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a b s t r a c t

In this paper we provide exact formula for the commute times of random walks on
spherically symmetric random trees. Using this formula we sharpen some of the results
presented in Al-Awadhi et al. to the form of equalities rather than inequalities.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The commute time is a particular measure of random walks on weighted graphs. It has several nice properties
which has been revealed independently partly or fully by many authors, see for example [5,2,3,14,21,1]. It is still in
the focus of the research of computer scientists, probabilists and physicists as well. As examples, consider the tasks of
graph embedding [9,16,18,22], graph sparsification [20], social network analysis, [13], proximity search [19], collaborative
filtering [8], clustering [23], semisupervised learning [24], dimensionality reduction [10] image processing [17], graph
labeling [11], and theoretical computer science [4,6]. For an extensive list of literature we refer the reader to [15]. Random
walks on random graphs have been subject of permanent interest in the last three decades. Interestingly enough, very little
is published on commute times of random walks on random graphs. The present paper studies commute times on very
simple random objects, on spherically symmetric random trees, SSRT . Explicit results are presented in the annealed case,
averaged commute times over the probability field of trees.

2. Commute times

Consider a random walk on a weighted graph G = (V, E) where a weight (conductivity) cxy = cyx is assigned to edge
xy ∈ E. The commute time between two vertices r and s is the mean number of steps it takes the random walk to go from r
to s and back to r and will be denoted by E(τ ) = E(τr,s). We know, see [5], for a finite connected graph,

E(τ ) = 2ρrsµrs, (2.1)
where ρ = ρrs is the effective resistance between r and s and µ = µrs =

1
2


e∈E ce. If the assigned weights are all equal 1,

then
E(τ ) = 2ρm,
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wherem = |E| is the number of undirected edges of G. We confine our study to investigating the commute time of random
walk on spherically symmetric random trees SSRT in which the degree of a vertex depends only on its distance from the
root r .

The second probability space is given on the spherically symmetric trees of infinite heights and the corresponding
probability and expectation will be denoted by P and E.

This type of trees is completely determined by its degree sequence {dn; n ≥ 0} where dn is the degree of every node at
level n. Let ℑn = σ(d1, d2, . . . , dn). Then, for each realization T (ω) of a random tree T,

E(τ |ℑn) = 2ρµ.

We are interested in the expected value with respect to P (ω), probability distribution on the set of all possible trees T. In
such a case,

E(τ ) = 2E(ρµ).

It was shown in [1] that E (τ ) ≤ 2E (ρ) E (µ). It can easily be seen that this inequality can not be strengthened to equality.
We first note that for positive nondegenerate random variable X , the function f (X) =

1
X is strictly convex and hence

E(1/X) � 1/E(X). Consider now a tree T of height 1 rooted at r which has random degree d0. Thenm = d0 and ρrs = 1/d0.
Hence, E (τ ) = 2E(ρm) = 2. On the other hand, 2E (ρ) E (m) � 2.

Nowwe seek for asymptotic equality for E(τ ). Let Si be the sphere of radius i and centered at r; that is the set of vertices
at distance i from r . Let ρi = ρ (Si−1, Si), µi = µ (Si−1, Si), and E (τ ) is the commute time between the root and the sphere
of radius n shorted in one vertex. Then

E (τ ) = 2E (ρµ) = 2E


n

i=1

µi


n

j=1

ρj



= 2E


n

i=1

n
j=1

µiρj


= 2E

 n
i=1

n
j=1
j≠i

µiρj

+ 2n, (2.2)

where the last step uses the fact that ρi = 1/µi. Below d+

j will denote the outdegree of state j; that is d+

j = dj − 1. Now we
concentrate on the double sum.

In + Jn := E


n

i=2

i−1
j=1

µiρj


+ E


n−1
i=1

n
j=i+1

µiρj


.

