Further remarks on long monochromatic cycles in edge-colored complete graphs

Shinya Fujita, Linda Lesniak \dagger Ágnes Tóth ${ }^{\ddagger}$

January 24, 2012

Abstract

In [Discrete Math., 311 (2011), 688-689], Fujita defined $f(r, n)$ to be the maximum integer k such that every r-edge-coloring of K_{n} contains a monochromatic cycle of length at least k. In this paper we investigate the values of $f(r, n)$ when n is linear in r. We determine the value of $f(r, 2 r+2)$ for all $r \geq 1$ and show that $f(r, s r+c)=s+1$ if r is sufficiently large compared with posivite integers s and c.

1 Introduction

The circumference $c(G)$ of a graph G is the length of a longest cycle in G. In [4] Faudree et al. showed that for every graph G of order $n \geq 6$ we have $\max \{c(G), c(\bar{G})\} \geq\lceil 2 n / 3\rceil$, where \bar{G} denotes the complement of G. Furthermore, this bound is sharp.

Fujita [5] introduced the following concept and notation. Let $f(r, n)$ be the maximum integer k such that every r-edge-coloring of K_{n} contains a monochromatic cycle of length at least k. (For $i \in\{1,2\}$, we regard K_{i} as a cycle of length i.) Thus, Faudree et al. proved that $f(2, n)=\lceil 2 n / 3\rceil$ for $n \geq 6$. Furthermore, they showed that $f(r, n) \leq\lceil n /(r-1)\rceil$ for infinitely many r and, for each such r, infinitely many n and conjectured that $f(r, n) \geq\lceil n /(r-1)\rceil$ for $r \geq 3$. However, Fujita [5] showed that this conjecture is not true for small n and r and then established the following lower bound for $f(r, n)$.

Theorem 1 ([5]). For $1 \leq r \leq n$ we have $f(r, n) \geq\lceil n / r\rceil$.

[^0]He also showed that if $1<n \leq 2 r$ then $f(r, n)=2$, while if $n=2 r+1$ then $f(r, n)=3$ for $r \geq 1$. Motivated by his results we investigate the values of $f(r, n)$ when n is linear in r. In Section 2 we will consider the values of $f(r, 2 r+2)$ for $r \geq 1$. In Section 3 we will show that $f(r, s r+c)=s+1$ if r is sufficiently large with respect to s and c. For terminology and notation not defined here we refer the reader to [2].

2 The value of $f(r, 2 r+2)$

In this section we determine the exact value of $f(r, 2 r+2)$ for all $r \geq 1$. By Theorem 1 we have that $f(r, 2 r+2) \geq 3$. To show the reverse inequality for $r \geq 4$ we will use the following result of Ray-Chaudhury and Wilson (see [6]) regarding Kirkman Triple Systems. We handle the cases $r=1,2,3$ separately.

Theorem 2 ([6]). For any $t \geq 1$, the edge set of $K_{6 t+3}$ can be partitioned into $3 t+1$ parts, where each part forms a graph isomorphic to $2 t+1$ disjoint triangles.

Theorem 3. For $r \geq 3$, we have $f(r, 2 r+2)=3$. For $r=1,2$, we have $f(r, 2 r+2)=4$.

Proof. Firstly, we consider the case $r \geq 4$, and proceed according to the residue of r modulo 3 .
Claim 4. $f(r, 2 r+2) \leq 3$ for $r=4,7,10,13, \ldots$, that is, $r=3 k+1, k \geq 1$.

Proof. For $r=3 k+1$ we have $n=6 k+4$. We start with a coloring of the edges of $K_{6 k+3}$ on the vertices $v_{1}, v_{2}, \ldots, v_{6 k+3}$ with colors $c_{1}, c_{2}, \ldots, c_{3 k+1}$ according to Theorem 2. It remains to color the edges incident with vertex $v_{6 k+4}$. Without loss of generality we may assume that color $c_{3 k+1}$ contains the triangles on the vertices $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\}, \ldots,\left\{v_{6 k+1}, v_{6 k+2}, v_{6 k+3}\right\}$. We color the edges from $v_{6 k+4}$ to the vertices $v_{3}, v_{6}, \ldots, v_{6 k+3}$ with $c_{3 k+1}$. The edges from $v_{6 k+4}$ to $v_{3 i-1}$ and $v_{3 i-2}$ will be colored with c_{i} for $i=1,2, \ldots, 2 k+1(\leq 3 k)$. As the edges from $v_{6 k+4}$ colored with $c_{i}(i=1,2, \ldots, 2 k+1$ or $i=3 k+1)$ go to different c_{i}-colored triangles on the vertices $v_{1}, v_{2}, \ldots, v_{6 k+3}$, the coloring so obtained does not contain a monochromatic cycle of length more than three.

