds.

Assume we have already constructed Dk−1 satisfying γ0(Dk−1) > k− 1. Let the two partite

classes of Dk−1 be Ak−1 = {a1, . . . , am} and Bk−1 = {b1, . . . , bm}. Now we construct Dk as

follows. (The construction of D2 is shown on Figure 25.) Let the vertex set of Dk be V (Dk) =

Ak ∪Bk, where

Ak := {(j, ai) : 1 ≤ j ≤ k + 1, 1 ≤ i ≤ m},

Bk := {(j, bi) : 1 ≤ j ≤ k + 1, 1 ≤ i ≤ m}.

There will be an oriented edge from vertex (j, ai) to (r, bs) if either j = r, or j 6≡ r+1 (mod k+1)

and (ai, bs) ∈ E(Dk−1). All other edges between Ak and Bk are oriented towards Ak, i.e., this

latter set of edges can be described as

{((r, bs), (j, ai)) : j ≡ r + 1 (mod k + 1) or ((bs, ai) ∈ E(Dk−1) and j 6= r)}.

A2 B2

Figure 25: The construction of D2.
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4.4 Monochromatic partitions of Gallai-coloured graphs

It is only left to prove that γ0(Dk) > k. Let us use the notation Ak(j) = {(j, ai) : 1 ≤ i ≤ m},
Bk(j) = {(j, bi) : 1 ≤ i ≤ m}. Consider a set K of k vertices of Ak, we show it cannot

dominate Bk. There must be an r ∈ {1, . . . , k+ 1} by pigeon-hole for which K ∩Ak(r) = ∅ and

K ∩ Ak(r + 1) 6= ∅. (Addition here is meant modulo (k + 1).) Fix this r. We claim that some

vertex in Bk(r) will not be dominated by K. Indeed, the vertex (r+ 1, ai) ∈ K ∩Ak(r+ 1) does

not send any edge into Bk(r), so we have only at most k − 1 vertices in K that can dominate

vertices in Bk(r) and all these vertices are in Ak \ Ak(r). Notice that the induced subgraph of

Dk on Bk(r) ∪ Ak \ Ak(r) admits a digraph homomorphism (that is an edge-preserving map)

into Dk−1. Indeed, the projection of each vertex to its second coordinate gives such a map by

the definition of Dk. So if the above mentioned k − 1 vertices would dominate the entire set

Bk(r), then their homomorphic images would dominate the homomorphic image of Bk(r) in

Dk−1. The latter image is the entire set Bk−1 and by our induction hypothesis it cannot be

dominated by k − 1 vertices of Ak−1. Thus we indeed have γAk
(Dk) > k.

The proof of γBk
(Dk) > k is similar by symmetry. Thus we obtain γ0(Dk) > k as stated. �

4.4 Monochromatic partitions of Gallai-coloured graphs

In this section we extend the result about monochromatic covering of Gallai coloured graphs

(Theorem 28) to partitioning. We say that the vertex set of an edge-coloured graph G can

be partitioned into ` monochromatic connected parts, if there is a partition {V1, . . . , V`} of

V (G) such that every G[Vi] (1 ≤ i ≤ `) is connected in some colour, where G[S] denotes the

induced subgraph by the subset of the vertex set S in G. (Note that, arbitrary subsets of the

monochromatic connected components may not be used as parts of our partition because they

can be disconnected in the corresponding colour.)

Let ĝ(1) = 1 and for α ≥ 2, let ĝ(α) = max{h(α)(α2 + α − 1), 2h(α)ĝ(α − 1) + h(α) + 1}
where h is the function given by Theorem 22.

Theorem 36. Suppose that the edges of a graph G are coloured so that no triangle is coloured

with three distinct colours. Then, the vertex set of G can be partitioned into at most ĝ(α(G))

monochromatic connected parts.

To prepare the proof of Theorem 36 we need the following lemma about trees. (Another

proof for this statement can be found in [6].)

Lemma 37. Let t ≥ 1 be an integer, and T be a tree of order at least t. Then there exist two

sets R ⊆ C ⊆ V (T ) such that |R| = t, |C| ≤ 2t and both T [C] and T [V (T ) \R] are connected.
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4 Gallai colourings and domination in multipartite digraphs

Proof. We describe an algorithm which gives the desired R and C. Initially they are empty sets.

Let r be a vertex of T , this will be the root of the tree. Let x0 be one of the farthest vertices

from r in the tree, we will start our algorithm from this vertex. We add x0 to C and R, and

move up to its parent. (The vertex p is the parent of a vertex c if p is the first vertex on the

unique path from c to the root. In this case c is a child of p.) During the algorithm we will

move up and down in the tree. If we stepped up to the parent p of a vertex then first we check

whether p is in C, and if not then we add it to C. If there is a child of p which is not yet in C

then we step down to this child, otherwise we add p also to R and step up to its parent. If we

stepped down to a child c then first we add it to C. If it has a child then we step down to that,

otherwise we add c to R and step up to its parent. We stop the algorithm when the size of R

reaches t.

So, for example, in the case shown on Figure 26 the algorithm runs as follows. We start from

x0 and add it to both C and R, next we step up to x1 and add it to C, we step down to x2 and

add it to C then also to R, we step back to x1 then down to x3 and add it to C and to R, we

step back to x1 and add it to R. Afterwards we step up to x4 and add it to C, step down to x5

and add it to C, step down to x6 add it to C and R, step up to x5, step down to x7 and add it

to C and R, step up to x5. The figure shows R and C at this point.

x0 x2 x3 x6 x7

x1 x5

q=x4

r

R

C

Figure 26: A state of the algorithm in the example.

We show that at the end of the algorithm the conditions for R and C are satisfied. We only

add a vertex to R if it is already added to C, therefore R ⊆ C throughout the whole process.

We add a vertex to C if a child or the parent of it is already in C, so T [C] is a subtree of

T . Similarly we add a vertex to R if all its children are already in R, which means that R is

removable from T leaving the tree connected. Finally, we have to check the size of C. Almost
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4.4 Monochromatic partitions of Gallai-coloured graphs

every vertex in C is also a member of R except for the vertices of a path from the top vertex

of C (i.e., the nearest one from the root), say q, to the parent of the vertex added last to R.

But the vertices on the path from q to x0 are all in R except for maybe q. By the choice of x0

there is no longer path from q to a vertex of T [C] than the one going to x0, therefore we get

|C \R| ≤ |R| during the algorithm. At the end |R| = t and this implies |C| ≤ 2t. �

Now we are ready to prove Theorem 36.

