Rendszeroptimalizálás Zárthelyi feladatok

 $2009.\ november \ 16.$

1. a) Írjuk fel az alábbi lineáris programozási feladat duálisát (a t valós paraméter minden értékére)! (A felírás hasonló alakú legyen, mint a primál feladat felírása, vagyis ne mátrixos alakot használjunk.)

b) Döntsük el, hogy a t paraméter milyen értékeire lesz a (primál) feladat célfüggvénye felülről korlátos a megoldáshalmazán.

> $\max\{x_1 - x_2 - x_3 - x_4 + t \cdot x_5\}$ ha $x_1 - 2x_2 \le 1$ $x_2 - 2x_3 \le 2$ $x_3 - 2x_4 \le 3$ $x_4 - 2x_5 \le 4$

2. Legyen $A \ m \times n$ -es mátrix, $b \in \mathbb{R}^m$ oszlopvektor. Mutassuk meg, hogy az alábbi rendszerek közül pontosan az egyik megoldható:

(1)
$$Ax = b, x > 0$$

(2) $yA \ge 0, yb \le 0, y(A|b) \ne 0$

(Azt kell tehát megmutatni, hogy az (1)esbeli x és a (2)-esbeli y vektorok közül pontosan az egyik létezik. x > 0 azt jelenti, hogy az x minden komponense pozitív. (A|b) azt a mátrixot jelöli, amit az A-ból nyerünk úgy, hogy b-t hozzávesszük új oszlopként.)

3. Koordinátázza az alábbi mátrix (a valós test fölött) az $\mathcal{M}_{x,y}$ matroidot. Az x, y értékektől függően mikor lesz az $\mathcal{M}_{x,y}$ matroid grafikus?

$$\left(\begin{array}{rrrrr} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & -1 \\ 3 & 0 & x & 0 \\ 0 & 6 & 0 & y \end{array}\right)$$

4. A bal oldali ábrán látható gráf körmatroidja legyen \mathcal{A} , a jobb oldalin látható \mathcal{B} . Grafikusak-e az $\mathcal{A} \lor \mathcal{A}$, illetve az $\mathcal{A} \lor \mathcal{B}$ matroidok?

5. Tekintsük az utazóügynök probléma azon speciális eseteit, amikor a gráf pontjai egy szabályos *n*-szög csúcsain helyezkednek el, az élek súlyai pedig a végpontok euklideszi távolságával azonosak. Igaz-e, hogy ezen speciális esetekre az előadáson tanult $\frac{3}{2}$ -approximációs algoritmus optimális megoldást ad?

6. Mutassuk meg, hogy létezik $(2 - \frac{1}{m})$ -approximációs algoritmus a $Pm|prec|C_{\max}$ feladatra, ha ismert, hogy a precedenciagráf pontosan egy élből áll. (Mellőzzük annak az előadáson bizonyítás nélkül közölt ténynek a használatát, miszerint a listás ütemezés $(2 - \frac{1}{m})$ -approximációs algoritmus a $Pm|prec|C_{\max}$ feladatra.)

A feladatok megoldásához segédeszköz nem használható. A rendelkezésre álló munkaidő 90 perc.

Nem szükséges minden feladatot külön lapra írni, de kérjük, hogy a beadott dolgozat szétválasztható legyen 3 részre: az 1-es/2-es, a 3-as/4-es, illetve az 5-ös/6-os feladatpárokra.

A zárthelyi feladatok megoldása

Az 1. feladat megoldása.

a) A feladat max $\{cx : Ax \leq b\}$ alakú, ahol

$$A = \begin{pmatrix} 1 & -2 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}, \ b = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \ c = \begin{pmatrix} 1 & -1 & -1 & -1 & t \end{pmatrix}.$$

Ezért a feladat duálisa min $\{yb : yA = c, y \ge 0\}$. Ezt részletesebben kiírva és az $y = (y_1, y_2, y_3, y_4)$ jelölést alkalmazva: min $\{y_1 + 2y_2 + 3y_3 + 4y_4\}$

$$\min\{y_1 + 2y_2 + 3y_3 + 4y_4\}$$
 ha

$$y_1 = 1$$

$$y_2 - 2y_1 = -1$$

$$y_3 - 2y_2 = -1$$

$$y_4 - 2y_3 = -1$$

$$-2y_4 = t$$

$$y_1, y_2, y_3, y_4 \ge 0$$

b) Nyilvánvaló, hogy a primál feladat egyenlőtlenségrendszere megoldható (például $x_i = 0$, i = 1, 2, 3, 4, 5 megoldás). Így az ismert tétel (Rendszeroptimalizálás könyv, 1.6. Tétel) szerint a primál feladat célfüggvénye akkor és csak akkor felülről korlátos a megoldáshalmazán, ha a duális egyenlőtlenségrendszere megoldható.

