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Abstract

In [Discrete Math., 311 (2011), 688–689], Fujita defined f(r, n) to be the maximum

integer k such that every r-edge-coloring of Kn contains a monochromatic cycle of length at

least k. In this paper we investigate the values of f(r, n) when n is linear in r. We determine

the value of f(r, 2r + 2) for all r ≥ 1 and show that f(r, sr + c) = s + 1 if r is sufficiently

large compared with posivite integers s and c.

1 Introduction

The circumference c(G) of a graph G is the length of a longest cycle in G. In [4] Faudree et

al. showed that for every graph G of order n ≥ 6 we have max{c(G), c(G)} ≥ ⌈2n/3⌉, where G

denotes the complement of G. Furthermore, this bound is sharp.

Fujita [5] introduced the following concept and notation. Let f(r, n) be the maximum

integer k such that every r-edge-coloring of Kn contains a monochromatic cycle of length at

least k. (For i ∈ {1, 2}, we regard Ki as a cycle of length i.) Thus, Faudree et al. proved that

f(2, n) = ⌈2n/3⌉ for n ≥ 6. Furthermore, they showed that f(r, n) ≤ ⌈n/(r − 1)⌉ for infinitely

many r and, for each such r, infinitely many n and conjectured that f(r, n) ≥ ⌈n/(r − 1)⌉ for

r ≥ 3. However, Fujita [5] showed that this conjecture is not true for small n and r and then

established the following lower bound for f(r, n).

Theorem 1 ([5]). For 1 ≤ r ≤ n we have f(r, n) ≥ ⌈n/r⌉.
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He also showed that if 1 < n ≤ 2r then f(r, n) = 2, while if n = 2r + 1 then f(r, n) = 3

for r ≥ 1. Motivated by his results we investigate the values of f(r, n) when n is linear in r.

In Section 2 we will consider the values of f(r, 2r + 2) for r ≥ 1. In Section 3 we will show

that f(r, sr + c) = s + 1 if r is sufficiently large with respect to s and c. For terminology and

notation not defined here we refer the reader to [2].

2 The value of f(r, 2r + 2)

In this section we determine the exact value of f(r, 2r+2) for all r ≥ 1. By Theorem 1 we have

that f(r, 2r+2) ≥ 3. To show the reverse inequality for r ≥ 4 we will use the following result of

Ray-Chaudhury and Wilson (see [6]) regarding Kirkman Triple Systems. We handle the cases

r = 1, 2, 3 separately.

Theorem 2 ([6]). For any t ≥ 1, the edge set of K6t+3 can be partitioned into 3t + 1 parts,

where each part forms a graph isomorphic to 2t+ 1 disjoint triangles.

Theorem 3. For r ≥ 3, we have f(r, 2r + 2) = 3. For r = 1, 2, we have f(r, 2r + 2) = 4.

Proof. Firstly, we consider the case r ≥ 4, and proceed according to the residue of r modulo 3.

Claim 4. f(r, 2r + 2) ≤ 3 for r = 4, 7, 10, 13, . . . , that is, r = 3k + 1, k ≥ 1.

Proof. For r = 3k + 1 we have n = 6k + 4. We start with a coloring of the edges of K6k+3 on

the vertices v1, v2, . . . , v6k+3 with colors c1, c2, . . . , c3k+1 according to Theorem 2. It remains to

color the edges incident with vertex v6k+4. Without loss of generality we may assume that color

c3k+1 contains the triangles on the vertices {v1, v2, v3}, {v4, v5, v6}, . . . ,{v6k+1, v6k+2, v6k+3}.
We color the edges from v6k+4 to the vertices v3, v6, . . . , v6k+3 with c3k+1. The edges from v6k+4

to v3i−1 and v3i−2 will be colored with ci for i = 1, 2, . . . , 2k+1(≤ 3k). As the edges from v6k+4

colored with ci (i = 1, 2, . . . , 2k + 1 or i = 3k + 1) go to different ci-colored triangles on the

vertices v1, v2, . . . , v6k+3, the coloring so obtained does not contain a monochromatic cycle of

length more than three.

Claim 5. f(r, 2r + 2) ≤ 3 for r = 5, 8, 11, 14, . . . , that is, r = 3k + 2, k ≥ 1.

Proof. For r = 3k + 2 we have n = 6k + 6. As in the previous case we start with a coloring

of the edges of K6k+3 on the vertices v1, v2, . . . , v6k+3 with colors c1, c2, . . . , c3k+1 according to

Theorem 2. Now it remains to color the edges incident with three vertices, v6k+4, v6k+5, v6k+6,

and we have one unused color, c3k+2. Without loss of generality we may assume that color c3k+1

contains the triangles on the vertices {v1, v2, v3}, {v4, v5, v6},. . . ,{v6k+1, v6k+2, v6k+3}. We color

the edges from v6k+6 to v3, v6, . . . , v6k+3 with c3k+1. We give color ci for i = 1, 2, . . . , 2k+1(≤ 3k)

to the edges from v6k+4 to v3i and to v3i−1, from v6k+5 to v3i−1 and to v3i−2, from v6k+6 to

v3i−2. (See Figure 1.)
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c3k+1: v3i−2 v3i−1 v3i

v6k+4

v6k+5

v6k+6

ci: v3i−2 v3i−1 v3i

v6k+4

v6k+5

v6k+6

Figure 1: The edge between v3i−2, v3i−1, v3i and v6k+4, v6k+5, v6k+6, in color c3k+1 and in

color ci (i ∈ {1, 2, . . . , 2k + 1}), respectively. The dashed edges are missing.

