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Our main goal is to produce a ranking technique which overcomes shortcomings of the numerous univer-
sity rankings published. We propose a ranking method that provides a one-dimensional preference list of
universities which is solely based on the partial rankings of applicants. Our ranking is free of subjective
weights and uncomparable dimensions.
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1. Introduction

Enormous literature is available on the history, development and recent practice of university
ranking (as a starting reference, see [9,18,22–24] and references therein; also see [21]). An
international effort initiated by the European Commission has been undertaken to develop a
multidimensional hence more flexible ranking system of universities in Europe. That report van
Vught and Ziegele [23] concludes that accuracy, relevance and availability of data constitute
the key challenges for any indicator-based ranking of higher education (HE) institutions (see
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2 A. Telcs et al.

also [18]). Other issues widely debated among researchers and practitioners include indicator
weighting [16] and the requirements of a rigorous interpretation of the output of the analysis.

We should bear in mind that there is no such thing as a single perfect ranking (see Arrow’s [2]
seminal paper) method in general and in particular of HE institutions both on the national and
the international level. The limitations are manyfold and numerous. On the one hand, ranking
uses methods of different mathematical disciplines like combinatorics and operation research,
partly matrix theory (see the beautiful book by Langville and Meyer [10]) and the last word is
still not (and cannot be) told. On the other hand, difficulties are rooted in data collection, expert
judgments on appropriate weight of composite indexes and methodology. Methodology of rank-
ing is deeply investigated by Goldstein and Spiegelhalter [6] and Leckie and Goldstein [11,12]
in the case of education and health institutions. They present the weaknesses (rooted in tempo-
ral change and strongly overlapping confidence intervals) of the linear model used in ranking.
Their observation is very much relevant in the case of the very popular and acknowledged index-
based university ranking systems like the Times Higher Education World University Rankings
(THE), Academic Ranking of World Universities (ARWU) compiled by the Shanghai Jiao Tong
University and many others.

Having seen the complexity of the problem we seek for an error prone, transparent and unbi-
ased ranking method without expecting omnipotence. We consider a nonparametric method,
which is free of model assumptions, let it be linearity, normality of variables or other.

This paper is the first one in a series in which we try to investigate the competitive positions
of HE institutions (universities in short) trying to pinpoint the pitfalls rankers may face. In this
paper, we develop an unbiased, one-dimensional preference list of universities based solely on
the partial ranks generated from student applications. At this stage of our research, we compare
the ranking we obtained with results of different sources. In later works, we plan to incorporate
university indicators, local, regional and economic indicators, to analyze the choices of students.

In general, the problem to create the best fitting (lowest cost) linear order, based on a complete
or incomplete weighted directed graph, is very difficult. Several heuristic methods have been
developed to obtain an approximate solution [12].

In what follows, we focus on the construction of the aggregate of the applicants’ preference
list. Our data cover the 2001–2010 period annual university applications in Hungary.

In Section 2, we provide the foundation of preference aggregation methods, and in Section 3,
we present their results on our case, on student preferences. In Section 4, we study how the
aggregation methods work on simulated data.

1.1 Motivation and background of the study

University ranking became a global, multiparty and multi-faceted competitive game. Players
include universities, national and international ranking bodies, publishing houses, governments
and other policy makers as well as students. Both competition and competitiveness analysis
have several dimensions in the case of university ranking. This is why it might be assumed that
the choice of ranking method or technology by the rankers is considerably influenced by their
perceptions as to which kind of ranking technique could help them to achieve the maximum level
of worldwide reputation. Since no adequate measure of competitiveness of university rankers is
known from the literature, reputation can be understood as a proxy of it. In the following, we
limit ourselves to the methodology of constructing university ranking lists, while we believe that
the analysis of competition between rankers is also a challenging task for researchers. Our main
focus is to produce some ranking methods that produce unbiased ordering, preference lists of
universities which are based solely on the partial ranks generated by applications of students.
Our ranking exercise is limited to the higher educational institutions of a country with 10 million
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Journal of Applied Statistics 3

inhabitants and over 30 universities. However, it covers 10 years of application data with more
than hundred thousand applications per annum.

University ranking1 is, in the first place, about competition between HE institutions. Further-
more, it is the product of a service industry with institutions preparing university ranking lists as
players. Therefore, this is a very special and complex case of competition and competitiveness
analysis. Competition taking place between ranking institutions (‘rankers’) is not only influenced
by the quality of their respective ranking methods and ranking lists, but also by the acceptance of
their ranking lists by all the interested parties (the latter include students and their families, uni-
versity employees, current and future employers, government officials and many other players in
politics and the economy).