Now,

In = E


n

i=2

i−1
j=1

µiρj


= E


n−1
j=1

ρj


n

i=j+1

µi



= E


n−1
j=1

ρjµ

Sj, Sn


=

n−1
j=1

E

ρjµ


Sj, Sn


=

n−1
j=1

∞
k=1

E

ρjµ


Sj, Sn


|µj = k


P

µj = k


=

∞
k=1

n−1
j=1

E

1
k
(µj+1 + µj+2 + · · · + µn)|µj = k


P

µj = k


=

∞
k=1

n−1
j=1

E

1
k
k(d+

j + d+

j d
+

j+1 + · · · + d+

j d
+

j+1 · · · d+

n−1)


P

µj = k


=

n−1
j=1

n−1
x=j

E

Π x

i=jd
+

i


=

n−1
x=1

x
j=1

E

Π x

i=jd
+

i


.
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On the other hand,

Jn = E


n−1
i=1

n
j=i+1

µiρj



=

∞
k=1

E


n−1
i=1

n
j=i+1

µiρj|µi = k


P (µi = k)

=

∞
k=1

E


n−1
i=1

k(ρi+1 + ρi+2 + · · · + ρn)|µi = k


P (µi = k)

= E


n−1
i=1

k
1
k


1
d+

i
+

1
d+

i d
+

i+1
+ · · · +

1
d+

i d
+

i+1 · · · d+

n−1



=

n−1
i=1

E


1
d+

i
+

1
d+

i d
+

i+1
+ · · · +

1
d+

i d
+

i+1 · · · d+

n−1



=

n−1
i=1

n−1
x=i

E


Π x

j=i
1
d+

j



=

n−1
x=1

x
i=1

E


Π x

j=i
1
d+

j


,

where in the third step the conditionµi = k is used to calculate the resistance of k parallel branches starting in level i. Finally,

E(τ ) = 2n + 2
n−1
x=1

x
j=1


E

Π x

i=jd
+

i


+ E


Π x

i=j
1
d+

i


. (2.3)

3. Spherically symmetric trees

In this section we use τrs to denote the commute time between the root r of a SSRT Γ and the level n shorted in one node
s, while τrxn denotes the commute time between r and a leaf xn of level n. We assign a unit resistance to every edge of Γ .
We also use d+

n to refer the outdegree of each node of level n and Zn to refer to the number of vertices in the level n. Then
Zn = Πn−1

k=0 dk. We will assume that d+
n ’s are independent random variables. We need the following lemma from [12].

Lemma 1. Consider two nonnegative sequences an and bn such that


n bn is divergent. If limn
an
bn

= L, then limn

n
k=1 akn
k=1 bk

= L.

Notation 1. We use an = Θ (bn) for limn
an
bn

ϵ (0, ∞).

The following theorem strengthen Theorem 1 of [1] that gives only an upper bound for the commute time.

Theorem 1. Consider a spherically symmetric random tree Γ such that

d+

n =


1 with probab. 1 − qn
2 with probab. qn

and


qn < ∞. Then

τrs = Θ

n2 P-a.s.

and

τrxn = Θ

n2 P-a.s..

Proof. Applying the Borel Cantelli Lemma to the infinite outdegree sequence {d+
n } shows that p (dn = 1 eventually) = 1.

As such, there is N such that p (dn = 1, n ≥ N) = 1. Then

µrs =

n
k=1

Zk − 1

=

N
k=1

Zk +

n
k=N+1

Zk − 1 = Θ (n) a.s.
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where Zk = |Sk|. Similarly,

ρrs = Θ (n) a.s.

Therefore,

µrsρrs = Θ

n2 a.s.

and the result follows from Eq. (2.1). �

The following lemma is presented in [7, p. 63].

Lemma 2. For any c > 0,

Πn
j=1


1 +

c
j


∼ nc .

The following lemma is presented in [12, p. 66].

Lemma 3. For 0 < α < 1,
n

k=1

1
kα

∼
n1−α

1 − α
.

