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Abstract

The independence ratio i(G) of a graph G is the ratio of its independence number and the number of
vertices. The ultimate categorical independence ratio of a graph G is defined as limk→∞ i(G×k), where
G×k denotes the kth categorical power of G. This parameter was introduced by Brown, Nowakowski
and Rall, who asked about its value for complete multipartite graphs. In this paper we determine the
ultimate categorical independence ratio of complete multipartite graphs.

1 Introduction
The independence ratio of a graph G is defined as i(G) = α(G)

|V (G)| , that is, as the ratio of the independence
number and the number of vertices.

Its asymptotic value with respect to what is called Cartesian graph exponentiation is the ultimate in-
dependence ratio which was introduced by Hell, Yu and Zhou [5] and futher investigated by Hahn, Hell
and Poljak [4] and by Zhu [6]. Motivated by this concept Brown, Nowakowski and Rall [3] considered the
analogous, but significantly different parameter, the ultimate categorical independence ratio which is defined
with respect to the categorical power of graphs.

For two graphs F and G, their categorical product F × G is defined on the vertex set V (F × G) =
V (F )× V (G) with edge set E(F ×G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G)}. The
kth categorical power G×k is the k-fold categorical product of G.

Definition. ([3]) The ultimate categorical independence ratio of a graph G is defined as

A(G) = lim
k→∞

i(G×k).

This parameter was also investigated by Alon and Lubetzky [2] and the characterization of maximum-size
independent sets in categorical graph powers were considered by Alon, Dinur, Friedgut and Sudakov [1].

The authors of [3] investigated graphs for which A(G) = i(G) holds and they called such graphs self-
universal. In that article it is proven that some interesting graph families, for example Cayley graphs of
Abelian groups, have this property.

The paper [3] mentions complete multipartite graphs as one of those families of graphs for which the
determination of the ultimate categorical independence ratio remained an open problem. It follows from
a result in [3] that if the largest partite class contains more than half of the vertices then the ultimate
categorical independence ratio equals to one. In this paper we prove that in all other cases, i.e., when none
of the parts of the complete multipartite graph has size greater than half the number of vertices then the
graph is self-universal.
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2 The ultimate categorical independence ratio of complete multi-
partite graphs

We will use the following theorem of [3].

Theorem 1. ([3]) If i(G) > 1
2 then A(G) = 1.

The main result of this paper is the following theorem. We get the result for complete multipartite graphs
as a simple corollary. The first condition of Theorem 2, i.e., the one about the lower bound on the degrees
is essential. The second condition is trivial; it must hold by Theorem 1. We denote by d(v) the degree of
the vertex v.

Theorem 2. Let G be a graph for which d(v) ≥ |V (G)| − α(G) holds for all vertices v of G and i(G) ≤ 1
2

holds. Then i(G×k) = i(G) holds for every integer k ≥ 1.

Corollary 3. Let G = K`1,`2,...`m be a complete multipartite graph. Let n =
∑m

i=1 `i be the number of
vertices and let ` = max1≤i≤m `i be the size of the largest partite class. If ` ≤ n

2 then A(G) = i(G) = `
n , so

G is self-universal, otherwise A(G) = 1.

Proof of Corollary 3 from Theorem 2. Since G is a complete multipartite graph α(G) = `. If ` > n
2 then

i(G) = `
n > 1

2 , thus A(G) = 1 follows from Theorem 1.
If ` ≤ n

2 then i(G) = `
n ≤ 1

2 . As G is a complete multipartite graph, the degree of its vertices is at least
|V (G)| − α(G). Thus from Theorem 2 we get A(G) = i(G) = `

n . �
We remark that there are graphs which satisfy the conditions of Theorem 2 other than complete multi-

partite graphs. An example is given by the graph consisting of a 5-length cycle and three additional points
joint to every vertex of the cycle.

To prove Theorem 2 we need the following lemma. We denote by N(U) the neighborhood of the set U
in a graph G, that is, N(U) is the set of all vertices v of G for which there is a vertex u in U so that u and
v are adjacent in G. (Notice that if U is not independent then N(U) and U will not be disjoint.)

Lemma 4. Let G be a graph for which d(v) ≥ |V (G)| − α(G) holds for all vertices v of G and i(G) ≤ 1
2

holds. If J is an independent set in G×k for which |J|
|J∪N(J)| > i(G) holds then there is an independent set

K in G×(k−1) for which |K|
|K∪N(K)| > i(G) holds.

