
Contributions To Or-Parallel LogicProgrammingPhD ThesisPéter Szeredi
Technical University of BudapestDecember 1997

Contents1 Introduction 11.1 Preliminaries : 11.1.1 Parallel programming : 11.1.2 Logic programming : 21.1.3 Parallel execution of logic programs : 31.1.4 Parallel implementation of logic programming : 51.1.5 The Aurora or-parallel Prolog system : 51.2 Thesis overview : 61.2.1 Problem formulation : 61.2.2 Approach and results : 81.2.3 Utilisation of the results : 91.3 Structure of the Thesis and contributions : 101.3.1 Implementation : 101.3.2 Language extensions : 111.3.3 Applications : 111.3.4 Summary of publications : 11I Implementation 152 The Aurora Or-Parallel Prolog System 162.1 Introduction : 162.2 Background : 172.2.1 Sequential Prolog Implementations : 172.2.2 Multiprocessors : 182.2.3 Or-Parallelism : 182.2.4 Issues in Or-Parallel Prolog Implementation and Early Work : : : : : : : : : : : : : : 192.2.5 A Short History of the Gigalips Project : 192.3 Design : 192.3.1 The Basic SRI Model : 192.3.2 Extending the WAM : 202.3.3 Memory Management : 202.3.4 Public and Private Nodes : 212.3.5 Scheduling : 212.3.6 Cut, Commit, Side E�ects and Suspension : 222.3.7 Other Language Issues : 222.4 Implementation : 232.4.1 Prolog Engine : 232.4.2 Schedulers : 252.4.3 The Graphical Tracing Facility : 27ii

2.5 Experimental Results : 282.6 Applications : 312.6.1 The Pundit Natural Language System : 312.6.2 The Piles Civil Engineering Application : 312.6.3 Study of the R-classes of a Large Semigroup : 322.7 Conclusion : 322.8 Acknowledgements : 333 Performance Analysis of the Aurora Or-Parallel Prolog System 363.1 Introduction : 363.2 The working cycle of Aurora : 383.3 Instrumenting Aurora : 393.4 The benchmarks : 393.5 Basic overheads of or-parallel execution : 413.6 Locking and moving overheads : 453.7 Tuning the Manchester scheduler : 473.8 Conclusions : 473.9 Acknowledgements : 484 Flexible Scheduling of Or-parallelism in Aurora: The Bristol Scheduler 504.1 Introduction : 504.2 Scheduling Strategies : 514.2.1 Topmost dispatching schedulers for Aurora : 524.2.2 The Muse Scheduler : 524.3 Principles of the Bristol scheduler : 534.4 Implementation of the Bristol scheduler : 534.4.1 Data structures : 534.4.2 Looking for work : 544.4.3 Side-e�ects and suspension : 564.4.4 Cut and commit : 564.5 Performance results : 574.6 A strategy for scheduling speculative work : 604.7 Conclusions : 604.8 Acknowledgements : 615 Interfacing Engines and Schedulers in Or-Parallel Prolog Systems 645.1 Introduction : 645.2 Preliminaries : 655.3 The Top Level View of the Interface : 675.4 Common Data Structures : 685.5 Finding Work : 695.6 Communication with Other Workers : 705.7 Extensions of the Basic Interface : 705.7.1 Simpli�ed Backtracking : 705.7.2 Pruning Information : 715.8 Implementation of the Interface in the Aurora Engine : 715.8.1 Boundaries : 715.8.2 Backtracking : 715.8.3 Memory Management : 725.8.4 Pruning Operators : 725.8.5 Premature Termination : 72iii

5.8.6 Movement : 725.9 Applying the Interface to Andorra-I : 725.10 Performance Results : 735.11 Conclusions and Future Work : 735.12 Acknowledgements : 74II Language extensions 796 Using Dynamic Predicates in an Or-Parallel Prolog System 806.1 Introduction : 806.2 Extensions to Prolog in Aurora : 816.3 The Game of Mastermind : 826.4 Synchronisation Primitives in Aurora : 836.5 The Parallel Mastermind Program : 856.6 Using Multiple Clause Data Representation : 876.7 Predicates for Handling Shared Data : 876.8 Experimental Performance Results : 896.9 Related Work : 896.10 Conclusions and Further Work : 906.11 Acknowledgements : 907 Exploiting Or-parallelism in Optimisation Problems 927.1 Introduction : 927.2 The Abstract Domain : 937.3 The Parallel Algorithm : 947.4 Language Extensions : 977.5 Implementation : 977.6 Applications : 987.6.1 The Branch-and-Bound Algorithm : 987.6.2 The Alpha-Beta Pruning Algorithm : 997.7 Performance Results : 1007.8 Related Work : 1017.9 Conclusions : 101III Applications 1048 Applications of the Aurora Parallel Prolog System to Computational Molecular Biology1058.1 Introduction : 1058.2 Logic Programming and Biology : 1068.3 Recent Enhancements to Aurora : 1068.3.1 Aurora on NUMA Machines : 1068.3.2 Visualization of Parallel Logic : 1078.4 Use of Pattern Matching in Genetic Sequence Analysis : 1078.4.1 Searching DNA for Pseudo-knots : 1088.4.2 Searching Protein Sequences : 1098.5 Evaluation of Experiments : 1098.5.1 The DNA Pseudo-knot Computation : 1098.5.2 The Protein Motif Search Problem : 1118.6 Conclusion : 114iv

9 Handling large knowledge bases in parallel Prolog 1179.1 Introduction : 1179.2 Background : 1189.2.1 The CUBIQ tool-set : 1189.2.2 EMRM: a medical application with a large medical thesaurus : : : : : : : : : : : : : : 1199.2.3 Or-parallel Prolog systems used in CUBIQ : 1209.3 Representing the SNOMED hierarchy in Prolog : 1209.4 The evolution of the frame representation in CUBIQ : 1229.5 Performance analysis of SNOMED searches : 1239.5.1 Sequential performance : 1249.5.2 Parallel performance : 1259.5.3 Summary : 1289.6 Conclusions : 12810 Serving Multiple HTML Clients from a Prolog application 13010.1 Introduction : 13010.2 An overview of EMRM : 13110.3 EMRM with a HTML user interface : 13110.4 Problems with single client : 13210.5 Serving multiple clients : 13210.6 Using an or-parallel Prolog as a multi-client server : 13310.7 Present status and future work : 13510.8 Conclusion : 135Conclusions 138

v

AbstractThis thesis describes work on Aurora, an or-parallel logic programming system on shared memory mul-tiprocessors. The Aurora system, supporting the full Prolog language, was developed in an internationalcollaboration, called the Gigalips project.The contributions described in the thesis address the problems of implementation, language and applicationsof or-parallel logic programming.The Aurora implementation contains two basic components: the engine, which executes the Prolog code; andthe scheduler, which organises the parallel exploration of the Prolog search tree. As our �rst investigation inthis area, we carried out a detailed performance analysis of Aurora with the so called Manchester scheduler.Using the results of this study, we designed the Bristol scheduler, which provides a �exible schedulingalgorithm and improved performance on programs involving pruning. We also de�ned a strict engine-scheduler interface, which re�ects the main functions involved in or-parallel Prolog execution. The interfacehas been used in all subsequent Aurora extensions, as well as in the Andorra-I system.We have studied the problems of Prolog language extensions related to parallel execution. We have ex-perimented with parallelisation of programs relying on non-declarative Prolog features, such as dynamicpredicates. We have designed and evaluated higher level language constructs for the synchronisation ofparallel execution. We have also designed a parallel algorithm for solving optimisation problems, whichsupports both the minimax algorithm with alpha-beta pruning and the branch-and-bound technique. Wehave proposed language extensions to encapsulate this general algorithm.We have worked on several applications of Aurora. Two large search problems in the area of computa-tional molecular biology were investigated: search of pseudo-knots in DNA sequences and search of proteinsequences for functionally signi�cant sections. A large medical thesaurus was also transformed into Pro-log, and evaluated on Aurora. Finally a scheme of a single WWW server capable of supporting multipleconcurrent Prolog searches was developed using Aurora.The work of the author described in this thesis had a signi�cant impact on the Aurora implementation. Ithas also demonstrated that the system can be further extended to address special problem areas, such asoptimisation search. The applications explored have proven that an or-parallel Prolog system can producesigni�cant speedups in real-life applications, thus reducing hours of computation to a few minutes.
vi

AcknowledgementsI was introduced to the topic of parallel logic programming by David H. D. Warren, when I joined hisresearch group at the University of Manchester in 1987, which a year later moved to the University ofBristol. I am indebted to David, for introducing me to this topic, for constant encouragement and help,even after my leaving England. I enjoyed working with all my colleagues at Manchester and Bristol. I wouldlike to specially thank Tony Beaumont, Alan Calderwood, Feliks Klu¹niak, and Rong Yang for numerousdiscussions and help with the work described in this thesis.When I joined David's group, I was fortunate to be immediately drawn into an informal collaboration,called the Gigalips project, which involved the Argonne National Laboratory (ANL), USA and the SwedishInstitute of Computer Science (SICS). I learned how to carry discussions through electronic mail and how torun and debug programs at remote sites. I enjoyed very much the hacking sessions, when the contributionsdeveloped at the distant sites were merged and started to work together. Again, I would like to thank allmy Gigalips colleagues, but especially Mats Carlsson and Ewing Lusk who became personal friends. I amvery sad that my thanks to Andrzej Ciepielewski cannot reach him any more.On my return to Hungary in 1990, I joined IQSOFT Ltd, led by Bálint Dömölki. I am indebted to Bálintand the management of IQSOFT, for the support they gave to this continued research. I would like to thankmy colleagues at IQSOFT for helping me in this work, especially Zsuzsa Farkas, Kati Molnár, Rob Scottand Gábor Umann.Work described in this thesis was supported by grants from the UK Science and Engineering Council, theEuropean Union Esprit and Copernicus programmes, the US-Hungarian Science and Technology Joint Fund,and the Hungarian National Committee for Technical Development.

vii

Chapter 1 IntroductionThis thesis describes work in the area of or-parallel logic programming, carried out during years 1987�1996.This chapter gives an overview of the thesis. First, the basic ideas of logic programming and its parallelimplementations are outlined. Next, a summary of the thesis is presented, showing the problems to besolved, the approach to their solution, the results achieved, and their utilisation. Finally, the structure ofthe remaining part of the thesis is outlined.1.1 PreliminariesThis section gives a brief overview of the problem area of the thesis: parallel logic programming. We �rstintroduce the two areas involved: parallel computing and logic programming. We then discuss approaches toparallel execution of logic programs and their implementations. We conclude this section with an overviewof the Aurora or-parallel Prolog system which is the subject of the thesis.1.1.1 Parallel programmingIt is a well known fact that the size of software systems grows very rapidly. Larger software requires biggerand bigger hardware resources. However, the speed of current hardware is approaching absolute physicallimits. We are reaching a phase when further increase in speed can only be gained by parallelisation.Parallelism in computations can be exploited on various levels. For example, there can be parallelisationwithin a single processor; one can have a computer with multiple processors working in parallel; or one canuse computer networks distributed worldwide, as parallel computing resources.Multiprocessor systems are positioned in the middle of this wide range. These are computers with multipleCPUs, coupled either tightly (e.g. through a shared memory), or loosely (e.g. using message passing). Inthe last few years, multiprocessor systems have became more widespread; recently even personal computermanufacturers have started to o�er shared memory multiprocessor PCs.The simplest way to make use of multiprocessor systems is to have the processors perform independent tasksin parallel (through e.g. multitasking operating systems). But what can we do, if we want to use the availablecomputing resources to perform a single huge task as fast as possible? In this case, we have to parallelisethe algorithm for the task; i.e. we have to break it down into several smaller co-operating parts.There are two basic ways of parallelising an algorithm. This can either be done explicitly or implicitly. Inthe �rst case, the programmer has to decide which parts of the algorithm are to be executed in parallel,and how should they communicate with each other. Although tools and techniques have been developedto help produce parallel programs, writing such algorithms still proves to be very di�cult. This is becausethe programmer has to understand and control the workings of several communicating instruction threads.Moreover, the debugging of parallel programs is very di�cult, as the runs are highly time-dependent: twoexecutions of the programwill almost de�nitely result in di�erent timing, and thus in di�erent communicationpatterns.In the second case of implicit parallelism, automatic transformation or compilation tools perform the selection1

of tasks to be done in parallel, and organise their communication. The programmer does not need to worryabout parallelism, he or she can write the algorithm as if it was to be executed on a single processor. Theautomatic parallelisation tools transform the algorithm to an equivalent parallel program.For traditional, imperative programming languages automatic parallelisation is a very di�cult task. This isbecause at the core of such languages is the variable assignment instruction, and programs are essentiallysequences of such assignments. That is why automatic parallelisation tools for imperative languages arenormally restricted to some special constructs, such as for-loops.As opposed to imperative languages, declarative programming languages use the notion of a mathematicalvariable: a single, possibly yet unknown value. This is often referred to as the �single assignment principle�.Declarative languages are thus muchmore amenable to automatic exploitation of parallelism, while, of course,still leaving room for explicit parallelisation, as in [38]. Implicit parallelism is especially important for logicprogramming, a programming paradigm building on mathematical logic.1.1.2 Logic programmingLogic programming was introduced in early 1970's by Robert Kowalski [30], building on resolution theoremproving by Alan Robinson [34]. The �rst implementation of logic programming, the Prolog programminglanguage, was developed by the group of Alain Colmerauer [37].The basic principle of logic programming is that a program is composed of statements of predicate logic,restricted to the so called Horn clause form. A simple Prolog program below de�nes the grandparentpredicate using the notion of parent.grandparent(GrandChild, GrandParent) :-parent(GrandChild, Parent),parent(Parent, GrandParent).Here the :- connective should be read as implication (), and the comma as conjunction. Capitalisedidenti�ers stand for variables, lower case identi�ers denote constants, function or predicate names. Theabove statement can be read as the following:GrandChild's grandparent is GrandParent if(there exists a Parent such that)GrandChild's parent is Parent, andParent's parent is GrandParent.This is the declarative reading of the program. But the same program also has a procedural meaning:To prove the statement grandparent(GrandChild, GrandParent)prove the statements:parent(GrandChild, Parent) andparent(Parent, GrandParent).In such a procedural interpretation, statements to be proven are often referred to as goals.Note that the order of proving the two statements in the grandparent procedure is not �xed, (although oneexecution order can be more e�cient than another).Let us now look at the de�nition of parenthood, which uses a disjunction (denoted by a semicolon).parent(Child, Parent) :-(mother(Child, Parent); father(Child, Parent)).This statement can be read declaratively as:Child's parent is Parent ifits mother is Parentor its father is Parent. 2

The procedural reading states that, to prove a parenthood statement, one has to prove either a motherhoodor a fatherhood statement. Such a situation, when one of several possible alternatives can be executed, iscalled a choice point. One can visualise a choice point as a node of a tree with branches corresponding toalternatives. A set of nested choice points constitute the search tree, which the execution has to explore inorder to solve a problem.The program for parenthood can also be written as:parent(Child, Parent) :-mother(Child, Parent).parent(Child, Parent) :-father(Child, Parent).Here we have two alternative clauses, both of which can be used to prove a parenthood relation. It is thusnatural to de�ne a procedure as the set of clauses for the same predicate, which specify how to reduce thegoal of proving a statement to conjunctions and disjunctions of other such goals.Although the procedural reading of logic programs does not �x the order of execution, most logic program-ming languages do prescribe an order. In Prolog both the and and or connectives are executed strictlyleft-to-right. Correspondingly, Prolog traverses the search tree in depth-�rst, left-to-right order. The factthat the programmer knows exactly how the proof procedure works, makes this approach a programming,rather than a theorem proving, discipline.While the core of Prolog is purely declarative, it is important to note that the language has several im-pure, non-declarative features. Perhaps the most important is the cut operation, denoted by an exclama-tion mark (!), which prunes certain branches of the search tree. Other non-declarative elements includebuilt-in predicates for input-output and for program modi�cation. An example of the latter is the built-in assert, with which a new clause can be added to the program, during execution. For example thegoal assert(mother(abel, eva)) extends the program with the clause mother(abel, eva). Modi�ablepredicates, such as mother in this example, are called dynamic predicates.1.1.3 Parallel execution of logic programsAs said earlier, parallel execution of a program requires that the task to be performed is split into subtasksthat can be executed on di�erent processors. For logic programs, such a decomposition is very natural: agoal is decomposed into some other goals built with connectives and and or. Correspondingly there are twobasic kinds of parallelism in logic programming: and-parallelism and or-parallelism.One can distinguish between independent and dependent and-parallelism. The former occurs if two subgoals ofa clause do not share any variables. For example, the goal of matrix-vector multiplication can be decomposedinto two independent subgoals: computing the scalar product of the �rst row of the matrix and the vector;and computing, recursively, the matrix-vector product of the remainder of the matrix and the vector.We speak about dependent and-parallelism in a clause, if two subgoals share a variable. For example, inthe grandparent example, the two parent subgoals share the Parent variable. The two goals can thusbe started in parallel, but as soon as one of them instantiates the common variable, the other has to benoti�ed about this. The goal which instantiates the variable can be thought of as the producer and theother as the consumer of the variable. In more complex cases the producer-consumer interaction can beused for implementing a communication stream between the subgoals. This form of parallelism is also calledstream-parallelism.To exploit or-parallelism, one can use multiple processors to explore alternative branches of the search tree.For example, when executing the goal parent(abel, Parent), one of the processors can attempt to solve thegoal mother(abel, Parent), and the other the goal father(abel, Parent). It is inherent in or-parallelism,that the two subtasks can be solved independently.We now discuss the case of or-parallelism in more detail, as it forms the basis of this thesis. Let us look at aslightly more complicated example. The task is to choose a holiday destination reachable from Budapest bya single �ight, or at most two connecting �ights. We have a database of �ights in the form of Prolog clauses:flight(budapest, venice, ...). 3

flight(budapest, paris, ...).flight(paris, nice, ...).flight(paris, london, ...)....These clauses are so called unit clauses, which have no preconditions, and so the :- connective is omitted.The third argument of the flight predicate contains further timetable details of the �ight (such as departureand arrival time, days of operation, etc.).The following is an outline of a program for �nding appropriate holiday destinations:destination(City):-flight(budapest, City, TTData),appropriate(City, [TTData]).destination(City):-flight(budapest, Transfer, TTData1),flight(Transfer, City, TTData2),appropriate(City, [TTData1,TTData2]).Here the appropriate predicate has the destination City as its �rst, and the list of timetable data as itssecond argument. It holds, if the given selection of �ights satis�es some further unspeci�ed criteria.The search tree of the above program is depicted in Figure 1.1.�������� HHHHHHHH!!!!!!!!!!AAAAHHHHHHHH �������� SSSSSSSS

BBBBBBZZZZZZZZ
direct �ight transfer �ightvenice paris ... paris ...nice london ...Figure 1.1: The search tree of the holiday destination programA possible way of exploring or-parallelism in this example is the following. The destination predicate canbe started by two processors, one exploring the �rst clause (direct �ights), and the other the second clause(transfer �ights). The �rst processor soon creates a choice point for the flight predicate, and proceedsdown the �rst branch, starting to execute the appropriate goal for the venice �ight data. While this isdone, further processors can join, exploring other choices for the flights. Similarly, the processor workingon the second clause for destination can be helped by other processors.This simple program exempli�es the two basic problems to be solved by an or-parallel implementation.First, a variable, such as the destination City can be instantiated to di�erent values on di�erent branchesof the search tree. This requires a variable binding scheme for keeping track of multiple bindings. Second,scheduling algorithms have to be devised to associate the processors with the tree branches to be explored.For example, when the �rst processor �nishes the computation of the appropriate goal for City=venice,it will backtrack to the choice point for flight, and may �nd that exploration of all alternative brancheshas already been started by other processors. In such a case the scheduling algorithm has to �nd a choicepoint with an unexplored branch. This process, together with updating the data structures of the processornecessary for taking up the new branch of the tree, is called task switching.4

