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1 Introduction

Several graph parameters show an interesting behaviour when they are in-
vestigated for different powers of graphs. One of the most famous examples
of such behaviour is that of the Shannon capacity of graphs (introduced by
Shannon [17], see Körner, Orlitsky [12] for a survey of related topics) which
is the theoretical upper limit of channel capacity for error-free coding in in-
formation theory. This graph parameter is defined as the normalized limit
of the independence number under the so-called normal power and its exact
value is not known even for small, simple graphs (for example odd cycles
with length more then five).

The normalized asymptotic value of the chromatic number with respect to
the normal power is the Witsenhausen rate. It is introduced by Witsenhausen
in [19], where its information theoretic relevance is also explained.

If we investigate the chromatic number for the co-normal power we get the
fractional chromatic number as the corresponding limit by a famous theorem
of McEliece and Posner [14], cf. also Berge, Simonovits [4].

Similar questions arise when investigating the independence ratio and the
Hall-ratio of a graph.

The independence ratio of a graph is the ratio of its independence number
and its number of vertices. Its asymptotic value with respect to the so-called
Cartesian power is the ultimate independence ratio which is introduced by
Hell, Yu and Zhou in [10]. Motivated by this concept Brown, Nowakowski and
Rall considered in [5] the analogous, but significantly different parameter, the
ultimate categorical independence ratio which is defined with respect to the
so-called categorical power. This parameter was also investigated by Alon and
Lubetzky in [3] and the characterization of independent sets in categorical
power of graphs were considered by Alon, Dinur, Friedgut and Sudakov in
[2]. The authors of [5] investigated graphs for which this limit equal to the
independence ratio and they called such graphs self-universal. In that article
it is proven that some graph families, for example Cayley graphs of Abelian
groups have this property.
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The paper [5] mentions complete multipartite graphs as one of those fam-
ilies of graphs for which the determination of the ultimate categorical inde-
pendence ratio remained an open problem. It follows from a result of that
article that if the size of the biggest part is larger than half the number of
vertices then its ultimate categorical independence ratio equals to one. In this
diploma thesis I proved that in every other cases, i.e., when none of the parts
of the complete multipartite graph has size greather than half the number of
vertices then the graph is self-universal.

The Hall-ratio is also closely related to the independence ratio, this pa-
rameter is the ratio of the number of vertices and the independence number
maximized over all subgraphs of the graph. It was introduced in [7, 8] moti-
vated by problems of list coloring. The (appropriately normalized) asymptotic
values of this graph parameter for different graph powers were investigated by
Simonyi in [18]. Considering for normal and co-normal power he proved that
the corresponding limit equals to the similar limit one gets for the chromatic
number.

It is a conjecture in [18] that the ultimate categorical Hall-ratio, which is
the asymptotic value of the Hall-ratio with respect to the categorical power
is also equal to the fractional chromatic number. In that article it is proven
that this conjecture holds for perfect graphs, vertex-transitive graphs and
also for wheel graphs. I proved the following generalization of the case of
wheel graphs. If the conjecture holds for a graph then it holds also for the
graph obtained by adding a vertex to the vertex set of the original graph and
connecting it to all its vertices.

Investigating the Hall-ratio with respect to the so-called lexicographic
power we get the ultimate lexicographic Hall-ratio, which is also introduced
in [18]. It is shown there that this graph parameter is bounded from above
by the fractional chromatic number, and conjectured that equality holds for
all graphs. In this diploma thesis I proved this conjecture.
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In the next section we review some concepts and definitions which will
be used in this thesis. The ultimate categorical independence ratio is inves-
tigated in the third section. Then we deal with the Hall-ratio. After summa-
rizing the related results the ultimate Hall-ratio is investigated with respect
to the categorical and the lexicographic power in the last two sections, re-
spectively.
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2 Definitions, notations

In this section some well-known graph-theoretic concepts and notations will
be reviewed.

Some standard notation

We use the following notations:
V (G) is the vertex set of graph G,
E(G) is the edge set of G,
α(G) is the independence number of G (i.e., the size of a largest indepen-

dent set of G),
ω(G) is the clique number of G (i.e., the order of a largest complete

subgraph of G),
χ(G) is the chromatic number of G (i.e., the least number of colors needed

to color G, such that adjacent vertices get different colors),
dG(v) (or just d(G)) is the degree of vertex v in G (i.e., the number of

vertices adjacent to v) and
NG(U) (or just N(U)) is the neighborhood of the vertex set U in G (i.e.,

the set of vertices adjacent to either of the elements of U).

Special graph families

A graph is perfect if the chromatic number of its induced subgraphs equal to
the clique number of that subgraph. See [15] for several interesting properties
of perfect graphs.

A graph is vertex-transitive, if its automorphism group is transitive.
The wheel graph consisting of a cycle of length m and an additional point

joint to every vertex of the cycle is denoted by Wm.
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Fractional chromatic number and fractional clique number

S(G) denotes the set of the independent sets of graph G.

Definition. Fractional chromatic number of graph G defined as

χf (G) = inf

 ∑
U∈S(G)

f(U) : f is a fractional coloring of G

 ,

where fractional coloring of G is a function f : S(G)→ R+,0 for which

∀v ∈ V (G) :
∑

v∈U∈S(G)

f(U) ≥ 1.

Definition. Fractional clique number of graph G defined as

ωf (G) = sup

 ∑
v∈V (G)

g(v) : g is a fractional clique of G

 ,

where fractional clique of G is a function g : V (G)→ R+,0 for which

∀U ∈ S(G) :
∑

v∈U∈S(G)

g(v) ≤ 1.