Proof of Theorem 36. We proceed by induction on α = α(G). If α = 1, i.e. G is complete then

there is a connected monochromatic spanning subgraph of G, as desired. Suppose α ≥ 2. We

shall prove that the vertex set of G can be partitioned into at most ĝ(α) = max{h(α)(α2 +α−
1), 2h(α)ĝ(α− 1) + h(α) + 1} monochromatic connected parts. We may assume that |V (G)| ≥
ĝ(α). Let T0 be a maximum monochromatic subtree of G. Assume that the colour of the edges

of T0 is colour 0. By Theorem 27, T0 has at least |V (G)|(α2 +α− 1)−1 vertices. Therefore using

the definition of ĝ(α), we have |V (T0)| ≥ h(α(G)). And so, by Lemma 37, there exist two sets

R and C with R ⊆ C ⊆ V (T0) such that |R| = h(α), |C| ≤ 2h(α) and both T0[C], T0[V (T0) \R]

are connected. Write R = {u1, . . . , uh(α)} and C = {u1, . . . , um}, where h(α) ≤ m ≤ 2h(α). For

every i with 1 ≤ i ≤ m, let Ui be the set of vertices in V (G) \V (T0) that are not adjacent to ui,

but adjacent to uj for all j < i. For every i with 1 ≤ i ≤ m, we have α(G[Ui]) ≤ α− 1 because

ui can be added to any independent set of G[Ui]. By the inductive assumption, for every i with

1 ≤ i ≤ m, there exists a partition Pi of Ui such that |Pi| ≤ ĝ(α− 1) and, for every U ∈ Pi, the

induced subgraph G[U ] has a connected spanning monochromatic subgraph.

Let U0 = V (G) \
(
V (T0) ∪

(⋃
1≤i≤m Ui

))
. Recall that T0 was a non-extendable monochro-

matic tree of G and the triangles in G are coloured with at most two colours. Hence, for every

v ∈ U0, since v is adjacent to every vertex of T0[C], all the edges between v and C are coloured

with the same colour, say cv(6= 0). Let ` be the number of colours used on edges of C and U0,

assume that 1, . . . , ` are these colours. For each i with 1 ≤ i ≤ `, let Ai = {v ∈ U0 | cv = i}.
Note that {A1, . . . , A`} is a partition of U0. Since there is no 3-coloured triangle in G, each edge

between Ai and Aj is coloured with either colour i or j for i, j with 1 ≤ i, j ≤ ` and i 6= j.

We construct a multipartite digraph D on U0 as follows. Let A1, . . . , A` be the partition

classes of D. For i, j with 1 ≤ i, j ≤ `, i 6= j and v ∈ Ai, w ∈ Aj , let (v, w) ∈ E(D) if and only if

the edge {v, w} is in G and its colour is i. Note that β(D) ≤ α(G) and D has no cyclic triangle.

By Theorem 22, there exist p ≤ h(α) partite classes which dominates V (D), say B1, . . . , Bp.

Set Bp+1 = · · · = Bh(α) = ∅. For every i with 1 ≤ i ≤ h(α), let B′i be the set of vertices in

U0 \
(⋃

1≤i≤h(α)Bi
)

that are dominated by Bi, but not dominated by Bj for all j < i, and

let B′′i = {ui} ∪ Bi ∪ B′i. For each i with 1 ≤ i ≤ h(α), note that G[B′′i ] has a connected
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4 Gallai colourings and domination in multipartite digraphs

monochromatic spanning subgraph in colour i.

Therefore P =
(⋃

1≤i≤m Pi
)
∪ {B′′1 , . . . , B′′h(α)} ∪ {V (T0) \ R} is a partition of V (G) satisfying

that G[U ] has a connected spanning monochromatic subgraph for every U ∈ P. Furthermore,

|P| ≤
∑

1≤i≤m
|Pi|+ h(α) + 1 ≤

∑
1≤i≤m

ĝ(α− 1) + h(α) + 1 =

= mĝ(α− 1) + h(α) + 1 ≤ 2h(α)ĝ(α− 1) + h(α) + 1 ≤ ĝ(α).

This completes the proof of Theorem 36. �

61





Chapter 5

Monochromatic covering of complete

bipartite graphs

A special case of a conjecture generally attributed to Ryser (appeared in his student, Henderson’s

thesis, [38]) states that intersecting r-partite hypergraphs have a transversal of at most r − 1

vertices. This conjecture is open for r ≥ 6. It is trivially true for r = 2, the cases r = 3, 4 are

solved in [30] and in [24], and for the case r = 5, see [24] and [51]. The following equivalent

formulation is from [30],[25]. In the sequel let r ≥ 2.

Conjecture 4 ([38], [30], [25]). In every r-colouring of the edges of a complete graph, the vertex

set can be covered by the vertices of at most r − 1 monochromatic components.

Gyárfás and Lehel proposed a bipartite version of this conjecture [30], [44]. A complete

bipartite graph G with nonempty vertex classes X and Y is referred to here as a biclique [X,Y ],

and X and Y will be called the blocks of this biclique.

Conjecture 5 (Gyárfás [30], Lehel [44]). In every r-colouring of the edges of a biclique, the

vertex set can be covered by the vertices of at most 2r − 2 monochromatic components.

First we will see here that Conjecture 5, if true, is best possible. Let G∗ = [A,B] be a

biclique with |A| = r − 1, |B| = r!, and label the vertices of A with {1, 2, . . . , r − 1} and those

of B with the (r − 1)-length permutations of the elements of {1, 2, . . . , r}. For k ∈ A and

π = j1j2 . . . jr−1 ∈ B, let the colour of the edge {k, π} be jk.

Since each vertex in B is incident to r − 1 edges of distinct colour, every monochromatic com-

ponent of G∗ is a star with (r − 1)! leaves centered at A. Furthermore, G∗ has a vertex cover

with 2r−2 monochromatic components, just take the r monochromatic stars centered at vertex

r − 1, and add one edge from each vertex k = 1, 2, . . . , r − 2 of A.
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Proposition 38 (Gyárfás [30]). The vertex set of G∗ cannot be covered with less than 2r − 2

monochromatic components.

Proof. Let C be a cover of V (G∗) = A∪B by monochromatic stars centered in A. Let ak denote

the number of monochromatic stars of C on vertex k ∈ A. We may assume that a1 ≤ a2 ≤ · · · ≤
ar−1.

We show first that ai ≥ i + 1 holds for some 1 ≤ i ≤ r − 1. Suppose on the contrary that

ar−1 < r, ar−2 < r − 1, . . . , a1 < 2. Thus we can select a colour jr−1 ∈ {1, . . . , r} different

from the ar−1 colours of all stars of C centered at r − 1. Then we can select a new colour

jr−2 ∈ {1, . . . , r} \ {jr−1} different from the ar−2 colours of all stars of C centered at r− 2, etc.

