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Abstract We investigate sharp isoperimetric problems for random walks on
weighted graphs. Symmetric weights on edges determine the one step transition
probabilities for the random walk, measure of sets and capacity between sets. In
that setup one can be interested in the exit time of the random walk from a set, i.e.
to find for a fixed starting point the “optimal” set of given volume which maximizes
the expected time when the walk leaves the set. A strongly related problem is to
find a set of fixed volume which has minimal conductance with respect to a given
set. In both problems the answer is less appealing than in the case of Euclidean
space. As demonstrated by a simple counterexample, there is no unique optimal set.
The Berman-Konsowa principle is used in the search for optimal sets. It allows to
construct a new graph on which the calculation of conductance and mean exit time
is tractable.

Keywords Isoperimetric inequality • Random walks • Berman-Konsowa
principle

1 Introduction

Isoperimetric problems have a long and shining history in mathematics as well
as in human culture. Pappus credited to Zenodorus the first statement of the
two dimensional isoperimetric problem. Several other isoperimetric problems were
formulated in the course of time. One can find a classical introduction in Polya’s
and Szegő’s book [9] and further references in the nice survey of Caroll [5]. We are
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not going to present a review here. To find the optimal set for the maximal expected
lifetime of a planar Brownian motion in a finite closed, connected domain of fixed
area is a naturally arising similar problem (cf. [1, 5] and their references). In the
light of recent developments in the study of diffusion processes in measure metric
Dirichlet spaces (cf. [3, 7]) it is natural to rise the same question on such spaces.

Let us imagine that we have a sheep, a piece of grassland, and an electric fence
of a given length. The sheep starts at a given point at time zero and performs a
diffusion according to a fixed measure and a local, regular, Markovian Dirichlet
form. We want to enclose the sheep with the fence in such a way that the sheep
is hit by electricity as late as possible, in expectation. This scenario inspired Erin
Pearse to coin the name “Brownian sheep” at the Cornell Conference on Analysis
and Probability on Fractals in 2005.

In the present paper we make a very first step towards the solution of the
Brownian sheep problem. We consider a discrete space-time counterpart of the
problem, given by random walks on weighted graphs (for general introduction and
background c.f. [6, 10]).

We provide a characterization of the optimal solution for:

1. The minimal capacity problem: given two sets � and F � � and a constant M,
find a set D � F with volume not larger than M such that the capacity between
D and �nF is minimal.

2. The maximal lifetime problem: given a starting point of the walk and a constant
M; find a set F of volume not larger than M such that the expected exit time of
the walk is maximal.

The key tool for us is the Berman-Konsowa (B-K in the sequel) principle [4]
(see also [8] for a nice interpretation), by which the problem can be reduced to star
graphs.

The paper is organized as follows. In Sect. 2 we introduce basic notation and
facts. In Sect. 3 we present the Berman-Konsowa principle, in Sect. 4 we discuss the
problem of capacity and in Sect. 5 the problem of Brownian Sheep. Some technical
details are collected in an Appendix.

2 Foundations

Let .�;Q�; �/ be a connected weighted undirected graph with vertex set � , edge
set Q� and a symmetric weight on edges �x;y D �y;x. The corresponding resistance
is Rx;y D 1=�x;y. For x 2 � let �.x/ D P

y �x;y.
For sake of simplicity we will solve the problem on the cable system of the graph,

i.e., all edges are considered as copies of the unit interval [2]. For an edge .x; y/ and
˛ 2 Œ0; 1� let .˛; x; y/ denote the point which splits the edge into ˛; 1 � ˛ parts. We
write w0 D .0; x; y/ for x; w1 D .1; x; y/ for y; and w˛ D .˛; x; y/ for points on the
edge. Resistance and weight are proportional to the length of a subinterval:

Rw0;w˛ D ˛Rx;y and �w0;w˛ D ˛�x;y:
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The basic space for our study is the set of all points of the unit intervals
representing edges. It is denoted by W. We consider subsets A � W which are
unions of subintervals where adjacent endpoints are identified. We assume that such
a set A is convex in the following sense: if w N̨ D . N̨ ; x; y/ 2 A then at least one of
the vertices x and y is in A, and if lets say x 2 A, then w˛ D .˛; x; y/ 2 A for all
˛ 2 Œ0; N̨ � as well.