The following relations hold for these concepts (see in [16]):
The infimum and the supremum in the definitions are reached. The Du-

ality theorem of linear programming implies that the fractional chromatic
number and the fractional clique number equal for every graph G. Further-
more, it follows from the definitions that the chromatic number bounds from
above the fractional chromatic number and the clique number bounds from
below the fractional clique number. So,

ω(G) ≤ ωf (G) = χf (G) ≤ χ(G)

See [16] for more details.
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Graph products

We investigate the categorical and the lexicographic product in more detail,
the definitions of these concepts are given in the corresponding sections. We
notice some properties of other graph products. These are the normal, co-
normal and Cartesian products which are defined as follows.

Definition. The normal product F � G of two graphs F and G is defined
on the vertex set V (F � G) = V (F ) × V (G) with edge set E(F � G) =

{{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G), or {u1, u2} ∈
E(F ) and v1 = v2, or {v1, v2} ∈ E(G) and u1 = u2}.
The nth normal power G�n is the n-fold normal product of G.

That is, G�n is defined on the n-length sequences of the original vertices
and two such sequences are adjacent in G�n if and only if their elements at
every coordinate are either equal or form an edge in G.

Definition. The co-normal product F ·G of two graphs F and G is defined
on the vertex set V (F · G) = V (F ) × V (G) with edge set E(F · G) =

{{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) or {v1, v2} ∈ E(G)}.
The nth co-normal power Gn is the n-fold co-normal product of G.

That is, Gn is defined on the n-length sequences of the original vertices
and two such sequences are adjacent in Gn if and only if there is some coor-
dinate where the corresponding elements of the two sequences form an edge
in G.

It is easy to see that Gn = Ḡ�n holds for every graph G.

Definition. The Cartesian product F�G of two graphs F and G is de-
fined on the vertex set V (F�G) = V (F ) × V (G) with edge set E(F�G) =

{{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and v1 = v2, or {v1, v2} ∈ E(G) and
u1 = u2}.
The nth Cartesian power G�n is the n-fold Cartesian product of G.

Thus the Cartesian power is also given on the n-length sequences of the
original vertices and two such sequences from an edge if and only if they
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differ at exactly one place and at that place the corresponding coordinates
form an edge of the original graph.

About graph powers see [11].

Famous graph parameters

Definition. ([17]) The Shannon capacity of graph G is defined as

Θ(G) = lim
n→∞

n
√
α(G�n),

that is, as the normalized limit of the independence number under normal
power.

Definition. ([19]) The Witsenhausen rate of graph G is defined as

R(G) = lim
n→∞

n
√
χ(G�n),

that is, as the normalized limit of the chromatic number under normal power.
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3 On the ultimate categorical independence ra-

tio of complete multipartite graphs

In this section we investigate the independence ratio with respect to the
categorical product.

3.1 The ultimate categorical independence ratio

Definition. For two graphs F and G, their categorical or direct product
F ×G is defined on the vertex set V (F ×G) = V (F )× V (G) with edge set
E(F × G) = {{(u1, v1), (u2, v2)} : {u1, u2} ∈ E(F ) and {v1, v2} ∈ E(G)}.
The nth categorical power G×n is the n-fold categorical product of G.

F

G

FxG

Figure 1: Categorical product of two graphs

That is, G×n is defined on the n-length sequences of the original vertices
and two such sequences are adjacent in G×n if and only if their elements at
every coordinate form an edge in G.

The independence ratio of a graph G is defined as

i(G) =
α(G)

|V (G)|
,

that is, as the ratio of the independence number and the number of vertices.
If I is an independent set in F then I × V (G) is an independent set in

F ×G, thus

α(F ×G) ≥ max{α(F )|V (G)|, α(G)|V (F )|}.
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This fact implies that the sequence
{
i(G×k)

}∞
k=1

is nondecreasing, and as it
is bounded from above by 1, it is convergent. The limit of the sequence is an
interesting graph parameter which was introduced by Brown, Nowakowski
and Rall in [5].

Definition. ([5]) The ultimate categorical independence ratio of a graph G
is defined as

A(G) = lim
k→∞

i(Gk).

The ultimate independence ratio is an analogous but significantly different
concept which is the asymptotic value of the independence ratio with respect
to the Cartesian power. About this graph parameter see [9, 10, 20].

The following results were proven in [5] for the ultimate categorical inde-
pendence ratio.
Upper bounds for A(G):

Theorem 3.1. ([5]) If G is an r-regular graph and r ≥ 1 then A(G) ≤ 1
2
.

Theorem 3.2. ([5]) Let G be a graph for which H ∪Km1 ∪ · · · ∪Kmp is a
spanning subgraph of G. If χ(H) ≤ m1 ≤ m2 ≤ · · · ≤ mp then A(G) ≤ A(H).

Lower bounds for A(G):

Theorem 3.3. ([5]) If i(G) > 1
2

then A(G) = 1.

Theorem 3.4. ([5]) A(G) ≥ |I|
|I∪NG(I)| holds for every independent subset I

of G.

Corollary 3.5. ([5]) Let G be a graph for which i(G) = 1
2
. Then A(G) = 1

2

if G has a perfect matching, and A(G) = 1 otherwise.

Self-universal graphs

Graphs for which the ultimate categorical independence ratio equals to the
independence ratio were investigated in [5] and [2].

Definition. ([5]) Graph G is self-universal if A(G) = i(G).
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In [5] the following results are proven.

Proposition 3.6. ([5]) If G is a graph for which G ∪ G ∪ · · · ∪ G (disjoint
union of |V (G)| copies of G) is a spanning subgraph of G×2 then G is self-
universal.