Thus we end up by selecting r− 1 distinct colours j1, . . . , jr−1. This is a contradiction since the

(r − 1)-permutation j1j2 . . . jr−1 ∈ B is uncovered by C.
Now let ai ≥ i+ 1, for some 1 ≤ i ≤ r − 1, then for the number of stars in C we have

r−1∑
k=1

ak =

i−1∑
k=1

ak +

r−1∑
k=i

ak ≥ (i− 1) + (i+ 1)(r − i).

Since

(i− 1) + (i+ 1)(r − i) = −i2 + ri+ r − 1 ≥ 2r − 2

holds for every 1 ≤ i ≤ r − 1, the proposition follows. �

It is worth noting that Conjecture 5 (similarly to Conjecture 4) becomes obviously true if

the number of monochromatic components is just one larger than stated in the conjecture.

Proposition 39 (Gyárfás [30]). In every r-colouring of the edges of a biclique, the vertex set

can be covered by the vertices of at most 2r − 1 monochromatic components.

Proof. For an edge {u, v} of the biclique G, consider the monochromatic component (double

star) formed by the edges in the colour of {u, v} incident to u or v. In all other colours consider

the (at most r−1) monochromatic stars centered at u and at v. This gives 2r−1 monochromatic

components covering the vertices of G. �

In Section 5.1 we show that Conjecture 5 can be reduced to design-like conjectures: for

example, one can assume that all components of all colour classes are complete bipartite graphs.

It is worth noting that similar reduction is not known for Conjecture 4.

We shall prove Conjecture 5 for r = 2, 3, 4, 5 in Sections 5.2.1 and 5.2.2, in fact in stronger

forms defined in Section 5.1 (Propositions 41, 42 and Theorems 43, 44).

64



5 Monochromatic covering of complete bipartite graphs

5.1 Equivalent formulations, notations

We shall see that Conjecture 5 is equivalent to further design-like conjectures, thus an r-colouring

will also be called a partition of the edge set into r subgraphs. Let a biclique [X,Y ] be partitioned

into graphs G1, G2, . . . , Gr, then we will say that i is the colour of the edges in Gi (i = 1, . . . , r).

5.1.1 Spanning partition

Let us call a graph partitionG1, . . . , Gr of bicliqueG a spanning partition if each vertex v ∈ V (G)

is included in every V (Gi), i = 1, . . . , r. Notice that it is enough to prove Conjecture 5 for

spanning partitions. Indeed, assuming that v /∈ V (G1) and {v, w} ∈ E(G2), just take the at

most r − 2 monochromatic components from G3, . . . , Gr that contain v and add the at most r

monochromatic components from G1, G2, . . . , Gr that contain w, together they form a cover of

all vertices of G with at most 2r − 2 monochromatic components. Thus we have the following

equivalent form of Conjecture 5.

Conjecture 6. If a biclique has a spanning partition into r graphs, then its vertex set can be

covered by at most 2r − 2 monochromatic components.

5.1.2 Partition into bi-equivalence graphs

A bi-equivalence graph is a bipartite graph whose connected components are bicliques; the

width of a bi-equivalence graph is the number of its components. (A graph whose connected

components are complete graphs, i.e. cliques, is usually called equivalence graph, that is the

reason of this name.)

Conjecture 7. If a biclique has a spanning partition into r bi-equivalence graphs, then its vertex

set can be covered by at most 2r − 2 biclique components.

Conjecture 7 and 6 are equivalent. On the one hand, it is clear that validity of Conjecture 6

implies that Conjecture 7 is also true.

On the other hand, suppose we have an r-colouring of a biclique G = [X,Y ] such that some

monochromatic component C, say in colour 1, is not a biclique. Let x ∈ X, y ∈ Y be non-

adjacent vertices in C, w.l.o.g. {x, y} has colour 2. Observe that the 2(r − 2) monochromatic

stars in colours 3, . . . , r centered at x and at y, plus the component C, and the component in

colour 2 containing {x, y} cover V (G), leading to a cover with at most 2r − 2 monochromatic

components. Thus Conjecture 6 follows from Conjecture 7.

Let a biclique [X,Y ] be partitioned into the bi-equivalence graphs G1, G2, . . . , Gr. Any con-

nected component of Gi is a biclique, its vertex classes will be called blocks in colour i.
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Denote by Bi[u1, . . . , uk] the connected component ofGi which contains the vertices u1, . . . , uk, if

they are in the same component of Gi, and in this case let Xi[u1, . . . , uk] = X∩V (Bi[u1, . . . , uk])

and Yi[u1, . . . , uk] = Y ∩ V (Bi[u1, . . . , uk]) be the corresponding blocks. Otherwise we set

Bi[u1, . . . , uk] = ∅, Xi[u1, . . . , uk] = Yi[u1, . . . , uk] = ∅.
Note that Bi[u] 6= ∅ for any u ∈ V (G) in a spanning partition. In the sequel we will also use

the fact that for any colour i ∈ {1, 2, . . . , r} and any vertices u, v ∈ V (G), the blocks Xi[u] and

Xi[v] are either disjoint or equal.

5.1.3 Antichain partition

Let us call a spanning bi-equivalence graph partition G1, . . . , Gr of biclique G an antichain

partition if no blocks properly contain each other, that is if no colours i, j ∈ {1, . . . , r} and

vertices u, v ∈ V (G) exist such that Xi[u] ( Xj [v] or Yi[u] ( Yj [v].

If v ∈ X and |Xi[v]| = 1 (or v ∈ Y and |Yi[v]| = 1) then we call vertex v a singleton block in

colour i. Note that if a colouring has the antichain property (i.e., we have an antichain partition),

then a singleton block in some colour is a singleton in every colour, in this case we just say that

v is a singleton.

It turns out that it is enough to prove Conjecture 7 for antichain partitions. Indeed, assume

that in a spanning partition there are two blocks properly containing each other, that is X1[y] (
X2[x], for some biclique components B1[y], B2[x] and vertices x ∈ X, y ∈ Y , x /∈ X1[y]. The

colour of the edge {x, y} is neither 1 nor 2, w.l.o.g. it is 3. Since B3[y] = B3[x] and X1[y] ⊆ X2[x],

the collection

{Bi[x] : i ∈ {1, 2, . . . , r}} ∪ {Bi[y] : i ∈ {1, 2, . . . , r} \ {1, 3}}

is a cover with at most 2r− 2 monochromatic components. Thus we obtain the following equiv-

alent form of Conjecture 5.

Conjecture 8. If a biclique has an antichain partition into r bi-equivalence graphs, then its

vertex set can be covered by at most 2r − 2 biclique components.

