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Abstract: More and more works deal with statistical systems far from equilibrium, dominated1

by unidirectional stochastic processes augmented by rare resets. We analyze the construction2

of the entropic distance measure appropriate for such a dynamics. We demonstrate that a3

power-like nonlinearity in the state probability in the master equation naturally leads to the Tsallis4

(Havrda–Charvát, Aczél–Daróczy) q-entropy formula in the context of seeking for the maximal5

entropy state at stationarity. A few possible applications of a certain simple and linear master6

equation to phenomena studied in statistical physics are listed at the end.7
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1. Definition and Properties of Entropic Distance9

Entropic distance, more properly called ”entropic divergence”, is traditionally interpreted as a10

relative entropy, as a difference between entropies with a prior condition and without [1]. It is also11

the Boltzmann–Shannon entropy of a distribution relative to another [2]. Looking at this construction,12

however, from the viewpoint of a generalized entropy [3], the simple difference or logarithm of a ratio13

cannot be hold as a definition any more.14

Instead, in this paper, we explore a reverse engineering concept: seeking for an entropic divergence15

formula at the first place, which is subject to some wanted properties, we consider entropy as a derived16

quantity. More precisely we seek for entropic divergence formulas appropriate to a given stochastic17

dynamics, shrinking during the approach to a stationary distribution, whenever it exists, and establish18

the entropy formula from this distance to the uniform distribution. By doing so we serve two goals: i)19

having constructed a non-negative entropic distance we derive an entropy formula which is maximal20

for the uniform distribution, and ii) we come as near as possible to the classical difference formula for21

the relative entropy.22

We start our discussion by contrasting the definition of the metric distance, knwon from geometry,23

to the basic properities of an entropic distance. The metric distance posesses the following properties:24

1. ρ(P, Q) ≥ 0 for a pair of points P and Q,25

2. ρ(P, Q) = 0 only for P = Q,26

3. ρ(P, Q) = ρ(Q, P) symmetric measure,27

4. ρ(P, Q) ≤ ρ(P, R) + ρ(R, Q), the triangle inequality in elliptic spaces.28

The entropic divergence on the other hand is neither necessarily symmetric, nor can satisfy a triangle29

inequality. On the other hand it is subject to the second law of thermodynamics, distingusihing the30

time arrow from the past to the future. We require for a real functional, ρ[P, Q], depending on the31

distributions Pn and Qn, the followings to hold:32
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1. ρ[P, Q] ≥ 0 for a pair of distributions Pn and Qn,33

2. ρ[P, Q] = 0 only if the distributions coincide Pn = Qn,34

3. d
dt ρ[P, Q] ≤ 0 if Qn is the stationary distribution,35

4. d
dt ρ[Q, Q] = 0 only for Pn = Qn, i.e. the stationary distribution is unique.36

Although this definition is not symmetric in the handling of the normalized distributions Pn and Qn, it
is an easy task to consider the symmetrized version, s[P, Q] ≡ ρ[P, Q] + ρ[Q, P]. This symmetrized
entropic divergence inherits some properties from the fiducial construction. Considering a scaling
trace form entropic divergence, ρ[P, Q] = ∑

n
σ(ξn) Qn with ξn = Pn/Qn, to begin with, we identify the

following symmetrized kernel function:

s(ξ) := σ(ξ) + ξ σ(1/ξ). (1)

The only constraint is to start with a core function, σ(ξ) with a definite concavity. Jensen inequality
tells for σ′′ > 0 that

∑
n

σ(ξn) Qn ≥ σ

(
∑
n

ξnQn

)
= σ

(
∑
n

Pn

)
= σ(1). (2)

For satisfying property 1 and 2 one simply sets σ(1) = 0. Interesting enough, but this setting suffices37

also for the satsifaction of the second law of thermodynamics, formulated above as further constraints38

3 and 4. As a consequence of the symmetrization it also follows that s(1) = 0 and s′′ > 0.39

The symmetrized entropic divergence shows some new, emergent properties. We list its40

derivatives as follows:41

s(ξ) = σ(ξ) + ξ σ(1/ξ)

s′(ξ) = σ′(ξ) + σ(1/ξ)− 1
ξ

σ′(1/ξ)

s′′(ξ) = σ′′(ξ)−
��

�
��1

ξ2 σ′(1/ξ) +
��

�
��1

ξ2 σ′(1/ξ) +
1
ξ3 σ′′(1/ξ). (3)