Theorem 3.7. ([5]) If G is a Cayley graph of an Abelian group then G is
self-universal.

(The Cayley graph associated with group G and generating set S is defined
on the elements of G as vertex set, and two elements, g1 and g2 are adjacent
if and only if g−1

1 g2 ∈ S.)

Theorem 3.8. ([5]) If graph G has an automorphism with a single orbit of
size |V (G)| then G is self-universal.

The characterization of maximum-size independent sets in the power of
a wide family of regular graphs was considered by Alon, Dinur, Friedgut and
Sudakov in [2] with the help of Fourier analysis.

Theorem 3.9. ([2]) Let G be a connected, r-regular graph on n vertices, let q
be the smallest eigenvalue of the adjacency matrix of G (the largest eigenvalue
is r). If α(G)

n
= −q

r−q then G is self-universal.

3.2 The case of complete multipartite graphs

In [5] the authors mentioned complete multipartite graphs as one of those
families of graphs for which the ultimate categorical independence ratio is
not determined in general, although several special cases are handled by their
results.

In particular the following special cases covered by the results in [5].
It follows from Theorem 3.6 that the complete graphs are self-universal,
A(Kn) = i(Kn) = 1

n
. Let Kn,m be a complete bipartite graph, if n = m

then A(Kn,n) = 1
2
follows from Corollary 3.5, otherwise (if n 6= m) we get

A(Kn,m) = 1 by Theorem 3.3.
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If G is a complete multipartite graph, for which the size of the largest part
(which is also the independence number) is greater than half the number of
vertices then by Theorem 3.3 we get A(G) = 1. We will prove that in every
other case, i.e., when none of the parts of the complete multipartite graph
has size greater than half the number of vertices we have A(G) = i(G). In
other words, for i(G) ≤ 1

2
a complete multipartite graph is self-universal.

The main result of this section is the following theorem. We get the result
for the complete multipartite graphs as a simple corollary. The first condi-
tion, the one about the lower bound on the degrees is essential. The second
condition is trivial, it must hold by Theorem 3.3.

Theorem 3.10. Let G be a graph for which ∀v ∈ V (G) : d(v) ≥ |V (G)| −
α(G) and i(G) ≤ 1

2
. Then i(G×k) = i(G) holds for every integer k ≥ 1.

Corollary 3.11. Let G = K`1,`2,...`m be a complete multipartite graph. Let

n =
m∑
i=1

`i be the number of vertices and let ` = max
1≤i≤m

`i be the size of the

largest partite class. If ` ≤ n
2

then A(G) = i(G) = `
n
, so G is self-universal,

otherwise A(G) = 1.

Proof of Corollary 3.11 from Theorem 3.10:

Proof. Since G is a complete multipartite graph α(G) = `.
If ` > n

2
then i(G) = `

n
> 1

2
, thus A(G) = 1 follows from Theorem 3.3.

If ` ≤ n
2
then i(G) = `

n
≤ 1

2
and as G is a complete multipartite graph,

degree of its vertices is at least |V (G)| − α(G) thus from Theorem 3.10 we
get A(G) = i(G) = `

n
.

The conditions of Theorem 3.10 hold not just for complete multipartite
graphs. For instance, the graph consisting of an 5-length cycle and three
additional points joint to every vertex of the cycle also satisfies the conditions.
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For the proof of Theorem 3.10 we need the following lemma.

Lemma 3.12. Let G be a graph for which ∀v ∈ V (G) : d(v) ≥ |V (G)|−α(G)

and i(G) ≤ 1
2

holds. If J is an independent set in G×k for which |J |
|J∪N(J)| >

i(G) holds then there is an independent set K in G×(k−1) for which |K|
|K∪N(K)| >

i(G) holds.

Proof. Let G be a graph for which

∀v ∈ V (G) : d(v) ≥ |V (G)| − α(G) (1)

and
i(G) ≤ 1

2
(2)

holds. Let J be an independent set in G×k for which |J |
|J∪N(J)| > i(G).

Consider G×k in the form G×G×(k−1). We denote the vertex set of G×(k−1)

by U and the vertex set of G×k by V . Let U1, U2 and U3 be the following
subsets of U :

U1 = {v ∈ U : |J ∩ (V (G)× {v})| > α(G)}

U2 = N(U1)

U3 = U \ (U1 ∪ U2)

For i = 1, 2, 3 let Vi = V (G)×Ui and denote by Ji the corresponding subsets
of J : Ji = J ∩ Vi.

It follows from (1) that

∀P ⊆ V (G), |P | > α(G) : N(P ) = V (G) (3)

because for every vertex v in V (G) there are at most α(G) vertices which
are non-adjacent to v, so there must be a vertex in P which is adjacent to v.
The fact (3) and the definition of the categorical product implies that every
vertex of V (G) × N(U1) is a neighborhood of a vertex in J1, i.e., N(J1) =

V (G)×N(U1) = V2, thus U1 is an independent set of G×(k−1) and J2 is empty.
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It also follows that U1∩U2 = ∅, V1∩V2 = ∅, so U = U1∪U2∪U3 is a partition
of U , V = V1 ∪V2 ∪V3 is a partition of V and J = J1 ∪ J3 is a partition of J .