Our example in Proposition 38 showing that Conjecture 5 is sharp is not an antichain

partition (not even a spanning partition). It is possible that for antichain partitions (or even for

spanning partitions) a stronger result holds.

Question 9. Suppose that a biclique has an antichain partition into r bi-equivalence graphs.

Can one cover its vertex set by at most r biclique components?

For r = 2, 3, 4 the answer to Question 9 is affirmative (see Section 5.2.1). Note that one-

factorizations of Kr,r show that one cannot expect a cover with less than r biclique components.
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5 Monochromatic covering of complete bipartite graphs

5.1.4 Reduced colouring

Finally we note an important reduction used extensively in the proofs later. We call a pair

u, v ∈ X or u, v ∈ Y equivalent if in every bi-equivalence graph of the bi-equivalence graph

partition of the biclique G, u and v belong to the same block. We may assume w.l.o.g. that

there is no pair of equivalent vertices, and in this case we say that the colouring is reduced.

Indeed, if there were two vertices u, v ∈ X and for every w ∈ Y , the edges {u,w} and {v, w}
have the same colour, then v could be added to any monochromatic component of G \ {v}
containing u. Hence if Conjecture 8 holds for G \ {v} then it also holds for G.

In a reduced r-colouring of a biclique, the number of vertices is bounded by a function of r.

In fact, one can easily see the following.

Proposition 40. Suppose a biclique [X,Y ] has a partition into r bi-equivalence graphs and no

two vertices of X are equivalent. Then |X| ≤ r!, and equality is possible.

Proof. It is easy to check that the partition of the graph G∗ defined before Proposition 38 is a

reduced one, hence the second statement follows.

To see the first statement, the case r = 1 is obvious. Assuming it is true for some r ≥ 1,

suppose indirectly that |X| ≥ (r + 1)! + 1 in some partition into r + 1 bi-equivalence graphs.

Then for any fixed v ∈ Y there are r! + 1 edges of the same colour from v, say in colour r+ 1, to

A ⊆ X. Let B be the set of vertices in Y that send edges in at least two different colours to A.

By the assumption B 6= ∅ and since the colour class r + 1 is a bi-equivalence graph, [A,B] has

no edge of colour r+1. This means no two vertices of A are equivalent in the induced r-partition

on [A,B], and thus |A| > r! contradicts the inductive hypothesis. �

5.2 Bi-equivalence partitions for small r values

In the present section we prove Conjecture 5 for r ≤ 5.

5.2.1 The case of r = 2, 3 and 4

First we show that Conjecture 5 (in its original form) is true for r = 2 and r = 3.

Proposition 41.

(i) If the edges of a biclique G are coloured with 2 colours, then the vertex set can be covered

by the vertices of at most 2 monochromatic components.

(ii) If the edges of a biclique G are coloured with 3 colours, then the vertex set can be covered

by the vertices of at most 4 monochromatic components.
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Proof. To show (i) let C1 be a monochromatic component in colour 1. Set X1 = V (C1) ∩ X,

Y1 = V (C1) ∩ Y . Suppose X1 6= X and Y1 6= Y . Then the edges between X1 and Y \ Y1 as well

as the edges between Y1 and X \X1 are coloured with colour 2, and they form monochromatic

components C2 and C3 on X1 ∪ (Y \ Y1) and Y1 ∪ (X \ X1), respectively. (These components

could coincide if there is an edge in colour 2 between X1 and Y1, or between X \X1 and Y \Y1.)
The components C2 and C3 cover the vertex set of G, as desired. If one (or both) of X \ X1,

Y \ Y1 is empty then the corresponding monochromatic component does not exists, in this case

it can be substituted by C1 in the cover.

The proof of (ii) is similar. Let C1 be a monochromatic component in colour 1. Set X1 =

V (C1) ∩X, Y1 = V (C1) ∩ Y . Suppose X1 6= X and Y1 6= Y . Then the edges between X1 and

Y \Y1 as well as the edges between Y1 and X \X1 are coloured with colour 2 and 3, and so they

form two bicliques whose edges are coloured with 2 colours. Using (i) we have that their vertex

set can be covered by the vertices of at most 2 monochromatic components. Hence the at most

4 components together form a cover of G. If one (or both) of X \X1, Y \ Y1 is empty then the

corresponding biclique, and so the monochromatic components does not exists but they can be

substituted by C1 in the cover. �

Notice that with the argument used above we would get that if the edges of a biclique G

are coloured with 3 colours, then the vertex set can be covered by the vertices of at most 8

monochromatic components. (While the conjecture states that 6 components are enough.)

Next, we show that the answer for Question 9 is positive for r = 3.

Proposition 42. If a biclique has an antichain partition into 3 bi-equivalence graphs, then one

of them has at most 3 connected components.

Proof. Let Gi, i = 1, 2, 3, be the bi-equivalence graphs in a reduced antichain partition of a

biclique [X,Y ]. We may assume that |X| > 3, since otherwise the width of each bi-equivalence

graph is at most 3. Let y ∈ Y , we have X = X1[y] ∪ X2[y] ∪ X3[y]. We may assume that

|X1[y]| ≥ 2, let x1, x2 ∈ X1[y]. From Y1[x1] = Y1[x2](= Y1[y]) it follows that Y2[x1] ∪ Y3[x1] =

Y2[x2] ∪ Y3[x2](= Y \ Y1[y]). The vertices x1 and x2 are not equivalent hence we conclude that

Y2[x2] = Y3[x1], Y3[x2] = Y2[x1], because any two blocks in the same colour are disjoint or

coincide. Therefore Y2[y] ⊆ Y \ (Y2[x1] ∪ Y2[x2]) = Y1[y], and so Y2[y] = Y1[y]. This yields

Y = Y2[y] ∪ Y2[x1] ∪ Y2[x2], thus the width of G2 is at most 3. �

One can prove the following, in some sense stronger, statement for r = 3, see its proof in [7].

Let a biclique [X,Y ] be partitioned into 3 bi-equivalence graphs. If one of those has more than
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5 Monochromatic covering of complete bipartite graphs

three nontrivial components, then some of the other two is spanning and has two connected

components.

Now we turn to the case r = 4, and answer Question 9 affirmatively (hence Conjecture 8 is

also verified in this case).

Theorem 43. If a biclique has an antichain partition into 4 bi-equivalence graphs, then its

vertex set can be covered by at most 4 monochromatic components of the same colour, or equiv-

alently, one of the bi-equivalence graphs has width at most 4.

Proof. Let Gi, i = 1, 2, 3, 4, be the bi-equivalence graphs in a reduced antichain partition of a

biclique [X,Y ].

First we show that if |Xi[u]| ≤ 2 for every colour i and vertex u, then the statement holds.