As in many other competitive situations there is no such thing as perfect ranking method
and/or ranking in this case either. Indicators, weights and methodologies used all have impact on
the final result of ranking, while there is no one universal benchmark to compare and judge on
the relevance and correctness of the ranking.2 It is also influenced by preconceptions, common
beliefs and certain interests of players.

The technology of university ranking reached a high level of sophistication in recent years.
This special field of quantitative economic analysis can be regarded from different angles. It
may be expected to produce a global score in a very particular service sector giving thus a certain
picture of competition. It is also an applied statistics and econometric exercise. Last but not least,
it is a point of reference for governments and policymakers as well as a lucrative business for
publishing houses.

2. The methods

2.1 The source of data

The rough data source is the Hungarian national center of HE applications – Educatio Nonprofit
Ltd. This organization collects and handles all HE applications. Its database contains the annual
applications. Our subset contains 10 years of application records, and each has 10 fields:

(1) Year
(2) Semester
(3) Student ID
(4) Number of personal preference order
(5) HE institution
(6) Faculty/school
(7) Course
(8) Level of study
(9) Form of study

(10) Government or private financing of tuition.

Each record refers to a single application. One student may make more than one. It is typical
that a student applies to 3 places but there are cases of more than 10 applications to differ-
ent HE institutions. Our database contains more than 400, 000 records per annum from more
than 100, 000 applicants. From the point of view of an applicant, it means as many records as
applications he or she has ordered in the field #4 according to his or her preference.

It is clear from this structure that we may lose a lot of information and the outcome will be
very biased if only the HE institution is considered without respect to the Faculty or School
(e.g. Law, Engineering, Medical or other) within the institution where courses to be taken by the
applicant are offered. Imagine that a student named the course C1 at faculty F1 of university U1
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4 A. Telcs et al.

as his/her first preference, a completely different C, F, U as second and a course C2 from faculty
F1 of university U1 as third. How can we interpret that information in a final ranking? Of course
at the very end such a mix will be inevitable, but we decided to store the input data without any
loss of information.

We will filter the dataset later with respect to the form and financing of the studies in order
to reduce the number of such ambiguous cases. Also we shall consider well-defined fields of
studies and create preference lists of courses instead of entire universities at least in the phase
of thorough evaluation of our proposed methods. Therefore, we present a university ranking list
only at the final stage of this work.

2.2 The data representation

To ease the terminology in the sequel, we shall use the term university instead of object (to
be ranked and might be university, faculty or course until it is not specified otherwise). Let m
be the number of courses and n the number of applicants. The ith applicant choice vector is
ai := [ai

1, . . . , ai
mi]

T, i := 1, 2, . . . , n of length mi less than m or equal to m; the set of vectors is
A := {a1, . . . , an}.

The individual choices are coded in the matrix of objects (courses or later faculties, uni-
versities). The matrix is the adjacent matrix of an oriented graph on the vertices, representing
objects. If applicant i preferred object k to l then there is an oriented edge from l to k. Now some
cautionary notes are in order.

(1) The oriented edges are multiple edges in the final graph.
(2) If i has preference list [1, 3, 2, 4] then edge points to 1 are not only from 2 but from 3 and 4

as well.
(3) The unranked universities are less preferred than any of the named ones.

Let us observe that in the second example the unranked universities (3,4) have the same role;
hence, it is rational to treat them in the same way. Universities 3 and 4 have not been chosen,
both are less preferred than 1 or 2 and meanwhile there is no preference order between 3 and
4. The graph representation is intend to reflect this situation and orient edges from 3 (and 4)
toward 1 and 2 and at the same time no edge is defined between 3 and 4 (Table 1). Later another
equivalent representation will be given, in which two edges will be defined one from 3 to 4
and other oppositely, and half weights will be assigned to them. We shall see that the latter
representation is also suitable for handling our ranking problem.

Table 1. The graph representation of applications.
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Journal of Applied Statistics 5

2.3 The cost function

Once we have a preference list of the universities we have to judge its correctness compared
to the individual partial, preference lists. The comparison should be based on a penalty or cost
function h. Its definition is crucial in the evaluation of the ranking methods. The Kemeny–Young
method [7] is widely accepted to measure the correctness of a ranking. In that we consider the
given full ranking as an oriented path and count all the oriented edges pointing in the opposite
direction. This counting can be represented in the matrix scheme easily.

Let M be the (m by m) adjacency matrix of the oriented graph of applications. The element
mi,j, i �= j, shows how many times the university i was preferred against j.

