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Abstract

In this paper random walks on the Penrose tiling and on its local
perturbation are investigated. Heat kernel estimates and the invari-
ance principle are shown proving Domokos Szász�s conjectures[11].

1 Introduction

The Penrose tiling is an unfailing source of beautiful properties and phenom-
ena to be explored. Domokos Szász [11] formulated the conjecture that the
simple nearest neighbor random walk on Penrose graph satis�es the invari-
ance principle. Later he added that local impurities does not destroy that
fact. Here we present the proof of the conjectures.
Roughly isometric weighted graphs (c.f. [6]) share di¤usion properties.

It is enough to refer to the nice paper of Delmotte in which he shows that
the two-sided Gaussian heat kernel estimate (GE�;2):

c

n�=2
exp

 
�Cd (x; y)

2

n

!
� epn (x; y) � C

n�=2
exp

 
�cd (x; y)

2

n

!
(1)

is stable under rough isometry for random walks on weighted graphs (here
� � 1, epn = pn + pn+1 ). In other words if two graphs are roughly isometric
and (1) holds for one then holds for the other as well. We know that (1)
holds for the simple symmetric random walk on Z2 (with � = 2) consequently
holds for the Penrose graph if it is roughly isometric to Z2: A very short,
direct proof will be given of rough isometry between the Penrose graph and
Z2.
Unfortunately the exponents in the upper and lower estimates in (1) con-

tain di¤erent constants which re�ects that local inhomogeneities a¤ect the
di¤usion constant for small times (t < d2 (x; y) ). The rough isometry
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invariance and the Gaussian estimate (1) have been proved along a series
of estimates in which some cumulation of constants is unavoidable. Con-
sequently if we are looking for central limit theorem or for the invariance
principle we need a di¤erent approach.
In the �eld of stochastic processes and statistical physics a powerful

method is developed to investigate random walks in random environment,
on percolation clusters and interacting particle systems. A key result in
this direction is the celebrated paper by Kipnis and Varadhan [8] and its
in�uential extension by De Masi, Ferrari, Goldstein, Wick [4]. The latter
one provide us immediate derivation of the central limit theorem and the
invariance principle for the random walk on the Penrose net. The proof is
inspired by a result by Solomon, [10]. He has shown that the Penrose net is
bi-Lipschitz to Z2. This will be discussed in Section 3 and used in Section 4
Domokos Szász raised the question if invariance principle stabile with

respect to local impurities (modi�cation in a bounded region) of the Penrose
lattice. The positive answer will be given in Section 5.
In what follows we introduce the basic terminology then each statement

is proved in separate section.

2 Preliminaries

We will consider in�nite connected graphs with vertex set � and edges will
be denoted by x � y. The distance d (x; y) will be the shortest path metric.
In particular we will speak about the integer lattice Zm = (Zm; d) graph
where vertexes are element of Zm and x; y 2 Zm form an edge, x � y, if and
only if jx� yj = 1. We will speak about the integer lattice net (Zm; j:j) if we
consider the same vertex and edge set but the metric is the Euclidean one.
We do not de�ne the Penrose tiling ( c.f. [3] and see Figure 2), we assume
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that it is well de�ned and given for us on R2.

A part of the Penrose tiling ([14])

The Penrose net, (�; j:j) is a metric space, it is the set of centers of the tiles
equipped with the Euclidean distance. Two tiles are neighbors if they are
edge adjacent. Two vertexes of the Penrose net are neighbors if they center
of neighboring tiles, those vertexes form edges of the net, We will speak
about Penrose graph, with the same vertex and edge set but with d (x; y),
the shortest path graphs distance. Let � = (�; dP ) denote the Penrose graph,
and (Z2; dZ) integer lattice graph.
We distinguish tilings by �xing a reference vertex and identifying it with

the origin of Rd. Let d (x) be the degree of x, the number of neighbors.
The random walk on the Penrose net (and graph) is reversible Markov chain
with transition probability P (x; y) = 1=d (x) = 1=4 for x � y. It is clear
that d (x)P (x; y) = d (y)P (y; x) = 1. Denote Xi the actual position of the
Markov chain (random walk) which is well-de�ned for any �xed X0 2 �.