To see this, let y ∈ Y , we have X = X1[y]∪X2[y]∪X3[y]∪X4[y]. Let s be the number of blocks

of G1 in X \ X1[y], their union is equal to the union of the three blocks X2[y], X3[y], X4[y].

Recall that in an antichain partition singleton blocks are singletons in every colour. From this

and from the assumption that every other block has size 2, it follows that s = 3. Thus the width

of G1 is 4.

Thus we may assume that there are three distinct vertices, x1, x2, x3 ∈ X in some block of

G1. Let

Y (c1, c2, c3) = {y ∈ Y | {y, xi} is coloured with ci, i = 1, 2, 3}.

The three-tuple (c1, c2, c3) will be called the type of the subset Y (c1, c2, c3). In terms of this

notation Y (1, 1, 1) 6= ∅. When the wildcard character ∗ is used for a colour, then the colour

of the corresponding edge between {x1, x2, x3} and the set of that type is undetermined (e.g.

Y (3, 3, 4) ⊆ Y (3, ∗, 4) is true).

In a bi-equivalence graph partition certain types cannot coexist as is expressed in the next rule.

If a, b are distinct colours, then at least one of the sets Y (a, a, ∗) and Y (a, b, ∗) must be empty.

Indeed, if y1 ∈ Y (a, a, ∗) and y2 ∈ Y (a, b, ∗), then (y2, x1, y1, x2) is a path belonging to some

biclique of Ga, hence the edge {x2, y2} must have colour a, and not b. This rule remains valid

also when relabelling the vertices x1, x2, x3, that is when the colours in the types are moved to

different positions. Thus, for instance, types (2, ∗, 2) and (2, ∗, 3) cannot coexist.

We claim that there is no (nonempty) “three of a kind” type in Y \ Y (1, 1, 1). Assume on

the contrary that Y (2, 2, 2) 6= ∅. Since x1 and x2 are not equivalent, we have Y (3, 4, ∗) 6= ∅,
Y (4, 3, ∗) 6= ∅, and therefore, Y (3, 3, ∗) = ∅, Y (4, 4, ∗) = ∅. Moreover, this must hold for the

pair x1, x3 and the pair x2, x3, which is clearly impossible.

At least one of Y (2, 2, 3) and Y (2, 2, 4) is empty. To see this, assume Y (2, 2, 3) 6= ∅ and

Y (2, 2, 4) 6= ∅. Then again Y (3, 4, ∗) 6= ∅, Y (4, 3, ∗) 6= ∅. Moreover, Y (3, 4, ∗) = Y (3, 4, 2),
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Y (4, 3, ∗) = Y (4, 3, 2) and there is no other nonempty type. This yields

Y = Y (1, 1, 1) ∪ Y (2, 2, 3) ∪ Y (2, 2, 4) ∪ Y (3, 4, 2) ∪ Y (4, 3, 2),

in particular Y3[x3] ∪ Y4[x3] = Y2[x1], violating the antichain property.

Now w.l.o.g. assume that either Y (2, 2, 3) 6= ∅ or no (nonempty) pair type exists in Y \
Y (1, 1, 1). In both cases every (nonempty) type in Y \ Y (1, 1, 1) has a colour 3. Then the

components B3[xi], i = 1, 2, 3, form a cover provided Y3[z]∩ (Y \Y (1, 1, 1)) 6= ∅, for all z ∈ X. If

some z does not satisfy this, then by the antichain property, Y (1, 1, 1) = Y3[z], and B3[xi], i =

1, 2, 3, and B3[z] together form a cover. The width of G3 is at most 4. �

5.2.2 The case of r = 5

In this section we shall verify Conjecture 8 for r = 5, in a stronger form. Actually we will show

that under the appropriate conditions there is a cover with at most 2r − 2 = 8 monochromatic

components in the same colour, or equivalently, one of the bi-equivalence graphs of the partition

has width at most 8.

Theorem 44. If a biclique has an antichain partition into 5 bi-equivalence graphs, then its

vertex set can be covered by at most 8 monochromatic components of the same colour.

The proof of Theorem 44 is organized as follows. Let Gi, i = 1, 2, 3, 4, 5, be the bi-equivalence

graphs in a reduced antichain partition of the biclique [X,Y ]. First we prove two lemmas, and

from them we conclude that in some colour there exists a block of size at least 9, otherwise we

are done. Then we define the notation of type (similarly as we did in the proof of Theorem 43),

and state some rules on them. We finish the proof by case analysis.

5.2.3 Existence of a large block

We need the following two technical lemmas.

Lemma 45. If each Gi, i = 1, . . . , 5, has width at least 6, then [X,Y ] contains at most two

singletons in both vertex class.

Proof. Suppose on the contrary that one class has three singletons, say x1, x2, x3 ∈ X with

|Xi[xj ]| = 1, for every 1 ≤ i ≤ 5, and 1 ≤ j ≤ 3. Then taking any y ∈ Y , we may assume

that {y, x1} ∈ E(G1), {y, x2} ∈ E(G2) and {y, x3} ∈ E(G3). In particular, we obtain that

X = {x1, x2, x3} ∪X4[y] ∪X5[y].

For any z ∈ X4[y], we have X5[z]∩X5[y] = ∅, hence by the antichain property, X5[z] = X4[y].

Therefore G5 has five components: B5[x1], B5[x2], B5[x3], B5[z], B5[y], a contradiction. �
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Lemma 46. Let each Gi, i = 1, . . . , 5, have width at least 9. If [X,Y ] contains at most two

singletons in both of its vertex classes, then there is a colour i and a vertex u for which |Xi[u]| ≥ 9

or |Yi[u]| ≥ 9.

Proof. Assume that for every colour i and vertex u we have |Xi[u]| ≤ t and |Yi[u]| ≤ t. Let G1

be the graph with the maximum number of edges among Gi, i = 1, . . . , 5. The trivial inequality

|E(G)| ≤ 5|E(G1)| will give us a lower bound on t.

For a vertex u ∈ X we have Y = Y1[u]∪ Y2[u]∪ Y3[u]∪ Y4[u]∪ Y5[u]. From |Yi[u]| ≤ t we get

|Y | ≤ 5t. Similarly it follows that |X| ≤ 5t. Since G contains at most two singletons, and the

width of G1 is at least 9 we have 5t ≥ |Y | ≥ 2 · 1 + 7 · 2 = 16, therefore t ≥ 4.

Let x and y be vectors which contain the sizes of the components of G1 in X and in Y ,

respectively. Our assumptions on G1 mean that the length of x and y is at least 9, they have

at most two elements equal to 1, and all their elements are at most t. Using this notation

|E(G1)| = x · y, and |E(G)| = |X||Y | = (x · 1)(y · 1), where 1 is the constant 1 vector with

appropriate length. We are going to investigate the function

diff(x, y) = |E(G)| − 5|E(G1)| = (x · 1)(y · 1)− 5(x · y),

and determine its minimum over all possible values of x and y. If for a given value of t this

function is positive for any x, y, then there is no partition of G into graphs with the above

conditions.