1.1.4 Parallel implementation of logic programmingResearch on parallel execution of logic programs was started in the early 1980-s. Much of the initial e�ortsfocused on stream-parallelism. In this, the biggest di�culty was caused by trying to combine the parallelexecution with Prolog search. This was initially overcome by simply removing the possibility of global search,resulting in the so called committed choice languages. In these languages each clause has to contain a commitpruning operator, which, when reached during execution, kills all the other branches of the procedure. Thisway the �don't know nondeterminism� of Prolog is replaced by �don't care nondeterminism� of committedchoice languages. A detailed survey of committed choice systems can be found in [40].The �rst parallel systems aiming to support unrestricted Prolog language appeared at the end of 1980-s.An excellent overview of parallel execution models and their implementations is given in [23]. Here we onlybrie�y survey some of the relevant approaches.A crucial point in the design of execution models for independent and-parallelism is the detection of inde-pendence of subgoals. Initial models, such as that of Conery [18], relied on costly run-time checks. DeGrootdeveloped the RAP (Restricted And-Parallel) model [20], in which compile-time analysis is used to simplifythe run-time checks needed. A re�nement of this approach by Hermenegildo led to the creation of the&-Prolog implementation of independent and-parallelism on shared memory multiprocessors [27].The Basic Andorra Model [39] was the �rst practical approach reconciling proper nondeterminism withdependent and-parallelism. Here the execution of subgoals continues in and-parallel as long as no choicepoints are created. This approach was implemented in the Andorra-I system.About twenty models for or-parallelism are listed by [23]. These di�er in the way they support the assignmentof multiple bindings, and whether they use shared memory or not. Models that do not assume the presence ofshared memory rely on either recomputation (the Delphi model of Clocksin [17]), or copying (Conery's closedenvironments [19], Ali's BC-machine model [2]). The BC-machine model, although �rst developed for specialhardware, was later used for the implementation of the Muse system for shared memory multiprocessors [1].The early shared memory models, such as the directory tree model [16], the Argonne [11] and PEPSys [3]models, had non-constant variable access time, but relatively little or no task switching overheads. Morerecent models focused on providing constant-time variable binding access at the expense of potentially non-constant-time task switching1. The most developed scheme of this group, the SRI model of D. H. D. Warren[53] forms the basis of the Aurora implementation and is described in more detail in the next section.Several models and implementations have been developed for exploiting multiple forms of parallelism. Sup-port for both or- and independent and-parallelism is provided by the PEPSys [3], ROPM [29] and ACE[24] models, among others. The combination of dependent and-parallelism with or-parallelism appears inthe Basic Andorra Model, and its implementation, Andorra-I. The ambitious Extended Andorra Model [54],which aims to support all three forms of parallelism, has not yet been implemented.Finally, let us give a brief list of research groups working on parallel logic programming in Hungary. Anearly and-parallel logic programming implementation was developed by Iván Futó's group in the mid 1980-s. The CS-Prolog (Communicating Sequential Prolog) system supports multiple Prolog threads runningconcurrently on multi-transputer systems [21]. The group of Péter Kacsuk at the KFKI-MSzKI Laboratoryof Parallel and Distributed Systems is working on parallel and distributed Prolog implementations based ondata�ow principles [28]. The IQSOFT logic programminggroup took part in the development and applicationof the Aurora system.1.1.5 The Aurora or-parallel Prolog systemAurora is an implementation of the full Prolog language supporting or-parallel execution of programs onshared memory multiprocessors. It exploits parallelism implicitly, without programmer intervention. It wasdeveloped through an informal collaboration, called the Gigalips project, of research groups at the Universityof Bristol (formerly at the University of Manchester), UK; Argonne National Laboratory (ANL), USA; theSwedish Institute of Computer Science (SICS); and IQSOFT, Hungary (from 1990).Aurora is based on the SRI model [53]. According to this model the system consists of several workers(processes) exploring the search tree of a Prolog program in parallel. Each node of the tree corresponds1In [22] it has been shown that of the three main components of an or-parallel model, the variable access, the task switching,and the creation of environments, at most two can be of constant-time.5

to a Prolog choicepoint with a branch associated with each alternative clause. Nodes having at least oneunexplored alternative correspond to pieces of work a worker can select. Each worker has to perform activitiesof two basic types:� executing the actual Prolog code,� �nding work in the tree, providing other workers with work and synchronising with other workers.The above two kinds of activities have been separated in Aurora: those parts of a worker that execute theProlog code are called the engine, whilst those concerned with the parallel aspects are called the scheduler.In the course of development of Aurora, di�erent scheduling techniques have been explored, and severalschedulers were developed, such as the Argonne [12], Manchester [13] and Bristol schedulers [6].The engine component of Aurora is based on SICStus Prolog [15], extended with support for multiplevariable bindings. Variable bindings in Prolog can be classi�ed as either unconditional or conditional. Inthe former case, the binding is made early, before any choice points are made, and so it is shared by allbranches. Consequently the unconditional bindings can be stored in the Prolog stacks, as for sequentialimplementations. For storing the conditional bindings, the SRI model uses binding arrays, data structuresassociated with workers: the Prolog stack stores a binding array index, while the variable value, local to theworker, is stored in the appropriate element of the worker's binding array.The binding array scheme has a constant-time overhead on variable access. However, task switching involvesnon-constant-time overhead: the worker has to move from its present node to the node with work, updatingits binding array accordingly. The cost of this update is proportional to the length of the path2. Thescheduler should therefore try to �nd work as near as possible, to minimise the overheads.As stated, Aurora supports the full Prolog language, including the impure, non-declarative features. Earlyversions of Aurora provided only the so called asynchronous variants of side-e�ect predicates, which wereexecuted immediately. This meant, for example, that the output predicates were not necessarily executedin the order of the sequential execution.The �nal version of Aurora executes the side-e�ect predicates in the same order as sequential Prolog, asdiscussed in [26]. This is achieved by suspending the side-e�ect predicate if it is executed by the non-leftmostworker. Suspension means that the worker abandons the given branch of the tree and attempts to �ndsome other work. When the reason for suspension ceases to hold, i.e. when all the workers to the left of thesuspended branch have �nished their tasks, the branch is resumed. Because suspension and resumption hassigni�cant overheads, Aurora still provides the �bare� asynchronous predicates, for further experimentation.Implementing the cut pruning operator in an or-parallel setup poses problems similar to those for the side-e�ect predicates. A cut operation may be pruned by another cut to its left, hence too early execution of acut may change the Prolog semantics. Therefore a cut may have to be suspended, if endangered by anothercut.Work in the scope of a pruning operator is called speculative, while all other work is called mandatory.Parallel exploration of a speculative branch may turn out to be wasteful, if the branch is pruned later. It isan advantage therefore, if the scheduler gives preference to mandatory over speculative work. As pruning ispresent in all real-life Prolog programs, scheduling speculative work is an important issue.Detailed discussion of issues related to pruning and speculative work, as well as early work on languageextensions, is contained in [25].1.2 Thesis overviewThis section presents a overview of the thesis, showing the problems to be solved, the approach to theirsolution, the results achieved, and their utilisation.1.2.1 Problem formulationThe overall goal of the work described in this thesis, as part of a larger research thread, is2More exactly, the cost of the update is proportional to the number of bindings made on the path.6

to prove the viability of using shared memory multiprocessors for e�cient or-parallelexecution of Prolog programs.This goal is achieved through the development of the Aurora or-parallel Prolog system.Within this overall goal the problems addressed in the thesis can be classi�ed into three broad areas:1. Implementation: building an or-parallel system supporting the full Prolog language.2. Extensions: extending the Prolog language to support better exploitation of parallelism.3. Applications: prove the usefulness of or-parallel Prolog on large, real-life applications.We now discuss the speci�c issues addressed within these areas.ImplementationAs outlined earlier, scheduling is one of the crucial aspects of parallel implementations. A scheduler has tokeep track of both the workers and the work available. It has to ensure workers are assigned work withas little overhead as possible. To support the full Prolog language, the scheduler has to handle pruningoperators, side-e�ect predicates and speculative work.In order to choose the best scheduling algorithms, it is important to develop and evaluate multiple schedulers.For this, it is crucial to design an appropriate interface between the scheduler and engine components of theparallel system. Development of a proper interface also contributes to the clari�cation of the issues involvedin exploiting parallelism in Prolog.Evaluation of a parallel Prolog implementation requires appropriate performance analysis techniques. Theparallel system has to be instrumented to collect performance data and typical benchmarks have to beselected. The gathered data has to be analysed and the main causes of overhead identi�ed. Results of theperformance analysis work can contribute to the improvement or re-design of critical system components,e.g. schedulers.Language extensionsThe Prolog language has several impure features, with no declarative interpretation. Language primitives ofthis kind, such as dynamic data base modi�cation predicates, are quite frequently used in large applications.Although this is often a sign of bad programming style, there are cases where such usage is justi�ed. Forexample, dynamic predicates can be used in a natural way to implement a continually changing knowledgebase.To support sequential Prolog semantics in a parallel implementation, dynamic predicate updates have tobe performed sequentially, in strict left-to-right order. Such restrictions on the execution order, however,involve signi�cant overheads. On the other hand, if asynchronous dynamic predicate handling is used, oneis confronted with the usual synchronisation problems due to multiple processes accessing the same memorycell. To solve such problems, higher level synchronisation primitives have to be introduced into the parallelProlog system.Another reason for using dynamic predicates in Prolog is to enhance its simple search algorithm. For example,optimum search algorithms, such as branch-and-bound and alpha-beta pruning, rely on communicationbetween the branches of the search tree. To extend the search mechanism of Prolog to support such advancedsearch techniques one is forced to use dynamic predicates, with detrimental e�ects regarding the exploitationof parallelism. Rather than to come up with ad hoc solutions for particular search problems, it may beadvisable to de�ne generic higher-order predicates for optimum search, which can be implemented e�cientlyin a parallel Prolog setup.ApplicationsAs said earlier, proving the viability of or-parallel Prolog is the main goal of the research strand this thesisis part of. To demonstrate this, one needs Prolog application problems with abundant or-parallelism. One7

then has to take the Prolog program, normally developed with sequential execution in mind, and transformit in such a way that it produces good speedups, when executed in parallel.1.2.2 Approach and resultsWe now discuss how the problems formulated in the previous section were approached, and how theirsolutions were developed in the context of the Aurora or-parallel Prolog system.ImplementationIn early stages of development of Aurora it became clear that the system has relatively poor speed-ups forcertain types of applications. The Manchester scheduler version of Aurora was therefore instrumented toprovide various types of pro�ling information. Both frequency and timing data were collected and mainsources of overhead of parallel execution were identi�ed. Special attention was paid to the binding arrayupdate overheads associated with the SRI model and to the overheads of synchronisation using locks.The main conclusion of this performance analysis work was that the high cost of task switching in theexamined implementation was the main cause of poor speed-ups. The cost of updating the binding arrays,which was feared to be the major cause of overhead, turned out to be insigni�cant. Similarly, locking costswere found to be acceptably low and there was no major increase in the average locking time when thenumber of workers was increased.Based on the experience of the performance analysis work, a new scheduler, the so called Bristol scheduler,was developed. It employs a new approach for sharing the work in the Prolog search tree. The distinguishingfeature of the approach is that work is shared at the bottom of partially explored branches (�dispatching onbottom-most�). This can be contrasted with the earlier schedulers, such as the Manchester scheduler, whichuse a �dispatching on topmost� strategy. The new strategy leads to improved performance by reducing thetask switching overheads and allowing more e�cient scheduling of speculative work.In parallel with the development of the new scheduler, a new version of the engine-scheduler interfacewas designed. This fundamental revision of the interface was necessitated by several factors. Performanceanalysis work on Aurora had shown that some unnecessary overheads are caused by design decisions enforcedby the interface. Development of the new scheduler and extensions to existing algorithms required that theinterface become more general. The Aurora engine was rebuilt on the basis of a new SICStus Prolog version.The interface required extensions to support transfer of information related to pruning operators. Finally, itwas decided that an Aurora scheduler was to be used in the Andorra and/or-parallel system, so the interfacehad to support multiple engines in addition to multiple schedulers.Language extensionsThe problems of parallel execution of applications relying on dynamic predicates were studied on programsfor playing mastermind, a typical problem area using a continually changing knowledge base.In the case study we �rst explored some sequential programs for playing mastermind. Subsequently, weconsidered the problems arising at the introduction of asynchronous database handling predicates. Severalversions of the mastermind program were developed, showing the use of various synchronisation techniques.As a conclusion of this work, a proposal for extending Aurora with higher level synchronisation primitiveswas presented.The second area of language extensions studied was that of parallel optimisation. A general optimum searchalgorithm was developed, which can be used in the implementation of higher order optimisation predicates.The algorithm covers both the branch-and-bound and the minimax technique, and can be executed e�cientlyon an or-parallel Prolog system such as Aurora.Appropriate language extensions were proposed, in the form of new built-in predicates, for embeddingthe algorithm within a parallel Prolog system. An experimental Aurora implementation of the languageextensions using the parallel algorithm was described and evaluated on application examples.8

ApplicationsTo prove the viability of or-parallel Prolog, three large search applications were ported to and evaluated onAurora.Two search problems were investigated within the area of computational molecular biology as experimentalAurora applications: searching DNA for pseudo-knots and searching protein sequences for certain motifs.For both problems the computational requirements were large, due to the nature of the applications, andwere carried out on a scalable parallel computer, the BBN �Butter�y� TC-2000, with non-uniform memoryarchitecture (NUMA).First, experiments were performed with the original application code, which was written with sequentialexecution in mind. For the pseudo-knot program, this also involved adaptation of the low level C code forstring traversal3 to the parallel environment. These results being very promising, further e�ort was investedin tuning the applications so as to �expose� more parallelism to the system. For this we had to eliminateunnecessary sequential bottlenecks, and reorganise the top level search to permit better load-balancing.Note, however, that the logic of the program was not changed in this tuning process.The �nal results of the molecular biology applications were very good. We obtained over 40-fold speedupson the 42-processor supercomputer. This meant converting hours of computation into minutes on scienti�cproblems of real interest.A third application was examined in the context of the EMRM electronic medical record managementsystem prototype of the CUBIQ project [52]. The medical thesaurus component of EMRM is based onSNOMED (Systematized Nomenclature of Medical Knowledge) [36]. The SNOMED thesaurus containsapproximately 40,000 medical phrases arranged into a tree hierarchy. A series of experiments were carried outfor searching this large medical knowledge hierarchy. We used several alternative representation techniquesfor implementing the SNOMED hierarchy of the EMRM system. Parallel performance of these solutions wasmeasured both on Aurora and on the Muse or-parallel systems.The experiments have shown that the SNOMED disease hierarchy can be e�ciently represented in Prologusing the general frame-extension of the CUBIQ tool-set. Critical points have been highlighted in the imple-mentations, such as the issue of synchronisation at atom construction. When these bottlenecks were avoided,about 90% parallel e�ciency could be achieved for six processors in complex searches of the SNOMED hi-erarchy.Finally, a new application direction was initiated by work on using Aurora as a vehicle for implementinga Prolog-based WWW server. The goal here is to design a single Prolog server capable of interactingsimultaneously with multiple clients. This issue is important as AI applications are normally large andslow to start up, so having a separate copy of the application running for each request may not be a viablesolution.We have therefore designed a Prolog server scheme, based on the Aurora or-parallel Prolog system, whichallows multiple clients to be executed on a single computer, on a time sharing basis. The solution relies onthe capabilities of Aurora to maintain multiple branches of the search tree. Compared with the approachrelying on multiple copies of the server application, our solution is characterised by quick start-up andsigni�cant reduction in memory requirements. As a further advantage, the single server approach allowseasy communication between the program instances serving the di�erent clients, which may be useful e.g.for caching certain common results, collecting statistics, etc.1.2.3 Utilisation of the resultsIn this section we discuss the utilisation of the results achieved.The results of the performance analysis work described here served as a basis for practically all subsequentperformance measurements of Aurora, such as [33]. The technique used for instrumentation was appliedto other Aurora schedulers as well. The set of benchmarks selected was used not only for further Auroraanalysis, but also for other or-parallel systems, most notably the Muse [1] system.The Bristol scheduler, the basic design of which is presented here, has evolved to be the main scheduler ofAurora, and is also used in the Andorra-I parallel system [4]. Extending the ideas described here, the Bristolscheduler was further improved with respect to handling speculative work and suspension [8].3The C code was included into the Prolog program through the foreign language interface.9

The engine-scheduler interface served for implementing the Dharma scheduler [41]. A similar interface wasdeveloped for the Muse system as well, see chapter 8 of [35].The ideas of language extensions dealing with dynamic predicates and optimisation were further developedin [9].The application prototypes have proved that Aurora can be used in sizable real-life applications. A Prolog-based WWW server approach, similar to the design presented here, has recently been developed independentlyfor the ECLiPSe system [10].1.3 Structure of the Thesis and contributionsChapters 2�10 of the thesis contain my main publications in the area of or-parallel logic programming,reproduced here with the kind permission of co-authors. They are grouped into three parts, correspondingto the three research areas described above.In the sequel I give a brief outline of the research reported on in these publications, and describe mycontributions to the work.1.3.1 ImplementationChapter 2: The Aurora or-parallel Prolog systemAuthors: Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Overbeek, Rick Stevens,David H. D. Warren, Alan Calderwood, Péter Szeredi, Seif Haridi, Per Brand, MatsCarlsson, Andrzej Ciepielewski, and Bogumiª HausmanRefereed journal article [31].This is the main paper on Aurora, written jointly by the three research groups of the Gigalips collaboration.It describes the design and implementation e�orts of Aurora as of 1988-89. My contributions to the workdescribed here are in the sections on the Manchester scheduler, on performance analysis and on the Pilesapplication.Chapter 3: Performance analysis of the Aurora or-parallel Prolog systemAuthor: Péter SzerediRefereed conference article [42].This paper describes the main results of my performance analysis work carried out for the Manchesterscheduler version of Aurora. More detailed results are given in the Technical Report [43].Chapter 4: Flexible Scheduling of Or-Parallelism in Aurora: The Bristol SchedulerAuthors: Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D WarrenRefereed conference article [6].This paper describes the design and implementation e�orts for the �rst version of the Bristol scheduler.Further details can be found in [5, 7]. My main contribution was the design and initial implementation ofthe non-speculative scheduling parts of the Bristol scheduler.Chapter 5: Interfacing engines and schedulers in or-parallel Prolog systemsAuthors: Péter Szeredi, Mats Carlsson, and Rong YangRefereed conference article [49].This paper gives an outline of the Aurora engine-scheduler interface. The complete description of the interfaceis contained in reports [48, 14].I was the principal designer of the interface. I also carried out the implementation of the scheduler side forboth the Manchester and Bristol schedulers. 10

1.3.2 Language extensionsChapter 6: Using dynamic predicates in an or-parallel Prolog systemAuthor: Péter SzerediRefereed conference article [46].The paper describes the mastermind case study and the language extensions for synchronisation. An earlierversion of the paper is available as [44].Chapter 7: Exploiting or-parallelism in optimisation problemsAuthor: Péter SzerediRefereed conference article [47].This paper describes the optimisation algorithm developed for or-parallel logic programming and the appro-priate language extensions. [45] contains an earlier, slightly more elaborate account on this topic.1.3.3 ApplicationsChapter 8: Applications of the Aurora parallel Prolog system to computational molec-ular biologyAuthors: Ewing Lusk, Shyam Mudambi, Ross Overbeek, and Péter SzerediRefereed conference article [32].This paper describes the pseudo-knot and protein motif search problems and their solution on Aurora. Mymain contribution lies in exploring the sequential bottlenecks and transforming the application programs toimprove the exploitation of parallelism.Chapter 9: Handling large knowledge bases in parallel PrologAuthors: Péter Szeredi and Zsuzsa FarkasWorkshop paper [50].This paper describes the parallelisation of the medical knowledge base application of Aurora. My contributioncovers the parallel aspects of the design, and the parallel performance analysis of the application.Chapter 10: Serving multiple HTML clients from a Prolog applicationAuthors: Péter Szeredi, Katalin Molnár, and Rob ScottRefereed workshop paper [51].The paper describes the WWW interface of the EMRM application, the problems encountered during itsdevelopment, and a design for a multi-client WWW-server application of Aurora. My contribution is thedesign of the multi-client server.1.3.4 Summary of publicationsOf the nine publications, I am the sole author of three papers (chapters 3, 6, 7). For a further threepublications, I am the �rst author (chapters 5, 9, and 10), re�ecting the fact, that I was the principalcontributor to the research described.One of the publications appeared in a refereed journal, six in refereed conference proceedings, and two werepresented at workshops.References[1] K. A. M. Ali and R. Karlsson. The Muse approach to or-parallel Prolog. The International Journal ofParallel Programming, 1990. 11