A duális felírásakor kapott első négy egyenletből adódik, hogy $y_1 = y_2 = y_3 = y_4 = 1$. Így az $y_1, y_2, y_3, y_4 \ge 0$ feltételek az egyetlen szóbajövő duális megoldásra automatikusan teljesülnek. Ezek szerint a duális rendszerének megoldhatósága az utolsó, $-2y_4 = t$ egyenlettől függ: látszik, hogy pontosan a t = -2 értékre megoldható.

Tehát a primál célfüggvénye akkor és csak akkor felülről korlátos, ha t = -2.

A 2. feladat megoldása. Először megmutatjuk, hogy (1) és (2) egyszerre nem lehet megoldható. Tegyük fel, hogy mégis és legyen x, illetve y egy-egy megoldás. Zárójelezzük kétféleképpen az yAx szorzatot: $0 \leq (yA)x = y(Ax) = yb \leq 0$. (Itt $0 \leq (yA)x$ -hez felhasználtuk, hogy $yA \geq 0$ és x > 0 (valamint a mátrixszorzás definícióját), $y(Ax) = yb \leq 0$ -hoz pedig azt, hogy Ax = b és $yb \leq 0$.) Látható, hogy ez csak akkor valósulhatna meg, ha yb = 0 és (yA)x = 0 is fennállna. Ez azonban az $y(A|b) \neq 0$ feltétel miatt lehetetlen: ha yb = 0, akkor szükségképp az yA sorvektor koordinátái között kell legyen nemnulla (azaz pozitív) szám, amiből x > 0 miatt (yA)x > 0 következik.

Tegyük fel most, hogy (2) nem megoldható; célunk belátni, hogy akkor (1) igen. Ha (2)-t fel tudnánk írni "hagyományos" egyenlőtlenségrendszer alakban, akkor alkalmazhatnánk a Farkas-lemmát; de az $y(A|b) \neq 0$ feltétel ezt látszólag lehetetlenné teszi. Azonban látszik, hogy ha a (2) rendszernek y megoldása, akkor $\alpha \cdot y$ is megoldás tetszőleges $\alpha > 0$ -ra. Így az $y(A|b) \neq 0$ feltételt átfogalmazhatjuk: $yA \ge 0, yb \le 0$ helyett írhatjuk, hogy $y(-A|b) \le 0; y(A|b) \neq 0$ pedig nyilván ekvivalens $y(-A|b) \neq 0$ -val. Ezek szerint az y(-A|b) sorvektor minden komponense nempozitív és van köztük negatív is. Így a fenti ($\alpha \cdot y$ -ra vonatkozó) megfigyelés miatt feltehetjük, hogy az y(-A|b) sorvektor koordinátáinak összege legföljebb -1.

Osszefoglalva a fentieket: jelölje 1 a "csupaegy" oszlopvektort és legyen $u = (-A|b) \cdot 1$ (vagyis a (-A|b) oszlopainak összege). Ha (2) nem megoldható, akkor nem megoldható az $y(-A|b) \leq 0, yu \leq -1$ rendszer sem (hiszen $yu = y((-A|b)\mathbf{1}) = (y(-A|b))\mathbf{1}$ épp az y(-A|b) koordinátáinak összege). Erre pedig (transzponálás után) már alkalmazhatjuk a Farkas-lemma szokásos alakját (Rendszeroptimalizálás könyv, 1.3. Tétel). Azt kapjuk, hogy létezik az $x \in \mathbb{R}^n, x \geq 0$ vektor és a $\lambda, \mu \geq 0$ skalárok úgy, hogy $(-A)x + \lambda b + \mu u = 0$ és $(-\mu) < 0$. (Itt a Farkas-lemma által garantált (n + 2)-dimenziós oszlopvektor utolsó két (b-nek, illetve u-nak megfelelő) koordinátáját jelöltük λ -val, illetve μ -vel, az ezek elhagyásával kapott oszlopvektort pedig x-szel.)

