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Abstract

The Hall-ratio ρ(G) of a graph G is the ratio of the number of vertices and the independence number
maximized over all subgraphs of G. The ultimate lexicographic Hall-ratio of a graph G is defined as
limn→∞

n
√
ρ(G◦n), where G◦n denotes the nth lexicographic power of G (that is, n times repeated sub-

stitution of G into itself). Here we prove the conjecture of Simonyi stating that the ultimate lexicographic
Hall-ratio equals to the fractional chromatic number for all graphs.

1 Introduction
The Hall-ratio of a graph G was investigated in [1, 2] where it is defined as

ρ(G) = max

{
|V (H)|
α(H)

: H ⊆ G
}
,

that is, as the ratio of the number of vertices and the independence number maximized over all subgraphs of
G. (See also [3] and some of the references therein for an earlier appearance of the same notion on a different
name.)

The asymptotic values of the Hall-ratio for different graph powers were investigated by Simonyi [8].
Among others, he considered the (appropriately normalized) asymptotic values of the Hall-ratio for the
three exponentiations called normal, co-normal and lexicographic, respectively. In this paper we deal mainly
with the asymptotic value of the Hall-ratio with respect to the lexicographic power. (Other questions related
to the Hall-ratio, the fractional chromatic number and the lexicographic power discussed in [5].)

For two graphs F and G, their lexicographic product F ◦ G is defined on the vertex set V (F ◦ G) =
V (F )× V (G) with edge set E(F ◦G) = {{u1v1, u2v2} : {u1, u2} ∈ E(F ), or u1 = u2 and {v1, v2} ∈ E(G)}.
The nth lexicographic power G◦n is the n-fold lexicographic product of G. The lexicographic product F ◦G
also known as the substitution of G into all vertices of F , the name we use follows the book [4].

Definition. ([8]) The ultimate lexicographic Hall-ratio of graph G is

h◦(G) = lim
n→∞

n
√
ρ(G◦n).

The normal and co-normal products of two graphs F and G are also defined on V (F )× V (G) as vertex
sets and their edge sets are such that E(F � G) ⊆ E(F ◦ G) ⊆ E(F · G) holds, where F � G denotes the
normal, F ·G the co-normal product of F and G.
(In particular, {u1v1, u2v2} ∈ E(F � G) if {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G), or {u1, u2} ∈ E(F ) and
v1 = v2, or u1 = u2 and {v1, v2} ∈ E(G), while {u1v1, u2v2} ∈ E(F · G) if {u1, u2} ∈ E(F ) or {v1, v2} ∈
E(G).)
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Denoting by h�(G) and h(G) the normalized asymptotic values analogous to h◦(G) for the normal and co-
normal power, respectively, Simonyi [8] proved that h(G) = χf (G), where χf (G) is the fractional chromatic
number of graph G, while h�(G) = R(G), where R(G) denotes the so-called Witsenhausen rate. The latter is
the normalized asymptotic value of the chromatic number with respect to the normal power and is introduced
by Witsenhausen in [9] where its information theoretic relevance is also explained. The fractional chromatic
number is the well-known graph invariant one obtains from the fractional relaxation of the integer program
defining the chromatic number, see [7] for more details.

It follows from the above discussion that the value of h◦(G) falls into the interval [R(G), χf (G)]. We
remark that the lower bound R(G) is sometimes better but sometimes worse than the easy lower bound
ρ(G), cf. [8]. Thus we know that

max {ρ(G), R(G)} ≤ h◦(G) ≤ χf (G).

For some types of graphs the upper and lower bounds are equal, so this formula gives the exact value of the
ultimate lexicographic Hall-ratio. For instance, if G is a perfect graph, then χf (G) = χ(G) = ω(G) ≤ ρ(G).
If G is a vertex-transitive graph, then χf (G) =

|V (G)|
α(G) ≤ ρ(G). (The proof of the fact that χf (G) =

|V (G)|
α(G)

holds for vertex-transitive graphs, can be found for example in [7].)
The length of the interval [max{ρ(G), R(G)}, χf (G)] is positive in general. An example is the 5-wheel,

W5 constisting of a 5-length cycle and an additional point joint to every vertex of the cycle. It is clear that
ρ(W5) = 3. To get an upper bound for R(W5), one can find a coloring of C�25 with 5 colors (see [9]) which
can be completed to a coloring of W�25 with 12 colors, so χ(W�25 ) ≤ 12, since χ(G�n) ≤ (χ(G))n (see,
e.g., [4] for the easy proof) and by the definition of R(G) we get R(W5) ≤

√
12. Furthermore, χf (W5) =

χf (C5) + 1 = 7
2 > max{3,

√
12}.