Claim 5. $f(r, 2 r+2) \leq 3$ for $r=5,8,11,14, \ldots$, that $i s, r=3 k+2, k \geq 1$.
Proof. For $r=3 k+2$ we have $n=6 k+6$. As in the previous case we start with a coloring of the edges of $K_{6 k+3}$ on the vertices $v_{1}, v_{2}, \ldots, v_{6 k+3}$ with colors $c_{1}, c_{2}, \ldots, c_{3 k+1}$ according to Theorem 2. Now it remains to color the edges incident with three vertices, $v_{6 k+4}, v_{6 k+5}, v_{6 k+6}$, and we have one unused color, $c_{3 k+2}$. Without loss of generality we may assume that color $c_{3 k+1}$ contains the triangles on the vertices $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\}, \ldots,\left\{v_{6 k+1}, v_{6 k+2}, v_{6 k+3}\right\}$. We color the edges from $v_{6 k+6}$ to $v_{3}, v_{6}, \ldots, v_{6 k+3}$ with $c_{3 k+1}$. We give color c_{i} for $i=1,2, \ldots, 2 k+1(\leq 3 k)$ to the edges from $v_{6 k+4}$ to $v_{3 i}$ and to $v_{3 i-1}$, from $v_{6 k+5}$ to $v_{3 i-1}$ and to $v_{3 i-2}$, from $v_{6 k+6}$ to $v_{3 i-2}$. (See Figure 1.)

Figure 1: The edge between $v_{3 i-2}, v_{3 i-1}, v_{3 i}$ and $v_{6 k+4}, v_{6 k+5}, v_{6 k+6}$, in color $c_{3 k+1}$ and in color $c_{i}(i \in\{1,2, \ldots, 2 k+1\})$, respectively. The dashed edges are missing.

We left one edge from each of the vertices $v_{1}, v_{2}, \ldots, v_{6 k+3}$ (from $v_{3 i-2}$ to $v_{6 k+4}$, from $v_{3 i-1}$ to $v_{6 k+6}$, from $v_{3 i}$ to $v_{6 k+5}$, for $i=1,2, \ldots, 2 k+1$) and the 3 edges between $v_{6 k+4}, v_{6 k+5}, v_{6 k+6}$. We color these edges with color $c_{3 k+2}$. It is easy to check that in this coloring every monochromatic cycle is a triangle.

In the third case we prove the following stronger statement.
Claim 6. $f(r, 2 r+3) \leq 3$ for $r=6,9,12,15, \ldots$, that $i s, r=3 k, k \geq 2$.
As $f\left(r, n_{1}\right) \leq f\left(r, n_{2}\right)$ if $n_{1} \leq n_{2}$ this implies $f(r, 2 r+2)=3$ for $r=6,9,12,15, \ldots$, that is, $r=3 k, k \geq 2$.

Proof. For $r=3 k$ we have $n=6 k+3$. We start with a coloring of the edges of $K_{6 k+3}$ on the vertices $v_{1}, v_{2}, \ldots, v_{6 k+3}$ with colors $c_{1}, c_{2}, \ldots, c_{3 k}$ and $c_{3 k+1}$ according to Theorem 2 . In contrast with the previous cases now we have to get rid of one color. We may assume that color $c_{3 k+1}$ contains the $2 k+1$ triangles on the vertices $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{4}, v_{5}, v_{6}\right\}, \ldots,\left\{v_{6 k+1}, v_{6 k+2}, v_{6 k+3}\right\}$. We recolor the edges of the i th triangle to color c_{i} for $i=1,2, \ldots, 2 k+1(\leq 3 k)$ and obtain the desired coloring of the edges of $K_{6 k+3}$.

It remains to deal with the small values of r.
Claim 7. $f(r, 2 r+2)=4$ for $r=1,2$.
Proof. $f(1,4)=4$ is trivial. (In general, $f(1, n)=n$.)
We get $f(2,6) \geq 4$ from the fact that a graph of order 6 without a cycle of length at least four can have at most 7 edges (see [3] for the general result) while K_{6} has 15 edges. The reverse inequality follows from the construction $E\left(K_{6}\right)=E\left(K_{2,4}\right) \cup E\left(\overline{K_{2,4}}\right)$.

Claim 8. $f(3,8) \leq 3$.

Proof. In order to show the claim we give the following list of edges in color $1,2,3$ on the K_{8}. In what follows we let $V\left(K_{8}\right)=\{1,2, \ldots, 8\}$ and let E_{i} be the edge set of color i. (See also Figure 2.)

$$
\begin{aligned}
& E_{1}=\{\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,5\},\{3,5\},\{4,6\},\{4,7\}\} \\
& E_{2}=\{\{1,2\},\{1,7\},\{2,6\},\{2,7\},\{2,8\},\{3,6\},\{4,5\},\{4,8\},\{5,8\},\{6,8\}\} \\
& E_{3}=\{\{1,8\},\{2,3\},\{2,4\},\{3,4\},\{3,7\},\{3,8\},\{5,6\},\{5,7\},\{6,7\},\{7,8\}\}
\end{aligned}
$$

Figure 2: The graphs on $V\left(K_{8}\right)$ with edge sets E_{1}, E_{2} and E_{3}, respectively.

One can easily check that the above coloring shows $f(3,8) \leq 3$.
This completes the proof of Theorem 3.