In the first steps we minimize diff(x, y), for any fixed |X| and |Y |, that is we maximize

|E(G1)| = x · y.

Step 1: We may assume that the length of x is equal to 9, and so the length of y is also 9. This

is because otherwise we could join two components of G1 and increase the number of edges. So

we have x = (x1, . . . , x9) and y = (y1, . . . , y9).

Step 2: We can reorder the components of G1 such that y is ordered non-increasingly. After that

we may assume that the elements of x are also ordered non-increasingly. Indeed, otherwise we

could swap two elements with xi < xj for 1 ≤ i < j ≤ 9 and this operation would not decrease

the value of x · y. (The increment is (xj − xi)(yi − yj) ≥ 0.) Hence we get y1 ≥ y2 ≥ · · · ≥ y9

and x1 ≥ x2 ≥ · · · ≥ x9.
Step 3: If we increase an element xi of x by some constant c and decrease xj for j > i by the

same constant, we cannot decrease the number of edges of G1. (The increment is c(yi−yj) ≥ 0.)

By repeated use of this operation (observing the condition that each element of x and y is at most

t, and these vectors contain at most two elements equal to 1) we obtain that x1 = · · · = xp = t,

t > xp+1 ≥ 2, xp+2 = · · · = x7 = 2, x8 = x9 = 1 and similarly y1 = · · · = yq = t, t > yq+1 ≥ 2,
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5.2 Bi-equivalence partitions for small r values

yq+2 = · · · = y7 = 2, y8 = y9 = 1. From |X| ≤ 5t it follows that p < 5, and similarly we get

q < 5.

Thus for a given |X| and |Y |, the maximum value |E(G1)| = x · y is determined by the

vectors x, y standardized as above. In the next steps we further minimize diff(x, y) by changing

also |X| and |Y |.
Step 4: If xp+1 6= 2 then let x− and x+ be vectors almost the same as x, but at the (p + 1)-th

position they have xp+1 − 1 ≥ 2 and xp+1 + 1 ≤ t, respectively. We claim that diff(x−, y) or

diff(x+, y) is not greater than diff(x, y). Indeed, diff(x, y)−diff(x−, y) = diff(x+, y)−diff(x, y) =

|Y |−5yp+1 which means that diff(x, y) is a middle element of an arithmetic progression between

diff(x−, y) and diff(x+, y). Thus we may assume that xp+1 = 2 and similarly yq+1 = 2 (with

appropriate p and q). Furthermore we assume p ≤ q, and set r = q − p ≥ 0.

Step 5: Now we can express diff(x, y) as a function of p and r in the following way.

diff(x, y) = (x · 1)(y · 1)− 5(x · y)

= (tp+ 2(7− p) + 2)(t(p+ r) + 2(7− p− r) + 2)

−5(t2p+ 2tr + 4(7− p− r) + 2),

In this expression the coefficient of r is p(t− 2)2 + 6(t− 2) > 0, as t ≥ 4. Therefore diff(x, y) is

minimal if r = 0, that is p = q, and so x = y. In this case diff(x, x) = p2(t2− 4t+ 4) + p(−5t2 +

32t − 44) + 106, thus the formula has an extremum if d
dpdiff(x, x) = 0, that is p = 5t2−32t+44

2(t2−4t+4)
.

(This extremum is a minimum since d2

dp2
diff(x, x) = 2(t2 − 4t + 4) = 2(t − 2)2 > 0, because

t ≥ 4.)

From the above formula we get p = 1.5, for t = 8, which gives that the minimum value of

diff(x, y) for any x, y is at least 25 > 0. (Actually the minimum is 34 which is taken on the

integer values p = 1 and p = 2.) Thus |E(G)| ≤ 5|E(G1)| cannot hold for t = 8, it completes

the proof. �

Applying Lemma 45 and 46 we have the following corollary.

Corollary 47. If each Gi, i = 1, . . . , 5, has width at least 9, then there is a colour i and a vertex

u for which |Xi[u]| ≥ 9 or |Yi[u]| ≥ 9.

5.2.4 Types and rules on them

Let X1[x1, x2, . . . , x9] 6= ∅ be a block containing at least nine distinct vertices. Similarly to the

proof of Theorem 43, for a sequence of given colours c1, . . . , c9, let

Y (c1, . . . , c9) = {y ∈ Y | {y, xi} is coloured with ci, i = 1, . . . , 9}.
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5 Monochromatic covering of complete bipartite graphs

The nine-tuple (c1, . . . , c9) will be called the type of the subset Y (c1, . . . , c9) ⊆ Y . Again, when

the wildcard character ∗ is used for the i-th colour position in a type, then the colour of the

corresponding edges to xi are undetermined.

In a bi-equivalence graph partition certain types cannot coexist as is expressed in the next

rule.

Type rule. If a, b are two distinct colours, then at least one of the sets Y (a, a, ∗, . . . , ∗) and

Y (a, b, ∗, . . . , ∗) must be empty.

Indeed, if y1 ∈ Y (a, a, ∗, . . . , ∗) and y2 ∈ Y (a, b, ∗, . . . , ∗), then (y2, x1, y1, x2) is a path

belonging to Ga, hence the edge {x2, y2} must have colour a, and not b.

Notice that the Type rule remains valid when permuting colours and/or when relabelling

the vertices x1, x2, . . . , x9, that is when the colours in the types are moved to different positions.

Thus, for instance, types (∗, 5, ∗, . . . , ∗, 3) and (∗, 3, ∗, . . . , ∗, 3) cannot coexist.

We will need a simple corollary of the antichain property as follows.

Starring rule. If Yc[w] ⊆ Y (c1, . . . , c9), for some w ∈ X, then equality must hold. In other

words vertex w “stars” the set Y (c1, . . . , c9) in colour c.

This is because Y (c1, . . . , c9) ⊆ Y (c1, ∗, . . . , ∗) = Yc1 [x1].

Distinguishing rule 1. If Y (2, 2, ∗, . . . , ∗) 6= ∅ and Y (3, 3, ∗, . . . , ∗) 6= ∅, then Y (4, 4, ∗, . . . , ∗) =

∅ and Y (5, 5, ∗, . . . , ∗) = ∅, furthermore, Y (4, 5, ∗, . . . , ∗) 6= ∅ and Y (5, 4, ∗, . . . , ∗) 6= ∅.
To see this recall that no equivalent vertices exist in the colouring, in particular x1, x2 must

be distinguished by the components in colours 4 and 5. If Y (4, 4, ∗, . . . , ∗) 6= ∅, then by the Type

rule, Bi[x1] = Bi[x2] for every i = 1, 2, 3, 4, implying B5[x1] = B5[x2], hence x1, x2 would be

equivalent.

