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Gallai coloring of a graph

An edge-coloring of a graph is called a Gallai coloring if there is no
completely multicolored triangle.

A Gallai colored complete graph has a color class which spans a
connected subgraph on the entire vertex set.
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Gallai coloring of a graph
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Theorem (Gyárfás, Sárközy [GyS4])
In a Gallai coloring of a graph G there is a monochromatic component
with at least |V (G)|

α2(G)+α(G)−1 vertices, where α(G ) is the independence
number of G .

4[GyS] A. Gyárfás, G. N. Sárközy, Gallai colorings of non-complete graphs,
Discrete Mathematics



Gallai coloring of a graph

Suppose that the edges of a graph G are colored so that no triangle is
colored with three distinct colors. Is it true that the vertices of G can
be covered by the vertices of at most k monochromatic components
where k depends only on the independence number of G?

Theorem 1 (Gyárfás, Simonyi, Tóth)
Given a Gallai coloring of a graph G the vertices of G can be covered
by the vertices of at most g(α(G )) monochromatic components.
Special case: In case α(G ) = 2 at most 5 components are enough.



Domination of multipartite digraphs
Let D be a multipartite digraph (i.e., its vertices are partitioned into
classes A1, . . . ,At of independent vertices) without cyclic triangles.

A set U = ∪i∈SAi is called a dominating set of size |S | if for any
vertex v ∈ V (D) \ U there is a w ∈ U such that (w , v) ∈ E (D).
Denote by β(D) the size of the largest transversal independent set
(i.e., independent set of D whose vertices are from different partite
classes of D).
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Domination of multipartite digraphs
Let D be a multipartite digraph (i.e., its vertices are partitioned into
classes A1, . . . ,At of independent vertices) without cyclic triangles.
A set U = ∪i∈SAi is called a dominating set of size |S | if for any
vertex v ∈ V (D) \ U there is a w ∈ U such that (w , v) ∈ E (D).
Denote by β(D) the size of the largest transversal independent set
(i.e., independent set of D whose vertices are from different partite
classes of D).

Theorem 2 (Gyárfás, Simonyi, Tóth)
There exists a h = h(β(D)) such that D has a dominating set of
size at most h.
Special case: In case β(D) = 1 there is a dominating set of size 1.
In case β(D) = 2 there is a dominating set of size at most 4.



Proof of Theorem 1 from Theorem 2
Theorem 1. G Gallai colored graph,
α(G) = 2 ⇒ the vertices of G can
be covered by the vertices of at most
5 monochromatic components.

Theorem 2. D multipartite digraph,
no cyclic triangle, β(D) = 2⇒ there
is a dominating set of size at most 4.
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Proof of Theorem 2 (special case)

Theorem 2 (in the case β(D) = 2)
Let D be a multipartite digraph with no cyclic triangle and β(D) = 2
⇒ there is a dominating set of size at most 4.

Lemma 3 (Gyárfás, Simonyi, Tóth)
Let D be a multipartite digraph with no cyclic triangle and β(D) = 1.
⇒ There is a partite class K which is a dominating set, and there is a
vertex k ∈ K such that k dominates all the vertices of V (D)\(K∪L)
for some partite class L 6= K.



Proof of Lemma 3.

D is a multipartite digraph with no cyclic triangle and β(D) = 1.

Observation 4
Suppose that for vertices x1, x2 ∈ X and y ∈ Y the edges (x2, y)
and (y , x1) are present in D. Then for every z ∈ Z 6= X ,Y with
(x1, z) ∈ E (D) we also have (x2, z) ∈ E (D).
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Proof of Lemma 3.

D is a multipartite digraph with no cyclic triangle and β(D) = 1.

Observation 5
Suppose that for vertices x1, x2 ∈ X and y1, y2 ∈ Y the edges
(x1, y2), (y2, x2), (x2, y1), (y1, x1) are present in D forming a cyclic
quadrangle. Then these four vertices split every partite class Z 6=
X ,Y in the same way (they have the same out- and inneighbourset).
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Proof of Lemma 3
D is a multipartite digraph without cyclic triangles and β(D) = 1.

. . .

K

k

L

l1

k1 l2

M

m1m1

k2 m2

Let K be a partite class which has the largest outneighbourset;
it can be proven that K is a dominating set.
Let k be an element of K which has the most outneighbours.
k , l1 (and l2, k1) split M in the same way.
k , m1 (and m2, k2) split L in the same way.
⇒ k dominates all the vertices of V (D) \ (K ∪ L).
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Proof of Theorem 2.
Theorem 2 (in the case β(D) = 2)
Let D be a multipartite digraph with no cyclic triangle and β(D) = 2 ⇒
there is a dominating set of size at most 4.

K, L, M and N form a dominating set of D \ p.
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Remarks

Theorem 2. For every integer β there exists an integer h = h(β)
such that the following holds. If D is a multipartite digraph such
that D contains no cyclic triangle and β(D) = β, then D has a
dominating set of size h.

We can state a little bit more: There is a set of at most h1(β)
vertices of D which dominates the whole graph except perhaps their
own partite classes and at most h2(β) other exceptional classes.
From the proof we obtain the recursion formula

h1(β) ≤ 2β + (2β + 1)h1(β − 1)

and
h2(β) ≤ β + (2β + 1)h2(β − 1).



Remarks

An important special case is when |Ai | = 1 for each i ∈ [t]. In
this case β(D) = α(D) and we want to estimate γ(D), the usual
domination number of D, the smallest number of vertices in D whose
closed outneighborhoods cover V (D).
The class of digraphs with no directed triangles, is studied already
and called the class of clique-acyclic digraphs.

Theorem 6
Let f (1) = 1 and for α ≥ 2, f (α) = α+ αf (α− 1). If D is a
clique-acyclic digraph then γ(D) ≤ f (α(D)).
Special case: If α(D) = 2, then γ(D) ≤ 3.



Thank you for your attention!