Reverse order penalty. Now let b = [b1, b2, . . . , bm]T be an arbitrary ordering; furthermore, let
Mb be the column rearrangement of the matrix M so that the columns follow the order of b. The
cost or penalty function can then be defined as follows:

h(M, b) =
m∑

i=1

m∑
j=i+1

(mb)i,j. (1)

Least squares. There are other possibilities to measure the correctness of a ranking b. The
usual square error is applicable

n∑
i=1

m∑
j=1

(ai
j − bj)

2
, (2)

where ai
j ∈ ai, bj ∈ b.

It is known that the Borda–Kendal method minimizes Equation (2) [8].
Measure of compliance. The pairwise comparison method involves another measure of

compliance, the stress.

stress :=
√√√√∑m

i=1

∑m
j=1,i�=j (pcmi,j − pi,j)

2∑m
i=1

∑m
j=1,i�=j pcm2

i,j

. (3)

This measure compares the aggregate pairwise comparison matrix (PCM) to the one given by
the ordering again in square errors.

Later we shall compare methods using those cost functions without elaborating on the
difference of their inherent nature.

2.4 Node degree ranking

The simplest rank aggregation is based on the out-degrees of the directed graph. This method
assumes that a university has lower position in the ranking if it has higher out-degree, that is, the
more universities are preferred relative to it the lower the preference is. Ranking is then quick and
easy. Consider the preference matrix M and calculate the column sums. The increasing order of
the sums is the degree rank b. Rearrange the columns according to b. The method is demonstrated
in Tables 2a and 2b.

It should be noted that the method may lead to ties – the final order is not unique – since
column sums may coincide. In the case of a high number of edges, the coincidence of column
sums is very unlikely. In such a case, the cost function has no global minimum.
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6 A. Telcs et al.

Table 2a. The node degree ranking.

Table 2b. The change of the penalty function.

2.5 The rank-sum method

The rank-sum method is widely used and known. Here we can demonstrate it using the graph
representation of preferences in a very concise way (Table 3). This method differs from the node
degree method only in the handling of the unranked universities. In this model, the unranked
entries are pointing to the ranked ones with an oriented edge but the edge has a weight different
from one. In other words, the individual incomplete preference vector ai = [ai

1, . . . ai
k] (k = ki

the number of ranked objects) is completed with the average rank of unused ranks. That is, all
unranked universities got the same rank r = ∑k

l=ki+1 l/(m − ki). The ith student has the rank

vector si ∈ Rm, where si := [si
1, si

2, . . . , si
m]

T
and

si
j =

⎧⎪⎪⎨
⎪⎪⎩

p if ai
p = j ∈ ai,

1

m − ki

m∑
l=ki+1

l.
(4)

We define

x = s̃1
1

ki
= si

1 − 1

k2
i

(∑m
l=ki+1 l

m − mi
− 1

)
=

∑m−1
l=ki

l

ki(m − ki)
(5)

for l /∈ ai. In our example, x = 1.25.
The rank-sum and the edge weight sum should be equal that needs normalization and yields

the edge weight defined as

mi
j,p =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if ai
g = j, ai

h = p ∈ ai, g < h,∑m−1
l=ki

l

ki(m − ki)
if j ∈ ai, k /∈ ai,

0 otherwise.

(6)
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Journal of Applied Statistics 7

Table 3. The correction of rank-sum weights.

It is worth to note that the rank-sum and node degree methods differ only in the handling of
unranked universities.

2.6 Pairwise comparison method for partial ordered lists

The pairwise comparison method is rooted in the thorough investigation method of survey taking
in which respondents compare all the pairs of objects under scrutiny. This method is free of
information loss and provides a very accurate picture on respondent opinions. In our case, the
students do not provide pairwise comparisons but a linear preference order. Nevertheless the
pairwise preference can be read out from this strict ordering without ambiguity. Since we have
a partial list we have to turn to the recent extension of the pairwise comparison method to ones
based on incomplete comparisons. As previously we assume that the unranked universities are
less preferred to all the designated ones. We also assume that the preference is neutral between
any unranked universities. Several solutions have been published [1,4,20]. For the incomplete
comparison problem, we adopt the method of Fedrizzi and Giove [5].

The PCM input matrix is obtained from the aggregated preference matrix M. Let the element
of the PCM, for all i, j, be

pcmi,j =
⎧⎨
⎩

mi,j

mi,j + mj,i
if mi,j + mj,i > 0,

0, 5 otherwise.
(7)

The diagonal elements of the PCM are neglected. The sum of symmetric pairs, pi,j + pj,i,
equals one. The value pi,j reflects the proportion of students preferring i to j.

The method then can be carried out in a nutshell as follows. A new matrix Z is created. The
matrix entries represent the difference of row and column differences of PCM. It can be seen
that the row and column sums of Z are zero. Let zi denote the column sum of Z. As a result we
have a non-negative real zi, for all entities. The increasing order of zis provides b as an estimate
of the preference list of entities.