An immediate corollary of Distinguishing rule 1 is stated for convenience as follows.

Distinguishing rule 2. At least one of Y (2, 2, 2, ∗, . . . , ∗) and Y (3, 3, 3, ∗, . . . , ∗) must be empty.

5.2.5 Case analysis

Now we are ready to prove Theorem 44.

Proof of Theorem 44. From Corollary 47 it follows that there is a block containing at least nine

distinct vertices, X1[x1, . . . x9] 6= ∅. That is, Y (1, . . . , 1) 6= ∅. We shall proceed with investigating

the partition of Y ′ = Y \ Y (1, . . . , 1) into different types. Note that if Y (c1, . . . , c9) ⊆ Y ′, then

we have ci 6= 1, for every i = 1, . . . , 9. Let Y (c1, . . . , c9) ⊆ Y ′. Since ci ∈ {2, 3, 4, 5} for 1 ≤ i ≤ 9,

some colour must repeat at least three times.
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5.2 Bi-equivalence partitions for small r values

We shall consider the following three cases:

(1) there is a (nonempty) type in Y ′ such that a colour repeats at least five times;

(2) no (nonempty) type in Y ′ repeats a colour more than four times, and there is a (nonempty)

type repeating a colour four times;

(3) no (nonempty) type in Y ′ repeats a colour more than three times.

In the sequel when we write “w.l.o.g. we assume”, we mean “by appropriately permuting the

colours and relabelling x1, x2, . . . , x9 we may assume”.

Case 1: there is a (nonempty) type in Y ′ such that a colour repeats at least five times, say

Y (2, 2, 2, 2, 2, ∗, . . . , ∗) 6= ∅.
Observe that colour 2 cannot repeat seven times. Indeed, in every (nonempty) type in Y ′

different from (2, 2, 2, 2, 2, 2, 2, ∗, ∗) colour 2 is not used on the first seven positions, by the

Type rule. Hence one colour among 3, 4, and 5 must repeat at least three times contradicting

Distinguishing rule 2. Thus w.l.o.g. we assume that Y (2, 2, 2, 2, 2, ∗, 3, ∗, ∗) 6= ∅.
A similar pigeon hole argument shows that in every (nonempty) type in Y ′ different from

(2, 2, 2, 2, 2, ∗, ∗, ∗, ∗) colour 3 must be used on the first five positions, otherwise Distinguishing

rule 2 is violated. Therefore by the Type rule, Y3[x7] = Y (∗, . . . , ∗, 3, ∗, ∗) ⊆ Y (2, 2, 2, 2, 2, ∗, ∗, ∗, ∗),
thus by the Starring rule, Y3[x7] = Y (2, 2, 2, 2, 2, ∗, ∗, ∗, ∗) follows. Then we obtain that

Y ′ =
(⋃
{Y3[xi] | 1 ≤ i ≤ 5}

)
∪ Y3[x7].

If the six connected components B3[xi], 1 ≤ i ≤ 5 and B3[x7] do not cover X, then there

is an uncovered vertex w ∈ X which stars Y (1, . . . , 1) in colour 3, by the Starring rule. In this

case B3[xi], 1 ≤ i ≤ 5, B3[x7], and B3[w] cover Y (thus the whole vertex set of G).

Consequently, in either case G3 has width at most 7.

Case 2: no (nonempty) type in Y ′ repeats a colour more than four times, and there is a

(nonempty) type repeating a colour four times, say Y (2, 2, 2, 2, c5, . . . , c9) 6= ∅, where c5, . . . , c9 6=
2.

We also know that among the five colours, c5, . . . , c9, there are two distinct colours, w.l.o.g. we

assume that c5 = 3 and c6 = 4.

Assume now that in every (nonempty) type in Y ′ different from (2, 2, 2, 2, ∗, . . . , ∗) colour 3

is used somewhere on the first four positions. Then a similar argument that we used in Case 1

shows that the width of G3 is at most 6. By the same reason repeated for colour 4, it remains to

consider the situation when, for each colour 3 and 4, there is a (nonempty) type in Y ′ different

from (2, 2, 2, 2, ∗, . . . , ∗) missing 3 and 4 on the first four positions, respectively.

Since a colour cannot repeat three times on the first four positions, w.l.o.g. we have that

Y (4, 4, 5, 5, ∗, . . . , ∗) 6= ∅, moreover Y (c1, c2, c3, c4, ∗, . . . , ∗) 6= ∅, where among c1, c2, c3, c4 both
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5 Monochromatic covering of complete bipartite graphs

colours 3 and 5 repeat twice. By the Type rule, either (c1, c2, c3, c4) = (5, 5, 3, 3) or (c1, c2, c3, c4) =

(3, 3, 5, 5). In each case Distinguishing rule 1 is violated.

Case 3: no (nonempty) type in Y ′ repeats a colour more than three times.

Then by the pigeon hole principle, each (nonempty) type in Y ′ has a colour repeated three

times. Furthermore, if a type uses just three colours, then each of its three colours is repeated

exactly three times.

Let Y (c, c, c, ∗, . . . , ∗) 6= ∅, for some c = 2, 3, 4, or 5. If each (nonempty) type uses colour

c at some position, then either the connected components Bc[xi], 3 ≤ i ≤ 9 cover X, or some

w ∈ X stars Y (1, . . . , 1) in colour c, hence Bc[xi], 3 ≤ i ≤ 9 and Bc[w] cover Y (thus the whole

vertex set of G). In each situation Gc has width at most 8. We claim that this must happen for

some c.

Assume that colour 2 repeats three times in some (nonempty) type, and some other (nonempty)

type misses colour 2. W.l.o.g. let T2 = (3, 3, 3, 4, 4, 4, 5, 5, 5) be a (nonempty) type. By repeating

the same idea, we see that, for every c = 3, 4, 5, some (nonempty) type Tc misses c.

Thus T3 has three triplets in colours 2, 4, 5 at some positions. The last three positions of T3

is not a triplet in 5 due to Distinguishing rule 2 and the Type rule. W.l.o.g. assume that

T3 = (5, 5, ∗, 5, ∗, . . . , ∗). Then again, by Distinguishing rule 2 and the Type rule, it follows that

T3 = (5, 5, 4, 5, 2, 2, 4, 4, 2) (the last three positions can be permuted).