De�nition 1 A graph is weighted if a symmetric weight function �x;y > 0
is given on the edges. This weight de�nes a measure on vertexes and sets:

� (x) =
X
y�x

�x;y

� (A) =
X
x2A

� (x)

Denote B (x; r) = fy : d (x; y) < rg and V (x; r) = � (B (x; r)) its volume.
In particular the Penrose net (and graph) �x;y � 1 for edges zero otherwise.
The same applies for the integer lattice.
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De�nition 2 In general a random walk Xn on � with � is a reversible
Markov chain de�ned by the one step transition probabilities:

P (X n = yjXn�1 = x) = P (x; y) =
�x;y
� (x)

:

3 Heat kernel estimate for the Penrose graph

First of all we give the de�nition the bi-Lipschitz property and rough isom-
etry.

De�nition 3 A metric space (�; d) is bi-Lipschitz to (�0; d0) if there is a
bijection � from � to �0 and a constant C > 1 such that for all x 6= y 2 �

1

C
d (x; y) � d0 (� (x) ;� (y)) � Cd (x; y) (2)

De�nition 4 Two weighted graphs � with � and �0 with �0 are roughly iso-
metric (or quasi isometric) (c.f. [1, De�nition 5.9]) if there is a map � from
� to �0 such that there are a; b; c;M > 0 for which

1

a
d (x; y)� b � d0 (� (x) ; � (y)) � ad (x; y) + b (3)

for all x; y 2 �;

d0 (� (�) ; y0) �M (4)

for all y0 2 �0 and
1

c
� (x) � �0 (� (x)) � c� (x) (5)

for all x 2 �:

Remark 5 It is clear that if � from � to �0 is a rough isometry then there
is a rough isometry �0 from �0 to � as well..

Theorem 6 (Solomon [10]) The Penrose net is bi-Lipschitz to the integer
lattice net.

Proposition 7 The Penrose net is rough isometric to the integer lattice net.
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The statement follows from the bi-Lipschitz property. A very short and
direct proof can be given, which we present here.
Proof of 7. Denotem the smaller distance between the opposite boundaries
of the thin rhombus and " =

p
2m=4. Consider the integer net "Z2 It is clear

that if an open square with edge lenght " contains a center of a rhombus that
it is fully contained by the closed rhombus. Let 	 map the center of the
rhombus to the center of the square. It is clear that 	 is rough isometry
from the Penrose net to the integer net.

Proposition 8 The Penrose graph is roughly isometric to the integer lattice
graph.

Proof. Let us consider 	; the map introduced above, between � and "Z2.
Now we consider the graph distances dP ; dZ. It is clear that

dP (x; y) � dZ (	 (x) ;	(y)) :

The opposite inequality is also easy. Let 2L be the maxima number of
squares which is needed to cover the largest diagonal of rhombi. It is clear
that L is bounded since the diameter of the rhombi is also bounded. Then

dZ (	 (x) ;	(y)) � 2LdP (x; y) :

It is also clear that the conditions (4; 5) are satis�ed.

Lemma 9 The Penrose net and graph are rough isometric.

Proof. Let �1 the rough isometry from the graph � to the net Z2, �2 and
the identity map on Z2 which is bi-Lipschitz between the integer net and
graph, �nally �3 the rough isometry from the integer graph to the Penrose
graph. The existence of �3 follows from Proposition 8 and Remark 5. Then
� = �3 � �2 � �1 is rough isometry between the Penrose net and graph.
Now we recall Delmotte�s result [2] skipping the de�nition of the parabolic

Harnack inequality (PH2) since we do not need it in the sequel.

