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Abstract

In [Discrete Math., 311 (2011), 688-689], Fujita defined f(r,n) to be the maximum
integer k such that every r-edge-coloring of K,, contains a monochromatic cycle of length at
least k. In this paper we investigate the values of f(r,n) when n is linear in r. We determine
the value of f(r,2r + 2) for all » > 1 and show that f(r,sr + ¢) = s+ 1 if r is sufficiently

large compared with posivite integers s and c.

1 Introduction

The circumference ¢(G) of a graph G is the length of a longest cycle in G. In [4] Faudree et
al. showed that for every graph G of order n > 6 we have max{c(G), c(G)} > [2n/3], where G
denotes the complement of G. Furthermore, this bound is sharp.

Fujita [5] introduced the following concept and notation. Let f(r,n) be the maximum
integer k such that every r-edge-coloring of K, contains a monochromatic cycle of length at
least k. (For i € {1,2}, we regard K; as a cycle of length i.) Thus, Faudree et al. proved that
f(2,n) = [2n/3] for n > 6. Furthermore, they showed that f(r,n) < [n/(r —1)] for infinitely
many r and, for each such r, infinitely many n and conjectured that f(r,n) > [n/(r —1)] for
r > 3. However, Fujita [5] showed that this conjecture is not true for small n and r and then

established the following lower bound for f(r,n).

Theorem 1 ([5]). For 1 <r <n we have f(r,n) > [n/r].
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He also showed that if 1 < n < 2r then f(r,n) = 2, while if n = 2r + 1 then f(r,n) = 3
for r > 1. Motivated by his results we investigate the values of f(r,n) when n is linear in 7.
In Section 2 we will consider the values of f(r,2r 4 2) for » > 1. In Section 3 we will show
that f(r,sr +c) = s+ 1 if r is sufficiently large with respect to s and ¢. For terminology and

notation not defined here we refer the reader to [2].

2 The value of f(r,2r + 2)

In this section we determine the exact value of f(r,2r +2) for all > 1. By Theorem 1 we have
that f(r,2r+2) > 3. To show the reverse inequality for » > 4 we will use the following result of
Ray-Chaudhury and Wilson (see [6]) regarding Kirkman Triple Systems. We handle the cases
r =1, 2,3 separately.

Theorem 2 ([6]). For any t > 1, the edge set of Kgi+3 can be partitioned into 3t + 1 parts,

where each part forms a graph isomorphic to 2t + 1 disjoint triangles.
Theorem 3. Forr > 3, we have f(r,2r +2) = 3. Forr = 1,2, we have f(r,2r +2) =4.

Proof. Firstly, we consider the case r > 4, and proceed according to the residue of » modulo 3.

Claim 4. f(r,2r +2) <3 forr=4,7,10,13,..., that is, r =3k + 1,k > 1.

Proof. For r = 3k + 1 we have n = 6k + 4. We start with a coloring of the edges of K413 on
the vertices vy, v, . .., vgpr3 with colors ci, ca,. .., cspy1 according to Theorem 2. It remains to
color the edges incident with vertex vegt4. Without loss of generality we may assume that color
c3k+1 contains the triangles on the vertices {vi,ve,vs3}, {va,vs5,v6}, ... {V6k+1, V6k+2, V6k+3}-
We color the edges from vgit4 to the vertices vs, vg, . . . , Veg+3 with c3x11. The edges from vggt4
to v3;—1 and v3;_o will be colored with ¢; for i = 1,2,...,2k+ 1(< 3k). As the edges from vgg14
colored with ¢; (i = 1,2,...,2k+ 1 or ¢ = 3k + 1) go to different ¢;-colored triangles on the
vertices v, v, ..., Ugk+3, the coloring so obtained does not contain a monochromatic cycle of

length more than three. O
Claim 5. f(r,2r+2) <3 forr=>5,8,11,14,..., that is, r =3k + 2,k > 1.

Proof. For r = 3k + 2 we have n = 6k + 6. As in the previous case we start with a coloring
of the edges of K13 on the vertices vy, v, ..., veprs with colors c1,ca,. .., c3r41 according to
Theorem 2. Now it remains to color the edges incident with three vertices, vggt4, Vgk+5, V6k+6,
and we have one unused color, cs;2. Without loss of generality we may assume that color csp1
contains the triangles on the vertices {v1, va,v3}, {va, v5,v6},. .. ,{V6k+1, V6k+2, Vk+3}- We color
the edges from vg16 to v, Ve, . . . , Vgg+3 With cgr1. We give color ¢; fori = 1,2,...,2k+1(< 3k)
to the edges from vggy4 to v3; and to wvs;—1, from vgr1s to vs;—1 and to vs;_g, from vggye to

v3i—2. (See Figure 1.)
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Figure 1: The edge between vs;_o,v3;—1,v3; and Vggt4, Vek+5, Vek+6, i color c3i41 and in

color ¢; (i € {1,2,...,2k + 1}), respectively. The dashed edges are missing.

We left one edge from each of the vertices vy, va, ..., V613 (from vs;_o to vgr1q, from vs;—1 to
Vgk-t6, from vs; to vgkys, for i = 1,2,...,2k+1) and the 3 edges between vgki4, Vekt5, Vekr6- We
color these edges with color csgiyo. It is easy to check that in this coloring every monochromatic

cycle is a triangle. O

In the third case we prove the following stronger statement.
Claim 6. f(r,2r+3) <3 forr=6,9,12,15,..., that is, r = 3k, k > 2.