3 On the value of $f(r, s r+c)$ for positive constants s and c

In the previous section we determined $f(r, 2 r+2)$ for every $r \geq 1$. This suggests the more general problem: determine $f(r, s r+c)$ for positive constants s and c. Of course, $f(r, s r+c) \geq s+1$ by Theorem 1. In Theorem 10 we show that $f(r, s r+c)=s+1$ for r sufficiently large with respect to s and c. In order to do so, we will exhibit an r-edge-coloring of $K_{s r+c}$ in which the longest monochromatic cycle has length $s+1$. The edge-colorings used in the proof of Theorem 3 depended heavily on Theorem 2. The proof of Theorem 10 will, in an analogous manner, depend on Theorem 9. This is an immediate consequence of a result by Chang [1] on resolvable balanced incomplete block designs. For information on such designs, see [7].

Theorem 9 ([1]). Let $q \geq 3$. Then for sufficiently large t (namely if $q(q-1) t+q>$ $\exp \left\{\exp \left\{q^{12 q^{2}}\right\}\right\}$ is satisfied), the edge set of $K_{q(q-1) t+q}$ can be partitioned into $q t+1$ parts, where each part is isomorphic to $(q-1) t+1$ disjoint copies of K_{q}.

Observe that the case $q=3$ in Theorem 9 is Theorem 2 (where t sufficiently large is simply $t \geq 1$)

Theorem 10. For any pair of integers s, c with $s, c \geq 2$, there is an R such that $f(r, s r+c)=$ $s+1$ for all $r \geq R$.

Proof. As $f(r, n)$ is monotone increasing in n we may assume that $s r+c=(s+1) s t+(s+1)$ for some t. First we color the edges of $K_{(s+1) s t+(s+1)}$ with $(s+1) t+1=r+\frac{c-1}{s}$ colors using Theorem 9 for $q=s+1$. Then we reduce the number of colors by $\frac{c-1}{s}$ in the following way. Considering two colors c_{1} and c_{2} we want to recolor as many c_{1}-colored K_{s+1} 's to c_{2} as we can (without creating a monochromatic cycle of length at least $s+2$). Every color class consists of $s t+1=\frac{s}{s+1} r+\frac{c}{s+1}$ disjoint K_{s+1} 's and every c_{1}-colored K_{s+1} intersects $s+1$ copies of c_{2}-colored K_{s+1} 's. If we recolor such c_{1}-colored K_{s+1} 's which do not share intersecting c_{2}-colored K_{s+1} 's then we cannot create new monochromatic cycles. Hence recoloring a c_{1}-colored K_{s+1} can exclude at most $s(s+1)$ others. Therefore we can recolor at least $\frac{1}{s(s+1)+1}$ th of the c_{1}-colored K_{s+1} 's with color c_{2}. At least $\frac{1}{s(s+1)+1}$ th of the remaining c_{1}-colored K_{s+1} 's can be recolored with c_{3}, and so on. Finishing with the c_{1} color class we continue with another one.

To remove one color class we need at most $\log _{\frac{s(s+1)+1}{s(s+1)}}\left(\frac{s}{s+1} r+\frac{c}{s+1}\right)$ other classes. Thus we can avoid $\frac{c-1}{s}$ color classes with the remaining r class if $\left(\frac{c-1}{s}\right) \log _{\frac{s(s+1)+1}{s(s+1)}}\left(\frac{s}{s+1} r+\frac{c}{s+1}\right) \leq r$, which is true for sufficiently large r compared with s and c.

References

[1] Y. Chang, The existence of resolvable BIBD with $\lambda=1$, Acta Math. Appl. Sinica., 16 (2000), 373-385.
[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs \& Digraphs, 5th edition, Chapman \& Hall/CRC, Boca Raton, FL 2011.
[3] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar., 10 (1959), 337-356.
[4] R. J. Faudree, L. Lesniak, I. Schiermeyer, On the circumference of a graph and its complement, Discrete Math., 309 (2009), 5891-5893.
[5] S. Fujita, Some remarks on long monochromatic cycles in edge-colored complete graphs, Discrete Math., 311 (2011), 688-689.
[6] D. K. Ray-Chaudhuri, R. M. Wilson, Solution of Kirkman's schoolgirl problem, Proc. Sympos. Pure Math., 19, Combinatorics, Amer. Math. Soc., Providence, R. I., 1971, 187-203.
[7] W. D. Wallis, Introduction to Combinatorial Designs, Chapman \& Hall/CRC, 2007.

[^0]: *Department of Mathematics, Gunma National College of Technology, Maebashi 371-8530 Japan, Email: shinya.fujita.ph.d@gmail.com
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, Drew University, Madison, NJ 07940 USA \& Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 USA, Email: lindalesniak@gmail.com
 ${ }^{\ddagger}$ Department of Computer Science and Information Theory, Budapest University of Technology and Economics, 1521 Budapest, P.O. Box 91 Hungary, Email: tothagi@cs.bme.hu. The results discussed in the paper are partially supported by the grant TÁMOP - 4.2.2.B-10/1-2010-0009.