[2] Khayri A. M. Ali. OR-Parallel execution of prolog on BC-Machine. In Robert A. Kowalski and Ken-neth A. Bowen, editors, Proceedings of the Fifth International Conference and Symposium on LogicProgramming, pages 1531�1545, Seatle, 1988. ALP, IEEE, The MIT Press.[3] U. C. Baron et al. The parallel ECRC Prolog System PEPSys: An overview and evaluation results. InInternational Conference on Fifth Generation Computer Systems 1988. ICOT, Tokyo, Japan, November1988.[4] Anthony Beaumont, S. Muthu Raman, Vítor Santos Costa, Péter Szeredi, David H. D. Warren, andRong Yang. Andorra-I: An implementation of the Basic Andorra Model. Technical Report TR-90-21,University of Bristol, Computer Science Department, September 1990. Presented at the Workshop onParallel Implementation of Languages for Symbolic Computation, University of Oregon, July 1990.[5] Anthony Beaumont, S. Muthu Raman, and Péter Szeredi. Scheduling or-parallelism in Aurora with theBristol scheduler. Technical Report TR-90-04, University of Bristol, Computer Science Department,March 1990.[6] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D Warren. Flexible Scheduling ofOr-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference on Parallel Architecturesand Languages Europe, pages 403�420. Springer Verlag, Lecture Notes in Computer Science, Vol 506,June 1991.[7] Anthony J. Beaumont. Scheduling in Or-Parallel Prolog Systems. PhD thesis, Unversity of Bristol,1995.[8] Tony Beaumont and David H. D. Warren. Scheduling Speculative Work in Or-parallel Prolog Systems.In Logic Programming: Proceedings of the 10th International Conference. MIT Press, 1993.[9] Tony Beaumont, David H. D. Warren, and Péter Szeredi. Improving Aurora scheduling. CUBIQCopernicus project deliverable report, University of Bristol and IQSOFT Ltd., 1995.[10] Stephane Bressan and Philippe Bonnet. The ECLiPSe-HTTP library. In Industrial Applications ofProlog, Tokyo, Japan, November 1996. INAP.[11] R. Butler, E. Lusk, R. Olson, and Overbeek R. A. ANLWAM: A Parallel Implementation of the WarrenAbstract Machine. Internal Report, Argonne National Laboratory, Argonne, IL 60439, 1985.[12] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Logic Programming: Proceedings of the Fifth InternationalConference, pages 1590�1605. The MIT Press, August 1988.[13] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler. InLogic Programming: Proceedings of the Sixth International Conference, pages 419�435. The MIT Press,June 1989.[14] Mats Carlsson and Péter Szeredi. The Aurora abstract machine and its emulator. SICS Research ReportR90005, Swedish Institute of Computer Science, 1990.[15] Mats Carlsson and Johan Widen. SICStus Prolog User's Manual. Technical report, Swedish Instituteof Computer Science, 1988. SICS Research Report R88007B.[16] Andrzej Ciepielewski and Seif Haridi. A formal model for or-parallel execution of logic programs. InIFIP 83 Conference, pages 299�305. North Holland, 1983.[17] WilliamClocksin. Principles of the DelPhi parallel inference machine. Computer Journal, 30(5):386�392,1987.[18] John Conery. The AND/OR Process Model for Parallel Interpretation of Logic Programs. PhD thesis,University of California at Irvine, 1983.[19] J.S. Conery. Binding environments for parallel logic programs in nonshared memory multiprocessors.In Proceedings of the 1987 Symposium on Logic Programming, pages 457�467, San Francisco, August -September 1987. IEEE, Computer Society Press.12

[20] Doug DeGroot. Restricted and-parallelism. In Hideo Aiso, editor, International Conference on FifthGeneration Computer Systems 1984, pages 471�478. Institute for New Generation Computing, Tokyo,1984.[21] Iván Futó. Prolog with communicating processes: From T-Prolog to CSR-Prolog. In David S. Warren,editor, Proceedings of the Tenth International Conference on Logic Programming, pages 3�17, Budapest,Hungary, 1993. The MIT Press.[22] Gupta Gopal and Bharat Jayaraman. Optimizing And-Or Parallel implementations. In Saumya De-bray and Manuel Hermenegildo, editors, Proceedings of the 1990 North American Conference on LogicProgramming, pages 605�623. MIT Press, 1990.[23] Gopal Gupta, Khayri A. M. Ali, Mats Carlsson, and Manuel Hermenegildo. Parallel execution of logicprograms: A survey, 1994. Internal report, available by ftp from ftp.cs.nmsu.edu.[24] Gopal Gupta, Manuel Hermenegildo, Enrico Pontelli, and Vítor Santos Costa. ACE: And/Or-parallelCopying-based Execution of logic programs. In Pascal Van Hentenryck, editor, Logic Programming - Pro-ceedings of the Eleventh International Conference on Logic Programming, pages 93�109, MassachusettsInstitute of Technology, 1994. The MIT Press.[25] Bogumiª Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The RoyalInstitute of Technology, Stockholm, 1990.[26] Bogumiª Hausman, Andrzej Ciepielewski, and Alan Calderwood. Cut and side-e�ects in or-parallelProlog. In International Conference on Fifth Generation Computer Systems 1988. ICOT, 1988.[27] Manuel Hermenegildo. An abstract machine for restricted and-parallel execution of logic programs. InEhud Shapiro, editor, Third International Conference on Logic Programming, London, pages 25�39.Springer-Verlag, 1986.[28] Péter Kacsuk. Distributed data driven Prolog abstract machine (3DPAM). In P. Kacsuk and M. J.Wise, editors, Implementations of Distributed Prolog, pages 89�118. Wiley & Sons, 1992.[29] L. V. Kalé. The REDUCE OR process model for parallel evaluation of logic programming. In Proceedingsof the 4th International Conference on Logic Programming, pages 616�632, 1987.[30] Robert A. Kowalski. Predicate logic as a programming language. In Information Processing '74, pages569�574. IFIP, North Holland, 1974.[31] Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Overbeek, Rick Stevens, David H. D.Warren, Alan Calderwood, Péter Szeredi, Seif Haridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski,and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Generation Computing, 7(2,3):243�271, 1990.[32] Ewing Lusk, Shyam Mudambi, Ross Overbeek, and Péter Szeredi. Applications of the Aurora parallelProlog system to computational molecular biology. In Dale Miller, editor, Proceedings of the Interna-tional Logic Programming Symposium, pages 353�369. The MIT Press, November 1993.[33] Shyam Mudambi. Performances of aurora on NUMA machines. In Koichi Furukawa, editor, Proceedingsof the Eighth International Conference on Logic Programming, pages 793�806, Paris, France, 1991. TheMIT Press.[34] J. A. Robinson. A machine oriented logic based on the resolution principle. Journal of the ACM,12(23):23�41, January 1965.[35] Roland Karlsson. A High Performance OR-Parallel Prolog System. PhD thesis, The Royal Institute ofTechnology, Stockholm, 1992.[36] D. J. Rothwell, R. A. Cote, J. P. Cordeau, and M. A. Boisvert. Developing a standard data structurefor medical language � the SNOMED proposal. In Proceedings of 17th Annual SCAMC, Washington,1993.[37] P. Roussel. Prolog: Manuel de reference et d'utilisation,. Technical report, Groupe d'IntelligenceArti�cielle Marseille-Luminy, 1975. 13

[38] Peter Van Roy, Seif Haridi, and Gert Smolka. An overview of the design of distributed oz. In SecondInternational Symposium on Parallel Symbolic Computation (PASCO '97). ACM Press, July 1997.[39] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A parallel implementation ofthe Basic Andorra model. In Logic Programming: Proceedings of the Eighth International Conference.The MIT Press, 1991.[40] Ehud Shapiro. The family of Concurrent Logic Programming Languages. ACM computing surveys,21(3):412�510, 1989.[41] Raéd Yousef Sindaha. Branch-level scheduling in Aurora: The Dharma scheduler. In Dale Miller, editor,Logic Programming - Proceedings of the 1993 International Symposium, pages 403�419, Vancouver,Canada, 1993. The MIT Press.[42] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Proceedings of theNorth American Conference on Logic Programming, pages 713�732. The MIT Press, October 1989.[43] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. Technical Report TR-89-14,University of Bristol, 1989.[44] Péter Szeredi. Using dynamic predicates in Aurora � a case study. Technical Report TR-90-23,Universityof Bristol, November 1990.[45] Péter Szeredi. Solving optimisation problems in the Aurora or-parallel Prolog system. In AnthonyBeaumont and Gopal Gupta, editors, Parallel Execution of Logic Programs, Proc. of ICLP'91 Pre-Conf. Workshop, pages 39�53. Springer-Verlag, Lecture Notes in Computer Science, Vol 569, 1991.[46] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vijay Saraswat andKazunori Ueda, editors, Logic Programming: Proceedings of the 1991 International Logic ProgrammingSymposium, pages 355�371. The MIT Press, October 1991.[47] Péter Szeredi. Exploiting or-parallelism in optimisation problems. In Krzysztof R. Apt, editor, LogicProgramming: Proceedings of the 1992 Joint International Conference and Symposium, pages 703�716.The MIT Press, November 1992.[48] Péter Szeredi and Mats Carlsson. The engine�scheduler interface in the Aurora or�parallel Prologsystem. Technical Report TR-90-09, University of Bristol, Computer Science Department, April 1990.[49] Péter Szeredi, Mats Carlsson, and Rong Yang. Interfacing engines and schedulers in or-parallel Prologsystems. In PARLE91: Conference on Parallel Architectures and Languages Europe, pages 439�453.Springer Verlag, Lecture Notes in Computer Science, Vol 506, June 1991.[50] Péter Szeredi and Zsuzsa Farkas. Handling large knowledge bases in parallel Prolog. Presented at theWorkshop on High Performance Logic Programming Systems, in conjunction with Eighth EuropeanSummer School in Logic, Language, and Information, Prague, August 1996.[51] Péter Szeredi, Katalin Molnár, and Rob Scott. Serving multipleHTML clients from a Prolog application.In Paul Tarau, Andrew Davison, Koen de Bosschere, and Manuel Hermenegildo, editors, Proceedingsof the 1st Workshop on Logic Programming Tools for INTERNET Applications, in conjunction withJICSLP'96, Bonn, Germany, pages 81�90. COMPULOG-NET, September 1996.[52] Gábor Umann, Rob Scott, David Dodson, Zsuzsa Farkas, Katalin Molnár, László Péter, and PéterSzeredi. Using graphical tools in the CUBIQ expert system tool-set. In Proceedings of the Fourth Inter-national Conference on the Practical Application of Prolog, pages 405�422. The Practical ApplicationCompany Ltd, April 1996.[53] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.[54] David H. D. Warren. The Extended Andorra Model with Implicit Control. Presented at ICLP'90Workshop on Parallel Logic Programming, Eilat, Israel, June 1990.14

Part IImplementation

15

Chapter 2The Aurora Or-Parallel Prolog System1Ewing LuskRalph ButlerTerrence DiszRobert OlsonRoss OverbeekRick StevensArgonne2 David H. D. WarrenAlan CalderwoodPéter Szeredi3Bristol4 Seif HaridiPer BrandMats CarlssonAndrzej CiepielewskiBogumil HausmanSICS5AbstractAurora is a prototype or-parallel implementation of the full Prolog language for shared-memorymultiprocessors, developed as part of an informal research collaboration known as the �GigalipsProject�. It currently runs on Sequent and Encore machines. It has been constructed by adapt-ing Sicstus Prolog, a fast, portable, sequential Prolog system. The techniques for constructing aportable multiprocessor version follow those pioneered in a predecessor system, ANL-WAM. TheSRI model was adopted as the means to extend the Sicstus Prolog engine for or-parallel opera-tion. We describe the design and main implementation features of the current Aurora system, andpresent some experimental results. For a range of benchmarks, Aurora on a 20-processor SequentSymmetry is 4 to 7 times faster than Quintus Prolog on a Sun 3/75. Good performance is alsoreported on some large-scale Prolog applications.2.1 IntroductionIn the last few years, parallel computers have started to emerge commercially, and it seems likely thatsuch machines will rapidly become the most cost-e�ective source of computing power. However, developingparallel algorithms is currently very di�cult. This is a major obstacle to the widespread acceptance ofparallel computers.Logic programming, because of the parallelism implicit in the evaluation of logical expressions, in principlerelieves the programmer of the burden of managing parallelism explicitly. Logic programming therefore o�ersthe potential to make parallel computers no harder to program than sequential ones, and to allow softwareto be migrated transparently between sequential and parallel machines.1This paper has appeared in New Generation Computing 7 (1990) [20]2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.3On leave from SZKI, Donáti u. 35-45, Budapest, Hungary4Department of Computer Science, University of Bristol, Bristol BS8 1TR, U.K. The group was previously at: Departmentof Computer Science, University of Manchester, Manchester M13 9PL, U.K.5Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden16

It only remains to determine whether a logic programming system coupled with suitable parallel hardwarecan realise this potential. The Aurora system is a �rst step towards this goal. Aurora is a prototype or-parallel implementation of the full Prolog language for shared-memory multiprocessors. It currently runs onSequent and Encore machines. It has been developed as part of an informal research collaboration knownas the �Gigalips Project�.The Aurora system has two purposes. Firstly, it is intended to be a research tool for gaining understandingof what is needed in a parallel logic programming system. In particular, it is a vehicle for making concretean abstract parallel execution model, the SRI model, in order to evaluate and re�ne it. The intention is toevaluate the model not only on the present hardware, but also to look towards possible future hardware (notnecessarily based on shared physical memory).Secondly, Aurora is intended to be a demonstration system, that will enable experience to be gained ofrunning large applications in parallel. For this purpose, it is vital that the system should perform well onthe present hardware, and that it should be a complete and practical system to use.In order to support real applications e�ciently and elegantly, it is necessary to implement a logic programminglanguage that is at least as powerful and practical as Prolog. The simplest way to ensure this, and at thesame time to make it easy to port existing Prolog applications and systems software, is to include full Prologwith its standard semantics as a true subset of the language. This we have taken some pains to achieve.The bottom line for evaluating a parallel system is whether it is truly competitive with the best sequentialsystems. To achieve competitiveness, it is necessary to make a parallel logic programming system witha single processor execution speed as close as possible to state-of-the-art sequential Prolog systems, whileallowing multiple processors to exploit parallelism with the minimum of overhead. This has been our goalin Aurora.To summarise the objectives towards which Aurora is addressed, they are to obtain truly competitive per-formance on real applications by transparently exploiting parallelism in a logic programming language thatincludes Prolog as a true subset.In this paper, we discuss the issues that must be confronted in or-parallel Prolog implementation, anddescribe the design and main implementation features of the current Aurora system. We present someexperimental results illustrating the performance of the system on a number of benchmarks, and also reportour experience of porting a number of large-scale applications to Aurora. We conclude by summarising thecurrent state of Aurora and outlining directions for further research.2.2 BackgroundIn this section we describe the setting in which Aurora was developed and give a short history of the GigalipsProject.2.2.1 Sequential Prolog ImplementationsProlog implementation entered a new era when the �rst compiler was introduced, for the DEC-10 [26]. Thespeed of this implementation, and the portability and availability of its descendant, C-Prolog, set a languagestandard, now usually referred to as the �Edinburgh Prolog�. The DEC-10 compilation techniques led aswell to a standard implementation strategy, usually called the WAM (Warren Abstract Machine) [25]. Ina WAM-based implementation, Prolog source code is compiled into the machine language of a stack-basedabstract machine. A portable emulator of this abstract machine (typically written in C) yields a fast, portableProlog system, and a non-portable implementation of crucial parts of the emulator can increase speed stillfurther. A parallel implementation of Prolog is achieved by parallelising this emulator.There are now many high-quality commercial and non-commercial Prolog systems based on the WAM. Aparallel implementation can obtain considerable leverage by utilising an existing high-quality implementationas its foundation. We use the Sicstus [6, 5] implementation, one of the fastest portable implementations.Using a fast implementation is important for two reasons. Firstly, the single most important factor determin-ing the speed of a parallel version is the speed of the underlying sequential implementation. Secondly, manyresearch issues related purely to multiprocessing only become apparent in the presence of a fast sequentialimplementation. (Speedups are too easy to get when speed is too low).17

2.2.2 MultiprocessorsIt is only in the last few years that multiprocessors have emerged from the computer science laboratoriesto become viable commercial products marketed worldwide. Startup companies like Sequent, Encore, andAlliant have made shared-memory multiprocessors commonplace in industry and universities alike. Suchmachines are relatively inexpensive compared with comparablemainframes, and provide a standard operatingenvironment (UnixTM) making them extremely popular as general-purpose computation servers. A similarrevolution is happening with local-memory multiprocessors, sometimes called �multicomputers�, but theseare currently more specialised machines, despite their scalability advantages.What the new breed of machines does not provide is a uni�ed way of expressing and controlling parallelism. Avariety of compiler directives and libraries are o�ered by the vendors, and while they do allow the programmerto write parallel programs for each machine, they provide neither syntactic nor conceptual portability. Anumber of researchers are developing tools to address these issues, but at a relatively low level (roughly thesame level as the language they are embedded in, such as C or Fortran). A goal of the Gigalips Project is todemonstrate the e�ectiveness of logic programming as a vehicle for exploiting parallelism on these machines.2.2.3 Or-ParallelismAs is well known, there are two main kinds of parallelism in logic programs, and-parallelism and or-parallel-ism. The issues raised in attempting to exploit the two kinds of parallelism are su�ciently di�erent thatmost research e�orts are focussing primarily on one or the other. Much early and current work has beendirected towards and-parallelism, particularly within the context of �committed choice� languages (Parlog,Concurrent Prolog, Guarded Horn Clauses) [13, 23]. These languages exploit dependent and-parallelism,in which there may be dependencies between and-parallel goals. Other work [10, 18] has been directed to-wards the important special case of independent and-parallelism, where and-parallel goals can be executedcompletely independently.The committed choice languages have been viewed primarily as a means of expressing parallelism explicitly,by modelling communicating processes. In contrast, one of our main goals is to exploit parallelism implicitly,in a way that need have little impact on the programmer. This viewpoint has led us to take a rather di�erentapproach, and to focus in particular on or-parallelism.There are several reasons for focussing on or-parallelism as a �rst step. Brie�y, in the short term, or-parallel-ism seems easier and more productive to exploit transparently than and-parallelism. However, none of thesereasons precludes integrating and-parallelism at a later stage, and indeed this is precisely the goal of currentwork on the Andorra model and language [14, 31]. The advantages of or-parallelism are:� Generality. It is relatively straightforward to exploit or-parallelism without restricting the power ofthe logic programming language. In particular, we retain the ability we have in Prolog to generate allsolutions to a goal.� Simplicity. It is possible to exploit or-parallelismwithout requiring any extra programmer annotationor complex compile-time analysis.� Closeness to Prolog. It is possible to exploit or-parallelismwith an execution model that is very closeto that of sequential Prolog. This means that one can take full advantage of existing implementationtechnology to achieve a high absolute speed per processor, and also makes it easier to preserve thesame language semantics.� Granularity. Or-parallelism has the potential, at least for a large class of Prolog programs, of de�ninglarge-grain parallelism. Roughly speaking, the grain size of a parallel computation refers to the amountof work can be performed without interaction with other pieces of work proceeding in parallel. It ismuch easier to exploit parallelism e�ectively when the granularity is large.� Applications. Signi�cant or-parallelism occurs across a wide range of applications, especially in thegeneral area of arti�cial intelligence. It manifests itself in any kind of search process, whether it beexercising the rules of an expert system, proving a theorem, parsing a natural language sentence, oranswering a database query. 18

2.2.4 Issues in Or-Parallel Prolog Implementation and Early WorkThe main problem with implementing or-parallelism is how to represent di�erent bindings of the samevariable corresponding to di�erent branches of the search space. The challenge is to do this in such a waythat the overhead of binding, unbinding and dereferencing variables is kept to a minimumcompared with fastsequential implementations. Various or-parallel models have been proposed [27, 17, 30, 1, 9], incorporatingdi�erent binding schemes.An early binding scheme was that of the SRI model, �rst suggested informally by Warren in 1983 andsubsequently re�ned [28]. The early form of this model partly in�uenced Lusk and Overbeek in the designof the pioneering system, ANL-WAM [12], one of the �rst or-parallel systems to be implemented. However,they ended up implementing an alternative, rather more complex, binding scheme.ANL-WAM was �rst implemented on the Denelcor HEP and later ported to other shared-memory machines.It demonstrated that good speedups could be obtained on Prolog programs, but su�ered from the fact thatthe quality of its compiler and emulator were well behind the state of the art. Also there were considerableoverheads associated with the binding scheme and treatment of parallel choicepoints. However, ANL-WAMprovided a concrete demonstration of what could be achieved, and was a major inspiration behind theformation of the Gigalips Project. The experience of ANL-WAM, together with that from early work onor-parallelism in Sweden [7, 8, 17], has led to the re�ned version of the SRI model that has now beenimplemented in Aurora.2.2.5 A Short History of the Gigalips ProjectAt the Third International Conference on Logic Programming in London in the summer of 1986, a meetingwas held of representatives of several groups interested in various aspects of parallelism in logic programming.It was agreed that there would be a core development project, open to participation by anyone, and thatanyone with related research interests was welcome to stay in close contact. Over the next year the projectbecame known as the Gigalips Project, and the core development centered on the Aurora system described inthis paper. The implementors were groups from Argonne National Laboratory, the University of Manchester,and the Swedish Institute of Computer Science. The Manchester group subsequently moved to the Universityof Bristol in the summer of 1988. Beginning in the spring of 1987, gatherings of the key participants wereheld approximately every three months to decide on major issues and merge work that had been donelocally. Also attending these gatherings were researchers from ECRC, Imperial College, MCC, Stanford andelsewhere. As a result, the Gigalips Project has been not only a design and implementation e�ort, but alsoa medium for pursuing common research interests in parallel logic programming systems.2.3 DesignAurora is based on the SRI model, and most of the design decisions are as described in an earlier paper[28]. In this section, we summarise the main features of the design, emphasising those aspects which are notcovered in the earlier paper.2.3.1 The Basic SRI ModelIn the SRI model, a group of workers6 cooperate to explore a Prolog search tree, starting at the root (thetopmost point). The tree is de�ned implicitly by the program, and needs to be constructed explicitly (andeventually discarded) during the course of the exploration. Thus the �rst worker to enter a branch constructsit, and the last worker to leave a branch discards it. The actions of constructing and discarding branches areconsidered to be the real work, and correspond to ordinary resolution and backtracking in Prolog. When aworker has �nished one continuous piece of work, called a task, it moves over the tree to take up anothertask. This process is called task switching or scheduling. Workers try to maximise the time they spendworking and minimise the time they spend scheduling. When a worker is working, it adopts a depth-�rstleft-to-right search strategy as in Prolog.6A worker is an abstract processing agent. We use this term in order to leave unspeci�ed the relationships with hardwareprocessors and operating system processes. 19