It was conjectured in [8], that in fact, h◦(G) always coincides with the larger end of the above interval.
The main goal of this paper is to prove this conjecture.

2 The ultimate lexicographic Hall-ratio
In this section we prove our main result.

Theorem 1.
h◦(G) = χf (G)

We know h◦(G) ≤ χf (G) thus it is enough to prove the reverse inequality.
Preparing for the proof we introduce some notations. Let n be a positive integer and let α be a positive real

number. Denote by pG(n, α) the number of vertices maximized over all subgraphs of G◦n with independence
number at most α, that is

pG(n, α) = max {|V (H)| : H ⊆ G◦n, α(H) ≤ α}

and let
qG(n, α) =

pG(n, α)

α
.

Clearly, pG(n, α) = pG(n, bαc) and qG(n, α) ≤ qG(n, bαc). In spite of this fact it will be useful that pG(n, α)
is defined also for non-integral α values.

Now we are going to prove some technical lemmas.

Lemma 2. The ultimate lexicographic Hall-ratio can be expressed by the values of qG(n, α) as follows.

h◦(G) = lim
n→∞

max
{

n
√
qG(n, α) : α ∈ R+

}
(1)
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Proof. The Hall-ratio of the nth lexicographic power of G can be calculated by the above terms the following
simple way:

ρ(G◦n) = sup{qG(n, α) : α ∈ R+}.

Since pG(n, α) is a bounded, monotone increasing function and qG(n, α) is the fraction of this and the strictly
monotone increasing identity function, the above supremum is always reached. Since qG(n, α) ≤ qG(n, bαc),
it is reached at some integer value of α, so the maximum value belongs to one of the subgraphs of G◦n.
Thus we get h◦(G) = lim

n→∞
n
√
ρ(G◦n) = lim

n→∞
max

{
n
√
qG(n, α) : α ∈ R+

}
.

Thus our aim is to show that lim
n→∞

max
{

n
√
qG(n, α) : α ∈ R+

}
≥ χf (G).

Let g : V (G)→ R+,0 be an optimal fractional clique of G. That is, (denoting the set of independent sets
in G by S(G)), it is a fractional clique:

∀U ∈ S(G) :
∑
v∈U

g(v) ≤ 1, (2)

and it is optimal: ∑
v∈V (G)

g(v) = χf (G). (3)

Lemma 3.
qG(n, α) ≥

∑
v∈V (G)

g(v)qG (n− 1, g(v)α)

Proof. Every subgraph of G◦n can be imagined as if the vertices of G would be substituted by subgraphs
of G◦(n−1). Furthermore, every independent set of G◦n can be thought of as having the vertices of an
independent set of G substituted by independent sets of (the above subgraphs of) G◦(n−1).
If we substitute every vertex v of G by a subgraph of G◦(n−1) with independence number at most g(v)α, then
we get a subgraph of G◦n with independence number at most max

U∈S(G)

∑
v∈U

g(v)α ≤ α max
U∈S(G)

∑
v∈U

g(v) ≤ α,

because of (2).
Thus we get

pG(n, α) ≥
∑
v∈G

pG (n− 1, g(v)α) .

It follows from this inequality and the definition of qG(n, α) that

qG(n, α) =
pG(n, α)

α
≥ 1

α

∑
v∈G

pG (n− 1, g(v)α) =
∑
v∈G

g(v)α

α

pG (n− 1, g(v)α)

g(v)α
=

∑
v∈V (G)

g(v)qG (n− 1, g(v)α) .

Next we bound the qG(n, α) function from below, it will be important for later calculations. Let us define
function rG(n, α) as follows.

rG(1, α) =

{
cG, if 1 ≤ α ≤ m = |V (G)|
0, otherwise

where cG is a positive constant, which bounds qG(1, α) from below for all 1 ≤ α ≤ m = |V (G)|. Such cG
exists, for example cG = 1

m is a good choice.
For n ≥ 2 let

rG(n, α) =
∑

v∈V (G)

g(v)rG (n− 1, g(v)α) .
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By Lemma 3 and by the construction of rG(n, α) it holds for all positive integer n and all positive real
number α that

rG(n, α) ≤ qG(n, α). (4)

Thus it is enough to show that lim sup
n→∞

max
{

n
√
rG(n, α) : α ∈ R+

}
≥ χf (G).