The consequences, listed below, can be derived from these general relations:42

1. s(1) = 2 σ(1) = 0,43

2. s′(1) = σ(1) = 0,44

3. s′′ > 0 ⇒ ξm = 1 is a minimum,45

4. s(ξ) ≥ 0.46

In this way the kernel function and hence each summand in the symmetrized entropic divergence47

formula is non-negative, not only the total sum.48

2. Entropic distance evolution due to linear stochastic dynamics49

Now we study properties 3 and 4, by evaluating the rate of change of the entropic divergence in
time. This change is based on the dynamics (time evolution) of the evolving distribution, Pn(t), while
the targeted stationary distribution, Qn is by definition time independent. First we consider a class
of stochastic evolutions governed by differential equations for Ṗn(t) ≡ dPn

dt , linear in the distribution,

Pn(t) [4]. We consider the trace form ρ[P, Q] = ∑
n

Qn σ
(

Pn
Qn

)
and the background master equation

Ṗn = ∑
m
(wnmPm − wmnPn) . (4)
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The antisymmetrized sum in the above equation is merely to ensure the conservation of the norm,
∑
n

Pn = 1, during the time evolution. Using again the notation ξn = Pn/Qn we obtain

ρ̇ = ∑
n

σ′(ξn) Ṗn = ∑
n,m

σ′(ξn) (wnm ξmQm − wmn ξnQn) . (5)

The basic trick is to apply the splitting ξm = ξn + (ξm − ξn) to get

ρ̇ = ∑
n

σ′(ξn) ξn
(((

((((
((((∑

m
(wnm Qm − wmn Qn) + ∑

n,m
σ′(ξn)(ξm − ξn)wnm Qm. (6)

Here the sum in the first term vanishes due to the very definition of the stationary distribution, Qn.
For estimating the remaining term we utilize the Taylor series remainder theorem in the Lagrange
form. We recall the Taylor expansion of the kernel function σ(ξ),

σ(ξm) = σ(ξn) + σ′(ξn)(ξm − ξn) +
1
2

σ′′(cmn)(ξn − ξm)
2, (7)

with cmn ∈ [ξm, ξn]. Here the first derivative term has occured in eq.(6). This construction delivers

ρ̇ =
((((

(((
((((

((
∑
n,m

[σ(ξm)− σ(ξn)]wnmQm −
1
2 ∑

n,m
σ′′(cmn) (ξm − ξn)

2 wnmQm. (8)

Here the first sum vanishes again: after exchanging the indices m and n in the first summand, the50

result is proportional to the total balance expression, which is zero for the stationary distribution. With51

positive transition rates, wnm > 0 the approach to stationary distribution, ρ̇ ≤ 0 is hence proven for all52

σ′′ > 0. We note that we never used the detailed balance condition for the transition rates, only the53

vanishing of the total balance, which defines the stationary distribution.54

This proof, without recalling the detailed balance condition as Boltzmann’s famous H-theorem
did, is quite general. Any core function with positive second derivative and the scaling trace form
co-act to ensure the correct change in time. By using the traditional choice, σ(ξ) = − ln ξ, we have
σ′ = −1/ξ and σ′′(ξ) = 1/ξ2 > 0, satisfying indeed all requirements. The integrated entropic
divergence formula (no symmetrization) in this case is given as the Kullback–Leibler divergence :

ρ[P, Q] = ∑
n

Qn ln
Qn

Pn
. (9)

There is a rationale behind using the logarithm function. It is the only one being additive for the55

product form of its argument, mapping factorizing and hence statistically independent distributions to56

an additive entropic divergence kernel: For P(12)
n = P(1)

n P(2)
n also Q(12)

n = Q(1)
n Q(2)

n therefore we have57

ξ
(12)
n = ξ

(1)
n ξ

(2)
n . Aiming at σ(ξ(12)) = σ(ξ(1)) + σ(ξ(2)), the solution is σ(ξ) = α ln ξ. For σ′′ > 0 it58

must be α < 0, so without restricting generality one chooses α = −1.59

Finally we would like to treat this entropic divergence as an entropy difference. This is achieved
when comparing the stationary distribution to the uniform distribution, Un = 1/W, n = 1, 2, . . . W.
Using the above Kullback–Leibler divergence formula one easily derives

ρ[U, Q] =
W

∑
n=1

Qn ln(WQn) = ln W + ∑
n

Qn ln Qn = SBG[U]− SBG[Q] (10)

with
SBG[Q] = −∑

n
Qn ln Qn, (11)

being the Boltzmann–Gibbs–Planck–Shannon entropy formula. From the Jensen inequality it follows60