The search tree is represented by data structures very similar to those of a standard Prolog system suchas the WAM. Workers that have gone down the same branch share data on that branch. As soon as databecomes potentially shareable through creation of a choicepoint, it may not be modi�ed. To circumventthis restriction, each worker has a private binding array, in which it records conditional bindings, i.e.bindings to variables which have become shareable. The binding array gives immediate access to the bindingof a variable. Conditional bindings are also recorded chronologically in a shareable binding list called thetrail (similar to that in the WAM). Unconditional bindings are implemented as in the WAM by updatingthe variable value cell; they do not need to be recorded in the trail or binding array.Using the binding array and trail, the basic Prolog operations of binding, unbinding, and dereferencingare performed with very little overhead relative to sequential execution (and remain fast, constant-timeoperations). The binding array introduces a signi�cant overhead only when a worker switches tasks. Theworker then has to update its binding array by deinstalling bindings as it moves up the tree and installingbindings as it moves down the tree, always keeping its binding array in step with the trail.The major advantage of the SRI model, compared with other models [27, 12, 17], is that it imposes minimaloverhead on a worker while it is working.2.3.2 Extending the WAMWe will now describe in general terms how the SRI model has been implemented as an extension to theWAM. An important design criterion has been to allow any choicepoint to be a candidate for or-parallelexecution.The nodes of the search tree correspond to WAM choicepoints, with a number of extra �elds to enable workersto move around the tree and to support scheduling generally. The extra �elds depend on the schedulingscheme, but typically include pointers to the node's parent, �rst child node and next sibling nodes, and alock. Most of these extra �elds do not need to be initialised, and can be ignored, until the node is madepublic, i.e. accessible to other workers. This will be explained in more detail shortly. Most other WAM datastructures are unchanged. However trail entries contain a value as well as a variable address, environmentsacquire an extra �eld, and choicepoints acquire a further two �elds to support the binding array.Each worker maintains a binding array to record its conditional bindings. A value cell of a variable that isnot unconditionally bound contains an o�set that identi�es the corresponding location in the binding arraywhere the value, if any, is to be found. When a variable is initialised to unbound, it is allocated the nextfree location in the binding array. Having unbound variables initialised to such o�sets simpli�es the testingof seniority that is necessary when one variable is bound to another.In our implementation, there is one worker per operating system process, and each process has a separateaddress space which may be only partially shared with other processes. We take advantage of this by locatingall binding arrays at a �xed address in unshared virtual memory. This means that workers can address theirbinding arrays directly rather than via a register, and that binding array o�sets in variable value cells canbe actual addresses.The binding array is divided into two parts: the local binding array and the global binding array,corresponding to variables in, respectively, the WAM (local) stack and heap (or global stack). Each partof the binding array behaves as a stack growing and contracting in unison with the corresponding WAMarea. The worker maintains a register to keep track of the top of the global binding array. The need toaccess a similar register for the local binding array is avoided by performing most of the allocation processat compile-time (see later).2.3.3 Memory ManagementTo support the or-parallel model, the WAM stacks need to be generalised to �cactus stacks� mirroring theshape of the search tree.To achieve this, each worker is allocated a segment of virtual memory, divided into four physical stacks: anode stack, an environment stack, a term stack, and a trail. The �rst two correspond to the WAM(local) stack unravelled into its two parts, and the second two correspond to the WAM heap and trailrespectively.Each worker always allocates objects in its own physical stacks, but the objects themselves may be linked20

(explicitly or implicitly) back to objects in other workers' stacks forming a logical stack.The main di�erence from the WAM arises when a worker needs to switch tasks. At a task switch the workermay need to preserve data at the base of its stacks for the bene�t of other workers. In this case, data for thenew task will be allocated on the stacks after the old data. If any of the old data later becomes unneeded,�holes� will appear in the stack. These holes will be tolerated until reclaimed by an extension of the normalstack mechanism. The holes correspond to ghost nodes, i.e. nodes which have been marked as logicallydiscarded by the last worker to need them, but which have not yet been physically removed from memory.A ghost node and the associated �holes� in the other stacks will be reclaimed when the worker who createdthem �nds the ghost node at the top of its node stack. This occurs at task switching.Regarding two possible optimisations mentioned in the earlier paper on the SRI model [28], the presentAurora implementation does not perform promotion of bindings, and straightening has only beenimplemented in an experimental form (in the Manchester scheduler, described later).2.3.4 Public and Private NodesWe have already mentioned the distinction between public and private nodes. It has the e�ect that thesearch tree is divided into two parts: an upper, public, part accessible to all workers, and a lower, private,part each branch of which is only accessible to the worker that is creating it. This division has two purposes:� It enables a worker working in the private part of the tree to behave very much as a standard sequentialengine, without being concerned about locking or maintaining the extra data in the tree needed forscheduling purposes.� It provides a mechanism by which the granularity of the exploited or-parallelism can be controlled. Bykeeping work private, a worker can prevent its tasks from becoming too fragmented.We think of the worker as having two personas: a scheduler and an engine. When the worker enters thepublic part of the tree, it becomes a scheduler, responsible for the complexities of moving around the publicpart of the tree and coordinating with other workers. When the worker enters the private part of the tree,it becomes an engine, responsible for executing work as fast as possible. Periodically, the engine pauses toperform various scheduling functions, the chief one of which is to make its topmost private node public ifnecessary. The frequency with which nodes are allowed to be made public provides the granularity controlmentioned.To maintain the integrity of the public part of the tree, it is necessary for a (busy) worker always to have atopmost private node for the public node above it to point to. This private node has a special status, in thattypically it must have a lock and sibling and parent pointers, amongst other things. It is called a sentrynode.In the initial implementation of Aurora, a dummy node was created when a worker was launched on a newtask to serve as the sentry node. This simpli�ed the adaptation of the existing engine, but resulted in thesearch tree becoming cluttered with super�uous dummy nodes. We have now implemented the concept ofan embryonic node as originally described [28]. The embryonic node is ��eshed out� by the engine whenit needs to create a choicepoint. The implementation of embryonic nodes involved separating the �elds of anode into two parts, the scheduler part and the engine part, with a pointer from the former to the latter.This separation was necessary because a WAM choicepoint is not of a �xed size but varies according to thearity of the predicate.2.3.5 SchedulingThe function of the scheduler is to rapidly match idle workers with available work. Principal sources ofoverhead that arise and need to be minimised include installation and deinstallation of bindings, locking tocontrol access to shared parts of the search tree, and performing the bookkeeping necessary to make workpublicly accessible. In addition, one wants the scheduler to prefer �good� work, for example larger grain sizecomputations or less speculative ones. (Work is said to be speculative if it may be pruned, i.e. becomeunnecessary, due to a cut or commit).What makes the scheduling problem interesting is that these goals are not always compatible. For example,large-grain work may become available far away in the tree, while smaller-grain or speculative work is21

available nearby. It is not clear what to do with idle workers when there is (temporarily) no work availablefor them. They can stay where they are or try to guess where work will appear next and position themselvesnearby. Movement to work is over unstable terrain, since the tree is constantly being changed by otherworkers, and so a way must be found to navigate through it with as little locking as possible. Schedulingis also complicated by cut, commit, and suspension (see below). Finally, a scheduling algorithm that workswell on a particular class of programs is likely to perform poorly on a di�erent class, so that compromisesare inherent.Because scheduling is such an open research problem, we have experimented with a number of alternativeschemes within Aurora. Three quite distinct schemes have been implemented and will be described in a latersection.2.3.6 Cut, Commit, Side E�ects and SuspensionAurora supports cut and cavalier commit. Cut has a semantics strictly compatible with sequential Prolog.It prunes branches to the right of the cutting branch in such a way that side e�ects (including other cuts)are prevented from occurring on the pruned branches. Cavalier commit is a relaxation of cut that prunesbranches both to the left and right of the cutting branch, and is not guaranteed to prevent side e�ects fromoccurring on the pruned branches. Cut selects the �rst branch through a prunable region; commit selectsany one branch through a prunable region.Cut is currently implemented by requiring it to suspend until it is the leftmost branch within the subtree ita�ects. This is the simplest but by no means the most e�cient approach. Recent improvements [15] requirecut to suspend only so long as it could possibly be pruned by cuts with smaller scopes. Cavalier commit ismore straightforward to implement in that it doesn't require any suspension mechanism.Aurora also supports standard Prolog built-in predicates including those which produce side e�ects. Callsto such predicates are required to suspend until they are on the leftmost branch of the entire tree. We havealso implemented �cavalier� (or �asynchronous�) versions of certain predicates, which do not require anysuspension [16].2.3.7 Other Language IssuesThe current implementation supports some interim program annotation to control parallelism. If the decla-ration::- sequential <procedure>/<arity>.is included in a source �le, then the or-branches of <procedure>/<arity> cannot be explored in parallel.Thus a programmer currently identi�es predicates whose clauses must be executed sequentially. The compilerand emulator are then able to mark choicepoints according to whether or not they can be explored in parallel.All the predicates in a �le may be declared sequential by placing a declaration::- sequential.at the head of the �le. This may be overridden for individual predicates by declaring them parallel (usinganalogous syntax).Sequential declarations were introduced as an interim measure before cut and side e�ects were properlysupported. At that time cut behaved as a true cut in sequential code but as a commit in parallel code. Nowcut and side e�ects are correctly supported. Sequential declarations are still available to the programmer as ameans to restrict the parallelism that is exploited. For non-speculative work, there appears to be little pointin restricting the parallelism. For speculative work, however, the present schedulers do not have an adequatestrategy, and there is therefore currently scope for the programmer to usefully restrict the parallelism [2].22

2.4 ImplementationThe implementation of Aurora is based on Sicstus Prolog combined with the or-parallel implementationframework developed for ANL-WAM. The system is intended to provide a framework within which variousimplementation ideas could be tried out. These two factors have led to a structure for Aurora consisting ofa number of identi�able components, each relatively independent of the others. The main components arethe engine and scheduler.A clean interface between the engine and the scheduler has been de�ned and implemented [3]. It de�nes theservices that the engine must provide to the scheduler and those that the scheduler provides to the engine.This interface allows di�erent engines or schedulers to be inserted into the system with the minimumof e�ort.A scheduler testbed, compatible with the interface, allows di�erent schedulers to be tested on simulatedsearch trees in isolation from the full system. This is an invaluable aid to debugging scheduling code.2.4.1 Prolog EngineThe foundation of Aurora is Sicstus Prolog [6, 5], a relatively complete Prolog system implemented in C,which has been ported to a wide range of Unix machines. Aurora is currently based on version 0.3 of Sicstus,although migration to version 0.6 is underway. Sicstus comprises a compiler, emulator, and run-time system.The most basic component is the emulator or engine. The Sicstus engine is a C implementation of theWAM with certain extensions, including the ability to delay goals (by wait declarations). Choicepoints andenvironments are kept in separate stacks, which turns out to be essential for the SRI model. To produce aparallel version of the engine supporting the SRI model, a number of changes had to be made. The totalperformance degradation as a result of these changes has been found to be around 25% (see later).2.4.1.1 Cactus Stack MaintenanceEach worker maintains the boundary between the public and private sections of its node stack in a boundaryregister which points to the youngest public node. This governs what part of the node stack has to be keptfor the bene�t of other workers. Fields of the youngest public node de�ne the boundaries for the other stacksand for the binding arrays. When a task is started, the boundary is moved back over zero or more ghostnodes, thus shrinking the public section. The boundary register is updated as the engine makes work public(see below). It is also used to detect on backtracking when to leave the engine.2.4.1.2 Handling of Variable BindingsAdapting the standard WAM for the SRI model binding scheme implies a number of changes. Unbound orconditionally bound variables are represented as binding array references, i.e. as pointers into a bindingarray, marked with a special tag. The corresponding array location is initialised to UNBOUND. Other valuesindicate that the variable has been bound. When accessing a variable or an argument of a structure, onehas to cater for the possibility of encountering a binding array reference, in which case one has to access thebinding array. Seniority tests (for variable-variable bindings and for testing whether variable bindings needto be trailed) are performed by comparing binding array references, rather than variable addresses.For the term stack, a new WAM register maintains the next available binding array reference, and is incre-mented for each new variable. The situation is somewhat di�erent for variables in the environment stack,as explained in the following section. Choicepoints acquire two new �elds to record the tops of the bindingarrays.2.4.1.3 The Environment StackAllocating binding array slots for variables in the environment stack is performed at compile time, in contrastto the mechanism described above for the term stack. This is done by storing in each environment a basepointer into the local binding array, denoted CL(E), and extending two WAM instructions with an extraargument: 23

call(P,n,j)Call procedure P with n permanent variables still to be used, j out of these having been allocatedin the local binding array by put_variable. The n and j operands are denoted EnvSize(I) andVarCount(I), respectively.put_variable(Yn,Ai,j)Set Ai to reference the new unbound variable Yn whose binding array reference is computed as j +the base pointer stored in the environment.The algorithm to compute A, the top of environment stack, is extended to also compute LV, the top oflocal binding array. If the current environment is younger than the current choicepoint, then A is E +EnvSize(CP) (as usual), and LV is CL(E) + VarCount(CP). Otherwise LV is the top of local bindingarray �eld of B, and A is the top of environment stack �eld of Bp. Here Bp is a new WAM register,denoting the youngest choicepoint in the worker's own node stack. It is usually di�erent fromB (the currentchoicepoint) only when a task is started; as soon as a choicepoint is created, B and Bp get the same value.When adjusting B, Bp has to be recomputed as well. However, this overhead was judged worthwhile as itspeeds up the computation of A which occurs more frequently than updates of B.The base pointer �eld CL(E) also serves as an indicator of the age of an environment. This proves usefulwhen comparing ages of choicepoints and environments, as address comparisons cannot be used. The compilerensures that the chain of base pointers form a strictly increasing sequence for this comparison to work.2.4.1.4 Cut and Cavalier CommitAfter a cut or commit operation which resets the current choicepoint to an earlier value N , it becomesmandatory to tidy the portion of the trail which is younger than N . Tidying means to reprocess all bindingswhich were recorded earlier as conditional and make them unconditional where appropriate. If this is notdone, there might be garbage references in the trail to a portion of the environment stack which is beingreused by tail recursion optimisation. It is a property of the SRI model that a trailed item always refers toa variable whose value is a binding array reference. This property might be violated if the trail is not tidied,with fatal e�ects when attempting to reset non-existent variables.The cut/commit operation must also treat cutting within the private section and cutting into the publicsection as two separate cases, and call a scheduler function to perform the latter. In the latter case, thescheduler may refuse to perform the cut, in which case the engine suspends as described in the followingsection. If the scheduler does perform the cut it may order other workers to abort their current tasks.To support suspension of cuts, the compiler provides extra information about what temporary variables needto be saved until the suspended task is resumed. This extra information also encodes the distinction betweena cut and a cavalier commit.2.4.1.5 A Suspension MechanismAn ability was added to suspend work until the current branch of the computation tree is the left-most one,either globally or with respect to some ancestral node. The global suspension test was added to all built-inside e�ect predicates. The local test is used for cuts (see above).To suspend work, the engine pushes a node with a single alternative denoting the current continuation,makes the entire private section public7, and returns control to the scheduler. It is up to the scheduler todecide when the suspended work may be resumed.2.4.1.6 Other Multiprocessing IssuesA mechanism was added to allow the engine to periodically perform certain scheduling functions, notably tomake work public or to abort the current task. At every procedure call, a counter controlling the granularityis decremented to determine whether to seek to perform such action.7This is avoided in the new version of Aurora currently being implemented.24

Access to certain global data structures (symbol tables, predicate databases etc.) had to be synchronised byusing locks. Currently each worker performs input/output, although this would probably be better handledby a dedicated Unix process to avoid multiple accesses to bu�ers and control blocks.Special support for concurrent executions of setof has been provided. In the Aurora implementation ofsetof(X,P,L), each invocation acquires its own save area, where instances of X are saved. Each such savearea is itself serialised by a lock, to cater for parallelism within P.2.4.2 SchedulersScheduling issues are an active area of research within the project, and the engine/scheduler interface allowsus to experiment with di�erent alternatives. To date four quite distinct schedulers have been implemented,an early interim solution and three more recent and more complete solutions: the Manchester scheduler, theArgonne scheduler, and the Wavefront scheduler. These are described below. The Wavefront scheduler wasthe last to be developed and has only recently become fully functional.The earliest scheduler was based on a strategy described by SICS [17]. The implementation was modeledloosely on ANL-WAM and featured a global scheduling mechanism. That is, a single lock protected thedata structures necessary to determine what branch of the tree an idle worker would explore next. It wasanticipated that this global lock would represent a bottleneck as machines with more processors becomeavailable. The later schedulers use a more local scheme for assigning available work to available workers.The three current schedulers are very similar in their level of completeness, all handling cut, commit andsequential side e�ect predicates correctly. Moreover, although they have rather di�erent ways of implement-ing their responsibilities, they do share a number of strategy decisions. All three schedulers release workonly from the topmost node on a branch. This may be regarded as a breadth-�rst strategy and is a sim-ple attempt to maximise the size of tasks for their engines. In general the schedulers attempt to maintainone, live, shareable node on their current branch, irrespective of whether any other worker is currently idle(although the Manchester scheduler has relaxed this requirement with its �lazy release� mechanism). Ingeneral, if a cut or side e�ect predicate cannot be executed due to its not being on the leftmost branch inthe appropriate subtree then the schedulers suspend that work, freeing the worker to look for another task.None of the schedulers currently gives special treatment to speculative work: all work is regarded as beingequally worthwhile; however better treatments of speculative work are being developed.2.4.2.1 The Manchester SchedulerThe aim of the Manchester scheduler [4] is to match workers to available work as well as possible. Whenthere are workers idle, any new piece of shareable work is given directly to the one judged to be closest inthe search tree. Conversely, when a worker �nishes a task it attempts to claim the nearest piece of availablework; if none exists, it becomes idle at its current node in the tree.The matching mechanism relies upon each worker having a unique number and there being a worker mapin each node indicating which workers are at or below the node. There are, in addition, two global arrays,both indexed on worker number. One array indicates the work each worker has available for sharing andits migration cost, and the other indicates the status of each worker and its migration cost if it is idle. Themigration cost of a node is taken to be the number of trail entries from the root down to that node. If aworker is looking for work, then by examining the bit map in its current node it knows which work arrayentries need be considered and it can choose the one with the lowest migration cost. If the subtree containsno shareable work then scanning up the branch towards the root allows progressively larger subtrees to beconsidered. The worker status array allows the use of an analogous procedure when determining the bestidle worker to hand work to.The execution of cuts and commits also relies on the bitmaps to locate and notify the workers in the branchesto be pruned. In general, the task of cleaning up the pruned subtree is left to the workers being cut, so thatthe cutter can proceed with its own work.A number of re�nements to the basic scheduling algorithm have been introduced into the Manchester sched-uler.Shadowing. Idle workers try to distribute themselves evenly over the tree, each shadowing an active (work-ing) worker, in the hope that it will release some work later on.25