G

G
x(k−1)

α(G)

U U U1 2 3

Figure 2: Partition of G×k (the size of J is at most the size of the dark gray
area and the size of N(J) is at least the size of the bright gray area)

It is easy to see that the ratio |J |
|J∪N(J)| is a convex linear combination of

|J1|
|J1∪N(J1)| (i.e., the fraction of J in V1∪V2) and |J3|

|J3∪(N(J3)∩V3)| (i.e., the fraction
of J in V3). Thus |J |

|J∪N(J)| > i(G) implies that

|J1|
|J1 ∪N(J1)|

> i(G) (4)

or
|J3|

|J3 ∪ (N(J3) ∩ V3)|
> i(G) (5)

In the first case, when (4) holds, it follows fromN(J1) = V2 that |U1|
|U1∪N(U1)| =

|V1|
|V1∪V2| ≥

|J1|
|J1∪N(J1)| > i(G). Since U1 is an independent set in G×(k−1), K = U1

is a good choice and we the statement is proven.
In the second case, when (5) holds we investigate the structure of J fur-

ther. Let A and B be the following subsets in U3:

A = {v ∈ U3 : J3 ∩ (V (G)× {v}) 6= ∅}

B = N(A) ∩ U3

We prove that |A| > |B|. From (1) we get that ∀w ∈ B: N(J3)∩ (V (G)×
{w}) ≥ |V (G)| − α(G), so |N(J3) ∩ V3| ≥ |B|(|V (G)| − α(G)). On the other
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hand, it holds by the definition of U1, U2 and U3 that ∀v ∈ U3: |J ∩ (V (G)×
{v})| ≤ α(G), so |J3| ≤ |A|α(G). Thus |J3|

|N(J3)∩V3| ≤
|A|α(G)

|B|(|V (G)|−α(G))
. Further-

more, |A| ≤ |B| would imply that |J3|
|N(J3)∩V3| ≤

α(G)
(|V (G)|−α(G))

, so |J3|
|J3∪(N(J3)∩V3)| ≤

α(G)
|V (G)| = i(G), which contradicts (5). Hence

|A| > |B| (6)

G

G
x(k−1)

A B

α(G)

U U U1 2 3

Figure 3: Partition of G×k, the structure of J and N(J)

We know that |J |
|J∪N(J)| > i(G) = α(G)

|V (G)| which means that |J |
|N(J)| >

α(G)
|V (G)|−α(G)

.
Let L be the following subset of V (G×k).

L = V (G)×M, where M = U1 ∪ (A \B)

We prove that |L|
|L∪N(L)| > i(G).

|J |
|N(J)|

=
|J1|+ |J3|

|N(J1)|+ |N(J3) ∩ V3|
≤ |V (G)||U1|+ α(G)|A|
|V (G)||U2|+ (|V (G)| − α(G))|B|

(7)

By the definition of B we get N(A\B) ⊆ (B\A)∪U2, in fact, N(A\B)\U2 =

B \ A and N(U1) = U2, so

|L|
|N(L)|

=
|V (G)× (U1 ∪ A \B)|
|V (G)× (U2 ∪B \ A)|

=
|V (G)|(|U1|+ |A \B|)
|V (G)|(|U2|+ |B \ A|)

. (8)

The difference between the right hand side of (8) and (7)

in the numerator: −α(G)|A ∩B| + (|V (G)| − α(G))|A \B|,
in the denominator: −(|V (G)| − α(G))|A ∩B| + α(G)|B \ A|.
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Recall that the numerators belong to the independent sets and the denomi-
nators belong to the neighborhood of the independent sets.
Furthermore,

−α(G)|A ∩B|
−(|V (G)| − α(G))|A ∩B|

=
α(G)

|V (G)| − α(G)
(9)

and
(|V (G)| − α(G))|A \B|

α(G)|B \ A|
> 1 >

α(G)

|V (G)| − α(G)
(10)

because (6) implies that |A \ B| > |B \ A| and from (2) it follows that
α(G) < |V (G)| − α(G).
Since the right hand side of (8) is a convex linear combination of the right
hand side of (7), the left hand side of (9) and left hand side (10), each of
which is bounded from below by α(G)

|V (G)|−α(G)
we have |L|

|N(L)| >
α(G)

|V (G)|−α(G)
which

means that
|L|

|L ∪N(L)|
> i(G). (11)

From the structure of L and from (11) we get that |M |
|M∪N(M)| = |L|

|L∪N(L)| >

i(G). Since U1 and A\B = A\N(A) are independent and N(A\B)∩U1 = ∅,
we have that M is an independent set. Thus setting K = M we found the
independent set in G×(k−1) the existence of which is claimed by the lemma.

Proof of Theorem 3.10. Suppose indirectly that there is a positive integer k
for which i(G×k) 6= i(G). As the sequence {i(G×k)}∞k=1 is nondecreasing we
get that there is an independent set I in G×k for which i(G) < |I|

|V (G×k)| =
|I|

|I∪N(I)| . By the iterative use of Lemma 3.12 we obtain that there is an in-
dependent set J in G for which |J |

|J∪N(J)| > i(G) = α(G)
|V (G)| . As J ≤ α(G) and

∀v ∈ V (G) : d(v) ≥ |V (G)| − α(G) implies that N(J) ≥ |V (G)| − α(G) we
get that |J |

|J∪N(J)| ≤ i(G). Hence we got contradiction, the statement of the
theorem is true.
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4 Asymptotic values of the Hall-ratio

Motivated by problems of list coloring the Hall-ratio of a graph G is investi-
gated in [7, 8] where it is defined as

ρ(G) = max

{
|V (H)|
α(H)

: H ⊆ G

}
,

that is, as the ratio of the number of vertices and the independence number
maximized over all subgraphs of G.

It is clear that ω(G) ≤ ρ(G) by considering any maximal clique as a
subgraph. Furthermore, ρ(G) ≤ χf (G) ≤ χ(G) which follows from the simple
fact that χf (G) ≥ χf (H) ≥ |V (H)|

α(H)
, where H is a subgraph of G.