Theorem 10 Let � with � be a weighted graph. Assume that there is a
p0 > 0 such that for all edges P (x; y) � p0, then the following statements are
equivalent.

1. there are C; c > 0; � � 1 such that for all x; y 2 � and n > 0, such
that
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holds,
2.
(i)The volume doubling condition (V D) holds: there is a C > 0 such that for
all x 2 �; r � 1

V (x; 2r) � CV (x; r)
and
(ii) the Poincare inequality (PI2) holds:
there is a C > 0; such that for all x and, r > 1,f : B (x; r)! RX

y2B(x;r)

(f (y)� fB)2 � (y) � cr2
X

y;z2B(x;r)

(f (y)� f (z))2 �y;z

where fB = 1
V (x;r)

P
y2B f (y)� (y) ; f 6= 0; B = B (x; r)

3. The parabolic Harnack inequality (PH2) holds.

It is well known that the volume doubling property as well as the Poincare
inequality are rough isometry invariant. Consequently the properties (GE�;2)
and (PH2) are also rough isometry invariant.

Corollary 11 If � with � and �0 with �0 are roughly isometric graphs then
(GE�;2) (and (PH2) ) holds for one if and only if holds for the other.

Theorem 12 The Gaussian estimate (GE2;2) holds for the random walk on
the Penrose graph.

Proof. Proposition 7 ensures that Penrose graph is rough isometric to Z2.
It is well-known that (GE2;2) holds for the random walk on the integer lattice
(graph), and then by Corollary 11 (GE2;2) holds for the random walk on the
Penrose graph as well.

4 The invariance principle

In this section we con�ne ourself to the Penrose net. The Gaussian esti-
mate (GE2;2) provides a nice description of the random walk on the Penrose
graph but the di¤erent constants in the exponents mean that we have only
estimate on the variance and it may change from place to place as well as
in time. Particularly we do not know if the properly scaled mean square
displacement 1

n
E (d2 (X0; Xn)) has a limit. Of course we expect that due to

the asymptotic spherical symmetry of the Penrose tiling the di¤usion matrix
is the identity matrix up to a �xed constant multiplier. In other words the
scaled mean square displacement is direction independent. In order to obtain
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the invariance principle for the Penrose net we need a di¤erent method. This
is the method of ergodic processes of the environment "seen from the tagged
particle" (c.f. [8],[4]). Thanks to the result of De Masi & all [4] it is enough
to check that the conditions of Theorem 2.1 in [4] are satis�ed and that the
covariance matrix is positive de�nite.

Theorem 13 The random walk on the Penrose net satis�es the central limit
theorem and the invariance principle with non-degenerate covariance matrix.

Proof. We consider the environment process !n seen from the particle. It is
more convenient to use (as it is done by Kunz in [7]) the Markov chain zn =
(!n; Xn). Kunz have shown that zn is ergodic, (see also a more general result
by Robinson [9]). It is clear that Xn =

Pn
i=1 V (zi�1; zi) where V (zi�1; zi) =

Xi �Xi�1 is an antisymmetric function, (c.f. [4] (2.3),(2.6) and the remark
below it.) It follows from the de�nition that Xn and zn as well are reversible.
From the ergodicity we have the invariant measure � and the only properties
are left to check are the existence of the conditional drift

' = E� (X1 �X0jX0) (7)

exists and the covariance matrix

D = E� ((X1 � ') (X1 � ')�) (8)

is non-degenerate. For any given X0 = x the conditional drift evidently
exists thanks to the bounded distances of neighbors.
Let us recall that the D always exists (see Remark 1. below (2.30) in

[4]).
We show that the covariance matrix is positive de�nite. Let us con-

sider the annulus B (0; C2
p
n) nB (0; C1

p
n) intersected with the cone about

a given direction e 2 R5 with angle �=2 > � > 0: Let H denote the inter-
section. The constants C1; C2 are arbitrary and �xed. Let us recall (Lemma
9) that the Penrose net and graph are roughly isometric