Proof. Let G be a graph for which

for all vertices v of G : d(v) ≥ |V (G)| − α(G) (1)

and
i(G) ≤ 1

2
(2)

holds. Let J be an independent set in G×k for which |J|
|J∪N(J)| > i(G).

Consider G×k in the form G×G×(k−1). We denote the vertex set of G×(k−1) by U and the vertex set of
G×k by V . Let U1, U2 and U3 be the following subsets of U :

U1 = {v ∈ U : |J ∩ (V (G)× {v})| > α(G)},
U2 = N(U1),

U3 = U \ (U1 ∪ U2).

For i = 1, 2, 3 let Vi = V (G)× Ui and denote by Ji the corresponding subsets of J : Ji = J ∩ Vi.
It follows from (1) that for all subset P of V (G) for which |P | > α(G) stands, it holds that N(P ) = V (G);

because for every vertex v in V (G) there are at most α(G) vertices which are non-adjacent to v, so there
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Figure 1: Partition of G×k (the size of J is at most the size of the dark grey area and the size of N(J) is at
least the size of the bright grey area)

must be a vertex in P which is adjacent to v. This fact and the definition of the categorical product imply
that every vertex of V (G)×N(U1) is a neighbor of a vertex in J1, i.e., N(J1) = V (G)×N(U1) = V2, thus
U1 is an independent set of G×(k−1) and J2 is empty. It also follows that U1 ∩ U2 = ∅, V1 ∩ V2 = ∅, so
U = U1 ∪U2 ∪U3 is a partition of U , V = V1 ∪V2 ∪V3 is a partition of V and J = J1 ∪J3 is a partition of J .

It is easy to see that the ratio |J|
|J∪N(J)| is a convex linear combination of |J1|

|J1∪N(J1)| , i.e., the corresponding

fraction of J in V1 ∪ V2, and |J3|
|J3∪(N(J3)∩V3)| , i.e., the corresponding fraction of J in V3. (Here we use the

trivial fact that for all positive x1, x2, y1, y2 the equality x1+x2

y1+y2
= αx1

y1
+(1−α)x2

y2
holds for some α ∈ [0, 1].)

Thus |J|
|J∪N(J)| > i(G) implies that

|J1|
|J1 ∪N(J1)|

> i(G) (3)

or
|J3|

|J3 ∪ (N(J3) ∩ V3)|
> i(G). (4)

In the first case, when (3) holds, it follows from N(J1) = V2 that |U1|
|U1∪N(U1)| =

|V1|
|V1∪V2| ≥

|J1|
|J1∪N(J1)| > i(G).

Since U1 is an independent set in G×(k−1), we can choose U1 to be the set K in the statement and we are
done.

In the second case, when (4) holds we investigate the structure of J further. Let A and B be the following
subsets in U3:

A = {v ∈ U3 : J3 ∩ (V (G)× {v}) 6= ∅},
B = N(A) ∩ U3.

We prove that |A| > |B|. From (1) we get that for every vertex w in B the inequality |N(J3)∩(V (G)×{w})| ≥
|V (G)| − α(G) holds, so |N(J3) ∩ V3| ≥ (|V (G)| − α(G))|B|. On the other hand, for every vertex v in U3

the inequality |J ∩ (V (G)× {v})| ≤ α(G) holds by the definition of U1, U2 and U3, so |J3| ≤ α(G)|A|. Thus
|J3|

|N(J3)∩V3| ≤
α(G)|A|

(|V (G)|−α(G))|B| . Furthermore, |A| ≤ |B| would imply that |J3|
|N(J3)∩V3| ≤

α(G)
(|V (G)|−α(G)) , so (using

that J3 ∩ N(J3) = ∅ as J3 is independent) we have |J3|
|J3∪(N(J3)∩V3)| ≤

α(G)
|V (G)| = i(G), which contradicts (4).

Hence
|A| > |B|. (5)

We know that |J|
|J∪N(J)| > i(G) = α(G)

|V (G)| which means that

|J |
|N(J)|

>
α(G)

|V (G)| − α(G)
. (6)

Let L be the following subset of V (G×k):

L = V (G)×M, where M = U1 ∪ (A \B).
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Figure 2: Partition of G×k, the structure of J and N(J)