In the sequel the investigated sets A � W are assumed to be open and
precompact. Let A denote the closure of the set and @A D AnA the boundary of
A: The boundary of a set is a discrete set of points on intervals. The set of edges
crossing @A will be denoted by cA:

The weights on edges define a measure d� .˛; x; y/ D �x;yd˛, with

� .A/ D
X

x;y2A\�
�x;y C

X
.˛;x;y/2@A
x2A;y…A

˛�x;y:

We consider the usual random walk Xn 2 � on .�; �/ defined by the transition
probability P .x; y/ D �x;y=�.x/: We assume that there is a p0 > 0 such that for all
.x; y/ 2 Q�

P .x; y/ � p0: (2.1)

As a consequence deg .x/ � 1=p0 for all x 2 � , i.e. the graph has bounded degree.
� can be infinite, however.

Now we define the killed random walk for a set A which contains a finite number
of vertices. We assign to A a corresponding graph with vertex set �A D � \ A [ @A
and the induced edges. On this graph we have a random walk which we will start
at an interior vertex and kill at the first boundary vertex. The transition probabilities
PA .x; y/ are equal to P .x; y/ for x; y 2 � \ A: If x 2 � \ A is adjacent with one
boundary point w˛ D .˛; x; y/ 2 @A then the interval .x; y/ is splitted into two parts
and the transition probability modified accordingly:

PA .x;w˛/ D
1
˛
�x;yP

z¤y �x;z C 1
˛
�x;y

;

In other words new points are introduced as edge splitting points on the boundary
of A and the walk is defined inside A as usual, choosing a neighbor proportional to
the conductance. On vertices next to the boundary the walk tends to choose short
edges with small ˛; which get bigger weights by 1=˛. The walk is killed as soon as
it reaches a boundary point. The exit time of the random walk is

TA D min fn W Xn 2 �nAg ;
and the mean exit time for the walk starts in x 2 � is defined as

Ex .A/ D E
A .TAjX0 D x/ ;
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where E
A is the expected value with respect to the probability measure PA induced

by the random walk Xn starting at X0 D x 2 � and killed when it leaves A.

Remark 1 The notions of weight, capacity and resistance need a bit of explanation.
Capacity is the reciprocal of resistance, shorter subintervals have smaller resistance
and bigger capacity, while the weight assigned to the subinterval is proportional to
its length. In that sense weight and capacity are not the same on subintervals while
they numerically coincide on full intervals.

One can assume that the resistance is not uniform along the edges but there is a
resistivity  .s/ along it and

Rw0;w˛ D
Z ˛

0

 .s/ ds:

This extension is not discussed here, but seems tractable and the whole machinery
can be generalized to it without essential change.

Problem 1 (Maximal exit time) Let x 2 � and M > 0 be given. Find a set F 3 x;
F � W with volume � .F/ � M and maximal expected exit time Ex .F/.

Problem 2 (Minimal capacity) Let F � W be a fixed set and M > 0 be given. Let
Cap .D;F/ denote the capacity of the ‘annulus’ FnD for D � F; more precisely

Cap .D;F/ D inf
f 2H

X
w;w02F[@F[@D

�
f .w/ � f

�
w0��2 �w;w0 ;

where H D H .D;F/ is the set of functions f W W ! R; f jD � 1 and f j�nF D 0.

Here again the boundary crossing edges are splitted and only the parts in FnD is
considered. We seek for a set D such that D � F, � .D/ � M and the capacity
Cap .D;F/ is minimal.

3 The Berman-Konsowa Principle

The other model that we will use is the path system of the graph. Consider a pair of
sets .D;F/, where D � F. Denote L D LD;F the set of all finite paths connecting
@iD and @oF cropped at the boundary of the sets. Denote the ends of a path l 2 LD;F

by dl and zl, respectively. The path-graph on Fn@iD will be defined between y’s and
�nF and completed with common, unsplitted edges .d; y/ reaching @D, see Fig. 1.
(If y 2 @0D but y … F we consider the single edge .d; y/ as a path.)

We introduce PD;F as the set of all probability measures on LD;F , and let QD;F be
the edge set induced on FnD by the original graph.