To make the calculations simpler, we express α as mβ , that is β = logm α and introduce

sG(n, β) = rG(n,m
β),

where n is a positive integer, β is a real number. Since this transformation does not change the maximum
value of the function (only its place), it holds that

max
{

n
√
rG(n, α) : α ∈ R+

}
= max

{
n
√
sG(n, β) : β ∈ R

}
. (5)

Thus it is enough to prove that lim sup
n→∞

max
{

n
√
sG(n, β) : β ∈ R

}
≥ χf (G).

Observe that the following equalities hold:

sG(1, β) =

{
cG, if 0 ≤ β ≤ 1
0, otherwise

sG(n, β) =
∑

v∈V (G)

g(v)sG (n− 1, logm g(v) + β) , n ≥ 2.

We get the formula for sG(1, β) from the definition of the function sG(n, β). The second equality follows by
writing

sG(n, β) = rG(n,m
β) =

∑
v∈V (G)

g(v)rG
(
n− 1, g(v)mβ

)
=

∑
v∈V (G)

g(v)sG
(
n− 1, logm(g(v)mβ)

)
=

=
∑

v∈V (G)

g(v)sG (n− 1, logm g(v) + β) .

Lemma 4. It holds for all graph G that

lim sup
n→∞

max
{

n
√
sG(n, β) : β ∈ R

}
≥ χf (G). (6)

Proof. Let us determine the integral of the function sG(n, β).
∞∫

β=−∞

sG(1, β) dβ = cG

∞∫
β=−∞

sG(n, β) dβ =

∞∫
β=−∞

∑
v∈V (G)

g(v)sG (n− 1, logm g(v) + β) dβ =

=
∑

v∈V (G)

g(v) ∞∫
β=−∞

sG(n− 1, logm g(v) + β) dβ

 =

=
∑

v∈V (G)

g(v) ∞∫
β=−∞

sG(n− 1, β) dβ

 =

=

 ∑
v∈V (G)

g(v)

 ∞∫
β=−∞

sG(n− 1, β) dβ = χf (G)

∞∫
β=−∞

sG(n− 1, β) dβ, n ≥ 2,
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where in the last equation we used (3). Hence,

∞∫
β=−∞

sG(n, β) dβ = cG(χf (G))
n−1.

For a function f(x) we call the support of f(x), denoted by T (f(x)), the set of reals x for which f(x) 6= 0.
Let us determine T (sG(n, β)).
T (sG(1, β)) = [0, 1]. Let gG be any real value satisfying gG ≤ logm g(v) ≤ 0 for all v ∈ V (G). Such gG exists,
for example gG = min{logm g(v) : v ∈ V (G)} is a good choice. Thus T (sG(n, β)) ⊆ [0, 1− (n− 1)gG].

It is clear from the above discussion that
∫∞
β=−∞ sG(n, β) dβ asymptotically equals to (χf (G))

n, i.e., the
limit of their fraction equals 1 as n goes to infinity. The length of the support of sG(n, β) can be bounded
from above by a linear function of n, let this function be dGn where dG is a constant. These facts imply
that lim sup

n→∞
max

{
n
√
sG(n, β) : β ∈ R

}
≥ χf (G). Suppose indirectly that there is an ε > 0 and N ∈ N+,

for which ∀n > N , ∀β ∈ R: sG(n, β) < (χf (G) − ε)n, then
∫∞
β=−∞ sG(n, β) dβ < dGn(χf (G) − ε)n. Since

lim
n→∞

dGn(χf (G)−ε)n
χf (G)n = lim

n→∞
(1− ε

χf (G) )
n = 0, it is in contradiction with the statement at the begining of this

paragraph.

By now we have essentially proved Theorem 1, it needs only to be summarized.
Proof of Theorem 1. The preceding lemmas imply that

h◦(G) = lim
n→∞

max
{

n
√
qG(n, α) : α ∈ R+

}
≥ lim sup

n→∞
max

{
n
√
rG(n, α) : α ∈ R+

}
=

= lim sup
n→∞

max
{

n
√
sG(n, β) : β ∈ R

}
≥ χf (G),

where the stated relations follow from (1), (4), (5) and (6), respectively.
Thus we have proved

h◦(G) = χf (G).

�

Remark. There are graphs for which the sequence
{

n
√
ρ(G◦n)

}∞
n=1

does not reach its limit χf (G) for any

finite n. The 5-wheel is an example for which no t attains t
√
ρ(W ◦t5 ) = χf (W5) =

7
2 . This is because if there

was such a t then there must be a subgraph H of W ◦t5 for which |V (H)|
α(H) =

(
7
2

)t
= 7t

2t , but this fraction is
irreducible and |V (H)| ≤ |V (W ◦t5 )| = 6t.