ρ(U, Q) ≥ 0 , so SBG[U] ≥ SBG[Q].61
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3. Entropic divergence evolution for nonlinear master equations62

Detailed balance is also not needed for a more general dynamics. We consider Markovian
dynamics, with a master equation nonlinear in the distribution, Pn, as

Ṗn = ∑
m
[wnm a(Pm)− wmn a(Pn)] . (12)

The stationarity condition defines

0 = ∑
m
[wnm a(Qm)− wmn a(Qn)] . (13)

The entropic distance formula is seeked in the trace form (but this time without the scaling assumption):

ρ[P, Q] = ∑
n

σ(Pn, Qn), (14)

the dependence on Qn is fixed by ρ(Q, Q) = 0. The change of the entropic divergence in this case is
given by

ρ̇ = ∑
m,n

∂σ

∂Pn
[wnm a(Qm)ξm − wmn a(Qn)ξn] (15)

with ξn := a(Pn)/a(Qn). We again put ξm = ξn + (ξm − ξn) in the first summand:

ρ̇ = ∑
n

∂σ

∂Pn
ξn
((((

((((
((((

(
∑
m
[wnm a(Qm)− wmn a(Qn)] + ∑

n,m

∂σ

∂Pn
wnm a(Qm) (ξm − ξn) (16)

In order to use the remainder theorem one has to identify

∂σ

∂Pn
= κ′(ξn) = κ′

(
a(Pn)

a(Qn)

)
. (17)

This ensures ρ̇ < 0 for any κ′′ > 0 and P 6= Q.63

We examine the example of the q–Kullback–Leibler or Rényi divergence. Starting with the classical
logarithmic kernel, κ(ξ) = − ln ξ, we have κ′′(ξ) = 1/ξ2 > 0. Now having a nonlinear stochastic
dynamics, a(P) = Pq, the integrated entropic divergence formula (without symmetrization) delivers
the Tsallis divergence [5–7],

∂σ

∂Pn
= −Qq

n

Pq
n

, ⇒ ρ[P, Q] = ∑
n

Qn lnq
Qn

Pn
. (18)

with

lnq(x) =
1− xq−1

1− q
(19)

being the so called deformed logarithm with the real parameter q.64

We again would like to interpret this entropic divergence as entropy difference. The entropic
divergence of the stationary distribution from the uniform distribution Un = 1/W, n = 1, 2, . . . W is
given by:

ρ[U, Q] =
W

∑
n=1

Qn

1− q

[
1− (WQn)

q−1
]
= Wq−1 (ST [U]− ST [Q]) . (20)

with ST being the Tsallis entropy formula:

ST [Q] =
1

1− q ∑
n
(Qq

n −Qn) = −∑
n

Qn lnq(Qn). (21)
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From the Jensen inequality it follows ρ(U, Q) ≥ 0 , so ST [U] ≥ ST [Q], i.e. the Tsallis entropy formula65

is also maximal for the uniform distribution. The factor Wq−1 signifies non-extensivity, a dependence66

on the number of states in the relation between the entropic divergence and the relative Tsallis entropy.67

4. Master equation for unidirectional growth and reset68

With the particular choice of the transition rates, wnm = µmδn−1,m + γmδn,0, one describes a local
growth process augmented with direct resetting transitions from any state to the ground state labelled
by the index zero [8]. The corresponding master equation

Ṗn = µn−1Pn−1 − (µn + γn) Pn (22)

is terminated at n = 1 and the equation for the n = 0 state takes care of the normalization conservation:

Ṗ0 =
∞

∑
n=1

γnPn − µ0P0. (23)

For the stationary distribution one obtains

Qn =
µn−1

µn + γn
Qn−1 = · · · = µ0Q0

µn

n

∏
j=1

(
1 +

γj

µj

)−1

, (24)

and Q0 has to be obtained from the normalization. Table 1 summarizes some well known probability
density functions, PDF-s, which emerge as stationary distribution to this simplified stochastic dynamics
upon different choices of the growth and reset rates µn and γn. In the continuous limit we obtain

∂

∂t
P(x, t) = − ∂

∂x
(µ(x) P(x, t))− γ(x)P(x, t). (25)

with the stationary distribution

Q(x) =
K

µ(x)
e
−

x∫
0

γ(u)
µ(u) du

. (26)

Table 1. Summary of rates and stationary PDF-s.