As f(r,n1) < f(r,ng) if n; < ng this implies f(r,2r +2) =3 for r = 6,9,12,15, ..., that is,
r=3k, k>2.

Proof. For r = 3k we have n = 6k + 3. We start with a coloring of the edges of Kgp3 on the
vertices vy, va, . .., Ugk+3 With colors ¢, ¢, . . ., c3 and c3x41 according to Theorem 2. In contrast
with the previous cases now we have to get rid of one color. We may assume that color csgyq
contains the 2k + 1 triangles on the vertices {v1,va,vs3}, {v4,vs5,v6}, ..., {Vsk+1, V6k+2, V6k+3}-
We recolor the edges of the ith triangle to color ¢; for i = 1,2,...,2k + 1(< 3k) and obtain the
desired coloring of the edges of Kg3. O

It remains to deal with the small values of r.
Claim 7. f(r,2r+2) =4 forr=1,2.

Proof. f(1,4) =4 is trivial. (In general, f(1,n) =n.)
We get f(2,6) > 4 from the fact that a graph of order 6 without a cycle of length at least
four can have at most 7 edges (see [3] for the general result) while K¢ has 15 edges. The reverse

inequality follows from the construction E(Ks) = E(K24) U E(K24). O

Claim 8. f(3,8) < 3.



Proof. In order to show the claim we give the following list of edges in color 1,2,3 on the Ksg.
In what follows we let V(Kg) = {1,2,...,8} and let E; be the edge set of color i. (See also
Figure 2.)

By ={{1,3},{1,4},{1,5},{1,6},{2,5},{3,5}, {4,6},{4,7}}
By = {{1,2},{1,7},{2,6},{2,7},{2,8},{3,6},{4,5},{4,8},{5,8},{6,8}}
Bz = {{1,8},{2,3},{2,4},{3,4}, {3, 7}, {3, 8}, {5,6}, {5, 7}, {6, 7}, {7, 8} }
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Figure 2: The graphs on V(Kg) with edge sets E1, Fy and Ej3, respectively.

One can easily check that the above coloring shows f(3,8) < 3. O

This completes the proof of Theorem 3. O

3 On the value of f(r,sr + ¢) for positive constants s and ¢

In the previous section we determined f(r, 2r+2) for every r > 1. This suggests the more general
problem: determine f(r, sr + ¢) for positive constants s and c. Of course, f(r,sr +¢) > s+1
by Theorem 1. In Theorem 10 we show that f(r,sr + ¢) = s + 1 for r sufficiently large with
respect to s and c¢. In order to do so, we will exhibit an r-edge-coloring of Kg,1. in which
the longest monochromatic cycle has length s + 1. The edge-colorings used in the proof of
Theorem 3 depended heavily on Theorem 2. The proof of Theorem 10 will, in an analogous
manner, depend on Theorem 9. This is an immediate consequence of a result by Chang [1] on

resolvable balanced incomplete block designs. For information on such designs, see [7].

Theorem 9 ([1]). Let ¢ > 3. Then for sufficiently large t (namely if q(¢ — 1)t + q¢ >
exp{exp{q12q2}} is satisfied), the edge set of Kgq_1y144 can be partitioned into qt + 1 parts,
where each part is isomorphic to (¢ — 1)t + 1 disjoint copies of K.

Observe that the case ¢ = 3 in Theorem 9 is Theorem 2 (where ¢ sufficiently large is simply
t>1).



Theorem 10. For any pair of integers s, c with s,c > 2, there is an R such that f(r,sr+c) =
s+1 forallr > R.

Proof. As f(r,n) is monotone increasing in n we may assume that sr +c¢ = (s+ 1)st + (s + 1)
for some t. First we color the edges of K, 1)si4(s41) With (s+Dt+1=r+ % colors using
Theorem 9 for ¢ = s + 1. Then we reduce the number of colors by % in the following way.
Considering two colors ¢; and co we want to recolor as many cj-colored Kg11’s to co as we can
(without creating a monochromatic cycle of length at least s+ 2). Every color class consists of
st+1 = SJ%quL sJ%l disjoint Ks41’s and every c1-colored K1 intersects s+ 1 copies of ca-colored
Kgi1's. If we recolor such c¢i-colored Kgy1’s which do not share intersecting co-colored Kgy1’s
then we cannot create new monochromatic cycles. Hence recoloring a cj-colored Kgi1 can

exclude at most s(s + 1) others. Therefore we can recolor at least th of the c;1-colored

1
s(s+1)+1

Ks11’s with color cy. At least o th of the remaining ci-colored Ksy1’s can be recolored

1
s+1)+1
with c3, and so on. Finishing with the ¢; color class we continue with another one.

To remove one color class we need at most log ss11)+1 ( ) other classes. Thus we
s(s+1)

S C
s+1r + s+1
;] c—1 : SN : c—1 s c
can avoid <= color classes with the remaining r class if (T) logs(;(ﬁ)ﬁ)l (H_—lr + S+71) <,

which is true for sufficiently large » compared with s and c. O
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