Remark. It is known from the theorem of McEliece and Posner [6] (cf. also in [7]) that the normalized
asymptotic value of the chromatic number with respect to the co-normal product is the fractional chromatic
number. This theorem with the result proven here implies that the normalized asymptotic value of each of the
Hall-ratio, the fractional chromatic number and the chromatic number with respect to both the co-normal and
the lexicographic power equals to the fractional chromatic number. This is because ρ(G) ≤ χf (G) ≤ χ(G)
holds for every graph G and the lexicographic power of a graph is a subgraph of its co-normal power. These
relations were already known except for the asymptotic value of the Hall-ratio for the lexicographic power.
As we mentioned, it is proven in [8] that the normalized asymptotic value of the Hall-ratio for the co-normal
power equals to the fractional chormatic number. The multiplicativity of the fractional chromatic number
for the lexicographic product is a theorem in [4].
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3 On the ultimate direct Hall-ratio
An analogous asymptotic value of the Hall-ratio can be defined also with respect to the direct power. For two
graphs F and G, their direct or categorical product F×G is defined on the vertex set V (F×G) = V (F )×V (G)
with edge set E(F×G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G)}. The nth direct power
G×n is the n-fold direct product of G. The ultimate direct Hall-ratio, h×(G) = lim

n→∞
ρ(G×n) was defined in

[8]. It is shown there that this graph parameter is bounded from above by the fractional chromatic number
and conjectured that equality holds for all graphs.

It is easy to see that this conjecture holds for perfect and vertex-transitive graphs. It is proved in [8]
that it is also true for wheel graphs. By using a similar argument which was used in the proof of that result
we prove the following generalization.

Proposition 5. Let G be a graph for which h×(G) = χf (G) holds. Let Ĝ be the graph we obtain from G by
connecting each of its vertices to an additional vertex. Then h×(Ĝ) = χf (Ĝ) holds, too.

Proof. h×(G) = lim
n→∞

ρ(G×n) = χf (G) means that

∀ε > 0 : ∃n0(ε) : ∀n ≥ n0 : ρ(G×n) ≥ χf (G)− ε (7)

by definition of the limit and since h×(G) ≤ χf (G).
Adding a new vertex w to G increases the fractional chromatic number by 1, as it does not lie in a

common independent set with any other vertex of the graph. Therefore χf (Ĝ) = χf (G) + 1.
Thus we have to show that h×(Ĝ) = lim

n→∞
ρ(Ĝ×n) = χf (Ĝ) = χf (G) + 1, i.e.,

∀ε > 0 : ∃n̂0(ε) : ∀n ≥ n̂0 : ρ(Ĝ×n) ≥ χf (G) + 1− ε. (8)

By the monoton increasing property of the sequence
{
ρ(G×i)

}∞
i=1

it is enough to find for all ε a suitable n̂0
for which ρ(Ĝ×n0) ≥ χf (G) + 1− ε. It follows from (7) that for all ε > 0 there is an n0 and H ⊆ G×n0 , for
which |V (H)|

α(H) ≥ χf (G)− ε holds. Denote by k the number of vertices and by α the independence number of
H. Let v1, v2, . . . vk be the vertices of H and let v1, v2, . . . vα be the vertices of a maximum size independent
set in H. Let Ĥ be the subgraph of Ĝ×2n0 induced on the vertex set P1 ∪ P2 ∪Q, where

P1 = {(v1, wn0), (v2, w
n0), . . . (vα, w

n0)},
P2 = {(wn0 , v1), (w

n0 , v2), . . . (w
n0 , vα)} and

Q = {(vα+1, vα+1), (vα+2, vα+2), . . . (vk, vk)}.

The number of vertices of Ĥ is k+α. Its independence number is less than or equal to α, because on the
vertex set P1 ∪ P2 we get a complete bipartite graph, thus every independent set of Ĥ can contain vertices
only from P1 or only from P2, but on the set P1 ∪Q and P2 ∪Q the induced subgraph isomorph to H.
It follows that |V (Ĥ)|

α(Ĥ)
≥ k+α

α = k
α +1 = |V (H)|

α(H) +1 ≥ χf (G)+ 1− ε, thus n̂0 = 2n0 is a good choice to satisfy
(8).

Thus we have proved that h×(Ĝ) = lim
n→∞

ρ(Ĝ×n) = χf (Ĝ).
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