The asymptotic values of the Hall-ratio for different graph powers were in-
vestigated by Simonyi in [18]. In particular, he considered the (appropriately
normalized) asymptotic values of the Hall-ratio for the exponentiations called
normal, co-normal, Cartesian, categorical and lexicographic, respectively.

In that article the asymptotic value of the Hall-ratio with respect to the
normal and co-normal power is determined with the help of the method of
types (cf. [6]).

Theorem 4.1. ([18]) It holds for the ultimate normal Hall-ratio that

lim
n→∞

n
√
ρ(G�n) = R(G)

(Recall that R(G) is the Witsenhausen rate of graph G, cf. Definitions, no-
tations.)

Theorem 4.2. ([18]) It holds for the ultimate co-normal Hall-ratio that

lim
n→∞

n
√
ρ(Gn) = χf (G)

For the Cartesian power the value of lim
n→∞

ρ(G�n) is the ultimate Cartesian
Hall-ratio. The following relations are known about this graph parameter by
[18]. A result of [9] implies that this graph parameter equals to the reciprocal
value of the ultimate (Cartesian) independence ratio, which is mentioned in
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the previous section. Furthermore, it follows from the results in [9, 10] that
it lies in the interval [χf (G), χ(G)] and it is proven in [20] that it equals to
the value of lim

n→∞
χf (G

�n).
For the categorical power the value of lim ρ(G×n) is known only for special

graph families, it is conjectured that the limit of the sequence is also the
fractional chromatic number.

Considering the Hall-ratio with respect to the lexicographic power we get
the ultimate lexicographic Hall-ratio. For the value of lim

n→∞
n
√
ρ(G◦n) only

bounds are proven, its exact value is not known. It is a conjecture in [18]
that it equals to the fractional chromatic number.

In the next two sections we investigate the asymptotic value of the Hall-
ratio for the categorical and the lexicographic power further.
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5 On the ultimate categorical Hall-ratio

In this section we investigate the Hall-ratio with respect to the categorical
power.

Definition. ([18]) The ultimate categorical Hall-ratio of graph G is

h×(G) = lim
n→∞

ρ(G×n).

In [18] the categorical product was called direct product, but we use this
name to correspond with the third section.

The limit of the sequence {ρ(G×i)}∞i=1 exists, because it is monoton in-
creasing and bounded from above. We get the following upper bound for this
graph parameter from the simple fact that χf (G×n) = χf (G) (see the proof
for example in [18]).

Proposition 5.1. ([18]) It holds for every graph G that

h×(G) ≤ χf (G).

It is a conjecture in [18] that equality holds in the latter formula.
To prove that h×(G) ≥ χf (G) for a graph G it is enough to prove

ρ(G×k) ≥ χf (G) for some value of k by the monotonity of the sequence
{ρ(G×i)}∞i=1. This observation implies the following propositions.

Proposition 5.2. ([18]) If G is a perfect graph or vertex transitive graph
then h×(G) = χf (G).

Proposition 5.3. ([18]) h×(Wm) = χf (Wm), where Wm denotes the wheel
graph on m+ 1 vertices.

By using a similar argument to that which was used in the proof of the
latter result we prove the following generalization.

Proposition 5.4. Let G be a graph for which h×(G) = χf (G) holds. Let
Ĝ be the graph we obtain from G by connecting each of its vertices to an
additional vertex. Then h×(Ĝ) = χf (Ĝ) holds, too.
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Proof. h×(G) = lim
n→∞

ρ(G×n) = χf (G) means that

∀ε > 0 : ∃n0(ε) : ∀n ≥ n0 : ρ(G×n) ≥ χf (G)− ε (12)

by definition of the limit and by the monoton increasing property of the
sequence {ρ(G×i)}∞i=1.

Adding a new vertex w to G increases the fractional chromatic number
by 1, as it does not lie in a common independent set with any other vertex
of the graph. Therefore χf (Ĝ) = χf (G) + 1.

Thus we have to show that h×(Ĝ) = lim
n→∞

ρ(Ĝ×n) = χf (Ĝ) = χf (G) + 1,
i.e.,

∀ε > 0 : ∃n̂0(ε) : ∀n ≥ n̂0 : ρ(Ĝ×n) ≥ χf (G) + 1− ε. (13)

It is enough to find for all ε a suitable n̂0 for which ρ(Ĝ×n0) ≥ χf (G) + 1− ε.
It follows from (12) that for all ε > 0 there is an n0 and H ⊆ G×n0 , for
which |V (H)|

α(H)
≥ χf (G)− ε holds. Denote by k the number of vertices and by

α the independence number of H. Let v1, v2, . . . vk be the vertices of H and
let v1, v2, . . . vα be the vertices of a maximum size independent set in H. Let
Ĥ be the subgraph of Ĝ×2n0 induced on the vertex set P1 ∪ P2 ∪Q, where

P1 = {(v1, w
n0), (v2, w

n0), . . . (vα, w
n0)},

P2 = {(wn0 , v1), (w
n0 , v2), . . . (w

n0 , vα)} and

Q = {(vα+1, vα+1), (vα+2, vα+2), . . . (vk, vk)}.

The number of vertices of Ĥ is k+α. Its independence number is less than
or equal to α, because on the vertex set P1 ∪ P2 we get a complete bipartite
graph, thus every independent set of Ĥ can contain vertices only from P1 or
only from P2, but on the set P1 ∪Q and P2 ∪Q the induced graph isomorph
to H.
It follows that |V (Ĥ)|

α(Ĥ)
≥ k+α

α
= k

α
+ 1 = |V (H)|

α(H)
+ 1 ≥ χf (G) + 1 − ε, thus

n̂0 = 2n0 is a good choice to satisfy (13).
Thus we have proved that h×(Ĝ) = lim

n→∞
ρ(Ĝ×n) = χf (Ĝ).
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6 On the ultimate lexicographic Hall-ratio

In this section we investigate the Hall-ratio with respect to the lexicographic
power.