Finally, for the possible positions of the three 5’s of T4 with respect to T2 and T3, we conclude

as before that T4 = (∗, ∗, 5, ∗, 5, 5, ∗, ∗, ∗). This contradicts Distinguishing rule 1 on positions 5

and 6 (meaning that x5 and x6 would be equivalent). The proof of Theorem 44 is complete. �

5.3 Homogeneous coverings

Chen asked (in 1998) whether a stronger version of Conjecture 7 can be true, i.e. whether 2r−2

biclique components of the same bi-equivalence graph Gi, 1 ≤ i ≤ r, can cover [X,Y ]. Call such

a cover a homogeneous cover.

Given r, let g(r) be the smallest m such that in every biclique with a spanning partition into

r bi-equivalence graphs G1, . . . , Gr, there is a partition class Gi with width at most m. Let h(r)

be the smallest m such that for every biclique with a spanning partition into r bi-equivalence

graphs, the width of every partition class is at most m.

It is clear that g(r) ≤ h(r). It is proven in [7] about the functions g and h that g(r) ≥ cr3/2 for

some positive constant c, and h(r) = 2r−1. It is a challenging question how they separate.

Although the above lower bound for g(r) means that there are no homogeneous covers with

2r − 2 bicliques in general for spanning partitions, they might exist for antichain partitions, in

75



5.4 The dual form, transversals of r-partite intersecting hypergraphs

fact we proved this in Sections 5.2.1 and 5.2.2 for r ≤ 5.

Question 10. Suppose that a biclique has an antichain partition into r bi-equivalence graphs.

Is it true that some of them has width at most 2r − 2?

5.4 The dual form, transversals of r-partite intersecting hyper-

graphs

Conjectures 4 and 7 can be translated into dual forms as conjectures about transversals of r-

partite r-uniform intersecting hypergraphs. The approach already turned out to be very useful,

for example results of Füredi established in [26] can be applied. A survey on the subject is [31].

An r-uniform hypergraph H is defined by a finite set V (H) called the vertex set of H, and by

a set E(H) of r-sets of V (H) called edges of H. An r-uniform hypergraph H is called r-partite if

there is a partition V (H) = V1∪· · ·∪Vr such that |e∩Vi| = 1, for all i = 1, . . . , r and e ∈ E(H).

A hypergraph H is called intersecting if e ∩ f 6= ∅ for any e, f ∈ E(H). A set T ⊆ V (H) is

called a transversal of H provided e ∩ T 6= ∅, for all e ∈ E(H); the minimum cardinality of a

transversal of H is the transversal number of H denoted by τ(H).

To formulate the dual form of Conjecture 4, one should consider the monochromatic com-

ponents (also the single ones) of an edge-coloured graph G as vertices of a hypergraph H. The

vertices are arranged into partite classes according to the colour of the monochromatic compo-

nent. The hyperedges of H correspond to the vertices of G consisting of those monochromatic

components of G which contain the given vertex. From an r-edge-coloured graph we obtain an

r-partite r-uniform hypergraph. If G is complete thenH is intersecting. The dual of Conjecture 4

is Ryser’s conjecture for intersecting hypergraphs in its usual form as follows.

Conjecture 11. If H is an intersecting r-partite hypergraph then τ(H) ≤ r − 1.

There are infinitely many examples of intersecting r-partite hypergraphs with transversal

number equal to r−1. Take a finite projective plane of order q, then truncate it by removing one

point and the incident q+1 lines. The remaining lines taken as edges define an intersecting (q+1)-

partite hypergraph with transversal number equal to q. (Note that the truncated projective plane

is the dual of an affine plane.)

Ryser’s conjecture for general hypergraphs states that if H is an r-partite hypergraph then

τ(H) ≤ (r − 1)ν(H), where ν(H) is the maximum number of pairwise disjoint edges in H. It is

the dual of the following statement: in every r-colouring of the edges of a graph G, the vertex

set can be covered by the vertices of at most (r − 1)α(G) monochromatic components, as it is

formulated in [30], [25].
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5 Monochromatic covering of complete bipartite graphs

Concerning our biclique cover conjectures, the dual of a spanning partition of a complete

bipartite graph into r graphs gives two r-partite hypergraphs, H1,H2 on the same vertex set

(corresponding to the set of monochromatic components) with different edge sets (corresponding

to the set of vertices in the two partite classes of the bipartite graph). And h1 ∩ h2 6= ∅ holds

for every h1 ∈ E(H1), h2 ∈ E(H2), moreover at each vertex there is at least one edge from

both hypergraphs. We call such hypergraph pairs cross-intersecting. Then Conjecture 6 reads

as follows:

Conjecture 12. Let H1,H2 be a pair of cross-intersecting r-partite hypergraphs. Then we have

τ(H1 ∪H2) ≤ 2r − 2.

As we have seen we may assume that the biclique is partitioned into bi-equivalence graphs

and we obtain an equivalent form of Conjecture 6. Translating this property to the dual problem

this means that the hypergraph pair H1, H2 is 1-cross-intersecting, that is for every h1 ∈ E(H1),

h2 ∈ E(H2), we have |h1 ∩ h2| = 1.

In case of Ryser’s conjecture for intersecting hypergraphs it is not known whether with a

similar assumption we would obtain an equivalent form. Assuming that for every e, f ∈ E(H)

we have |e∩f | = 1 (that is, the colour classes consist of disjoint complete graphs) seems a special

case of the conjecture. It was conjectured by Lehel [44] that in this case Ryser’s conjecture is

true in a stronger form.

Conjecture 13. Suppose that an intersecting r-partite hypergraph H has no isolated vertices

and its edges pairwise intersect in precisely one vertex. Then some partite class of H contains

at most r − 1 elements, in particular τ(H) ≤ r − 1.

One can easily prove that under the above conditions each partite class contains at most
(
2(r−1)
r−1

)
vertices, see [7].
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[40] Z. Király, Monochromatic components in edge-colored complete uniform hypergraphs, Elec-

tronic Notes in Discrete Mathematics 38C (2011), 517–521.

[41] J. Körner and A. Orlitsky, Zero-error information theory, IEEE Trans. Inform. Theory 44

(1998), 2207–2229.

[42] J. Körner and G. Simonyi, Graph pairs and their entropies: Modularity problems, Combi-

natorica 20 (2000), 227–240.

[43] J. Körner, G. Simonyi, and Zs. Tuza, Perfect couples of graphs, Combinatorica 12 (1992),

179–192.

[44] J. Lehel, Ryser’s conjecture for linear hypergraphs, manuscript, 1998.

[45] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972),

253–267.

83

http://garden.irmacs.sfu.ca/?q=op/rysers_conjecture


[46] R. J. McEliece and E. C. Posner, Hide and seek, data storage, and entropy, Ann. Math.

Statist. 42 (1971), 1706–1716.
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