There is an elegant verification of the correctness of the final scores. We introduce D the
distance matrix of the preference values di,j = zi − zj, i �= j, and then calculate a matrix P within
which pi,j, the entries, correspond to the p-values of di,j of the standard normal distribution. The
comparison of the matrices P and PCM is done with the well-known χ2 test. Small stress values
(see Equation (3)) indicate that the estimate of the preference list is correct.
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8 A. Telcs et al.

2.7 Genetic algorithms

Genetic algorithms (GAs) [14] are widely used solving non-deterministic polynomial-time (NP)-
hard problems (as the linear ranking is being equivalent with the travelling salesman problem)
and other complex optimization task. GAs are successfully applied where a good approximation
of the optimum is acceptable while to get the perfect optimum is impossible or very difficult due
to the lack of closed-form solution or due to the fact that the computation is beyond reach.

We are facing a version of the travelling salesman problem for which several GAs are devel-
oped in [3]. In our case, the fitness function is the inverse cost function, the competing species are
the permutation of the objects and the genes are the positions of the objects in the permutations.

If b is a list of entities as above the cost function h(M , b) can be calculated easily. Simply the
columns of M are rearranged according to the increasing order in b and summing up the cells
below the diagonal. The graph interpretation of this is the following. The nodes are the entries
in b and h(M , b) is the cost of the Hamilton path along b. The task is to find the minimal cost
Hamilton path, which is a travelling salesman problem on the full graph. The GA is not using
the edge costs but the cost function.

In our GA setup, a permutation of the entity is a specimen in the population. The fitness func-
tion of a specimen is the inverse cost function. As usual two operations modify the genes, recom-
bination and mutation. Let us illustrate them with very simple examples. Let m = 10 and consider
a simple transposition in the ordering [1, 2, 3, 4, 10, 5, 6, 7, 8, 9]T → [1, 2, 3, 10, 4, 5, 6, 7, 8, 9]T),
that is, an elementary mutation. The recombination is based on two sequences of genes. The
input sequences are [1, 2, 3, 4, 6, 10, 5, 7, 8, 9] and [3, 2, 1, 6, 4, 10, 9, 8, 7, 5]; their recombina-
tion is [1, 2, 3, 6, 4, 10, 9, 8, 7, 5]. In the parameterization of the GA, we followed the method
presented in [3].

2.8 Data aggregation

In our rough dataset entries are courses provided by faculties of universities. In our investiga-
tion, we might be interested in the ranking of faculties or universities not only competing courses.
The picture is quite complex; there are cases when the same course is offered not only by differ-
ent universities but also by different faculties at the same university. The graph representation of
preference lists provides an easy and transparent way to obtain higher level rankings. Data aggre-
gation means in the graph aggregation of nodes and edges receive sum of the edges connecting
the aggregated nodes.

The aggregation in details. All the courses receive a unique identifier i = 1, . . . , n, those are
the nodes of the graph. On an aggregate level, a faculty, university or region has its own identifier,
k, l, m and each object below this inherits this identifier. For instance, a course carries the iden-
tifier of the faculty, of the university and of the region as well. If the aggregation is on the level
of faculties, we have a graph of faculties (nodes with the faculty identifiers) and all the edges
between the courses of the same faculty are neglected, meanwhile the edges between courses of
different faculties kept and form multiple edges between the faculty nodes.

Let us consider an example. We have m = 4 courses belonging to faculties I and II. The course
records are (1,I) and (2,I) and (3,II) and (4,II). A student preference list was ai := [1, 2]T.

In our example the student preferred 1 to 2, while 3 and 4 are not ranked, in our convention
3 and 4 are less preferred as 1 and 2 as well. As a result in the aggregate graph we have one
link from II to I with weight 4. That is reflected by the matrix of faculties in Table 4. In other
words, courses of the same faculty merged into one node of the faculty graph and the oriented
edges are also merged into edges between the higher level nodes, faculties in our example. In the
same way, faculties of the same university can be merged and edges inherited, merged into edges
between the universities.
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Journal of Applied Statistics 9

Table 4. Node aggregation.

The aggregation procedure works in the same way between any two levels.

2.9 Test of the methods

The correctness and efficiency of the selected methods are tested on synthetic data. The tests
work as follows. There is a given order (b = [1, 2, . . . , n]T, we call it target) to be reconstructed
from a set of partial orders. The dataset contains perturbation of the target. The robustness and
efficiency are investigated against different perturbations. The simplest one is if the target is
modified uniformly and randomly and the resulted sample set is censored according to a given
upper percentile and Euclidian distance from the target.