6.1 The ultimate lexicographic Hall-ratio

Definition. For two graphs F and G, their lexicographic product F ◦ G is
defined on the vertex set V (F ◦G) = V (F )×V (G) with edge set E(F ◦G) =

{{u1v1, u2v2} : {u1, u2} ∈ E(F ), oru1 = u2 and {v1, v2} ∈ E(G)}. The nth
lexicographic power G◦n is the n-fold lexicographic product of G.

That is, G◦n is defined on the n-length sequences of the original vertices
and two such sequences are adjacent in G◦n if and only if they are adjacent
in the first coordinate where they differ.

The lexicographic product is associative but it is not commutative unlike
the other products we mentioned.

Figure 4: Square of a graph for the lexicographic power

Definition. ([18]) The ultimate lexicographic Hall-ratio of graph G is

h◦(G) = lim
n→∞

n
√
ρ(G◦n).

As E(F � G) ⊆ E(F ◦ G) ⊆ E(F · G) holds for every graph F and
G Theorem 4.1 and Theorem 4.2 implies that the value of h◦(G) falls into
the interval [R(G), χf (G)]. While R(G) ≤ χf (G) always holds, one can have
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strict inequality. An example is the five length cycle, C5, the Witsenhausen
rate of which happens to be

√
5 < 5

2
= χf (C5). The equality R(C5) =

√
5

follows from the results of [13] combined with those of [19]. (As the latter
suggests, determining R(G) is in general not easier than determining the
Shannon capacity of a graph.)

We remark that the lower bound R(G) is sometimes better but some
other times worse than the easy lower bound ρ(G), cf. [18]. Thus we know
the following bounds for the ultimate lexicographic Hall-ratio.

Theorem 6.1. ([18])

max{ρ(G), R(G)} ≤ h◦(G) ≤ χf (G)

For some types of graphs the upper and lower bounds are equal, so this
formula gives the exact value of the ultimate lexicographic Hall-ratio. For
instance, if G is a perfect graph, then χf (G) = χ(G) = ω(G) ≤ ρ(G). If G
is a vertex-transitive graph, then χf (G) = |V (G)|

α(G)
≤ ρ(G). (The proof of the

fact that χf (G) = |V (G)|
α(G)

holds for vertex-transitive graphs, can be found for
example in [11].)

The independence ratio (and thus also its reciprocal value) is multi-
plicative for the lexicographic product, because |V (G◦n)| = |V (G)|n and
α(G◦n) = (α(G))n. (The proof of the latter easy statement can be found for
example in [11].) The inequalities of Theorem 6.1 imply that the Hall-ratio
is not multiplicative in general for this product.

The length of the interval [max{ρ(G), R(G)}, χf (G)] is also positive in
general (the 5-wheel is an example for it, see the next subsection). It was
conjectured in [18], that in fact, h◦(G) always coincides with the larger end
of the above interval. The main goal of this section is to prove this conjecture.

In the next subsection we prove the conjecture for the 5-wheel, W5 to
show the basic idea of the proof in a simple case. Then we prove it generally
with a lot of technical computation. (We do not use the result for W5 in the
proof of the general case.)
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6.2 The case of wheel graphs

If m is even or less than 5 then the wheel graphWm is perfect thus h◦(Wm) =

χf (Wm). The 5-wheel, W5 is the smallest wheel graph for which Theorem
6.1 does not imply the value of h◦(W5). It is clear that ρ(W5) = 3. It is
easy to find a coloring of C�2

5 with 5 colors and it can be completed to a
coloring of W�2

5 with 12 colors so χ(W�2
5 ) ≤ 12. Since χ(G�n) ≤ (χ(G))n

(see [11] for the proof) and by the definition of R(G) we get R(W5) ≤
√

12.
Furthermore, χf (W5) = χf (C5) + 1 = 7

2
> max{3,

√
12} so the length of the

interval [max{ρ(W5), R(W5)}, χf (W5)] is positive. In this section we prove
that h◦(W5) equals to the larger end of the interval.
(h◦(Wm) = χf (Wm) can be proven for every wheel graph without further
complications.)

Proposition 6.2. h◦(W5) = χf (W5).

Proof. It is enough to prove that h◦(W5) ≥ χf (W5) = 7
2
.

Let p(n, α) be the number of vertices maximized over all subgraphs of
W ◦n

5 with independence number at most α, that is

p(n, α) = max{|V (H)| : H ⊆ W ◦n
5 , α(H) ≤ α}

and let
q(n, α) =

p(n, α)

α
,

where n and α are positive integer.
It holds by the definition of p(n, α) and q(n, α) that

ρ(W ◦n
5 ) = max{q(n, α) : α ∈ Z+}

and so

h◦(W5) = lim
n→∞

n
√
ρ(W ◦n

5 ) = lim
n→∞

max{ n
√
q(n, α) : α ∈ Z+}.

If we substitute the vertices of W5 by subgraphs of W ◦(n−1)
5 which inde-

pendence number is at most α for the points of the cycle and 2α for the
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center point then we get a subgraph of W ◦n
5 which independence number is

at most 2α. (We notice that the optimal fractional clique of W5 equals to 1
2

for the points of the cycle and it equals to 1 for the center point.)
Thus

p(n, 2α) ≥ p(n− 1, 2α) + 5p(n− 1, α).