Delayed re-release. When a piece of work is acquired by a worker from a node, release of further alterna-tives from the same node is disabled for a short period of time. Since it is not known in advance howbig a task will be, it was thought that delayed re-release would lead to a better distribution of workand help avoiding congestion of workers.Lazy release. Nodes are made public only when there are idle workers waiting for work. This way one canavoid creating public nodes that will never be shared. A disadvantage of this scheme is that when aworker runs out of work it must �rst become idle and wait till the others notice this fact before it canget hold of a piece of work.Straightening. This operation, actually de�ned by the basic SRI model [28], removes a dead node whena worker dies back to it leaving just one other branch. The structure of the tree can be simpli�edconsiderably and all the future movements of workers through the given branch can bene�t from thestraightening. Note that the promotion of bindings has not been incorporated into the straighteningoperation in the current implementation.Of the above re�nements shadowing and lazy release have been shown to be the most useful [24], while delayedre-release proved to be detrimental for most of the examples. Straightening leads to little improvement inthe speed, probably because the actual implementation of this operation is quite complex and also because itcauses a noticable increase in overall congestion for locks. We believe that the implementationof straighteningcan be improved, so that it will have a bene�cial e�ect on overall execution time.2.4.2.2 The Argonne SchedulerThe philosophy of the Argonne scheduler [2] is to allow workers to make local decisions; very little use ismade of global data. Any worker that is in the public part of the tree is positioned at some particular node.In order to �nd work to do, it makes a decision about whether to choose an alternative at its current node(if there is one) or to move along an arc of the tree to a nearby node and repeat the decision process. Thislocal decision and one-step-at-a-time movement leads to an easily modi�able scheduling strategy.Data to support this strategy is local. A bit in each node indicates whether or not an unexplored alternativeexists at this node or below. These bits attract workers from above. Workers are �eager� in the sense thatas soon as they become available they begin an active search for work. Only when they believe they areoptimally positioned to take advantage of new work that might appear do they become inactive.The current strategy is to try to maintain at least one active public node on each branch of the tree. Thusthe scheduler takes a liberal approach to releasing work, and workers are correspondingly eager in theirpursuit of it, trying to position themselves where work might appear even if no work is currently available.The potential drawbacks of these decisions are that nodes may become public that are never actually shared,thus needlessly increasing the overhead of claiming an alternative from the node. Workers in eager pursuit ofpotential work may move away from places in the tree where work is just about to appear, so that it wouldhave been better not to be so �eager�. The impact of these drawbacks depends in general on the particularProlog program being executed.2.4.2.3 The Wavefront SchedulerFrom the viewpoint of scheduling, the most interesting part of the search tree is at the boundary betweenpublic and private regions. In particular, assuming a topmost node scheduling strategy, new work is foundonly at the youngest public nodes. The basic idea behind the Wavefront scheduler is to link togetherthese �interesting� nodes allowing for a more direct access to work. We call this linked chain of nodes thewavefront.The most important property of the wavefront is that all active public nodes are to be found there. Suchnodes may have any number of children, that is, workers that have taken an alternative and are privatelyexploring it. The set of children is called the wavelet, and can be seen as representing a possible futureexpansion of the wavefront. When a worker takes the last alternative, linking itself in as the last child in thewavelet, the wavefront is expanded downwards into the wavelet. When a worker fails up to its public-privateboundary it looks for new work. In the case when the worker is in a wavelet, �nding new work is trivial, asthe parent node is still active; the next alternative is simply taken and the sentry node (see Section 2.3.4)26

is moved to its new position as the last child within the wavelet. If the worker is on the wavefront, on theother hand, the worker scans the wavefront for work.When a worker moves from one position in the tree to another, it must update its binding array accordingly,using the trail. In the other schedulers, workers actually move through the tree node by node updatingbinding arrays on the way. In the Wavefront scheduler, the wavefront provides not only a more direct way of�nding work, but also the information necessary for updating binding arrays. Nodes are augmented with anew �eld, called the join, which, although by necessity being placed in one node, actually de�nes a relationbetween two neighbouring wavefront nodes. The join is a pointer to the lowest node that a wavefront nodehas in common with its right neighbour. Updating the binding array to re�ect a move between neighbouringnodes is then done by using the logical trail: from the �rst wavefront node to the join node, to deinstallbindings, and from the second wavefront node to the join node, to install bindings.In the Wavefront scheduler, a worker that becomes idle keeps its position in the wavefront while looking forwork. The lowest of its two joins de�nes the region in which it is alone. An idle worker periodically checksthis region, reclaims memory, and grabs sequential work, if any. An idle worker periodically looks for workalong the wavefront. When work is found, the worker (1) reserves the work, linking itself into the waveletas the last child, (2) possibly performs a wavefront expansion and installs/deinstalls bindings as appropriatefor its new position, and (3) removes itself from its previous wavefront position. Removing a node from thewavefront is simple: at most one of the two joins associated with the node has to be updated (the lowestis set to the highest). For a short time, the worker, in a sense, exists in two places at once, and protectsmemory associated with both branches from reclamation by other workers.This way of dealing with idle workers has two major advantages. Firstly, it makes the public region abovethe wavefront entirely read-only except for public backtracking (and synchronisation). Secondly, it neatlydivides the wavefront into regions. An idle worker need only scan the wavefront to its left and right as faras the nearest idle worker in either direction.A worker may suspend, in which case its sentry node is simply marked as suspended, and the worker proceedsto look for other work. The sentry node may be a wavefront node or a wavelet node, but in the latter case itwill fairly quickly �nd itself in the wavefront, as its parent node becomes exhausted. A suspended node mayexist in the wavefront for an arbitrary amount of time, but eventually either it will be cut or the suspensionwill be lifted and work resumed at the suspended node. Note that, except for suspensions, the number ofnodes in the wave front is bounded by the total number of workers.The implementation of cut and side e�ects depends on being able to determine whether or not a workeris leftmost within some scope (possibly global). This is achieved by sweeping the wavefront to the left.The join pointers will show when the scope boundary has been reached. Were it not for possible sequentialchoicepoints, idle workers could be ignored for leftmost determinations.At the present time the Wavefront scheduler is still in an early stage of development. A good deal ofre�nement and experimentation remains to be done. To begin with there are a number of features of theManchester scheduler (shadowing and lazy release) which could be incorporated. Overall, we hope thatthe Wavefront scheduler will provide for greater �exibility in experimentation with scheduling concepts. Inparticular, we are looking into more sophisticated ways of dealing with speculative work.2.4.3 The Graphical Tracing FacilityAurora also encompasses a set of tools for understanding the behavior of the system. They include amechanism for recording events in the scheduler, and a graphical tracing facility for replaying those eventson a Sun workstation to show pictorially how the workers explore the search tree [11].In Figure 2.1 we show a typical snapshot of the Argonne scheduler at work, taken near the beginning ofthe search for all solutions of the �Zebra� puzzle by 16 workers. We are looking at the public part of thetree. Each �bee� at the end of branch represents a worker executing sequentially in the private section. Thenodes shaped like honey pots (attractive to bees) have unexplored alternatives available, and nodes withparallel bars across them have alternatives that can be explored in parallel. The stalk of non-parallel nodesbeginning at the root arises from the (sequential) Prolog shell.From this snapshot we can tell that lots of work is currently available, and that the workers are distributedfairly evenly in the tree. We can see that worker 12 has just taken the last alternative from a node, and sois interrupting worker 7, telling it to make the node at the top of its stack public. Worker 13 is just �nishing27

Figure 2.1: Snapshot of the graphical tracing facilityits branch, and on the node below there is another idle worker (actually, worker 5) that is about to take upwork.A much better feel for the computation is gained by watching the display in action and seeing the workersmove about the tree in search of work. By clicking on the appropriate buttons, one can stop and restart thedisplay, single step for close scrutiny of critical events, and display the predicate names associated with eachchoicepoint. These labels are important for relating the tree to the original program, but clutter the displayand so are not shown here.The graphical tracing facility has been very useful for investigating the behavior of the di�erent schedulers.It has been particularly helpful in identifying �performance bugs�, in which a computation is carried outcorrectly, but not as fast as it should be. In many cases the graphical display brings out the problem quiteclearly.2.5 Experimental ResultsIn Tables 2.1, 2.2 and 2.3, we present some performance data for Aurora running on a Sequent Symmetryunder the three schedulers. The data is illustrative, and should not be regarded as providing a de�nitivecomparison of the schedulers, or indeed a de�nitive picture of Aurora behaviour. The tables show times andspeedups for di�erent numbers of processors. For the Manchester scheduler two of the re�nements describedin Sec. 2.4.2.1 have been switched on for these runs: shadowing and lazy-release. The benchmarks consideredare 8-queens2, a naïve (generate and test) version of the 8 Queens problem from ECRC; salt-must2, aversion of the Salt and Mustard puzzle from Argonne (adapted to remove meta-calls); tina, a holiday28

planning program from ECRC; db5, the database query part of a Chat-80 natural language query8; parse5,the natural language parsing part of the same Chat-80 query.Table 2.4 shows the relative speed of other Prolog systems compared with Aurora running on one SequentSymmetry processor, for the same benchmarks. (The Aurora times are taken to be the average for thethree schedulers, there being no signi�cant di�erence between the schedulers on one processor). The maincomparison is with the underlying sequential Prolog implementation, Sicstus 0.3, also running on a SequentSymmetry. For additional comparison, we show the relative speed on a Sun 3/75 of Sictus 0.3, QuintusProlog 2.4, and the most recent version of Sicstus, version 0.6.In Table 2.5 we present some sample pro�ling data obtained from running the same benchmarks on aninstrumented version [24] of Aurora (Manchester scheduler) with 20 processors on a Sequent Symmetry. Firstwe give the execution time within the instrumented system (after substracting the measurement overheads),followed by some statistical data: the number of procedure calls (including built-ins); the number of tasks(engine invocations); the average number of calls per task (the quotient of the two previous quantities).The next three columns show the total overhead needed to support or-parallelism divided into three maincategories: execution related overheads (i.e. the SRI binding scheme and the periodic test for schedulingactivities during Prolog work), task switching overheads, and idle time. These columns show the total time(including locking and migration) spent in each main activity by all processors, expressed as a percentageof the sequential (Sicstus 0.3) execution time. The last two columns provide, as additional information, thetotal time spent respectively in locking and migration (i.e. the installation/deinstallation of bindings neededon task switching), again expressed as a percentage of sequential execution time.The performance results that these tables illustrate are encouraging. On one processor, Aurora is only about25% slower than Sicstus 0.3, the sequential system from which it is derived. Sicstus 0.3 is itself only about2.7 times slower than Quintus Prolog, one of the fastest commercial systems. The latest version of Sicstus,Sicstus 0.6, is even faster, only about 1.8 times slower than Quintus, and we expect this improvement tocarry over to Aurora when migration to version 0.6 has been completed.On 20 processors, the Aurora speedup (relative to its speed on one processor) depends on the application,but can be over 18 on programs with almost ideal or-parallelism, while substantial speedups of 10 or moreare obtained on a range of benchmarks including some drawn from real applications in natural languageparsing and database query processing. These speedups represent a real performance improvement oversequential systems: for example, for the benchmarks shown, Aurora on 20 processors is 4 to 7 times fasterthan Quintus Prolog on a Sun 3/75. We shall see in the next section that very good speedups (and absoluteperformance) are also obtained on a variety of complete, large-scale applications.The results demonstrate that the overheads introduced by adapting a high performance Prolog engine forthe SRI model are low. The pro�ling data show that the cost of updating binding arrays on task switching,which was feared to be a major source of overhead, is quite small in practice. The relatively high migrationcost for the parse5 benchmark is caused by a rather peculiar shape of the search tree: two long brancheswith some work appearing on both of these from time to time.Similarly, the time spent in locking is acceptably low, at least for the Manchester scheduler. It shouldbe noted that the locking overhead in the Manchester scheduler is now low partly because the pro�lingdata has been very helpful in locating and eliminating congestion in those parts of the algorithm where thecompetition for locks was high.We believe that the most signi�cant overhead is the high, relatively �xed, cost of task switching that prevailsfor all the schedulers in the current Aurora implementation. As can easily be calculated from data inTable 2.5, the cost of a single task switching operation is on average around 7 to 10 (sequential) Prologprocedure calls, and this �gure seems to be relatively independent of the nature of the task switch. Thisplaces a limit on the granularity of parallelism that is worth exploiting, tasks of less than about 10 procedurecalls being hardly worth exploiting. It will be seen that the db5 and parse5 are close to this limit. Inaddition to the direct cost of task switching, there seems to be a signi�cant amount of idle time whichcannot be explained by lack of parallelism, and which, we believe, is caused by delays in creation of work,due to earlier task switching overheads. Consequently the high cost of the task switching operation andthe partitioning of work into sometimes unnecessarily small tasks are the main factors to blame for the lessthan perfect speedups. It is possible that task switching costs can be reduced by low-level tuning of theengine/scheduler interface amongst other things, irrespective of the high-level scheduling strategy.8�Which European countries that contain a city the population of which is more than 1 million and that border a countryin Asia containing a city the population of which is more than 3 million border a country in Western Europe containing a citythe population of which is more than 1 million?� 29

ProcessorsBenchmark 1 4 8 16 208-queens2 29.18 7.31(3.99) 3.69(7.91) 1.95(15.0) 1.58(18.5)sm2 *10 11.61 3.00(3.87) 1.59(7.30) 1.00(11.6) 0.80(14.5)tina 20.91 5.56(3.76) 3.01(6.95) 1.78(11.7) 1.55(13.5)db5 *10 3.78 1.07(3.53) 0.64(5.90) 0.44(8.61) 0.40(9.47)parse5 5.88 1.64(3.59) 1.03(5.70) 0.75(7.85) 0.64(9.19)Table 2.1: Times (in seconds) and speedups for Aurora, Manchester schedulerProcessorsBenchmark 1 4 8 16 208-queens2 29.11 7.37(3.95) 3.74(7.78) 1.96(14.9) 1.59(18.3)sm2 *10 11.62 4.00(2.91) 3.14(3.70) 0.90(12.9) 0.75(15.5)tina 21.08 5.51(3.83) 2.98(7.07) 1.76(12.0) 1.55(13.6)db5 *10 3.85 1.06(3.63) 0.68(5.65) 0.45(8.54) 0.38(10.1)parse5 5.89 1.82(3.24) 1.32(4.45) 1.07(5.51) 1.02(5.75)Table 2.2: Times (in seconds) and speedup for Aurora, Argonne schedulerProcessorsBenchmark 1 4 8 16 208-queens2 29.12 7.32(3.98) 3.78(7.70) 2.08(14.0) 1.74(16.8)sm2 *10 11.66 3.04(3.84) 1.52(7.67) 1.02(11.4) 1.04(11.2)tina 21.13 5.44(3.88) 2.89(7.30) 1.72(12.3) 1.59(13.3)db5 *10 3.67 0.98(3.73) 0.57(6.49) 0.40(9.12) 0.39(9.35)parse5 6.01 1.65(3.63) 1.05(5.71) 0.79(7.58) 0.57(10.5)Table 2.3: Times (in seconds) and speedup for Aurora, Wavefront schedulerTIME (sec) RELATIVE SPEEDAurora 0.0 Sicstus 0.3 Sicstus 0.3 Quintus 2.4 Sicstus 0.6Benchmark Symmetry Symmetry SUN 3/758-queens2 29.14 1.25 0.91 2.68 1.45sm2 *10 11.63 1.26 0.92 2.34 1.22tina 21.04 1.26 0.84 2.29 1.39db5 *10 3.77 1.17 0.90 2.42 1.28parse5 5.93 1.23 0.99 2.62 1.52Table 2.4: Comparing speed of other Prolog implementations with AuroraTASKTOTAL EXECUTION SWITCHING IDLE LOCKING MIGRATIONTIME TOTAL TOTAL CALLS OVERHEADS OVERHEADS TIME TIME TIMEBenchmark (sec) CALLS TASKS /TASK % of sequential execution time (Sicstus 0.3)8-queens2 1.580 167207 1822 92 25.12% 8.45% 1.68% 0.79% 0.49%sm2 *10 0.763 135740 3440 39 22.29% 26.03% 17.30% 7.13% 1.71%tina 1.591 160662 3349 48 31.96% 23.28% 34.57% 10.03% 1.53%db5 *10 0.441 55450 3145 18 24.04% 71.20% 77.79% 38.55% 5.30%parse5 0.654 39096 3384 12 31.64% 107.37% 31.65% 10.52% 31.75%Table 2.5: Pro�le data for Aurora, Manchester scheduler, 20 processors30

Remarkably similar speedups on the same benchmarks have been obtained for ECRC's PEPSys model [22].The fact that two quite di�erent models should produce similar speedups suggests that the speedups arelimited mainly by the intrinsic granularity of the parallelism available in the examples. Simulation data byKish Shen suggests that all the examples potentially have at least 20-fold parallelism, but that granularityvaries widely and is very �ne in the benchmarks with poorer speedups.2.6 ApplicationsBesides running small benchmarks, we have ported a number of large-scale Prolog applications to Aurora tosee how easy the porting is and to investigate how performance fares in real life.Apart from the applications described in more detail below, other applictions tested are an Andorra Prologinterpreter [14], the Satchmo theorem prover (two versions: the �rst for theorems in Predicate Logic andthe second for Propositional Logic), and a lexicon learning program. They show speedups from good (8 on12 processors) to very good (11 on 12 processors).2.6.1 The Pundit Natural Language SystemThe Pundit natural language system [19] developed by the Unisys Paoli Research Centre consists of a parserand a broad coverage restriction grammar. The grammar used consists of 125 BNF rules and 55 restrictionsplus meta-rules handling conjunctions. There are about 350 disjunctions in the grammar. A kind of semanticparsing (selection) can be used to reduce the search space, but unfortunately it has not been possible to usethis component in our experiments.This large application is perfectly suited for or-parallel execution. The speedups are nearly ideal. The onlychange we had to do was replacing calls to the standard (synchronous) recordedwith asynchronous versions.The results are actually better than the predictions based on the somewhat pessimistic model of parallelismproposed by the Paoli group [19].For typical sentences, speedups with 12 processors are in the range 9 to 11. For example, a speedup of 11.15is obtained for the sentence �Loud noises were coming from the drive end during coast down�.2.6.2 The Piles Civil Engineering ApplicationThe Piles program developed by the University of Bristol Civil Engineering Department analyses possiblefaults in concrete piles from acoustic data. The program is essentially an expert system consisting of arulebase, a rule interpreter and a set of facts to be interpreted against the rules. A set of test data isavailable for 31 di�erent piles. Seven main classes of fault can be analysed. In practice, the system is usedto �nd all seven possible classes of fault in all the piles tested (31 in this case). This normal mode of usegives very good or-parallelism (albeit of a rather trivial kind).The original Piles program was written in a di�erent Prolog dialect (running on an IBM PC) and had tobe converted for running under Sicstus. The use of the clause predicate had to be eliminated in order tofacilitate compilation of the program. In order to exploit the indexing feature of Sicstus, argument positionsin certain predicates were reordered; this actually yielded a very big improvement. In order to overcome thede�ciency of the �oating point operation of the current Aurora implementation, all �oating point numberswere changed to integers. The core of the program made use of assert and retract to keep track ofthe certain maxima in the search space. Such use of side e�ect predicates hampered the exploitation ofparallelism. The side e�ect predicates were initially replaced by a free_bagof (one which can collect itssolutions asynchronously in an arbitrary order) and then by a new built-in predicate called maxof.With all these changes, the time on one processor dropped dramatically from 173 sec. to 8.13 sec., andthe speedup on 11 processors improved from around 1 with the original program to 9.5 with the eventuallyre�ned program, the time on 11 processors being reduced to 0.85 sec. Given that the original program onan IBM PC took on the order of 20 minutes, the total performance improvement achieved is very striking,a factor of around 1500.The speedup described so far arises mainly from analysing 31 piles in parallel, which is how the applicationis actually used. In order to observe how much parallelism is available at the core of the program, we31

investigated the performance on a single pile seeking a single type of fault. Used in this way the programstill shows a reasonably good speedup of around 7 with 11 processors. The use of sequential declaration, inan attempt to focus the exploitation of parallelism, did not help in this application.2.6.3 Study of the R-classes of a Large SemigroupIn the context of the overall automated reasoning research at Argonne, there has been interest in using variousarti�cial intelligence based tools as aids in the understanding the structure of certain large �nite semigroupsthat play a fundamental role in classifying varieties of semigroups [21]. A recent theorem-proving run yieldedtwenty megabytes of output about the semigroup F3B21. Although the number of elements (102,303) was newand important information, we wanted to extract information about the R-classes in order to understandthe structure. This required �rst the extraction of 2844 distinguished elements and for each of these, aspecialised theorem-proving run to identify the graph structure of its R-class. Since the theorem-provingruns required specialised inference rules and subsumption criteria, it was convenient to write this programin Prolog. Since the computation was so large, it was well worth speeding up, and since it consisted of 2844independent and relatively large computations, there was ample exploitable parallelism. On 24 SequentSymmetry processors, the speedup was 23.4, the time for the computation being reduced from nearly twohours to under �ve minutes. The computation time on the fastest sequential Prolog system we could �nd,Quintus Prolog on a Solbourne Sun-4 clone, was nearly twenty minutes. Thus Aurora was 3.7 times fasterthan the fastest available sequential Prolog system.2.7 ConclusionAurora is a prototype or-parallel implementation of the full Prolog language for shared-memory multipro-cessors. It currently runs on Sequent and Encore machines. It has been constructed by adapting SicstusProlog, a fast, portable, sequential Prolog system developed at the Swedish Institute of Computer Science.The techniques for constructing a portable multiprocessor version follow those pioneered by Argonne NationalLaboratory in a predecessor system, ANL-WAM. The SRI model, as developed and re�ned at ManchesterUniversity, was adopted as the means to generalise the Sicstus Prolog engine for or-parallel operation.Aurora has demonstrated the basic feasibility of the SRI model. A high absolute speed per processor isattainable, and signi�cant speedups can be obtained through parallelism on real examples. The overheadsof updating binding arrays on task switching seem quite tolerable in practice.Aurora supports the full Prolog language and is able to run large Prolog applications and systems. We havedemonstrated that substantial or-parallelism is available in a variety of real applications, and that this leadsto good speedups and absolute performance when running on Aurora.As regards the ultimate goal of obtaining truly competitive bottom-line performance, Aurora on a 20-processor Sequent Symmetry is typically 4 to 7 times faster than Quintus Prolog on a Sun 3/75 for a widerange of examples with su�cient or-parallelism. On 4 processors Aurora easily outperforms Quintus on allexamples with su�cient parallelism, while on one processor Aurora is only about 2.5 times slower. As apoint of comparison, Quintus Prolog is one of the fastest commercial Prolog system, while the Sun 3/75was until recently considered to be a fast processor. Turning to the fastest Prolog system we could �ndtoday, Quintus Prolog on a Solbourne Sun-4 clone, Aurora was 3.7 times faster on a large theorem provingapplication.However, it can be argued that Aurora will not become truly competitive with sequential Prolog systems untilshared-memory multiprocessors become cheaper and more cost-e�ective, bearing in mind that a 20-processorSequent Symmetry is an order of magnitude more expensive than a fast workstation. The main factorpreventing Aurora from being truly competitive is that multiprocessor machines, as an emerging technology,are still relatively expensive and have lagged behind in keeping pace with the dramatic yearly increase insequential processor speeds. However this situation is changing. The next generation of fast processors islikely to appear simultaneously in workstations and multiprocessors that will support Aurora, and at thesame time multiprocessors are likely to become increasingly competitive in terms of price/performance.The other factor limiting Aurora competitiveness is the fact that (on equivalent hardware) the Aurora engineis some 3 times slower than the Quintus engine, due primarily to its being a portable implementation writtenin C, but re�ecting also the overheads of the SRI model. We expect this factor to be reduced by the migration32