2.10 Uniform sample

Now we describe this perturbation and test it in detail. We generate random preference vectors
of the same length as the target for the sake of simplicity. (It might be appropriate to generate a
partial preference list of much smaller length and fill it up as described above but we omit this
case since in the second test we generate partial preference lists close to real-life situation). The
pseudo-code of the list generation is presented below. The censoring of the randomly generated
list is done by the function

f (x) =
{

0 if x < 0,

e−x if x ≥ 0.
(8)

This ensures that the closer a permuted list is to the target, the higher is the probability to be
selected into the data set.

2.11 Choice simulation

Simulation is included in order to convince the reader that our methods and result are not
fabricated toward the given dataset and applicable in general. The methods are tested against
generated preference lists and as we shall present they provide the same result.

In order to run a test on a dataset close to the real one, we simulate students’ choice generating
a sample based on the multinomial logit model. This model is very popular and widespread in
the study of individual choice/preferences [13]. The background theory is based on the analy-
sis of permutations by Plackett [17] (see also [19]). Let us assume that the choice depends on
t parameter. Denote Uai

j
the utility of the jth course based on the t parameter for student i and
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10 A. Telcs et al.

ai = [ai
1, ai

2, . . . , ai
m]

T
the ranking list of the ith student, based on the order of utility values:

Uai
1
< Uai

2
< · · · < Uai

m
. For the sake of simplicity, we assume that all universities are ranked.

As usual, the utility is assumed to depend on the parameters Uai
j
= Vai

j
+ εai

j
= β1,ai

j
x1,ai

j
+

β2,ai
j
x2,ai

j
+ · · · + βt,ai

j
xt,ai

j
+ εai

j
, where εai

j
are i.i.d. logistically distributed random variables. The

weights of the parameters for the ith students are β1,ai
j
, β

2,ai
j

, . . . , βt,ai
j
. The probability of the final

order = [b1, b2, . . . , bm]T based on the utilities is

P(Ub1 < Ub2 < · · · < Ubm) =
m∏

j=1

exp(Vbj)∑m
l=j exp(Vbl )

, (9)

where Vbl = [Va1
l
, Va2

l
, . . . , Van

l
]T are the ‘error free’ utilities. We generate sample elements

according to this model and assume that the individual weights are normally distributed and
i.i.d. The ranking methods can be tested and compared on such data sets which model real-life
individual choices.

3. Examples

The ranking methods described above are tested on the application data of 2011. The courses
of physics at BA level and MBA programs are chosen. The aggregation is demonstrated on the
aggregated data of the applications of Bologna type education and the earlier five-year system3.
In the case of BA applications only government financed study places are included, while in the
case of the MBA self-financed applicants are also included. The results are summarized in the
Tables 5 and 6.

Table 5. Preference list of students applied to business informatics state financed positions in 2011.

Methods First-order
(RS, CS, PW, GA, PR) RS PW PR Application application

Pref. ord. Institute Mean rank Z �−1(Z) PR(E) 2011 2011

1 SZTE 6.0901 0.086 0.5343 0.3065 506 467
2 BCE 6.1234 0.079 0.5315 0.3021 477 453
3 DE 6.1386 0.0758 0.5302 0.3057 483 435
4 BGF 6.2256 0.0588 0.5234 0.2762 442 286
5 SZE 6.3827 0.0247 0.5099 0.2776 362 307
6 PTE 6.4638 0.0077 0.5031 0.2778 323 270
7 PE 6.6927 −0.0402 0.4840 0.2699 207 168
8 ME 6.7193 −0.0458 0.4817 0.2791 196 153
9 KRF 6.7238 −0.0467 0.4814 0.2901 194 154
10 DF 6.7536 −0.0529 0.4789 0.294 181 136
11 ZSKF 6.817 −0.0663 0.4736 0.3081 150 77
12 NYME 6.8835 −0.0802 0.468 0.2731 115 81

Error value h(M,b): 92,818.5 Inhomogeneity index (I) 47.08%
Stress: 0.0043

Note: Methods: RS, Rank Sum; CS, Column Sum; PW, Pairwise Comparison; GA, Genetic Algorithms; PR, Page
Rank.
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Table 6. The preference list of students applied to MBA in 2011-ben.