α

α

α α

α

2α

Figure 5: The construction for W5

By the definition of q(n, α) we get
q(n, 2α) = p(n,2α)

2α
≥ 1

2α
(p(n− 1, 2α) + 5p(n− 1, α)) =

= q(n− 1, 2α) + 5
2
q(n− 1, α) = 7

2

(
2
7
q(n− 1, 2α) + 5

7
q(n− 1, α)

)
.

Thus q(n, 2α) is bounded from below by 7
2
times value of the convex combi-

nation of q(n− 1, 2α) and q(n− 1, α).
We investigate the values of q(n, α) for n = 1, 2, 3, . . .∞, α = 1, 2, 4, . . . 2n.

For α = 1 we get that q(n, 1) = p(n, 1) = 3n, because p(n, 1) = ω(W ◦n
5 ) =

ω(W5)
n = 3n. For α = 2n we get that q(n, 2n) = 3n, because α(W ◦n

5 ) =

α(W5)
n = 2n so p(n, 2n) = |V (W ◦n

5 )| = 6n thus q(n, 2n) = 6n

2n = 3n.
A lower bound for q(n, α) for other values of α can be computed from
q(n, 2α) ≥ 7

2

(
2
7
q(n− 1, 2α) + 5

7
q(n− 1, α)

)
. By this inequality the sum of

the values of q(n, α) for α = 1, 2, 4, . . . 2n is asymptotically equals to (7
2
)n.

Since we summarized just n values of q(n, α), the maximal value of them
asymptotically equals to 7

2

n.
Thus we have proved h◦(W5) = lim

n→∞
max{ n

√
q(n, α) : α ∈ Z+} ≥ 7

2
.
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6.3 The general case

In this subsection we prove that the ultimate lexicographic Hall-ratio equals
to the fractional chromatic number for every graph.

Theorem 6.3.

h◦(G) = χf (G)

We know h◦(G) ≤ χf (G) thus it is enough to prove the reverse inequality.
Preparing for the proof we introduce some notations.

Let pG(n, α) be the number of vertices maximized over all subgraphs of G◦n

with independence number at most α, that is

pG(n, α) = max{|V (H)| : H ⊆ G◦n, α(H) ≤ α}

and let
qG(n, α) =

pG(n, α)

α
,

where n is a positive integer, α is a positive real number.
Clearly, pG(n, α) = pG(n, [α]) and qG(n, α) ≤ qG(n, [α]). In spite of this fact
it will be useful that pG(n, α) is defined for any positive real α values.

Now we are going to prove some technical lemmas.
The ultimate lexicographic Hall-ratio can be expressed by the values of
qG(n, α) as follows.

Lemma 6.4.

h◦(G) = lim
n→∞

max{ n
√
qG(n, α) : α ∈ R+} (14)

Proof. The Hall-ratio of the nth lexicographic power of G can be calculated
by the above terms the following simple way:

ρ(G◦n) = sup{q(n, α) : α ∈ R+}.

Since pG(n, α) is a bounded, monotone increasing function and qG(n, α) is the
fraction of this and the strictly monotone increasing identity function, the
above supremum is always reached. Since qG(n, α) ≤ qG(n, [α]), it is reached
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at some integer value of α, so the maximum value belongs to one of the
subgraph of G◦n.
Thus we get h◦(G) = lim

n→∞
n
√
ρ(G◦n) = lim

n→∞
max{ n

√
qG(n, α) : α ∈ R+}.

Thus our aim is to show that lim
n→∞

max{ n
√
qG(n, α) : α ∈ R+} ≥ χf (G).

Let g : V (G)→ R+,0 be an optimal fractional clique of G. That is, it is a
fractional clique: ∀U ∈ S(G):

∑
v∈U

g(v) ≤ 1 (recall that S(G) denotes the set

of the independent sets of G), and it is optimal:
∑

v∈V (G)

g(v) = χf (G).

Lemma 6.5.

qG(n, α) ≥
∑

v∈V (G)

g(v)qG (n− 1, g(v)α)

Proof. Every subgraph of G◦n can be imagined as if the vertices of G would
be substituted by subgraphs of G◦(n−1). Furthermore, every independent set
of G◦n can be thought of as having the vertices of an independent set of G
substituted by independent sets of (the above subgraphs of) G◦(n−1).
If we substitute every vertex v of G by a subgraph of G◦(n−1) with indepen-
dence number at most g(v)α, then we get a subgraph of G◦n with indepen-
dence number at most max

U∈S(G)

∑
v∈U

g(v)α ≤ α max
U∈S(G)

∑
v∈U

g(v) ≤ α, because g is

a fractional clique of G.
Thus we get

pG(n, α) ≥
∑
v∈G

pG (n− 1, g(v)α) .

It follows from this inequality and the definition of qG(n, α) that
qG(n, α) = pG(n,α)

α
≥ 1

α

∑
v∈G

pG (n− 1, g(v)α) =
∑
v∈G

g(v)α
α

pG(n−1,g(v)α)
g(v)α

=

=
∑

v∈V (G)

g(v)qG (n− 1, g(v)α) .

Next we bound qG(n, α) function from below, it will be important for
later calculations. Let us define function rG(n, α) as follows.

rG(1, α) =

{
cG, if 1 ≤ α ≤ m = |V (G)|
0, otherwise
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where cG is a positive constant, which bounds qG(1, α) from below for all
1 ≤ α ≤ m = |V (G)|. Such cG exists, for example cG = 1

m
is a good choice.

For n ≥ 2 let
rG(n, α) =

∑
v∈V (G)

g(v)rG (n− 1, g(v)α) .