to Sicstus version 0.6, and further improvements would be possible if the engine were implemented at as lowa level as Quintus. Thus, with suitable tuning of the Aurora engine, truly competitive performance is likelyto be obtainable on the next generation of multiprocessors.The experience of implementing Aurora has demonstrated that it is relatively easy to adapt a state-of-the-art Prolog implementation, preserving the complete Prolog semantics. The main novel component is thescheduler code, which is responsible for coordinating the activities of multiple workers looking for work ina Prolog search tree. A clear and simple interface has been de�ned between the scheduler and the rest ofthe system. This makes it easy to experiment with alternative schedulers (three quite di�erent schedulerscurrently exist), and should make it easier to apply the same parallelisation techniques to other existingProlog systems.Aurora is a prototype system, and there are many issues that need further exploration. In particular, moreexperimentation is needed with di�erent scheduling strategies and mechanisms. It may be possible to reducethe high cost of task switching by more e�cient implementation, or by alternative scheduling strategieswhich do not follow the �topmost node� heuristic. For example, current implementations of the BC model[1] achieve a much larger e�ective task size by dividing work at the �bottom-most node� rather than thetopmost.The current schedulers are able to handle cut, commit and side e�ects correctly. However, they requiremajor enhancement to handle speculative work e�ciently. The present schedulers treat all work as beingequally worthwhile, and make no allowance for how speculative a piece of work may be. A more intelligentscheduling strategy should be prepared to suspend work that has become highly speculative if there is workavailable that is likely to be more pro�table. Thus there is a need for �voluntary� suspension in additionto the present �compulsory� suspension. Possible scheduling schemes giving preference to non-speculativework or failing that to the least speculative work available are being discussed [15] and are going to beimplemented and evaluated in the Aurora system.The existing Aurora system allows researchers to experiment with or-parallel logic programs. We are makingthe system available to other research groups. We expect to continue to improve its capabilities and speed,and to port the system to new shared-memory multiprocessors as they become available.The work done so far has inspired many directions for future research. One major extension that we arepursuing is the incorporation of and-parallelism, in the form of the Andorra model and language [14, 31].The work has also inspired ideas for a novel architecture supporting shared virtual memory, called the datadi�usion machine [29]. We believe Aurora can contribute generally to the study of parallelism in logicprogramming languages.2.8 AcknowledgementsThis work was greatly stimulated and in�uenced by many other colleagues involved in or associated with the GigalipsProject. We thank all of them.This work was supported in part by the U.K. Science and Engineering Research Council, under grant GR/D97757,in part by ESPRIT project 2471 (�PEPMA�), and in part by the Applied Mathematical Sciences subprogram of theO�ce of Energy Research, U.S. Department of Energy, under contract W-31-109-Eng-38.References[1] Khayri Ali. Or-Parallel Execution of Prolog on BC-Machine. SICS Research Report, Swedish Instituteof Computer Science, 1987.[2] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Proceedings of the Fifth International Conference on LogicProgramming, pages 1590�1605, MIT Press, August 1988.[3] Alan Calderwood. Aurora�description of scheduler interfaces. January 1988. Internal Report, GigalipsProject. 33

[4] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler.In Proceedings of the Sixth International Conference on Logic Programming, pages 419�435, MIT Press,June 1989.[5] Mats Carlsson. Internals of Sicstus Prolog version 0.6. November 1987. Internal Report, GigalipsProject.[6] Mats Carlsson and Johan Widén. SICStus Prolog User's Manual. October 1988. SICS Research ReportR88007B.[7] Andrzej Ciepielewski and Seif Haridi. A formal model for or-parallel execution of logic programs. InIFIP 83 Conference, pages 299�305, North Holland, 1983.[8] Andrzej Ciepielewski, Seif Haridi, and Bogumil Hausman. Initial evaluation of a virtual machine for or-parallel execution of logic programs. In IFIP-TC10 Working Conference on Fifth Generation ComputerArchitecture, Manchester, U.K., 1985.[9] WilliamClocksin. Principles of the DelPhi parallel inference machine. Computer Journal, 30(5):386�392,1987.[10] Doug DeGroot. Restricted and-parallelism. In Hideo Aiso, editor, International Conference on FifthGeneration Computer Systems 1984, pages 471�478, Institute for New Generation Computing, Tokyo,1984.[11] Terrence Disz and Ewing Lusk. A graphical tool for observing the behavior of parallel logic programs.In Proceedings of the 1987 Symposium on Logic Programming, pages 46�53, 1987.[12] Terrence Disz, Ewing Lusk, and Ross Overbeek. Experiments with OR-parallel logic programs. InProceedings of the Fourth International Conference on Logic Programming, pages 576�600, MIT Press,1987.[13] Steven Gregory. Parallel Logic Programming in Parlog. Addison-Wesley, 1987.[14] Seif Haridi and Per Brand. Andorra Prolog�an integration of Prolog and committed choice languages.In International Conference on Fifth Generation Computer Systems 1988, ICOT, 1988.[15] Bogumil Hausman. Pruning and scheduling speculative work in or-parallel Prolog. In PARLE 89,Conference on Parallel Architectures and Languages Europe, Springer-Verlag, 1989.[16] Bogumil Hausman, Andrzej Ciepielewski, and Alan Calderwood. Cut and side-e�ects in or-parallelProlog. In International Conference on Fifth Generation Computer Systems 1988, ICOT, 1988.[17] Bogumil Hausman, Andrzej Ciepielewski, and Seif Haridi. Or-parallel Prolog made e�cient on sharedmemory multiprocessors. In Proceedings of the 1987 Symposium on Logic Programming, pages 69�79,1987.[18] Manuel Hermenegildo. An abstract machine for restricted and-parallel execution of logic programs. InEhud Shapiro, editor, Third International Conference on Logic Programming, London, pages 25�39,Springer-Verlag, 1986.[19] Lynette Hirschman, William Hopkins, and Robert Smith. Or-parallel speed-up in natural languageprocessing: a case study. In Proceedings of the Fifth International Conference on Logic Programming,pages 263�279, MIT Press, August 1988.[20] Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Overbeek, Rick Stevens, David H. D.Warren, Alan Calderwood, Péter Szeredi, Seif Haridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski,and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Generation Computing, 7(2,3):243�271, 1990.[21] Ewing Lusk and Robert McFadden. Using automated reasoning tools: a study of the semigroup F2B2.Semigroup Forum, 36(1):75�88, 1987.[22] Michael Ratcli�e. A progress report on PEPSys. July 1988. Presentation at the Gigalips Workshop,Manchester.[23] Ehud Shapiro, editor. Concurrent Prolog�Collected Papers. MIT Press, 1987.34

[24] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Proceedings of theNorth American Conference on Logic Programming, pages 713�732, MIT Press, October 1989.[25] David H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International, 1983.[26] David H. D. Warren. Applied Logic�Its Use and Implementation as a Programming Tool. PhD thesis,Edinburgh University, 1977. Available as Technical Note 290, SRI International.[27] David H. D. Warren. Or-parallel execution models of Prolog. In TAPSOFT'87, The 1987 InternationalJoint Conference on Theory and Practice of Software Development, Pisa, Italy, pages 243�259, Springer-Verlag, March 1987.[28] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.[29] David H. D. Warren and Seif Haridi. Data Di�usion Machine�a scalable shared virtual memory multi-processor. In International Conference on Fifth Generation Computer Systems 1988, ICOT, 1988.[30] Harald Westphal, Philippe Robert, Jacques Chassin, and Jean-Claude Syre. The PEPSys model: com-bining backtracking, and- and or-parallelism. In The 1987 Symposium on Logic Programming, SanFrancisco, California, IEEE, 1987.[31] Rong Yang. Solving simple substitution ciphers in Andorra-I. In Proceedings of the Sixth InternationalConference on Logic Programming, pages 113�128, MIT Press, June 1989.

35

Chapter 3Performance Analysis of the AuroraOr-Parallel Prolog System1Péter Szeredi2Department of Computer ScienceUniversity of Bristol, Bristol BS8 1TR, U.K.AbstractAurora is a prototype or-parallel implementation of the full Prolog language for shared memorymultiprocessors based on the SRI model of execution. The capabilities of Aurora in exploitingparallelism vary from application to application: some show almost linear speed-up, whilst forothers the speed-up is much worse than the theoretical maximum.The Manchester version of the Aurora system has been instrumented to provide various types ofpro�ling information. Main sources of overhead in parallel execution have been identi�ed and thefrequency of speci�c events, as well as the time spent in each of them has been measured. Specialattention has been paid to the binding array update overheads associated with the SRI model andto the overheads of synchronisation using locks.We present a short description of the instrumented Aurora system and evaluate the basic setof pro�ling data. Our main conclusion is that the high cost of task switching in the presentimplementation is the main cause of poor speed-ups. The cost of updating the binding arrays,which was feared to be the major cause of overhead, seems to be rather small. Similarly, lockingcosts are acceptably low and there is no signi�cant increase in the average locking time.3.1 IntroductionAurora is a prototype or-parallel implementation of the full Prolog language for shared memory multipro-cessors, currently running on Sequent and Encore machines. It has been developed in the framework ofthe Gigalips project [5], a collaborative e�ort between Argonne National Laboratory in Illinois, Universityof Bristol (previously University of Manchester) and the Swedish Institute of Computer Science (SICS) inStockholm.The SRI model [11] has been adopted as the basis of Aurora. According to this model the system consistsof several workers (processes) exploring the search tree of a Prolog program in parallel. Each node of thetree corresponds to a Prolog choicepoint with a branch associated with each alternative clause. As the treeis being explored, each node can be either live, i.e. having at least one unexplored alternative, or dead. Live1This paper has appeared in the proceedings of NACLP'89 [10]2On leave from SZKI, Donáti u. 35-45, Budapest, Hungary36

nodes correspond to pieces of work a worker can select. Each worker has to perform activities of two basictypes:� executing the actual Prolog code,� �nding work in the tree, providing other workers with work and synchronising with other workers.The above two kinds of activities have been separated in Aurora: those parts of a worker that work onexecuting the Prolog code are called the engine, whilst those concerned with the parallel aspects are calledthe scheduler. The engine used in Aurora is a modi�ed version of SICStus Prolog (version 0.3).In accordance with the SRI model each worker has a separate binding array to store its own bindings topotentially shared variables (conditional bindings). This technique allows constant time access to a value ofa shared variable, but imposes an overhead of updating the binding arrays whenever a worker has to movewithin the search tree. The number of bindings made on the given path of movement is called the migrationcost, since it is proportional to the updating overhead of binding arrays.The or-tree is divided to an upper, public, part accessible to all workers and a lower, private, part. A workerexploring its private region does not have to be concerned with synchronisation or maintaining schedulingdata � it can work very much like a standard Prolog engine. The boundary between the public and privateregions changes dynamically. One of the critical aspects of the scheduling algorithm is to decide when to makea node public, allowing other workers to share work at it. The current Aurora schedulers use a dispatchingon topmost strategy: a node is made public when all nodes above it are dead, i.e. have no more alternativesto explore. This means that each worker tries to keep a single piece of work on its branch available to otherworkers.Three separate schedulers are being developed currently for Aurora. The Argonne scheduler [3] relies ondata stored in the tree itself to implement a local strategy according to which live nodes �attract� workerswithout work. When several workers are idle they will compete to get to a given piece of work and thefastest one will win. In contrast with this the Manchester scheduler [4] tries to select the nearest worker inadvance, without moving over the tree. It uses global data structures to store information on available workand workers as well as data stored in the tree itself. The wavefront scheduler [2] tries to achieve the goal ofoptimal matching between work and workers using a special distributed data structure, the wavefront, whichlinks all the live nodes and idle workers into a doubly linked list.Our performance analysis work aims at understanding the factors in�uencing the behaviour of Aurora sched-ulers. The measurements were performed on the Manchester scheduler. Considerable part of the analysis,however, applies to design decisions that are common to all three schedulers. The major goals of our workare the following:� to measure the costs associated with the SRI binding scheme, both during Prolog execution in theengine and within the scheduler activities,� to evaluate the e�ciency implications of some design issues in Aurora, such as the private-publicdivision of the search tree and the engine-scheduler interface,� to identify the major algorithmic components of the Manchester scheduler and assess their e�ect onthe performance of the system,� to analyse the locking overheads in the Manchester scheduler,Section 3.2 outlines the structure of the Manchester scheduler and Section 3.3 brie�y describes our instru-mentation of the system. Section 3.4 introduces the benchmarks used in the analysis and presents somebasic timing data, while Section 3.5 contains detailed data and evaluation of the basic overhead activities.Section 3.6 covers locking and migration overheads. In Section 3.7 some extensions to the basic schedulingalgorithm are brie�y described and evaluated. Finally Section 3.8 summarises the conclusions of the paper.Report [9] is an extended version of this paper, giving more detailed evaluation of performance issues anddata for individual benchmarks as well. 37

3.2 The working cycle of AuroraThe basic working cycle of the Aurora system (with the Manchester scheduler) is presented in Fig. 3.1. Eachbox in this �gure represents a basic activity that has been measured in our pro�ling. Tasks concerned withthe execution of side e�ect predicates have not been shown on the �gure in order to simplify the presentation.The main data structures used by the Manchester scheduler are introduced brie�y to make the discussionself contained. Every node of the search tree has a number of scheduler speci�c �elds of which the workerbit-map is of major importance. Each bit in this �eld corresponds to a speci�c worker and indicates whetherthe given worker is at or below the node. There are two global arrays both indexed on a unique workeridenti�er. The worker array stores information on workers including an indication of the migration cost(between the worker's current node and the root) if the worker is idle and an interrupt message area whichallows one worker to notify another about a speci�c event. The other main global data structure is the arrayof queues each of which stores a pointer to a single live node (if any) the given worker has to share on itsbranch, together with the migration cost.WORKfailed backto a public node CHECKPARALLELduties MAKE a node PUBLIC-� process INTERRUPTS-�� - public CUT/COMMIT� -public BACKTRACK?�- livenode deadshared nodeFIND WORK? IDLE RELEASE WORK-�?GO TO WORK ???workfound no workfound handedworkgrabbedworkFigure 3.1: The working cycle of Aurora (Manchester scheduler)The basic activity of each worker is to do the �real� work, i.e. Prolog execution (resolution and backtracking).Some of the built-in predicates to be executed need additional care due to the parallel environment, mostnotably cut and commit to a public node. Another kind of overhead arises from the fact that the worker hasto check periodically if it has any duties concerning parallel execution (this is done at every nth Prolog call,n = 5 by default3). The duties include checking if it has received any interrupts (e.g. about having beencut), and also checking if it is feasible to make some of its newly created nodes public (i.e. available to otherworkers). When a node is made public, an idle worker is interrupted to do the releasing of work (see below).If there are no idle workers the address of the new public node is deposited in the worker's queue.A continuous piece of work executed by a worker is called a task. A worker normally �nishes its task whenit fails back to a public node and then it does public backtracking. If the node in question is still live, theworker can claim the next alternative and return to work. If the node is dead and not shared with othersany more, then the worker can recover the node and continue the public backtracking with the parent ofthe node. If, however, the node in question is dead and shared, then the worker has to abandon its currentbranch and try to �nd work in some other part of the search tree.The worker uses the bit-map in its current node to determine which workers are below him and examinesthe corresponding queues to locate the nearest piece of work. If no work is found in this subtree, it repeatsthe same procedure for the parent of the current node. If work is found eventually, the worker grabs it (i.e.3This frequency of checks has been found the most bene�cial for the Manchester scheduler [8]38

claims it for itself) and goes to work. This involves modifying its binding array as well as updating schedulerinformation in the a�ected nodes of the tree. When the worker is positioned at the appropriate node, itenters its main working mode again.When no work is available some workers may become idle. When, later on, a node is made public by anactive (working) worker, the idle worker who is nearest to this node needs to be selected and handed thework. To let the active worker continue with its Prolog work as soon as possible, this selection process, calledreleasing work, is actually done by one of the idle workers. The releasing worker will consider progressivelylarger subtrees around the new public node in its search for the nearest idle worker (including itself). Theworker array and the bit-maps will be used during this search much in the same way as for �nding work.When the appropriate idle worker is selected, it is handed the given piece of work. This idle worker will thenleave its idle state, go to the appropriate node of the tree and start working. Occasionally an idle workermay notice a piece of work appearing in a queue and grab it on its own initiative, leaving idle state andgoing to work.3.3 Instrumenting AuroraThe Aurora implementation has been instrumented to collect various performance data. The execution cycleof the system has been divided to a number of disjoint activities as depicted in Fig. 3.1 (WORK, CUT/COMMIT,CHECK PARALLEL, etc.). The number of times a given type of activity has been performed as well as thetotal time spent in it have been collected. Furthermore two sub-categories have been distinguished: separatetime accumulators and event counters have been provided for locking and for moving (updating the bindingarrays) within each of the main categories.Additional counters have been inserted for the basic Prolog events: calls (Prolog procedure calls � includingmost of built-in predicates), backtracks, creation of nodes (choicepoints), conditional bindings (i.e.bindings to potentially shared variables) and also for move bindings i.e. those installed by workers movingaround the tree.The pro�ling experiments were run under the DYNIXTM operating system on a Sequent SymmetryTM S27multiprocessor equipped with twelve processors and 16 Mbytes of memory. Since we wanted each workerto be assigned the full power of a CPU, we used at most 11 workers to leave one processor aside for thecomputing requirements of the operating system.E�orts have been made to account for the measurement overheads by excluding the time actually spentin measurement from the times accumulated for speci�c activities. The net running times obtained bysubtracting the average overhead from the times measured are only a few percent higher than the timesobtained from an uninstrumented system. We believe that this distortion resulting from the instrumentationis reasonably low and thus measurements do re�ect what is happening in the original, uninstrumented system.3.4 The benchmarksWe used the Chat-80 natural language query system as one of the main sources for the performance analysisof Aurora. Benchmarks parse1 � parse5 run the parsing component of Chat-80 to �nd all possible parsesof various queries. The Prolog translations of two queries were taken as representatives of database searchtype applications (db4 and db5). The translation used was that produced by Chat, but with the extra levelof query interpretation and all cuts removed.Further benchmarks were adapted from those used by the PEPSys group at ECRC: farmer, a small programfor planning the farmer's crossing a river with a wolf, a goat and a cabbage; house, the �who owns the zebra�puzzle, using constraint directed search; 8-queens2, the naive (generate and test) version of 8 queens;8-queens1, a more e�cient algorithm for 8 queens, which checks the state of the chess-board in each step;tina, a holiday planning program. Finally sm2, the salt-mustard puzzle originating from Argonne, has alsobeen included. It has been slightly modi�ed to avoid the frequent meta-calls of the original version.All the above benchmarks look for all solutions of the problem. Although there are cuts in some of theprograms, these have small scope and so the amount of additional (speculative) work done when running inparallel is minimal (cf. Section 3.5, Table 3.3).Table 3.1 shows the running times in seconds, with speed-ups (relative to the 1 worker case) given in39