Methods First-order
(RS, CS, PW, GA, PR) RS PW PR Application application

Pref. ord. Institute Mean rank Z F − 1(Z) PR(E) 2011 2011

1 PE 3.1593 0.3925 0.6527 0.5150 219 166
2 BME 3.8488 0.0822 0.5328 0.3909 102 94
3 ME 3.9140 0.0647 0.5258 0.3876 98 85
4 DE 4.2640 −0.0567 0.4774 0.3529 54 40
5 PTE 4.3977 −0.1153 0.4541 0.3329 35 29
6 BCE 4.5791 −0.1759 0.4302 0.3162 14 9
7 SZTE 4.6093 −0.1914 0.4241 0.3107 9 7

Error value h(M,b): 3810 Inhomogeneity index (I) 42.19%
Stress: 0.0038

Note: Methods: RS, Rank Sum; CS, Column Sum; PW, Pairwise Comparison; GA, Genetic Algorithms; PR, Page
Rank.

3.1 Comparison of methods on 2011 application data

In the business informatics BA case, all the methods produced the same ranking. The 1st univer-
sity got 506 applications, while the 12th only 115, but this difference is not reflected so markedly
in the preferences. The indicators like PR(E) or Z for the pairwise comparison method as well as
the average rank values are close to each other.

In the MBA example, the mix of government and self-financed applications is considered.
Still, the preference matrix can be reconstructed from the Z-values, as the low stress index indi-
cates. The average rank values except for the first one are close to each other, which is also
reflected in the high homogeneity index.

Different methods resulted in the same order. The details provide additional information.
If we study the applications to 39 universities, the ordered lists show some minor differences.

Table 7 shows the universities ranked to the first 10 positions.
One can see that the smaller error is produced by the GA, the biggest among the heuristic

methods produced by the Page Rank method [15], and the lowest by the pairwise comparison.
On the first six positions, all the heuristic methods coincide, and there are only small position
swaps below. The Page Rank method agrees only at the first three places with the others. The
best methods, the GA and the pairwise comparison method, produce only a single difference in
the ordering. The rank correlation of the lists of different methods is shown in Table 8.

4. Test of methods on synthetic data

In the previous section, we described the generation of random, individual preference lists. It is
not intended to model students’ behavior, but some properties of the applications are taken into
consideration. The majority of the applications contained three courses maximum since listing
more than tree needed another form to fill in. Less than 1% of the applications contained 10 or
more courses, so we limited the length of the simulated applicant’s preference list to 10.

First scenario. Let b = [1, 2, . . . , 10]. The random preference lists (for which the distance from
b is measured with the Euclidian distance (see Equation (7)) distributed by e−x, where x is the
distance from b and λ is the parameter of the distribution set to λ1 = 1; λ2 = 0.1; λ3 = 0.01
(Figure 1).

Results are summarized in Table 9.
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12 A. Telcs et al.

Table 7. The preference list of applications to the master and the traditional
one-stage education in 2011.

Methods CS, RS PW GA PR
Pref. ord. Institutes Institutes Institutes Institutes

1 ELTE ELTE ELTE ELTE
2 SZTE SZTE SZTE SZTE
3 DE DE DE DE
4 PTE PTE PTE SZIE
5 BCE BCE BCE BCE
6 BME BME BME PTE
7 SE SE SZIE BME
8 PPKE SZIE SE SE
9 SZIE PPKE PPKE PPKE
10 ME ME ME ME
h(M , b) 16,608,409 16,607,452 16,608,451 16,607,295
I 48.29% 48.29% 48.29% 48.29%

Stress 0.0018

Note: Methods: RS, Rank Sum; CS, Column Sum; PW, Pairwise; GA, Genetic Algorithms;
PR, Page Rank.

Table 8. The rank correlation of the lists.

Rank corr. CS, RS PW PR GA

CS, RS 1 0.991 0.498 0.892
PW 0.991 1 0.507 0.912
PR 0.498 0.507 1 0.507
GA 0.892 0.912 0.507 1

Note: Methods: RS, Rank Sum; CS, Column Sum;
PW, Pairwise; GA, Genetic Algorithms.

It is easy to recognize that the smaller the λ the bigger the inhomogeneity and the stress, while
all the methods reconstruct the original order b.

4.1 The simulated logit

The next simulation has been designed to test the robustness of the methods on logistic data.
Data are generated by a logit model based on synthetic parameters, not related to real values of
university utilities. Meanwhile we keep in mind that in a forthcoming study the logit model and
our ranking methods will be used and results matched. We assume that the utility is determined
by three factors (one may picture that those are the distance between home and university, the
others are compulsory fees and faculty credits). The contribution to the overall utility is positive
for one and negative for two factors, all having a unit absolute value. The unknown individual b
coefficients are chosen randomly. The generated utilities are summarized in Table 10.