Itt $\mu u = \mu(-A|b)\mathbf{1} = (-A)\cdot(\mu\mathbf{1}) + \mu b$. Ezt a fentibe helyettesítve és átrendezve: $A(x + \mu\mathbf{1}) = (\lambda + \mu)b$. Mivel $x \ge 0, \lambda \ge 0$ és $\mu > 0$ (utóbbi $(-\mu) < 0$ miatt), ezért $\lambda + \mu > 0$ és $x + \mu\mathbf{1} > 0$. Ebből viszont valóban következik, hogy (1) megoldható: az $\frac{1}{\lambda + \mu}(x + \mu\mathbf{1})$ vektor megoldása.

Megjegyzés. A feladat egy másik lehetséges megoldásának alapgondolata a következő. Tekintsük a következő lineáris programot: $Ax = b, x \ge \mu \mathbf{1}, \max : \mu$. (Ez egy n + 1 változós feladat, x koordinátáin kívül μ is változó.) Ekkor a feladatbeli (1) rendszer akkor és csak akkor megoldható, ha a fenti lineáris program rendszere megoldható (ami ekvivalens Ax = b megoldhatóságával) és a maximumértéke vagy nem létezik, vagy pozitív. Alkalmazva a dualitástételt valóban a (2)-es rendszer megoldhatóságával ekvivalens állítást kapunk.

A 3. feladat megoldása. Jelölje a mátrix oszlopait (ebben a sorrendben) a, b, c és d. Látható, hogy ha x = 6, akkor c = 2a; hasonlóan, ha y = -3, akkor b = -2d. Az is könnyen látszik, hogy ha $x \neq 6$ és $y \neq -3$, akkor a mátrix 4 oszlopa lineárisan független. (Ugyanis egy elképzelt $\alpha a + \beta b + \gamma c + \delta d$ lineáris kombináció első és harmadik koordinátáját csak a és c határozza meg, a másodikat és a negyediket csak b és d. Az előbbi esetben például az $\alpha + 2\gamma$, illetve $3\alpha + x \cdot \beta$ a két koordináta, amik az $x \neq 6$ esetben csak $\alpha = \beta = 0$ -ra adnak egyaránt 0-t; a második esetre az ellenőrzés hasonló. Opcionálisan a mátrix determinánsa is könnyen kiszámítható: (x - 6)(2y + 6); látszik, hogy ez csak az x = 6 vagy az y = -3 esetben lesz 0.)

Így az $x \neq 6, y \neq -3$ esetben $\mathcal{M}_{x,y}$ az $U_{4,4}$ uniform matroiddal izomorf. Ez nyilván grafikus: bármely 4 élű fa reprezentálja. Ha $x \neq 6$, de y = -3, akkor a, b és c függetlenek (ez a fentihez nagyon hasonlóan indokolható). Így a matroid ilyenkor is grafikus: reprezentálja egy 3 élű fa, amelynek az egyik élét két párhuzamos éllel helyettesítjük (ezek *b*-nek és *d*-nek felelnek meg). Az $x = 6, y \neq -3$ eset szimmetrikus: $\mathcal{M}_{x,y}$ -t ilyenkor is egy ugyanilyen gráf reprezentálja, csak a párhuzamos élek *a*-nak és *c*-nek felelnek meg. Végül az x = 6, y = -3 esetben *a* és *b* függetlenek, de *c* és *d* rendre az elsővel, illetve a másodikkal párhuzamos. Így a matroid ilyenkor is grafikus: reprezentálja egy 2 élű út, amelynek mindkét élét helyettesítjük 2-2 párhuzamos éllel.

A 4. feladat megoldása. Mindkét matroid rangja 2 (hiszen 3 pontú, összefüggő gráfok reprezentálják őket), ezért mindkét összegmatroid rangja leföljebb 4 lehet. Sőt, például az $\{1,4\}$ és a $\{2,5\}$ halmazok mindkét matroidban függetlenek, így az $\{1,2,4,5\}$ mindkét összegmatroidban független; így $\mathcal{A} \vee \mathcal{A}$ és $\mathcal{A} \vee \mathcal{B}$ rangja is 4.