parentheses. The last column shows the running time on SICStus Prolog version 0.3, the Prolog system onwhich the engine of Aurora is based. The �speed-up� �gure in this column, (the ratio of the running timeon Aurora with 1 worker and the running time on SICStus) is actually indicating the overheads of extendingthe Prolog system to allow or-parallel execution. AuroraGoals WorkersGroup * repetitions 1 4 8 11 Sicstus 0.38-queens1 11.33 2.87(3.95) 1.47(7.71) 1.11(10.2) 9.08(1.25)8-queens2 33.60 8.39(4.00) 4.27(7.87) 3.19(10.5) 26.04(1.29)H tina 23.73 6.16(3.85) 3.29(7.21) 2.53(9.38) 18.89(1.26)sm2 *10 13.57 3.52(3.86) 1.86(7.30) 1.43(9.51) 10.49(1.29)AVERAGE (3.92) (7.52) (9.91) (1.27)parse2 *20 10.14 3.07(3.30) 2.17(4.68) 1.98(5.13) 7.99(1.27)parse4 *5 9.38 2.64(3.55) 1.66(5.65) 1.44(6.51) 7.38(1.27)parse5 6.63 1.81(3.66) 1.13(5.87) 0.95(6.99) 5.25(1.26)M db4 *10 3.62 1.01(3.58) 0.59(6.14) 0.47(7.70) 3.04(1.19)db5 *10 4.41 1.23(3.59) 0.71(6.21) 0.57(7.74) 3.69(1.20)house *20 9.22 2.61(3.53) 1.58(5.84) 1.31(7.06) 7.37(1.25)AVERAGE (3.54) (5.73) (6.86) (1.24)parse1 *20 2.72 0.98(2.78) 0.86(3.17) 0.87(3.14) 2.13(1.27)parse3 *20 2.33 0.92(2.53) 0.82(2.85) 0.80(2.93) 1.81(1.28)L farmer *100 5.37 2.63(2.04) 2.52(2.13) 2.53(2.12) 4.09(1.31)AVERAGE (2.45) (2.72) (2.73) (1.29)Table 3.1: Run times for benchmarksFor simpler benchmarks the timings shown refer to repeated runs, the repetition factor being shown in the�rst column. Additionally, each timing was carried out several times and the shortest of these is displayedin the table.The benchmarks in Table 3.1 are divided into three groups according to the speed-ups shown:� 8-queens1, 8-queens2, tina and salt-mustard show very good speed-up (around 10 for 11 workers);� parse2, parse4, parse5, db4, db5 and house show relatively good speed-ups (5�8 for 11 workers);� parse1, parse3 and farmer show rather bad speed-ups (2�3 for 11 workers).Because of space limitations the average data for these groups will be presented in the following sections,rather then to show the benchmarks individually. The three groups will be referred to as Group H (highspeed-up), Group M (medium speed-up) and Group L (low speed-up).Some of the benchmarks used in this analysis were evaluated by Kish Shen [7] using his simulator similarto that described in [6]. Table 3.2 shows the results of simulation in two variants. The �rst part of thetable assumes no overheads associated with task switching, while the second part assumes an overhead of8 resolution time units. The table shows simulation results for 4�11 workers and also gives the maximumachievable speed-up with the actual number of workers needed to produce the speed-up shown in parentheses.The simulation results con�rm our grouping: the benchmark in Group H shows a very high level of parallelism(over 500-fold under ideal conditions), the benchmarks in Group M have a medium amount of parallelism,while the ones in Group L have a rather low level of parallelism (the ideal maximum speed-up being below12). The discrepancy between the actual results and the �gures predicted by the simulator for the 8 resolutionunits overhead is the smallest for the 4 workers case: a few percent for Groups H and M and 10-26% forGroup L. This gap widens as more workers are considered, reaching 30% for Group M and 50% for GroupL. We will return to comment on this di�erence after we have presented the actual overheads.40

No overheads Overhead = 8 resolutions / taskWorkers WorkersGroup Goals 4 8 11 Max speed-up 4 8 11 Max speed-upH 8-queens1 4.00 7.98 10.96 >536 (w>800) 3.99 7.95 10.90 >440 (w>800)parse2 4.00 7.93 10.67 26.38 (w=66) 3.45 5.97 7.17 13.33 (w=126)parse4 4.00 7.98 10.89 41.26 (w=216) 3.84 6.63 8.47 22.68 (w=285)parse5 4.00 7.99 10.98 58.46 (w=256) 3.85 6.96 8.98 32.40 (w>100)M db4 3.99 7.94 10.88 159.7 (w=800) 3.84 7.43 10.13 78.15 (w=400)house 3.96 7.76 10.51 53.72 (w=190) 3.69 6.73 8.71 30.54 (w=187)AVERAGE 3.99 7.92 10.79 3.73 6.74 8.69parse1 3.96 6.80 8.37 11.46 (w=37) 3.05 4.30 4.66 5.49 (w=50)parse3 3.92 6.97 8.71 11.46 (w=35) 2.86 4.07 4.44 5.34 (w=48)L farmer 3.34 4.31 4.53 4.53 (w=10) 2.58 3.02 3.15 3.31 (w=16)AVERAGE 3.74 6.03 7.20 2.83 3.80 4.08Table 3.2: Speed-up of OR-parallel Prolog execution - simulation results3.5 Basic overheads of or-parallel executionCOND.Bench- BACK- % of BINDs COND.mark CALLS TRACKS NODES PUBLIC per CALLS BINDINGSGroups per TASK per TASK per TASK NODES CALL INCREASE INCREASEGroup Hw = 1 30175.82 27867.74 23552.59 0.03% 0.39w = 4 547.84 485.65 407.68 0.51% 0.39 0.00% 0.49%w = 8 202.11 163.20 149.67 1.24% 0.39 0.03% 1.56%w = 11 100.82 75.10 70.61 2.01% 0.40 0.07% 2.98%Group Mw = 1 2429.24 1293.92 1017.37 0.21% 0.57w = 4 44.16 24.65 18.47 3.85% 0.60 6.01%w = 8 19.49 10.84 7.96 8.72% 0.65 14.18%w = 11 15.52 8.62 6.31 10.90% 0.67 17.81%Group Lw = 1 227.83 142.42 135.42 0.36% 0.73w = 4 9.62 5.69 5.11 12.64% 0.91 0.45% 29.36%w = 8 6.82 4.03 3.62 18.80% 0.98 0.76% 45.28%w = 11 6.49 3.85 3.48 20.18% 1.00 0.98% 47.59%Table 3.3: Basic statistical dataTable 3.3 presents a set of engine related frequency data to help in understanding the timing data in thesequel. The �rst three columns of the table contain the average number of calls, nodes and backtracks pertask and so provide a good indication of average task size. The next column gives a related piece of data:the percentage of public nodes among all nodes, i.e. the proportion of the public part within the searchtree. The �gures in these columns indicate that there is a dramatic decrease in task size as the number ofworkers increases and the three groups are visibly separated. It is worth noting, however, that the decreasefor Group L is much less sharp than for the other two groups. This is because the average task size in GroupL is not much more than 5 Prolog calls which is the default period between invocations of CHECK PARALLEL.This means that there will be no parallel activity (and so no node will be made public) in the �rst 5 callswithin each task. 41

The �fth column contains the number of conditional bindings per Prolog call. Although the group averagesdo increase going from Group H to L, it is worth noting that while the �worst� benchmark, farmer, has0.49 bindings per call, one of the �best�, tina, has 0.67 (for 11 workers). The �gures for the individualbenchmarks vary from 0.18 (db4 and db5) to 1.25 (parse3). While there is a 7-fold di�erence in the numberof conditional bindings for these benchmarks, the variation in the actual overhead is much smaller: 19% to28% (as shown in the last column of Table 3.1). This indicates that the signi�cance of the actual bindingoverhead is much smaller than that of the general overhead of handling the binding array references duringthe uni�cation process.The CALLS INCREASE column shows the increase in the number of Prolog calls executed during thebenchmark. This is an indication of how much unnecessary speculative work is performed by the system.Such work is undertaken when a worker choses a branch that later will be cut, thus causing code to beexecuted that would not be run in the sequential case. The amount of unnecessary speculative work israther small for our examples, basically because they were chosen not to contain major cuts (e.g. there arenone in Group M, at all). Nevertheless it is important to know for the evaluation of timing results that thereis no signi�cant increase in the actual Prolog work to be performed in our benchmarks when going from 1to more workers.The increase in the number of conditional bindings is due to the fact that when the last alternative is takenfrom a shared choicepoint, the latter can not be discarded (as it would be in the sequential case). This causessome additional bindings to become conditional. The original SRI-model envisaged that when all but oneworker backtracked to a choicepoint these bindings could be promoted to become unconditional, but this hasnot yet been implemented in Aurora. The increase in the number of conditional bindings is naturally relatedto the number of public nodes (column 4) and so it is much bigger for the low granularity benchmarks thanfor the high granularity ones.Bench- WORK CHECK MAKE BACK- FIND RELEASE GO TO OTHER IDLE TOTALmark PAR. PUBLIC TRACK WORKGroups % of sequential running time (Sicstus 0.3)Group Hw = 1 129.74 1.03 0.02 0.06 0.03 130.88w = 4 129.05 1.06 0.40 0.77 0.26 0.05 0.20 0.43 1.15 133.37w = 8 129.72 1.07 0.97 1.61 0.98 0.20 0.78 0.96 3.82 140.11w = 11 130.59 1.10 1.44 2.33 1.69 0.32 1.36 1.44 6.18 146.45Group Mw = 1 125.42 1.25 0.12 0.34 0.15 127.26w = 4 126.67 1.28 2.06 4.18 1.87 0.51 1.97 2.12 3.48 144.15w = 8 128.09 1.39 4.78 9.83 6.92 2.08 10.41 4.86 14.83 183.20w = 11 129.38 1.46 6.08 13.21 9.85 3.39 17.07 6.15 25.14 211.72Group Lw = 1 130.32 1.06 0.26 0.72 0.33 132.70w = 4 138.36 1.42 7.93 13.30 7.93 4.82 10.01 11.00 33.10 227.86w = 8 146.14 1.82 12.59 20.05 15.28 17.94 28.71 20.45 162.76 425.74w = 11 146.81 1.92 13.27 21.56 13.74 27.77 33.90 22.54 306.31 587.82Table 3.4: Basic profile of the benchmarksTable 3.4 shows how the time spent in solving a particular benchmark is divided between various activitiesof Fig.3.1. The time given for a speci�c activity is the total time for all workers including the time neededfor locking and moving over the tree. Since there are only a few cuts and commits to public nodes inthe benchmarks, �gures for these and for processing interrupts have been included in the OTHER columnwhich also covers the cost of the actual tests and procedure calls needed to implement the basic loop of thescheduler. To make the times for di�erent benchmarks comparable they are expressed as a percentage ofsequential execution time (using SICStus Prolog 0.3), i.e. what could be considered �real� Prolog work.A few notes on some columns of Table 3.4 follow.WORK � The overhead (i.e the percentage over 100%) appearing in the 1 worker case is basically the cost42

of the SRI binding scheme. This is roughly proportional to the sequential execution time varying between25% and 30% of the latter. The increase for the case of more workers is due to several factors: increase inthe number of conditional bindings, speculative work, and decrease in granularity (causing some hardwarerelated execution overheads, e.g. paging or the number of cache misses, to increase).CHECK PARALLEL � The time spent in checking if any parallel activities need to be done during work isacceptably small, around 1-2%. The actual time of a single CHECK PARALLEL event is fairly constant for thecase of 1 worker (5-6 �sec), the marked di�erence between Group M and the other two groups is caused bydi�erences in average Prolog call times (since this activity is performed periodically, every nth procedurecall). As the number of workers increases the tests involved in checking parallel duties become more complexand the average event time increases up to 10 �sec. This explains why Group M, having the highest cost forthe 1 worker case, is �overtaken� by Group H.MAKE PUBLIC : : : IDLE � These columns of the table refer to activities related to task switching, i.e. to thosealong the main loop of Fig. 3.1: backtracking, looking for work, returning to work. (Although making anode public is not itself part of the main loop, it is a prerequisite for any tasks to be created at the givennode.) The table shows these overheads to increase considerably when the granularity decreases, which isquite natural considering that lower granularity means more frequent execution of the main loop. The riseis most sharp for the IDLE column. This column, in fact, di�ers from the previous ones in that the timespent being idle depends on the amount of parallelism available in the program. Benchmarks in Group Lare characterised by a rather low level of parallelism (cf. Table 3.2) which causes the sharp increase in theIDLE column. AVERAGE TIME per TASK (msec)Bench- TASK SWITCHING OVERHEADS IDLE PROLOGmark EXEC- MAKE BACK- FIND REL. GO TO OTHER TOTAL OVER- CALLGroups UTION PUBLIC TRACK WORK HEAD (msec)Group Hw = 1 5863.03 0.12 0.22 0.10 0.44 0.16w = 4 112.92 0.12 0.18 0.10 0.03 0.07 0.11 0.61 0.31 0.16w = 8 36.26 0.14 0.20 0.15 0.03 0.13 0.13 0.77 0.46 0.16w = 11 17.73 0.15 0.20 0.18 0.03 0.15 0.13 0.84 0.52 0.16Group Mw = 1 418.04 0.07 0.20 0.09 0.37 0.14w = 4 6.70 0.10 0.18 0.09 0.03 0.10 0.09 0.59 0.17 0.15w = 8 2.77 0.10 0.20 0.15 0.04 0.22 0.10 0.80 0.31 0.15w = 11 2.26 0.10 0.22 0.17 0.05 0.29 0.10 0.93 0.41 0.15Group Lw = 1 39.57 0.09 0.21 0.09 0.39 0.17w = 4 1.86 0.10 0.18 0.10 0.06 0.13 0.14 0.71 0.42 0.18w = 8 1.35 0.11 0.19 0.14 0.16 0.26 0.18 1.04 1.45 0.19w = 11 1.29 0.11 0.19 0.12 0.24 0.29 0.19 1.15 2.64 0.19Table 3.5: Parallel overheads per taskTo get a clearer picture of the cost of various activities, average overheads per task have been calculated andshown in Table 3.5. Each column, except the last, shows how much time is spent in a speci�c activity duringan average task (more exactly during one execution of the main loop of Fig. 3.1). The EXECUTION columnshows the sum of the WORK and CHECK PARALLEL times. By comparing �gures for various overheads to theones in this column one can judge the impact of the given overhead on the total run time. The followingcolumns show speci�c overheads � �rst the group of task switching overheads, and then the IDLE time. Thelast column gives the execution time of a Prolog procedure call to help interpret all the other times in thetable.The task switching overheads increase in various degree when the number of workers goes up. The cost ofbacktracking is quite stable, around 0.2 msec, and there is only a small increase in the cost of making nodespublic. Finding work takes about 80% more time for 11 workers than for four in Groups H and M, but in43

Group L this overhead shows a decrease for 11 workers. This e�ect is due to the fact that as the amountof parallelism runs out, �nding work succeeds much less often - and an unsuccessful attempt to �nd workis much cheaper than a successful one. This also explains why the cost of releasing work is much higher forGroup L than for the other two groups: as there is an abundance of idle workers for benchmarks in GroupL, much larger proportion of tasks is created by releasing work rather than by �nding work. The cost ofgoing to work increases sharply for 4-11 workers, especially for Group M where it almost trebles. The totalof task switching overheads increases by 30-60% between 4 and 11 workers � the major contributors to theincrease being: GO TO WORK, FIND WORK (Group H and L) and RELEASE WORK (Group L).Looking at the IDLE column in Table 3.5 it is quite interesting to note that all �gures except the last twoshow the average idle time being between 13 and 23 of total task switching overheads. Let us examine towhat extent this idle time is justi�ed by the lack of parallelism in our benchmarks. The simulation results(Table 3.2) provide us with data on how much time would be spent idle under ideal conditions (no taskswitching overheads) � let us call this primary idle time. Denoting the full (ideal) run time for N workersby TN , the primary idle time by PN and the Prolog execution time by E, the following equations hold:TN = E + PNNSpeedupN = T1TN = N �EE + PNsince P1 = 0, and thus PNE = NSpeedupN � 1 (3.1)TOTAL NON PRIMARYEXECUTION NON TASK IDLE TIMETIME PRIMARY TOTAL PRIMARY PRIMARY SWITCHING as % of TASKper TASK IDLE IDLE IDLE TIME IDLE TIME OVERHEAD SWITCHINGGroup Goals (msec) TIME % AVERAGE TIME per TASK (msec) OVERHEADH 8-queens1 19.71 0.36% 0.38 0.07 0.30 1.03 29.55%parse2 *20 1.66 3.09% 0.61 0.05 0.55 1.18 46.94%parse4 *5 2.52 1.01% 0.32 0.03 0.29 1.11 26.15%M parse5 2.98 0.18% 0.20 0.01 0.20 1.29 15.08%db4 *10 1.64 1.10% 0.25 0.02 0.23 0.48 47.76%house *20 2.96 4.66% 0.74 0.14 0.60 0.99 60.91%parse1 *20 1.28 31.42% 1.86 0.40 1.45 1.03 141.00%L parse3 *20 1.33 26.29% 2.35 0.35 2.00 1.07 186.30%farmer *100 1.28 142.83% 3.71 1.83 1.87 1.34 139.52%Table 3.6: Primary idle timeThis means one can calculate the amount of primary idle time with respect to the execution time if theideal speed-up is given. When the above formula (3.1) is applied to the benchmarks in Table 3.2, it turnsout that the calculated primary idle time accounts for only 5-20% of measured idle time (except for farmerwhere it is about 50%). The unaccounted part varies from 0.2 msec to 0.6 msec per task within GroupsH and M, but is 1.5-2 msec per task in Group L (for 11 workers). One could distinguish between severalreasons for this additional amount of idle time:a. task switching overheads � because there is a delay in starting a task due to task switching overheads,there will be a delay in creating new pieces of work within that task, which may cause other workersto become idle. One would expect this kind of idle overhead to be proportional to the task switchingoverheads.b. too �ne grained parallelism � the scheduler will not exploit any parallelism during the �rst few (in ourcase 5) calls of a task. In fact this is a desired feature as long as task switching overheads take theequivalent of 5-10 procedure calls. 44

c. administration costs � time needed for entering and exiting the idle state may prolong the time spentidle, if that would otherwise be shorter than the time needed for administration.In Groups H and M the non-primary idle time per task lies between 15% and 60% of task switching overheads.We believe that this amount of idle time could be justi�ed by delays in task switching overheads (point a.).On the other hand, for the benchmarks in Group L run with more than four workers a considerable partof non-primary idle time is caused by the inability of the scheduler to explore very �ne grained parallelism(point b. above), as indicated by signi�cant decrease in idle time for these benchmarks when the frequencyof CHECK PARALLEL is set to 1.Let us examine some di�erences in the overheads within the groups. The averages for the total of taskswitching overheads in Table 3.5 do not show a signi�cant variation between the groups. The totals forindividual benchmarks, however, vary considerably, ranging from 0.48 msec (db4) to 1.34 msec (farmer)for 11 workers. Detailed analysis of our performance data [9] shows that the time needed for major schedulingevents (such as MAKE PUBLIC, FIND WORK) is fairly constant4. The frequency of these events (i.e. how oftendoes a speci�c event occur during a task) varies considerably, and so this is the main cause of the di�erencesin total task switching costs.The frequency of scheduling events (other than backtracking) is strongly related to the branching factor ofthe public tree, i.e. the average number of branches below public nodes. As con�rmed by the measurements,the bigger the number of branches, the greater is the chance that public backtracking leads to a live node,thus reducing the need for going through the FIND - RELEASE - GO TO WORK loop.Let us summarise the results of the this section. The total run time of a program in Aurora can be split upinto the following components:run time = execution time + task switching overheads + idle timewhere execution time = sequential execution time + execution overheadsThe execution_overheads are proportional to the sequential_execution_time (roughly 25-30%, except forthe very �ne granularity benchmarks). The task_switching_overheads are proportional to the number oftasks: 0.5-1.5 msec per task (for 11 workers), depending upon the branching factor of the search tree. Finallyidle time is in�uenced by several factors: the theoretical amount of parallelism available in the program (cf.primary idle time), delays in creation of work due to the task switching overheads and the granularity ofavailable parallelism (too �ne grained parallelism is too expensive to be exploited with the current scheduler).The �rst two factors seem to be relevant to the medium-coarse granularity programs (the non-primary partof the idle time being about 15-60% of task switching overheads), while for the �ne granularity examples thethird factor gains crucial importance.Let us now turn to the question of discrepancies between simulator predictions and actual measurements.As shown in Table 3.5 the group average of total task switching overheads goes up to the equivalent of about6 Prolog calls (reaching 7 calls for some of the individual benchmarks). At the same time the speed-upsare signi�cantly worse than the ones predicted by the simulator for the overhead of 8 resolution time units(Table 3.2). One of the main reasons for this di�erence in speed-ups is the fact that the simulator has adi�erent notion of a task: when a worker backtracks to a live shared node and is able to pick up a new branchat that node, then the work done on the new branch will not be treated as a new task by the simulator.More importantly the basic scheduling algorithm causes some subtrees that are never shared to be split intoseveral tasks. This is because each worker tries to keep a live node public on its branch and so may makenodes public unnecessarily. A re�nement of the scheduling algorithm, lazy release of work, which aims atavoiding this behaviour, is outlined in Section 3.7.3.6 Locking and moving overheadsLocks are used within the Aurora implementation to synchronise various activities of workers exploring theProlog search tree in parallel. Locking is needed when extending or shrinking the public part of the tree andalso when updating various sub�elds of the scheduler data structures, e.g. bit-maps in the nodes, interruptmessage areas in the worker data structures etc. The standard locking macros are used as provided by theDYNIX operating system. These macros involve a busy waiting loop if the lock is held by another worker.4with the exception of GO TO WORK for parse5, see Section 3.6 for details.45