In order to have the same number as the number of applications in 2011 in Hungary, we gen-
erated 161,731 random utility values so that Uij = Vi + eij(i = 1, . . . , 10; j = 1, 2, . . . , 161731),
where eij follow logistic distribution with m = 0 and b = 1 parameters. The original order of the
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Figure 1. Rankings of simulated application.

objects was b = [1, 2, .., 10]T and the different methods were tested on the randomly generated
utilities Uij.

The results listed in Table 11 are based on the data simulating where all applications contain
all the universities in our sample thus providing a full ranking. We can refine this picture taking
into consideration the distribution of the length of the preference lists, created by the applicants.
The frequency of the length of the partial ranking list is shown in the second column of Table 12.
The simulated dataset is prepared, full lists are truncated so that it contains the same number of
partial preference lists of given length as the real applications. All the methods discussed above
are tested on this dataset.

Table 9. Results of simulated applications, P(Z) = �−1(Z).

λ

1 0.1 0.01

OBJID Mean rank P(Z) PR(E) Mean rank P(Z) PR(E) Mean rank P(Z) PR(E)

1 1.042 0.9367 0.9593 2.4027 0.858 0.5274 4.15 0.6431 0.3971
2 1.9683 0.8698 0.278 2.5293 0.855 0.5136 4.1947 0.6378 0.3945
3 2.9914 0.7679 0.0489 3.053 0.8057 0.4412 4.4722 0.6162 0.3717
4 3.9983 0.6467 0.0086 3.9689 0.7054 0.346 5.0917 0.5531 0.3264
5 5.0002 0.5237 0.0016 5.4094 0.4943 0.2303 5.2027 0.5326 0.3262
6 6.0028 0.3242 0.0004 6.346 0.3785 0.1827 5.3167 0.519 0.3238
7 7.0125 0.2102 0.0001 7.0188 0.3054 0.1506 5.7594 0.4739 0.2888
8 8.0418 0.1364 0 7.3132 0.2879 0.1475 6.0257 0.447 0.2735
9 8.9428 0.0717 0 8.3234 0.1694 0.0894 6.7814 0.3671 0.2282
10 9.958 0.0215 0 8.6353 0.1183 0.0699 8.0055 0.2298 0.1432

I Stress 0.0055 I Stress 0.0135 I Stress 0.0234
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14 A. Telcs et al.

Table 10. Simulated coefficients and the utility values.

x. β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

x1 1 −0.05 −0.06 −0.06 −0.16 −0.17 −0.58 −0.55 −0.71 −0.81 −1
x2 1 −0.25 −0.28 −0.17 −0.21 −0.13 −0.27 −0.4 −0.4 −0.29 −0.32
x3 1 0.18 0.15 0.02 0.1 0 0.03 0.04 0.14 0.09 0.16
V −0.12 −0.2 −0.22 −0.26 −0.3 −0.82 −0.91 −0.97 −1 −1.16
Rank 1 2 3 4 5 6 7 8 9 10

Table 11. Results of the different methods on full simulated
lists.

Pref. ord. Mean rank Z �−1(Z) PR(E)

1 3.2543 0.6681 0.748 0.4517
2 5.0303 0.5406 0.7056 0.44
3 5.1982 0.1622 0.5644 0.3405
4 4.9706 0.1438 0.5572 0.3348
5 3.5575 0.1234 0.5491 0.3254
6 8.4251 0.1032 0.5411 0.306
7 6.3743 0.0803 0.532 0.2937
8 5.305 −0.234 0.4076 0.2285
9 5.1297 −0.701 0.2417 0.1449
10 7.7845 −0.887 0.1876 0.1238

Stress= 0.0147 I=30.22%

Table 12. Results on simulated partial lists.

Number of appl. Orig. ord. RS = CS PW GE PR

1 161,731 1 1 1 1 1
2 128,286 2 2 2 2 2
3 107,070 3 3 3 3 4
4 42,738 4 4 4 4 3
5 26,008 5 5 5 5 6
6 16,906 6 7 6 6 5
7 7365 7 6 7 7 8
8 5132 8 9 8 8 7
9 2995 9 8 10 9 9
10 2215 10 10 9 10 10

Computational demand (Pentium core 2 duo, 4 GB RAM): 120 ms 210 ms 2782 ms 86 ms
Stress: 0.0459 I 33.85%

Note: Methods: RS, Rank Sum; CS, Column Sum; PW, Pairwise; GA, Genetic Algorithms; PR, Page Rank.

One can find that the Page Rank method is the quickest but it does not reconstruct the original
order. The GA is the slowest but able to reproduce the original order. The other methods pro-
vide scores as well, while GA does not. The pairwise comparison method provides the mutual
distances as well.
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Table 13. Faculty excellence and student preference list calculated by the GA method (from 2001 to 2011).