Theorem 2. Consider a SSRT Γ such that

d+

n =


1 with probab. 1 − qn
2 with probab. qn

where qn = min (1, c/n) , c > 0. Then

E (τrs) = Θ

n2 log n


if c = 1,

E (τrs) = Θ

n2 if c < 1

E (τrs) = Θ

nc+1 if c > 1.

Moreover, for any c > 0,

E

τrxn


= Θ

nc+2 .

Proof. We first note that as long as the Θ-asymptotic behavior of the commute time is our concern and since In is greater
than Jn, it is enough to calculate In. It follows for c = 1 that

E

Π x

i=jd
+

i


= Π x

i=j


1 +

1
i


=

x + 1
j

.

Then,

In =

n−1
x=1

x
j=1

x + 1
j

=

n−1
x=1

(x + 1) αx log x; αj −→ 1

∼

n−1
x=1

(x + 1) log x

= Θ

n2 log n


,

where the last equality follows from the proof of Theorem 11 of [1]. Let us recall that in Jn the product of expected values is
x+ 1

2
j while in In x+1

j . It follows that

Jn = In −

n−1
x=1

x
j=1

1
2j
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which means that

In − Jn ∼

n−1
x=1

1
2
log x.

But
n−1

x=1
1
2 log x = o


n2 log n


and since limn

In
n2 log n

∈ (0, ∞) we have that limn
In+Jn
n2 log n

= limn
2In

n2 log n
∈ (0, ∞) .

We consider now the case c < 1. It follows from Lemma 2 that

Π x
i=j


1 +

c
i


=

xcαx

jcαj
; αx −→ α ∈ (0, ∞) ,

we see

In =

n−1
x=1

x
j=1

xcαx

jcαj

=

n−1
x=1

xcαx

x
j=1

1
jcαj

. (3.1)

It follows from Lemmas 1 and 3 that

In ∼

n−1
x=1

αxxcλx
x−c+1

−c + 1
; λx → λ ∈ (0, ∞)

= Θ

n2 .

While for c > 1,
x

j=1

1
jcαj

= Θ (1)

and then, from Eq. (3.1) and Lemma 1,

In =

n−1
x=1

xcαx

x
j=1

1
jcαj

∼

n−1
x=1

xcαx ∼

n−1
x=1

xc .

Hence,

In = Θ

nc+1 .

The result for E(τrxn) follows from the fact that ρrxn = n and applying Lemma 2 gives
n

k=1

E (Zk) =

n
k=1

Π k
i=1


1 +

c
i


∼

n
k=1

kc = Θ

nc+1 . �

The following lemma is analogous to Theorem 3, p. 64 of [12].

Lemma 4. Consider a positive decreasing function f and define a sequence ak, k = 1, 2, . . . such that f (t) = at . Let In = n
1 f (t)dt and Sn =

n
k=1 ak. If limn In = ∞ then

lim
n

Sn

In
= 1.

Proof. Since f is decreasing, then for j = 2, 3, . . . j+1

j
f (x)dx ≤ aj ≤

 j

j−1
f (x)dx.
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By summing over j, we obtain n+1

2
f (x)dx ≤ Sn − a1 ≤

 n

1
f (x)dx.

That is,

In+1 − I2 ≤ Sn − a1 ≤ In. (3.2)

It follows also that n+1

n
f (x)dx ≤

 2

1
f (x)dx ≤ C .

As such,

lim
n

 n+1
n f (x)dx

In
= 0,

which implies that

lim
n

In+1

In
= lim

n


1 +

 n+1
n f (x)dx

In


= 1,

and the result follows from Eq. (3.2). �

Theorem 3. Consider a SSRT Γ such that for 0 < α < 1

d+

n =


1 with probab. 1 −

1
nα

2 with probab.
1
nα

.

Then for any ϵ < 1
1−α

, there exists N such that for n ≥ N, the following inequalities hold

(i) Θ


nα+1 exp


1

1 − α
− ϵ


n1−α


≤ E


τrxn


≤ Θ


nα+1 exp


1

1 − α
+ ϵ


n1−α


,

(ii) Θ


nα exp


1

1 − α
− ϵ


n1−α


≤ E (τrs) ≤ Θ


nα exp


1

1 − α
+ ϵ


n1−α


.