Definition 3.1 A flow between D and �nF is a function on QD;F . A flow function
ˆ is nonnegative and satisfies the following rules.
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Fig. 1 Paths starting inside
F n D

1. ˆ.x; y/ˆ .y; x/ D 0 8 .x; y/ 2 QD;F , i.e. the flow is one-directional,
2. for x 2 FnD

X
yW.x;y/2QD;F

ˆ.x; y/ D 0;

3.

X
d2D;yW.d;y/2QD;F

ˆ.d; y/ D
X

z2@F;yW.y;z/2QD;F

ˆ.y; z/ ; (3.1)

4. ˆ.x; d/ D ˆ.z; y/ D 0 for all x; y 2 FnD; d 2 D; z 2 @F: In addition we say
that ˆ is a unit flow if

P
d2D;yW.d;y/2QD;F

ˆ.d; y/ D 1.

We define a new network .�L;QL; �L/ based on the path system L D LD;F . That
will be the set of paths connecting D and �nF with vertex and edge replicas of
the original graph, to ensure that the path have no common vertices except at their
endpoints. The objects of the new graph will be labeled by l 2 L. Each l 2 L is a
sequence of edges. We redefine the vertex set. For each x 2 FnD let xl be a vertex in
�L if x 2 l \ .FnD/, formally: �L D fxl W x 2 FnD \ l and l 2 Lg : Edges are kept
along the paths. We associate a new resistance Rl

x;y to each edge on l with respect
to a probability measure P 2 PD;F . If .x; y/ 2 QD;F the flow can be decomposed
into separate flows along disjoint paths

ˆP .x; y/ D
X

l0Wl03.x;y/
P
�
l0
�

�l
x;y D �x;y

P .l/

ˆP .x; y/

Rl
x;y D �

�l
x;y

��1 D Rx;y
ˆP .x; y/

P .l/
: (3.2)
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The path l has resistance rl D P
.x;y/2l Rl

x;y and its conductance is CapP .l/ D 1=rl.
Finally the capacity or conductance determined by P between D and @F is

CapP .D;F/ D
X

l2LD;F

CapP .l/ :

Remark 2 Let us observe that the edge weights are shared between the paths, it is
contained proportional to the probability measure. For each edge

�l
x;y D �x;y

P .l/P
l0Wl03.x;y/ P .l0/

;

and consequently
X

lWl3.x;y/
�l

x;y D �x;y:

Theorem 3.2 (Berman-Konsowa principle)

Cap .D;F/ D max
P2PD;F

CapP .D;F/ :

In what follows this nice path system will play a particular role. Let us mention
that the capacity potential defines an important unit flow which minimizes the
energy dissipation of the network. Let �C D min fk W Xk 2 Cg be the hitting time
of the set C and v .y/ D P

�
�D < ��nFjX0 D y

�
. The natural flow generated by the

properly adjusted external source is

ˆ.x; y/ D .v .x/� v .y//C �x;y; (3.3)

where aC D max fa; 0g.

4 Sets with Minimal Capacity

Let D be an optimal solution of Problem 2. Then we may assume that for all w 2 @D;
w D .˛; x; y/ with ˛ 2 .0; 1/ ; i.e., the boundary points of D are internal points of
edges. We can assume even more, that there is a small " > 0 such that

˛ 2 ."; 1� "/ :

If it is not the case, given that @D is finite, with an arbitrary small change of the
volume M that can be ensured.

Consider the Berman-Konsowa path system L@oD;F and let us extend each path l
which connect yl 2 @oD to F with the edge segment .dl; yl/ ; where dl 2 @D and
dl D .˛l; xl; yl/ for some 0 � ˛l � 1. Then the resistance from dl can be calculated
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as follows. We have

CapL .yl; @F/ D
X
QlWyl2Ql

Cap
�
yl; fQl

�
;

where fl 2 @F \ l and RL .yl; @F/ D 1=CapL .yl; @F/

RL .dl; @F/ D Rdl;yl C RL .yl; @F/ :

Finally, CapL .dl; @F/ D 1=RL .dl; @F/ and we have

Cap .D;F/ D
X
d2@D

CapL .d; @F/ :

Let us recognize, that the path system we have used here is smaller than the path
system in the original B-K construction, since the border crossing edges are not
split. For that reason we will refer to this construction as reduced B-K path system.

In order to investigate the optimal set of Problem 2 we use the Lagrange method
and consider small perturbations of the optimal set. Let us consider a function
� W cD ! .0; 1/which defines the boundary of the set D� with w D .� .x; y/ ; x; y/ 2
@D� .