 $\mathcal{A} \lor \mathcal{A}$ -ban azonban nem minden 4 elemű halmaz független, hiszen az 1, 2 és 3 elemek közül minden \mathcal{A} -beli független csak 1-et tartalmazhat, ezért minden $\mathcal{A} \lor \mathcal{A}$ -beli független legföljebb csak 2-t. Azonban az $\{1, 2, 3\}$ -at nem tartalmazó 4 eleműek mind függetlenek: 1, 2 és 3 közül kettőt választva az egyikhez hozzávehetjük a 3-at, a másikhoz a 4-et; így két kételemű függetlent kapunk, amiknek az uniója $\mathcal{A} \lor \mathcal{A}$ -beli. Ezért $\mathcal{A} \lor \mathcal{A}$ grafikus: reprezentálja az a gráf, amit egy háromszögből kapunk úgy, hogy "lelógatunk" róla két élet. (A háromszög élei felelnek meg 1-nek, 2-nek és 3-nak, a lelógatott élek 4-nek és 5-nek.)

 $\mathcal{A} \vee \mathcal{B}$ -ben viszont már minden 4 elemű halmaz független. Ezt legegyszerűbb az 5 eset végigpróbálásával ellenőrizni: már láttuk, hogy $\{1, 2, 4, 5\} = \{1, 4\} \cup \{2, 5\}$ és hasonlóan $\{1, 2, 3, 4\} = \{1, 4\} \cup \{2, 3\},$ $\{1, 2, 3, 5\} = \{1, 5\} \cup \{2, 3\},$ $\{1, 3, 4, 5\} = \{4, 5\} \cup \{1, 3\}$ és $\{2, 3, 4, 5\} = \{4, 5\} \cup \{2, 3\}$ (ahol mindig bal oldalra írtuk az \mathcal{A} , jobbra a \mathcal{B} -beli függetlent). Így $\mathcal{A} \vee \mathcal{B}$ az $U_{5,4}$ uniform matroiddal izomorf, ami ismét grafikus: reprezentálja egy 5 élű kör.

Az 5. feladat megoldása. Az algoritmus először egy minimális súlyú feszítőfát keres, ez (mint az mondjuk a Kruskal-algoritmus végrehajtásával látható) a sokszög oldalai közül tartalmaz n-1 darabot (és persze más élet nem). Ebben két páratlan fokú csúcs lesz, tehát a páratlan fokú csúcsokon vett minimális összsúlyú párosítás a két (a sokszögön szomszédos) csúcs közti élből áll. Ezt a fához véve nem csak Euler-kört, hanem Hamilton-kört is kapunk, tehát a levágások után az élhalmaz változatlan marad: épp a sokszög oldalaiból fog állni. Ez nyilván az optimális megoldás, hiszen pont az n legrövidebb élből áll.

A 6. feladat megoldása. Tekintsük azt az L listás ütemezést, ahol a gráf egyetlen élének kezdőpontja (legyen ez J_1) az első, a végpont (J_n) pedig az utolsó elem a listában. Ez nyilván polinomiális, megmutatjuk, hogy emellett approximációs faktora legfeljebb $2 - \frac{1}{m}$. Az eredeti feladat egy tetszőleges B bemenetének időigénye legyen OPT, a feladat precedenciák nélküli változatához tartozó, egyéb paramétereiben B-vel megegyező B' bemenet időigénye pedig OPT'. Ekkor nyilván $OPT' \leq OPT$. Legyen ezen kívül L' a B' bemenethez tartozó listás ütemezés az L ütemezéshez tartozó sorrendben.

Ha az L' ütemezésben J_n elkezdésekor J_1 -gyel már végeztünk, akkor az L és L' ütemezések nyilván

ugyanannyi időt igényelnek. Mivel L' approximációs faktora $2 - \frac{1}{m}$ és $OPT' \leq OPT$, ekkor kész vagyunk. Ha az L' ütemezésben J_n elkezdésekor J_1 -gyel még nem végeztünk, akkor az L ütemezés a B bemeneten max $(p_1 + p_n, OPT')$ ideig fog tartani, ami optimális, hiszen $OPT' \leq OPT$ és nyilván $p_1 + p_n \leq OPT$, így ebben az esetben is készen vagyunk.