Remark 1. The case α > 1 is covered by Theorem 1 and the case α = 1 is covered by Theorem 2.

Proof. Let Sn = logE(Zn) =
n−1

k=0 log

1 +

1
kα

. We first show that

lim
n

Sn

n1−α
=

1
1 − α

. (3.3)

Since

In =

 n

1
log


1 +

1
xα


dx = n log


1 +

1
nα


− log 2 + α

 n

1

1
1 + xα

dx, (3.4)

and

lim
n

n log

1 +

1
nα


n1−α

= 1,

and also

lim
n

 n
1

1
1+xα dx

n1−α
= lim

n

1
1+nα

(1 − α)n−α
=

1
1 − α

,

then, from (3.4),

lim
n

In
n1−α

= 1 +
α

1 − α
=

1
1 − α

.
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It follows from Lemma 4 that

lim
n

Sn

n1−α
= lim

n

Sn

In
·

In
n1−α

= lim
n

In
n1−α

=
1

1 − α
.

As such,

E(Zn) = exp

γnn1−α


; γn →

1
1 − α

. (3.5)

That is, for arbitrary small ϵ > 0, there is a sufficiently large N such that for n ≥ N,

exp


1
1 − α

− ϵ


n1−α


≤ E(Zn) ≤ exp


1

1 − α
+ ϵ


n1−α


, (3.6)

and
n

k=N

exp


1
1 − α

− ϵ


k1−α


≤

n
k=N

E(Zk) ≤

n
k=N

exp


1
1 − α

+ ϵ


k1−α


.

Since,

lim
n

 n
N exp

 1
1−α

+ ϵ

x1−α


dx

nα exp
 1

1−α
+ ϵ


n1−α

 =
1

1 + ϵ (1 − α)
,

and  n
N exp

 1
1−α

− ϵ

x1−α


dx

nα exp
 1

1−α
− ϵ


n1−α

 =
1

1 − ϵ (1 − α)
,

then

Θ


nα exp


1

1 − α
− ϵ


n1−α


≤

n
k=N

E(Zk) ≤ Θ


nα exp


1

1 − α
+ ϵ


n1−α


and the result for E


τrxn

follows since ρrxn = n.

For E (τrs), we follow the same argument of computing In as in the proof of Theorem 2. From Eq. (3.5), we see that

E(Π x
i=jd

+

i ) = Π x
i=j


1 +

1
iα


= exp


γxx1−α

− γjj1−α

; γx →

1
1 − α

.

As such,
x

j=1

E(Π x
i=jd

+

i ) =

x
j=1

exp

γx(x1−α) − γj(j1−α)


=

exp γx


x1−α

 x
j=1

exp

−γj(j1−α)


.

Using the fact that the two series


an and


2νa2ν have the same convergence behavior, we can see that
x

j=1

exp

−γj(j1−α)


= Θ(1)

and hence,
x

j=1

E(Π x
i=jd

+

i ) ∼ exp(γx(x1−α)).

It follows then that for arbitrary small ϵ > 0, and sufficiently large N ,

exp


1
1 − α

− ϵ


x1−α


≤

x
j=1

E(Π x
i=jd

+

i ) ≤ exp


1
1 − α

+ ϵ


x1−α


; x ≥ N

n
x=N

exp


1
1 − α

− ϵ


x1−α


≤

n−1
x=N

x
j=1

E(Π x
i=jd

+

i ) ≤

n
x=N

exp


1
1 − α

+ ϵ


x1−α


.
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The same argument of part (i) shows that

Θ


nα exp


1

1 − α
− ϵ


n1−α


≤ In ≤ Θ


nα exp


1

1 − α
+ ϵ


n1−α


,

and this proves part (ii). �
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