We consider the reduced B-K path system over .D;F/ and fix the resistances
Rl

x;y defined in (3.2) by the capacity potential and optimal flow (3.3) . We reserve

P for the optimal distribution and QP will denote an arbitrary other one on the fixed
set of paths L. We shall consider in many cases a fixed set of paths L with different
weights, in that case the resistances, conductances on the path system with respect
to the probability P; QP will be denoted by R;Cap, and QR D QRL D RQP

L;
eCap D

eCapL D CapQP
L , respectively. We shall drop the sub and superscripts if it does not

cause ambiguity.

Remark 3 The Berman-Konsowa principle says that for any set D � F and any
weight system QP with the correspondingeCapL

Cap .D;F/ D max
P

CapP

L .D;F/ � eCapL .D;F/ :

In particular if D is optimal, and QD is another set in F then

Cap
� QD;F� � Cap .D;F/ � eCapL .D;F/ :

Lemma 4.1 If D � F; � .D/ � M minimizes the capacity on the path system LD;F

(with weights defined by the optimal P) then D is optimal for Problem 2.

Proof Let QD � F; �
� QD� � M be another set and QL be the path system defined by

. QD;F/. Then from

CapP

L

� QD;F� � CapPL .D;F/
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and from the capacity definition and Remark 3, we have the statement:

Cap
� QD;F� D eCapQL

� QD;F� � CapPL
� QD;F� � CapP

L .D;F/ D Cap .D;F/ :

ut
For each path l 2 L, we introduce the resistance rl and the weight�l of the whole

path:

rl D
X
.z;v/2l

Rl
z;v and �l D

X
.z;v/2l

�l
z;v;

where .z; v/ 2 l are the edges of path l.
The proof of the following statement is given in the Appendix.

Proposition 4.2 If D is optimal, then in the path system for each l 2 LD;F

�l .xl; yl/ rl D const; (4.1)

where .xl; yl/ 2 cD denotes the crossing edge of l.

Remark 4

1. The simplest case is to fix x 2 � and look for a set D with x 2 D � F; � .D/ � M
which minimizes Cap .x;D/.

2. The following example shows that an optimal set D need not be unique. Consider
two copies of Li D f0i; 1i; 2i; 3i; 4i; 5ig ; i D 1; 2 with edges between direct
neighbours and join them by setting 01 D 02. We switch to continuous setup.
Let

mi .s/ D
8
<
:
2 if s 2 Œ0; 1�
4 if s 2 .1; 2�
3 if s 2 .2; 5�

be the mass density along Li: Denote the mass and resistance of the ray from 0

to a point x 2 Œ0; 5� by m and r. Then

m.x/ D
8<
:

2x if 0 � x < 1
2C 4 .x � 1/ if 1 < x � 2

6C 3 .x � 2/ if 2 < x � 5

r.x/ D
8
<
:

x
2

if 0 � x < 1
1=2C 1

4
.x � 1/ if 1 < x � 2

3
4

C 1
3
.x � 2/ if 2 < x � 5

:
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For the calculation of capacity we pick a point x on the first ray for which m .x/
is the total mass from 0 to it. We allocate the rest of the mass to the point y on the
second ray, that is m .y/ D 12� m .x/ if M D 12. We define the inverse function
p of the function m:

p .t/ D
8
<
:

t=2 if 0 � t < 2
1
4
.t C 2/ if 2 < t � 6

t=3 if 6 < t � 15

:

The capacity is Cap .x;D/ D g .t/ D 1=r . p .t// C 1=r . p .12� t// expressed
in the mass t used on the first ray, namely t D m.x/. It is easy to see, that this
function has two global minimal solutions.

3. This example shows that no unique optimal solution can be guaranteed. The last
resort is provided by the observation made in Lemma 4.1. If a set is optimal
on its own B-K path system, it can be found by the Lagrange method, and it is
optimal with respect to the original problem. Also let us recall Remark 3 which
helps to sort out non-optimal sets. Since if we find a weight system P

0 over L on
which the candidate set D� is not optimal then it can not be optimal.