We left one edge from each of the vertices v1, v2, . . . , v6k+3 (from v3i−2 to v6k+4, from v3i−1 to

v6k+6, from v3i to v6k+5, for i = 1, 2, . . . , 2k+1) and the 3 edges between v6k+4, v6k+5, v6k+6. We

color these edges with color c3k+2. It is easy to check that in this coloring every monochromatic

cycle is a triangle.

In the third case we prove the following stronger statement.

Claim 6. f(r, 2r + 3) ≤ 3 for r = 6, 9, 12, 15, . . . , that is, r = 3k, k ≥ 2.

As f(r, n1) ≤ f(r, n2) if n1 ≤ n2 this implies f(r, 2r+ 2) = 3 for r = 6, 9, 12, 15, . . . , that is,

r = 3k, k ≥ 2.

Proof. For r = 3k we have n = 6k + 3. We start with a coloring of the edges of K6k+3 on the

vertices v1, v2, . . . , v6k+3 with colors c1, c2, . . . , c3k and c3k+1 according to Theorem 2. In contrast

with the previous cases now we have to get rid of one color. We may assume that color c3k+1

contains the 2k + 1 triangles on the vertices {v1, v2, v3}, {v4, v5, v6}, . . . , {v6k+1, v6k+2, v6k+3}.
We recolor the edges of the ith triangle to color ci for i = 1, 2, . . . , 2k+ 1(≤ 3k) and obtain the

desired coloring of the edges of K6k+3.

It remains to deal with the small values of r.

Claim 7. f(r, 2r + 2) = 4 for r = 1, 2.

Proof. f(1, 4) = 4 is trivial. (In general, f(1, n) = n.)

We get f(2, 6) ≥ 4 from the fact that a graph of order 6 without a cycle of length at least

four can have at most 7 edges (see [3] for the general result) while K6 has 15 edges. The reverse

inequality follows from the construction E(K6) = E(K2,4) ∪ E(K2,4).

Claim 8. f(3, 8) ≤ 3.
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Proof. In order to show the claim we give the following list of edges in color 1, 2, 3 on the K8.

In what follows we let V (K8) = {1, 2, . . . , 8} and let Ei be the edge set of color i. (See also

Figure 2.)

E1 = {{1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 5}, {3, 5}, {4, 6}, {4, 7}}

E2 = {{1, 2}, {1, 7}, {2, 6}, {2, 7}, {2, 8}, {3, 6}, {4, 5}, {4, 8}, {5, 8}, {6, 8}}

E3 = {{1, 8}, {2, 3}, {2, 4}, {3, 4}, {3, 7}, {3, 8}, {5, 6}, {5, 7}, {6, 7}, {7, 8}}

E1: 1

45

8

6 3

7 2

E2: 1

45

8

6 3

7 2

E3: 1

45

8

6 3

7 2

Figure 2: The graphs on V (K8) with edge sets E1, E2 and E3, respectively.

One can easily check that the above coloring shows f(3, 8) ≤ 3.

This completes the proof of Theorem 3.

3 On the value of f(r, sr + c) for positive constants s and c

In the previous section we determined f(r, 2r+2) for every r ≥ 1. This suggests the more general

problem: determine f(r, sr + c) for positive constants s and c. Of course, f(r, sr + c) ≥ s + 1

by Theorem 1. In Theorem 10 we show that f(r, sr + c) = s + 1 for r sufficiently large with

respect to s and c. In order to do so, we will exhibit an r-edge-coloring of Ksr+c in which

the longest monochromatic cycle has length s + 1. The edge-colorings used in the proof of

Theorem 3 depended heavily on Theorem 2. The proof of Theorem 10 will, in an analogous

manner, depend on Theorem 9. This is an immediate consequence of a result by Chang [1] on

resolvable balanced incomplete block designs. For information on such designs, see [7].

Theorem 9 ([1]). Let q ≥ 3. Then for sufficiently large t (namely if q(q − 1)t + q >

exp{exp{q12q2}} is satisfied), the edge set of Kq(q−1)t+q can be partitioned into qt + 1 parts,

where each part is isomorphic to (q − 1)t+ 1 disjoint copies of Kq.

Observe that the case q = 3 in Theorem 9 is Theorem 2 (where t sufficiently large is simply

t ≥ 1).
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Theorem 10. For any pair of integers s, c with s, c ≥ 2, there is an R such that f(r, sr+ c) =

s+ 1 for all r ≥ R.

Proof. As f(r, n) is monotone increasing in n we may assume that sr + c = (s+ 1)st+ (s+ 1)

for some t. First we color the edges of K(s+1)st+(s+1) with (s + 1)t + 1 = r + c−1
s colors using

Theorem 9 for q = s + 1. Then we reduce the number of colors by c−1
s in the following way.

Considering two colors c1 and c2 we want to recolor as many c1-colored Ks+1’s to c2 as we can

(without creating a monochromatic cycle of length at least s+ 2). Every color class consists of

st+1 = s
s+1r+

c
s+1 disjoint Ks+1’s and every c1-colored Ks+1 intersects s+1 copies of c2-colored

Ks+1’s. If we recolor such c1-colored Ks+1’s which do not share intersecting c2-colored Ks+1’s

then we cannot create new monochromatic cycles. Hence recoloring a c1-colored Ks+1 can

exclude at most s(s + 1) others. Therefore we can recolor at least 1
s(s+1)+1th of the c1-colored

Ks+1’s with color c2. At least 1
s(s+1)+1th of the remaining c1-colored Ks+1’s can be recolored

with c3, and so on. Finishing with the c1 color class we continue with another one.

To remove one color class we need at most log s(s+1)+1
s(s+1)

(
s

s+1r +
c

s+1

)
other classes. Thus we

can avoid c−1
s color classes with the remaining r class if

(
c−1
s

)
log s(s+1)+1

s(s+1)

(
s

s+1r + c
s+1

)
≤ r,

which is true for sufficiently large r compared with s and c.
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