By Lemma 6.5 and by the construction of rG(n, α) it holds for all positive
integer n and all positive real number α that

rG(n, α) ≤ qG(n, α). (15)

Thus it is enough to show that lim
n→∞

max{ n
√
rG(n, α) : α ∈ R+} ≥ χf (G).

To make the calculations simpler, we express α as mβ, that is β = logm α

and introduce
sG(n, β) = rG(n,mβ),

where n is a positive integer, β is a real number. Since this transformation
does not change the maximum value of the function (just the place of it), it
holds that

max{ n
√
rG(n, α) : α ∈ R+} = max{ n

√
sG(n, β) : β ∈ R} (16)

Thus it is enough to prove that lim
n→∞

max{ n
√
sG(n, β) : β ∈ R} ≥ χf (G).

Observe that the following equalities hold:

sG(1, β) =

{
cG, if 0 ≤ β ≤ 1

0, otherwise

sG(n, β) =
∑

v∈V (G)

g(v)sG (n− 1, logm g(v) + β) , n ≥ 2.

We get the formula for sG(1, β) from the definition of the function sG(n, β).
The second equality follows by writing
sG(n, β) = rG(n,mβ) =

∑
v∈V (G)

g(v)rG
(
n− 1, g(v)mβ

)
=

=
∑

v∈V (G)

g(v)sG
(
n− 1, logm(g(v)mβ)

)
=

∑
v∈V (G)

g(v)sG (n− 1, logm g(v) + β) .
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Lemma 6.6.

lim
n→∞

max{ n
√
sG(n, β) : β ∈ R} ≥ χf (G) (17)

Proof. Let us determine the integral of the function sG(n, β).
∞∫

β=−∞
sG(1, β) dβ = cG

∞∫
β=−∞

sG(n, β) dβ =
∞∫

β=−∞

∑
v∈V (G)

g(v)sG (n− 1, logm g(v) + β) dβ =

=
∑

v∈V (G)

(
g(v)

∞∫
β=−∞

sG(n− 1, logm g(v) + β) dβ

)
=

=
∑

v∈V (G)

(
g(v)

∞∫
β=−∞

sG(n− 1, β) dβ

)
=

=

( ∑
v∈V (G)

g(v)

)
∞∫

β=−∞
sG(n− 1, β) dβ =

= χf (G)
∞∫

β=−∞
sG(n− 1, β) dβ, n ≥ 2

Hence,
∞∫

β=−∞

sG(n, β) dβ = cG(χf (G))n−1.

For a function f(x) we call the support of f(x), denote by T (f(x)), the
set of reals x for which f(x) 6= 0. Let us determine T (sG(n, β)).
T (sG(1, β)) = [0, 1]. Let gG be any real value satisfying gG ≤ logm g(v) ≤ 0 for
all v ∈ V (G). Such gG exists, for example gG = min{logm g(v) : v ∈ V (G)}
is a good choice. Thus T (sG(n, β)) ⊆ [0, 1− (n− 1)gG].

It is clear from the above discussion that
∫∞
β=−∞ sG(n, β) dβ asymptoti-

cally equals to (χf (G))n (i.e., the limit of their fraction equals 1 as n goes to
infinity). The length of the support of sG(n, β) can be bounded from above
by a linear function of n, let this function be dGn where dG is a constant.
These facts imply that lim

n→∞
max{ n

√
sG(n, β) : β ∈ R} ≥ χf (G), for sup-

pose indirectly that there is an ε > 0, for which ∀n > N ∈ N+, ∀β ∈ R:
sG(n, β) < (χf (G) − ε)n, then

∫∞
β=−∞ sG(n, β) dβ < dGn(χf (G) − ε)n but

lim
n→∞

dGn(χf (G)−ε)n

χf (G)n = lim
n→∞

(1− ε
χf (G)

)n = 0.
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By now we have essentially proved Theorem 6.3, it needs only to be
summarized.

Proof of Theorem 6.3. The preceding lemmas imply that
h◦(G) = lim

n→∞
max{ n

√
qG(n, α) : α ∈ R+} ≥

≥ lim
n→∞

max{ n
√
rG(n, α) : α ∈ R+} =

= lim
n→∞

max{ n
√
sG(n, β) : β ∈ R} ≥ χf (G),

we used (14), (15), (16) and (17), respectively.
Thus we have proved

h◦(G) = χf (G).

Remarks

There are graphs for which the sequence { n
√
ρ(G◦n)}∞n=1 does not reach its

limit χf (G) for any finite n. The 5-wheel,W5 is a graph for which no t attains
t
√
ρ(W ◦t

5 ) = χf (W5) = 7
2
. This is because if there was such a t then there

must be a subgraph H of W ◦t
5 for which |V (H)|

α(H)
=
(

7
2

)t
= 7t

2t , but this fraction
is irreducible and |V (H)| ≤ |V (W ◦t

5 )| = 6t.
It is known from the theorem of McEliece and Posner [14] that the normal-

ized asymptotic value of the chromatic number with respect to the co-normal
product is the fractional chromatic number. This theorem with the result
proven here implies Theorem 4.2 of [18], since ρ(G) ≤ χf (G) ≤ χ(G) holds
for every graph G and the lexicographic power of a graph is a subgraph of its
the co-normal power. These results imply also that the normalized asymp-
totic value of each of the Hall-ratio, the fractional chromatic number and
the chromatic number with respect to both the co-normal and the lexico-
graphic power equals to the fractional chromatic number. (These relations
were already known except for the asymptotic value of the Hall-ratio for the
lexicographic power.)
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