5 The Exit Time

We are going to find optimal sets which maximize Ex .F/ with x 2 F, where
x 2 � and � .F/ � M fixed. In order to find an optimal set we try to maximize
simultaneously R .Dm;F/ where Dm is the level set of the Green function GF .x; y/
of volume m, 0 � m � M. We defer the statement of the result to the end of this
section to avoid repetition of technical notation. As in Sect. 4 we assume that the
boundary points of the optimal set are inside the edges, i.e., "-separated from the
endpoints.

From now on we work on the reduced path system and weights are defined by
the optimal flow. The path system is flign

iD1 ; denote zi D li \ @F. Let

eli D Ei .zi/ D E .Tzi jZ0 D x/

the exit time on the path li of the random walk Zn on li determined by the weights
on li. Denote mi D mli the volume of the path li and Ri D Rli the resistance of it.

Definition 5.1 The local Green function (Green kernel) GF
�
gF .x; y/

�
is defined

by the transition probabilities PF
n .x; y/ of the random walk, killed on exiting the set

F � � is the following:

GF .x; y/ D
1X

nD1
PF

n .x; y/ ;
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gF .x; y/ D GF .x; y/ =� .y/ :

In the following we summarize some known facts about the Green function and
the exit time of random walks (for more details see [11]). It is know that

Ex .F/ D
X
y2F

gF .x; y/ � .y/ :

Furthermore, on the graph and on the cable system for any w 2 F

GF .x;w/ D gF .x;w/ d� .w/ ;

Ex .F/ D
Z

F
gF .x;w/ d� .w/ ; (5.1)

where

gF .x;w/ D R .Hw; @F/ ;

where Hw D ˚
v W gF .x; v/ > gF .x;w/

�
is the super-level set with boundary of

the equipotential surface Bw. (Let us remark here that gF on the cable system is
linear extension of gF on the graph.) On the other hand we know that in the path
decomposition we have for a given li that the Green kernel gzi

i .x;w/ D gzi
li
.x;w/ D

Ri .w; zi/ and similarly to (5) we have that

eli D
Z

li

gzi
i .x;w/ d� .w/ D

Z

li

Ri .w; zi/ d� .w/ ;

R

Ri
D R .x;F/

Ri .x; zi/
D R .Bw; @F/

Ri .w; zi/

consequently for all path li

gF .x;w/ D R .Bw;F/ D R

Ri
ri .w; zi/ D R

Ri
gzi

i .x;w/ : (5.2)

Since the path system splits each edge, we have

d� .w/ D
X

iW w2li

d�i .w/ ; (5.3)

where in general d�i D P .li/ d� and in particular P .li/ D R
Ri

. Here zi’s are not
necessarily different. In the next step we shall join the paths which have common
endpoints, i.e., the boundary crossing edge is shared by them.

Ex .F/ D
Z

F
gF .x; y/ d� .y/ D

X
i

Z

li

gF .x; y/ d�i .y/ (5.4)

D
X

z

X
li3z

Z

li

gF .x; y/ d�i .y/
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As earlier we should handle with care the paths ending at the same vertex (sharing
a boundary crossing edge). The weights split on edges and hence the measure on
vertexes add up as in (5.3)

d�z .y/ D
X

iW z2By\li

d�i .z/ ;

while for z 2 By \ li

gF .x; y/ D gF .y; x/ D R

Ri
gz .y; x/

D R

Ri
gz

i .y; x/ D R

Ri
gz

i .x; y/ :

As a consequence of (5.4), (5.2) and the notation

el D
Z

l
gz

l .x; y/ d�z .y/ ;

we have that

Ex .F/ D
X
z2@F

X
iWz2li

Z

li

gF
li .x; y/ d�i .y/ D

X
l

R

Rl
el:

As a result we have the following observation.

Lemma 5.2 For the set F the exit time Ex .F/ has the form

Ex .F/ D R
X

l

el

Rl
:

We introduce the following notations: C D Cap .x;F/ D 1=R .x;F/

Cl D 1

Rl
; �l D Cl

C
; Qe D

X
l

�lel; 'z D ılel

Qe ;

where ız is such that �lRl D .1C ıl/ el holds.

Theorem 5.3 If F is optimal for Problem 1, then it satisfies for all the B-K path l
and its endpoint z 2 l \ @F that

Rl .x; z/ � .z/

.1C 'l/
1=2

D const:

The proof is deferred to the Appendix.
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As in case of the capacity problem, the obtained solution is not necessarily
optimal or unique, since it is only a necessary and not a sufficient condition for
optimality in general (see Remark 4 2. and 3.).