We prove that |L|
|L∪N(L)| > i(G). From the structure of J (we have seen that J = J1∪J3, J1 ⊆ V (G)×U1,

|J3| ≤ α(G)|A|, N(J1) = V (G)× U2 and |N(J3) ∩ V3| ≥ (V (G)− α(G))|B|) it follows that

|J |
|N(J)|

=
|J1|+ |J3|

|N(J1)|+ |N(J3) ∩ V3|
≤ |V (G)||U1|+ α(G)|A|

|V (G)||U2|+ (|V (G)| − α(G))|B|
. (7)

By the definition of B we get N(A \B) ⊆ (B \A) ∪ U2. This with the definition of U2 imply that N(M) ⊆
U2 ∪ (B \A), hence

|L|
|N(L)|

≥ |V (G)× (U1 ∪ (A \B))|
|V (G)× (U2 ∪ (B \A))|

=
|V (G)|(|U1|+ |A \B|)
|V (G)|(|U2|+ |B \A|)

. (8)

The difference between the right hand side of (8) and (7)

in the numerator: −α(G)|A ∩B| + (|V (G)| − α(G))|A \B|,
in the denominator: −(|V (G)| − α(G))|A ∩B| + α(G)|B \A|.

Note that the numerators belong to the independent sets and the denominators belong to their neighborhoods.
Furthermore, analysing the two parts of these differences we have that

−α(G)|A ∩B|
−(|V (G)| − α(G))|A ∩B|

=
α(G)

|V (G)| − α(G)
(9)

and
(|V (G)| − α(G))|A \B|

α(G)|B \A|
> 1 ≥ α(G)

|V (G)| − α(G)
, (10)

because (5) implies that |A \B| > |B \A| and from (2) it follows that α(G) ≤ |V (G)| − α(G).
Since the numerator and the denominator of the right hand side of (8) are the sum of the numerators and
the denominators of the right hand side of (7), the left hand side of (9) and the left hand side of (10),
respectively, it follows from the bounds in (6), (7), (8), (9) and (10) that |L|

|N(L)| > α(G)
|V (G)|−α(G) . (We use

the fact that for positive y1 and y2 the inequalities x1

y1
> K and x2

y2
> K imply that x1+x2

y1+y2
> K holds and

the similar easy statement that if y1 > 0 and y1 + y2 > 0 then from x1

y1
> K and x2

y2
= K it also follows

x1+x2

y1+y2
> K. We need the second one since the numerator and the denominator of the left hand side of (9)

are negative.) This means that
|L|

|L ∪N(L)|
> i(G). (11)

From the structure of L and from (11) we get that |M |
|M∪N(M)| =

|L|
|L∪N(L)| > i(G). Since U1 and A \B =

A \ N(A) are independent and N(A \ B) ∩ U1 = ∅, we have that M is an independent set. Thus setting
K = M we found the independent set in G×(k−1) the existence of which is claimed by the lemma.
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Proof of Theorem 2. Suppose indirectly that there is a positive integer k for which i(G×k) 6= i(G). As the
sequence {i(G×k)}∞k=1 is nondecreasing we get that there is a maximal independent set I in G×k for which
i(G) < |I|

|V (G×k)| =
|I|

|I∪N(I)| . By the iterative use of Lemma 4 we obtain that there is an independent set J

in G for which |J|
|J∪N(J)| > i(G) = α(G)

|V (G)| . As |J | ≤ α(G) and since the assumption d(v) ≥ |V (G)| − α(G)

for all vertices v of G implies that |N(J)| ≥ |V (G)| − α(G), we get that |J|
|J∪N(J)| ≤ i(G). Hence we got a

contradiction proving the theorem. �

Acknowledgments
I am grateful to Gábor Simonyi for helpful discussions throughout the whole time of this research.

References
[1] N. Alon, I. Dinur, E. Friedgut, B. Sudakov, Graph products, Fourier analysis and spectral techniques,

Geom. Funct. Anal., 14 (2004), pp. 913–940.

[2] N. Alon, E. Lubetzky, Independent sets in tensor graph powers, J. Graph Theory, 54 (2007), pp. 73–87.

[3] J. I. Brown, R. J. Nowakowski, D. Rall, The ultimate categorical independence ratio of a graph, SIAM
J. Discrete Math., 9 (1996), pp. 290–300.

[4] G. Hahn, P. Hell, S. Poljak, On the ultimate independence ratio of a graph, European J. Combin., 16
(1995), pp. 253–261.

[5] P. Hell, X. Yu, H. S. Zhou, Independence ratios of graph powers, Discrete Math., 27 (1994), pp. 213–220.

[6] X. Zhu, On the bounds for the ultimate independence ratio of a graph, Discrete Math., 156 (1996),
pp. 229–236.

5