γn, γ(x) µn, µ(x) Qn, Q(x)
const const geometrical→ exponential
const linear Waring→ Tsallis/Pareto
const sublinear power Weibull
const quadratic polynomial Pearson
const exp Gompertz

ln(x/a) αx Log-Normal
linear const Gauss

α(ax− c) αx Gamma

Finally we derive a bound for the entropy production in the continuous model of unidirectional69

growth with resetting.70

First we study the time evolution of the ratio, ξ(t, x) = P(x, t)/Q(x). Using P = ξQ we get from
eq.(25):

Q
∂ξ

∂t
= −ξ

�
�
��∂(µQ)

∂x
− µQ

∂ξ

∂x
−��γ Q ξ. (27)
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Using the same eq. for stationary Q(x) and dividing by Q we obtain

∂ξ

∂t
= −µ(x)

∂ξ

∂x
. (28)

Now we turn to the evolution of the entropic divergence,

ρ(t) ≡
∞∫

0

s(ξ(t, x)) Q(x)dx, (29)

With the symmetrized kernel, s(ξ) = σdiv(ξ) + ξ σdiv(1/ξ) ≥ 0, one gets using
∂s

∂t
= −µ(x)

∂s

∂x
the

following distance evolution, consiedring the boundary condition ξ(t, 0) = 1 and s(1) = 0:

dρ

dt
= −

∞∫
0

s(ξ(t, x)) Q(x) γ(x)dx (30)

We note that for the Kullback–Leibler divergence the following symmetrized kernel function has to be71

used: σ(ξ) = − ln ξ leads to s(ξ) = (ξ − 1) ln ξ and in this way ensures dρ
dt ≤ 0.72

In order to obtain a lower bound for the speed of the approach to stationarity, we use again the
Jensen inequalityfor s(ξ): ∫

p(x) s(ξ(x)) dx ≥ s

(∫
p(x) ξ(x) dx

)
(31)

with any arbitrary p(x) ≥ 0 satisfying
∫

p(x) dx = 1. For pour purpose we choose p(x) =

γ(x)Q(x)/
∫

γQ dx. This leads to the following result:

dρ

dt
≤ − 〈γ〉∞ · s

(
〈γ〉 t
〈γ〉∞

)
=
[
〈γ〉∞ − 〈γ〉 t

]
· ln
〈γ〉 t
〈γ〉∞

. (32)

Note that the controlling quantity is actually the expectation value of the resetting rate,73 ∫
p(x)ξ(x) dx =

∫
γP dx = 〈γ〉t. Since s(ξ) reaches its minimum with the value zero only at the74

argument 1, the entropic divergence ρ(t) stops changing only if the stationary distribution is achieved.75

In all other cases it shrinks.76

5. Summary77

Summarizing in this paper we have presented a construction strategy for the entropic distance78

formula, designed to shrink for a given wide class of stochastic dynamics. The very entropy formula79

was then derived from inspecting this distance between the uniform distribution and the stationary80

PDF of the corresponding master equation. In this way for linear master equations the well-known81

Kullback–Leibler definition arises, while for nonlinear dependence on the occupation probabilities82

one always arrives at an accordingly modified expression. In particular for a general power-like83

dependence the Tsallis q-entropy occurs as the ”natural” relative entropy interpretation of the proper84

entropic divergence. In the continuous version of the growth and reset master equation, a dissipative85

probability flow supported with an inflow at the boundary, a lower bound was given for the shrinking86

speed of the symmetrized entropic divergence using the Jensen inequality.87

To finish this paper we would like to make some remarks on real world applications of the above88

discussed mathetmatical treatment. Among possible applications of the growth and resetting model89

we mention the network degree distributions showing exponential behavuior for constant rates and a90

Tsallis–Pareto distribution [9] (in the discrete version a Waring distribution [10,11]) for having a linear91

preference in the growth rate, µn = α(n + b). For high energy particle abundance (hadron multiplicity)92

distributions the negative binomial PDF is an excellent approximation [12], when both rates µ and γ are93
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linear functions of the state label. For middle and small settlement size distributions a log-normal PDF94

arise, achievable with linear growth rate, µ(x) and a logarithmic reset rate, γ(x) ∼ ln x. Citations of95

scientific papers and facebook shares and likes also follow a scaling Tsallis–Pareto distribution [13,14],96

characteristic to constant resetting and linear growth rates. While wealth seems to be distributed97

according to a Pareto-law tail, the middle class incomes rather show a gamma distribution, stemming98

from linear reset and growth rates. For a review of such applications see our forthcoming work.99
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