Appendix

Proof of Proposition 4.2 Let us recall that we assume that D is an optimal set and
slightly change its boundary along the border crossing edges. We consider the
Lagrange function with multiplier � 2 R W

CapP

L

�
D� ;F

�C ��
�
D�

�
:

Denote �l D �l .x; y/ W wl D .�l; x; y/ 2 @D forming the perturbation vector � D Œ�l� :

Let zl D @F \ l be the endpoint of the path l at the boundary of F.

@

@�l

"X
l

CapP

L .wl; zl/C ��
�
D�

�#
:

Setting the derivative zero and using rl D Rl .wl; zl/ we have that

0 D @

@�l

"X
l

CapP

L .wl; zl/C ��
�
D�

�# D

D @

@�l

�
1

rl
C ��l

�

D �Rl .xl; yl/

r2l
C ��l .xl; yl/

for all path l 2 L and

�l .xl; yl/ rl D const

is a necessary condition for the optimality. �

Proof of Theorem 5.3 We consider the variational problem

max
F0W�.F0/�M

Ex
�
F0� :

Assume that F is optimal with a path system L and the probability P on it. As in the
case of the capacity we perturb F in a small neighborhood. The maximal solution
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should satisfy for a suitable � and for all path l that

@

@sl
ŒEx .F/C �� .F/� D 0

@

@sl

"
R
X

p

ep

Rp
C �� .F/

#
D @

@sl

"
R
X

p

�
ep

Rp
C ��p

#
D 0;

where sl is the length of l and we use �l for the volume of the path l. Let E D P el
Rl

,

the density of � is � .zl/ D d�
ds jsl ; where s is the arc length parametrization of

lz W w .sl/ D zl. Furthermore, �l D � .zl/ and the density of resistance is  .zl/ D
1=�.zl/, then the derivative is as follows

@

@sl

"
R
X

p

�
ep

Rp
C ��p

#
D
�
@

@sl
R


E C R

@

@sl
E C �� .zl/ :

One can find that
�
@

@sl
R


D @

@sl

1P
p
1

Rp

D R2
 .zl/

R2l

and

@

@sl
el D @

@sl

Z
r .ws; zl/ � .w .s// ds

D @

@sl

Z sl

0

Z sl

s
 .w .t// dt� .w .s// ds

D  .zl/ �l;

@

@sl
E D @

@sl

el

Rl
D  .zl/

�lRl � el

R2l
:

It is trivial that el � �lRl, so the defined ıl is nonnegative. Furthermore,

@

@sl
E D  .zl/

R2l
ılel:

@

@sl
Ex .F/ D R2

 .zl/

R2l
E C R

 .zl/

R2l
ılel C �� .zl/ D 0

R
 .zl/

2

R2l
E C  .zl/

2

R2l
ılel D const:

�



340 A. Telcs and M. E.-Nagy

References

1. R. Bañuelos, Isoperimetric inequalities in probability, geometry, and PDE’s, http://www.math.
purdue.edu/~banuelos/btlecture.pdf

2. M. Barlow, J. Pitman, M. Yor, On Walsh’s Brownian Motions. Lecture Notes in Mathematics,
vol. 1372 (Springer, Berlin, 1989), pp. 275–293

3. M.T. Barlow, R.F. Bass, T. Kumagai, Stability of parabolic Harnack inequalities on metric
measure spaces. J. Math. Soc. Jpn. 58(2), 485–519 (2006)

4. K.A. Berman, M.H. Konsowa, Random paths and cuts, electrical networks, and reversible
Markov chains. SIAM J. Discret. Math. 3(3), 311–319 (1990)

5. T. Carroll, Old and new on the Bass note, the Torsion function and the hyperbolic metric. Irish
Math. Soc. Bull. 47, 41–65 (2001)

6. P.G. Doyle, J.L. Snell, Random Walks and Electric Networks. Carus Mathematical, Mono-
graphs, 22 (Mathematical Association of America, Washington, 1984)

7. A. Grigory’an, A. Telcs, Two-sided estimates of heat kernels on metric measure spaces. Ann.
Probab. 40(3), 1212–1284 (1990)

8. F.T. den Hollander, S. Jensen, Berman-Konsowa Principles for Reversible Markov Jump
Processes (preprint). http://arxiv.org/abs/1309.1305
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