1

n
E (e�XnX

�
nEejX0 = x0)

=
1

n
E
�
(e�Xn)

2 jX0 = x0
�

� 1

n

X
x2H

(ex)2 Pn (x0; x)

� jHj
n
c
�
cos (�)

p
n
�2 c0 exp

�
�C (aC2

p
n+b)

2

n

�
n

� c > 0
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independently of x0 and e, hence the covariance matrix is non-degenerate. By
this we have shown the invariance principle holds for the random walk on the
Penrose net furthermore the limiting process is a non-degenerate Brownian
motion.

5 Local perturbation

The Penrose net itself is an aperiodic structure, a quasi-crystal. In crystals
impurities may appear and their impact on the di¤usion can be dramatic.
The simplest example for the anomalous behavior is the simple symmetric
random walk on Z modi�ed at the origin . It is shown in [12] that for the
random walk on Zd with d � 2 this not the case, local perturbation of the
medium does not destroy the invariance principle.

De�nition 14 Let � a graph, A � �; then @A = fy 2 �nA : 9x 2 A : y � xg

De�nition 15 �0 is local perturbation of � if there is a �nite set A � � such
that if we remove A from � and replace it with a �nite graph and connect
some of its vertices to @A we receive �0.

Theorem 16 Assume that �0 is the Penrose net modi�ed in a �nite region.
Assume that the starting point of the random walk on �0 belongs to the in�nite
component. Then the invariance principle holds for the random walk on �0:
The covariance matrix is positive de�nite.

Proof. Consider the environment process !0n 2 
 and Z 0n = (!0n; X
0
n) and

the function V as above. One can recall from de Bruijn [3] construction or
Kuncz paper [7] that in the case of the Penrose net !-s can be mapped into

; union of ten two-dimensional tori of unit equators 
i;j i 6= j 2 f1; 2; :::5g.
The new environment will be contained in the same state space It is clear
that !n is again a reversible Markov chain. It is easy to extend the proof of
ergodicity given by Kunz to the present case. The main idea is the following.
Let us consider the original Penrose tiling and pentagrid. Let x 2 A [ @A
be a new vertex or its neighbor in �nA, d (x) its degree and yx the centre of
the tile (of the original tiling) which contains it. Then let

d�0 (x) =
d (x)

4
d� (yx)

for those vertices while d�0 (x) = d� (x) for the others. Following Kuncz�s
argumentation it is clear that �0 is stationary measure with respect to the
dynamic de�ned by the walk on 
. The new measure �0 di¤ers from the old
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one only in a zero measure set and the orbit of the dynamic is still countable,
have zero measure and dens in 
 again. This means that the original proof
of ergodicity applies, particularly since the modi�cation restricted a zero
measure set and the process started in the in�nite connected part of the
graph. The proof uses a non-overlapping packing of 
 with small squares
bxn ; � (bxn) =: � (b0) with centres sorted out from possible !n-s. We simply
drop out those bxn squares of which the centre corresponds to a vertex in
A. This change will causes only jA \ �j "� (b0) small error, where " (and
� (b0)) can be arbitrary small while jA \ �j is �xed, bounded. . This yields
the invariance principle. Our proof for the non-degeneracy of the covariance
matrix works without change.
There are many questions left open with respect of the random walk on

the Penrose tiling.

Remark 17 The results presented in this paper carry over easily to other
quasicrystals which can be constructed by methods similar to the one produces
the Penrose tiling. This applies to generalized Penrose tilings (produced by
p-grids), higher dimensional Penrose tilings and stochastic tilings.

Remark 18 1. Let us show that local modi�cation does not in�uence the
covariance matrix of the limiting process.

2. It seems plausible that with some extra work one can show that the
covariance matrix is the identity matrix multiplied with a positive con-
stant. The exact value of the constant ought to be determined as well.
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