Faculty
Student preference list (GA) excellence

Rank 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2011

1 ELTE ELTE ELTE ELTE ELTE ELTE ELTE ELTE ELTE ELTE ELTE ELTE
2 SZTE DE BGF SZTE SZTE SZTE SZTE SZTE DE DE DE SZTE
3 PTE SZIE SZTE DE PTE PTE DE DE SZTE SZTE SZTE DE
3 DE SZTE PTE PTE DE DE PTE PTE PTE PTE PTE NYME
5 BGF PTE DE BGF BCE BCE BCE BCE BCE BCE BCE SE
6 SZIE BGF SZIE BKÁE BGF BGF BGF BME BME BME BGF PTE
7 NYF NYF BKÁE NYF BME BME BME BGF BGF SZIE SZIE KRE
8 KJF BKÁE BME SZIE NYF NYF ME NYME SZIE BGF BME BCE
9 BME BME NYF SZE PPKE ME BMF ME ME NYME NYME ME
10 ME ME ME BME VE SZIE NYF SZIE NYME ME ME PE
11 EKF KJF BMF ME SE PPKE SZIE PE BMF SE SE BME
12 TSF TSF EKF BMF EKF EKF SE BMF PPKE BMF SZE NYF

5. Discussion

The proposed graph representation of data is able to reflect all the information coded in the
applications without loss of data.

The methods investigated properly aggregate partial preference lists and provide a single ‘opti-
mal’, best fitting one. The problem to find the optimal linear order is an NP-hard combinatorial
task, only heuristic solutions are feasible. If we want to establish the institutional ranking, the
rank-sum method seems to be the best; if the relative positions are also needed, we propose to
use the pairwise comparison method.

5.1 Future research

Based on the results presented we can use methods to develop preference lists based entirely
on students’ choices. On the other hand, several university rankings have been published, all of
which are based on complex methodologies. Those take into consideration several characteristics
of universities and use same weighted combination of them in order to create rankings. Other
methodologies provide multidimensional rankings. Those contrary to the name are still based on
weighted combination of several characteristics of the universities, but those characteristics are
grouped into different dimensions like research, quality of education, etc. We plan to follow a
totally different approach. Using any of the methods proposed and tested above, we generate a
linear preference list solely based on students’ choice and try to understand their perception of
university characteristics via the preference lists.

We would like to demonstrate our approach with one final example. A Hungarian business
weekly called HVG publishes a university ranking each year, which is basically identical to
the online ranking http://eduline.hu/rangsor. This ranking is based on two major dimensions.
One is students’ achievements (collected entry criteria score, number of language certificates
and student contest credits), the other is faculty excellence (research performance) and their per
student ratio.

Table 13 shows the top 12 institutions (from http://eduline.hu/rangsor) ranked by the institute
excellence and students’ preference developed by the genetics algorithm. The rank correlation
of the two 2011 lists is 0.329.
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16 A. Telcs et al.

Figure 2. Faculty excellence and student preference list calculated by the GA method (from 2001 to 2011).

The evolution of preferences in the period 2001–2011 is depicted in Figure 2. The first position
is steady, the next two are flipped, the others show a very mixed picture. We know that the
different aspects of faculty excellence are measured accurately, but their combination weights
are artificial (subjective). Our ordering method is completely free of such bias, hence provide
the opportunity to find the real factors and weights students assign to different aspects of faculty
performance. Our work is not going to replace university rankings. We do not intend to develop
a new one, we hope instead that we can contribute to the better understanding of their meaning
and the motivation of students’ preferences.

5.2 Summary

This paper is the first one in a series in which student preferences in their choice of university are
investigated. In this paper, we used a proper data representation partial preference list contained
in the students’ applications. Based on that data structure different levels of aggregation (course,
faculty, university) and their analysis and ranking are possible. Several methods of partial list
aggregation are explained and compared. As such the obtained student preference lists provide a
solid base for further studies to investigate factors influencing students in their choice.
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Notes

1. Universities are only a subset, albeit the by far most important one of the set of HE institutions. Literature usually
speaks of ‘university ranking lists’ which is, in a strict sense of the term, inaccurate. The reason is that it does not
cover other higher education institutions such as colleges or some high-level schools with the intellectual capacity
of a university but without such a name (e.g. the London School of Economics). To be fair however, we must
note that (1) it is very rare that colleges figure on international HE ranking lists; and (2) special schools enjoying
university reputation are usually considered as such also by the authors of ranking lists. This is why we, although
with some reluctance, also refer to ‘university ranking lists’ in this study.

2. On this diversity, see, for example, [18,21].
3. Hungary had traditionally five-year long university studies in most of the cases till the adaptation of the Bologna

3 + 2 system.
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