TOTAL LOCKING TIMEBench- MAKE BACK- FIND REL. GO TO OTHER IDLE TOTAL as % ofmark PUBL. TRACK WORK OVERHEAD FULL RUNGroups Average locking time (�sec) TIME TIMEGroup Hw = 1 4 4 4 4.95% 0.02%w = 4 4 7 5 6 6 7 7 6 6.00% 0.19%w = 8 4 8 5 8 5 9 16 7 6.51% 0.51%w = 11 4 11 6 8 6 9 16 8 6.94% 0.82%Group Mw = 1 5 4 5 4.29% 0.02%w = 4 4 5 5 6 6 7 5 6.07% 0.68%w = 8 4 8 6 7 6 15 7 6.86% 1.94%w = 11 4 8 7 8 7 18 8 7.02% 2.59%Group Lw = 1 4 4 4 4.11% 0.04%w = 4 4 8 6 6 7 10 7 7 7.10% 2.68%w = 8 4 12 8 7 9 14 14 10 7.31% 4.65%w = 11 4 14 10 7 9 21 21 12 6.96% 5.13%Table 3.7: Locking statisticsIn the instrumented version of Aurora the time needed for acquiring locks has been accumulated separatelywithin each of the activities of Fig. 3.1. This proved to be extremely useful in identifying those activitieswhere the congestion of workers competing for locks was the biggest. Some algorithms within the Manchesterscheduler have been rewritten to avoid holding locks for unnecessarily long time and a restricted use hasbeen made of the speci�c atomic operations provided by the 80386 processor to avoid locking. This helpedto reduce the average locking time to below 10 �sec for most of examples as shown in Table 3.7.The �rst part of Table 3.7 gives the average locking time within each of the main activities of Fig. 3.1 andthe average of all locking times (the TOTAL column). Some �elds are left empty � this means there are nolocking operations within the given activity for the given number of workers. The minimal time required tograb a lock is about 4 �sec, the di�erence between that and the �gures shown is the time spent in the busywaiting loop. The �gures in the table indicate that there is still some congestion in backtracking and in theidle activities.In the second part of Table 3.7 the percentage of total locking time is shown both within the total (taskswitching and idle) overhead time and within the full run time. It is quite reassuring to note that even inthe worst case of Group L, w=11, just 5% of total run time is spent in locking, and only 23 of that is spentin the busy waiting loop (8 �sec out of the average 12 �sec locking time).Table 3.8 shows various data on migration (binding array update) costs. For the purpose of this tableparse5 has been excluded from Group M and has been shown separately, as it exposes one of the weakpoints of the Manchester scheduler.The �rst part of the table shows the percentage of time spent updating binding arrays within variousoverhead categories, of which, naturally, GO TO WORK is the most signi�cant. The next two columns refer tothis speci�c category: the number of moves (number of nodes stepped through) and the migration time foran average GO TO WORK event. This is followed by the number of bindings that have to be handled duringone average move, while the last two columns give the percentage of migration time within total overheadtime and within the full run time.The group averages in Table 3.8 show that the overall e�ect of migration costs is not very signi�cant: itaccounts for at most 10% of total overheads and at most 5% of full run time. The data for parse5 is morealarming: almost 30% of overhead time is due to migration costs. The cause of this lies in a rather specialshape of the search tree of parse5: it has two long branches with rather small amounts of work appearingon both of these from time to time. A worker looking for work may �nd that the only piece of work availableat that very moment is on the other branch, in which case it will pick up that piece of work, irrespective of46

MIGRATION TIME within GO TO WORK MIGR. TOTAL MIGR. TIMEBench- BACK- GO TO OTHER IDLE number MIGR. BINDs as % ofmark TRACK WORK of TIME per OVERHEAD FULL RUNGroups % of full time of the overhead MOVES (msec) MOVE TIME TIMEGroup Hw = 1 5.12% 2.62% 0.00%w = 4 7.50% 30.58% 0.50% 1.99% 4.40 0.06 0.46 4.49% 0.10%w = 8 7.81% 31.22% 0.42% 1.42% 6.41 0.07 0.49 4.94% 0.28%w = 11 7.77% 31.04% 0.62% 1.15% 6.77 0.08 0.49 5.14% 0.43%Group M'w = 1 3.17% 1.75% 0.01%w = 4 8.74% 41.48% 5.63% 3.94 0.10 1.34 8.03% 0.98%w = 8 8.57% 42.65% 4.71% 6.47 0.17 1.57 10.41% 3.29%w = 11 8.14% 41.99% 4.32% 7.60 0.20 1.56 10.37% 4.18%parse5w = 1 2.79% 1.56% 0.00%w = 4 13.50% 61.21% 13.63% 8.54 0.29 3.66 19.00% 1.48%w = 8 12.41% 60.76% 10.91% 12.53 0.44 3.66 22.63% 5.94%w = 11 9.59% 62.35% 15.99% 14.20 0.68 3.55 28.01% 9.36%Group Lw = 1 2.60% 1.42% 0.01%w = 4 9.05% 43.21% 0.97% 5.79% 4.00 0.10 1.71 8.78% 3.08%w = 8 8.81% 42.28% 1.19% 3.08% 5.28 0.14 1.73 7.30% 4.50%w = 11 8.28% 42.67% 1.17% 2.17% 5.22 0.15 1.78 5.67% 4.09%Table 3.8: Migration coststhe distance. A more re�ned scheduling algorithm could start moving towards a very distant piece of workwithout actually reserving it and could reverse its decision if a new piece of work appears nearby.3.7 Tuning the Manchester schedulerThree re�nements of the Manchester scheduling algorithm, aimed at increasing task size and reducing taskswitching costs, have been evaluated in the expanded version [9] of the present paper. Two of these havebeen found bene�cial: lazy release of work (nodes not being made public if there are no idle workers)and straightening (the tree structure being simpli�ed by removing dead non-fork nodes as described in [11]).There is up to 10% improvement in speed after these two re�nements have been applied as shown in Table 3.9,in spite of some shortcomings of their present implementation.3.8 ConclusionsThe Manchester version of the Aurora or-parallel Prolog system has been evaluated on a diverse set ofbenchmarks for up to eleven processors. The main components of the implementation have been identi�edand the system has been instrumented to collect both time and frequency data for these components.The analysis of the performance data con�rms the correctness of main design decisions of Aurora. The SRIbinding scheme is shown to impose a constant overhead of about 30% on the sequential execution time. Themigration costs of updating binding arrays, which were feared to be a major source of overhead, proved toconstitute a rather small proportion of total overheads for most of the benchmarks.The costs associated with synchronisation using locks have also been examined. The pro�ling data hasbeen used to locate and eliminate those parts of the scheduling algorithm where the congestion of workers47

WorkersGoals * repetitions 1 4 8 118-queens1 11.47 2.87(4.00) 1.45(7.91) 1.07(10.7)8-queens2 32.72 8.30(3.94) 4.17(7.85) 3.06(10.7)tina 23.74 6.22(3.82) 3.26(7.28) 2.49(9.54)sm2 *10 13.56 3.45(3.93) 1.80(7.53) 1.35(10.0)AVERAGE (3.92) (7.64) (10.2)parse2 *20 10.18 3.21(3.17) 2.18(4.68) 1.97(5.17)parse4 *5 9.47 2.58(3.67) 1.83(5.18) 1.49(6.36)parse5 6.72 1.90(3.54) 1.28(5.26) 1.08(6.22)db4 *10 3.62 0.98(3.70) 0.55(6.60) 0.44(8.25)db5 *10 4.42 1.18(3.75) 0.68(6.50) 0.54(8.17)house *20 9.13 2.54(3.60) 1.46(6.26) 1.18(7.76)AVERAGE (3.57) (5.74) (6.99)parse1 *20 2.72 0.99(2.75) 0.83(3.28) 0.87(3.13)parse3 *20 2.32 0.93(2.50) 0.80(2.91) 0.80(2.91)farmer *100 5.33 2.58(2.07) 2.49(2.14) 2.47(2.16)AVERAGE (2.44) (2.78) (2.73)Table 3.9: Timing results with straightening and lazy releasecompeting for locks was highest. In the new system, locking accounts for only about 6-7% of total overheadtime, increasing only slightly for more workers.There is a signi�cant administrative overhead associated with task switching, which is equivalent to 4�7Prolog calls per task. This puts a relatively high burden on programs with small task size. Furthermorethere is a signi�cant amount of idle time which cannot be explained by lack of parallelism. We believe thatthis part of the idle time is caused by delays in creation of work due to earlier task switching overheads.Consequently task switching, and especially public backtracking, seems to be the major source of overheadin the or-parallel execution.Several ways of reducing the task switching costs can be envisaged, in addition to the re�nements outlinedin Section 3.7. The unit cost of task switching could be reduced by simplifying and tuning the schedulingalgorithm. The engine-scheduler interface could be modi�ed to allow the engine to explore several branchesof a public node within a single task, avoiding some administrative costs of exiting and reentering theengine. Finally, the recent results of the BC-machine project [1] indicate that dispatching on bottommost(i.e. releasing work at the youngest node on a worker's stack) may result in signi�cant reduction in taskswitching costs.3.9 AcknowledgementsThe author would like to thank his colleagues in the Gigalips project at Argonne National Laboratory, theSwedish Institute of Computer Science, and the University of Bristol. Thanks are due in particular to AlanCalderwood and David Warren.The work was supported by the UK Science and Engineering Research Council and by the ESPRIT projectPEPMA.References[1] Khayri Ali. Or-parallel execution of Prolog on BC-Machine. SICS Research Report, Swedish Instituteof Computer Science, 1987.[2] Per Brand. Wavefront scheduling. Internal Report, Gigalips Project, 1988.48

[3] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Logic Programming: Proceedings of the Fifth InternationalConference, pages 1590�1605. The MIT Press, August 1988.[4] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler.In Proceedings of the Sixth International Conference on Logic Programming, pages 419�435. The MITPress, June 1989.[5] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. In Interna-tional Conference on Fifth Generation Computer Systems 1988, pages 819�830. ICOT, Tokyo, Japan,November 1988.[6] Kish Shen. An investigation of the Argonne model of or-parallel Prolog. Master's thesis, University ofManchester, 1986.[7] Kish Shen. Personal communication, October 1988.[8] Péter Szeredi. More benchmarks of Aurora. Internal Report, Gigalips Project, March 1988.[9] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. Technical Report TR-89-14,University of Bristol, 1989.[10] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Proceedings of theNorth American Conference on Logic Programming, pages 713�732. The MIT Press, October 1989.[11] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.

49

Chapter 4Flexible Scheduling of Or-parallelism inAurora: The Bristol Scheduler1Anthony Beaumont, S Muthu Raman2, Péter Szeredi3and David H D WarrenDepartment of Computer Science, University of Bristol,Bristol BS8 1TR, U.K.AbstractAurora is a prototype or-parallel implementation of the full Prolog language for shared memorymultiprocessors, based on the SRI model of execution. It consists of a Prolog engine based onSICStus Prolog and several alternative schedulers. The task of the schedulers is to share the workavailable in the Prolog search treeThis paper describes the Bristol scheduler. Its distinguishing feature is that work is shared at thebottom of partially explored branches (�dispatching on bottom-most�). This can be contrasted withthe earlier schedulers, which use a �dispatching on topmost� strategy. We argue that dispatchingon bottom-most can lead to good performance, by reducing the overheads of scheduling.Our approach has been to �nd the simplest scheduler design which could achieve performancecompetitive with earlier more complex schedulers. This design gives us a �exibility in decidingstrategies for sharing work and allows us to examine ways of improving the performance on bothnon-speculative and speculative work. We note that in speculative regions the priority of some workis higher than others. We have investigated strategies which help workers to avoid low priority work.We present the basic design of the Bristol scheduler, discussing the data structures and the mainalgorithms. We also present performance results for the new scheduler using a number of benchmarkprograms and large applications. We show that the performance of the Bristol scheduler comparesfavourably with other schedulers. Our work also shows that special treatment of speculative workleads to improved performance.Keywords: Implementation, Or-parallelism, Multiprocessors, Scheduling.4.1 IntroductionAurora is a prototype or-parallel implementation of the full Prolog language for shared-memory multipro-cessors, currently running on Sequent and Encore machines. It has been developed in the framework of1This paper has appeared in the proceedings of PARLE'91 [3]2Visiting from National Centre for Software Technology, Gulmohar Cross Road 9, Juhu, Bombay 400 049, India3On leave from SZKI, IQSOFT, Donáti u. 35�45, Budapest, Hungary50

the Gigalips project, a collaborative e�ort between groups at Argonne National Laboratory, University ofBristol, and the Swedish Institute of Computer Science (SICS). A full description of Aurora can be foundelsewhere [9].Aurora is based on the SRI model [14] in which or-parallel execution of Prolog programs consists of theexploration of a search tree in parallel by a number of workers. A worker is de�ned as an abstract processingagent. During execution, a tree of nodes is created, where each node represents a Prolog choicepoint. Aworker will begin working on a task by taking an alternative from a node, creating a new arc of the tree.The task will be explored in the normal sequential Prolog manner, and will end when the worker runs outof work. The way workers move around the tree and communicate with each other in order to �nd tasks isdetermined by some scheduling strategy.Branches of the tree are extended during resolution and destroyed on backtracking. A major problemintroduced by or-parallelism is that some variables may be simultaneously bound by workers exploringdi�erent branches of the tree. The SRI model dictates that each worker will maintain a binding array tohold the bindings associated with its current branch. We can say that a worker is positioned at a node, whenits binding array holds the bindings associated with the path between the root and the given node. Movingup a branch involves removing bindings, while moving down involves adding bindings to the binding array.In Aurora the search tree is divided into public and private regions, the boundary between the two beingmarked by a sentry node. Private regions contain nodes which are explored by a single worker, and forworkers to be able to share work at a node, that node has to be made public. Another distinction is thatnodes can be either parallel or sequential through user declarations. Alternatives from sequential nodes canonly be executed one at a time. We can also think of each node as being either live (i.e. having unexploredalternatives) or dead (no alternatives to explore). A node is called a fork node if it has more than one child.An Aurora worker consists of two components: the engine, which is responsible for executing the Prolog codeand the scheduler, responsible for �nding work in the tree and for synchronising with other workers. There is astrict interface between these components [13] which enables independent development of di�erent schedulers.Aurora execution is governed by the engine: whenever the engine runs out of work in its private region itwill ask the scheduler to �nd more; a process called task switching. The Aurora engine is based on SICStusProlog version 0.6 which has been extended to comply with both the SRI model and the engine/schedulerinterface.4.2 Scheduling StrategiesWe now discuss the problem of �nding a new task for a worker which has run out of work. We have alreadystated that work can only be taken from public nodes, therefore idle workers must �nd a live, parallel, publicnode. If we assume that initially all work is public then we could allow idle workers to search the tree to�nd work. This will allow work to be found from any branch but not without some cost. An idle workermay have to search a large number of nodes before work is found, and also the search will require somesynchronisation to avoid searching branches as they are being reclaimed by backtracking workers.To focus the search into areas of the tree where work may be more likely to be found we could search onlythose branches which are currently being extended by busy workers. Selected workers could be scanned toassess whether the branch they are working on contains work or not.We should note however that a branch can be explored quicker by a single worker if that worker keeps thetask private, rather than making some or all of it public. This indicates that if all workers are busy thenthere is no reason to make work public and therefore it would be better to assume that initially all work isprivate and that workers make work public on demand only.Following this approach, an idle worker searching for a new task might select a worker which has private workand ask it to share some or all of it. We must remember however that searching for work only on brancheswhich are currently being explored assumes that all live nodes have at least one busy worker positionedbelow them, if this assumption is not true, some nodes will become inaccessable.Another consideration is which of the available tasks an idle worker should prefer. When earlier schedulerswere designed it was thought that a worker should keep most of its work private to make its task as large aspossible. Only the topmost task was made available to other workers. If the busy worker kept the topmosttask public and that task was not quickly exhausted then the worker would not be interfered with as itexplored the rest of the branch. This is known as topmost dispatching.51

An alternative strategy investigated in this paper is bottom-most dispatching when work is shared at thebottom of partially explored branches and we will discuss this later.4.2.1 Topmost dispatching schedulers for AuroraThere were three earlier schedulers for Aurora, all using topmost dispatching.The Argonne scheduler [5] uses local information that is maintained in each node to indicate whether thereis work available below the node. Workers search the tree, using this local information to migrate towardsregions of the tree where work is available. The workers always take the topmost task from a branch sincethis is always the �rst task found as they move down. A bitmap in each node indicates which workers arepositioned at or below the node and workers are required to update these bitmaps as they move around thetree. Information in the bitmaps can be used to locate other workers, for example in the case of pruninga subtree it is necessary to inform the workers which are positioned in that subtree that they have beenpruned.The Manchester scheduler [6] tries to match idle workers with the nearest available outstanding task, where�nearness� is measured by the number of bindings to be updated between the worker's current positionand the available work. Minimising the distance between worker and task means that the worker will notconsider any task below the topmost one on each branch. Again bitmaps are employed to mark the presenceof workers on a branch. The Manchester scheduler uses them both for matching idle workers to availablework and for locating workers during pruning.The Wavefront scheduler [4] employs a data structure known as the wavefront which links all the topmostlive nodes together. Workers �nd work by traversing the wavefront. As nodes are exhausted the wavefrontis extended to allow access to the next live parallel node.Topmost dispatching, used by all of these schedulers, has the disadvantage that unless the topmost taskis large it will be quickly exhausted and the worker will have to repeat its search for work. This leads torelatively high task switching costs for �ne granularity programs and also slows down the busy workers sincethey have to spend more time maintaining a live public node at the top of their branch.4.2.2 The Muse SchedulerAnother approach to the or-parallel implementation of Prolog is the Muse system [1][2] which is basedon having several sequential Prolog engines, each with local address space and some shared memory space.Workers in Muse copy each other's state rather than sharing it as is the case in Aurora. Potentially increasingthe overheads involved in task switching. Therefore Muse requires a way of reducing the frequency of taskswitches involving copying.The Muse scheduler uses bottom-most dispatching, so that a busy worker, when interrupted for work, willshare all nodes on its branch. This allows an idle worker to begin work at the bottom-most of these nodes.The advantage of this strategy is that once the work at the bottom-most node is exhausted, more workcan be found by simply backtracking to the next live parallel node, further up the branch. Backtrackingto a public node is more expensive than backtracking to a private one, however these minor task switchesare much less expensive than the major task switches which require a wider search for work. It has beenfound that bottom-most dispatching can reduce scheduling overheads by increasing the number of minortask switches and reducing the number of major task switches.To help an idle worker decide which busy worker to interrupt for work, Muse introduces the concept ofrichness. Each branch of the tree has an associated richness, which is an estimate of the amount of work onthat branch. In the muse system, richness is based on the number of unexplored alternatives on the branch.An idle worker will choose a busy worker from the subtree below the idle worker's current node, the choiceof worker depends on the richness of each busy worker's branch. The idle worker will interrupt the workerwhich is working on the richest branch, ie. has the most work to share, which will further help in increasingthe ratio of minor to major task switches. 52

4.3 Principles of the Bristol schedulerIn designing the Bristol scheduler we took into consideration the results from performance analyses of earlierschedulers and used this information to try and incorporate the best features of other schedulers into ourdesign.A performance analysis of the Manchester scheduler [12] indicated that the migration of workers to new taskswas not a signi�cant overhead and that much more important was the administrative overhead associatedwith task switching, estimated to be equivalent to 4-7 Prolog calls per task. The conclusions of this analysisare that simplifying the scheduling algorithmand tuning the scheduler could reduce the costs of task switchingand, more importantly, minimise the number of major task switches. Keeping this in mind we have tried tokeep the design of the Bristol scheduler as simple as possible.One of the requirements of the Bristol scheduler is that it should be �exible enough for us to try di�erentscheduling strategies and this will allow us to compare bottom-most and topmost dispatching using thesame scheduler. However, based on the good results of the Muse scheduler, we decided to use bottom-mostdispatching as the default strategy. The key overhead in earlier Aurora schedulers is the major task switch.If bottom-most dispatching reduces the number of major task switches, and if minor task switches are notvery expensive then the total scheduling overheads will be reduced.A second reason for using the bottom-most dispatching strategy is its suitability for scheduling speculativework. This is illustrated by the following program:p:- condition, !, pred1.p:- pred2.All work in the second clause is said to be speculative because if condition succeeds then the second branchwill be pruned away. Intuitively, it would seem better to direct workers to help in evaluating condition,rather than pred2. Similarly, one would want to give higher priority to work which is further to the leftwithin condition [7]. Therefore, in a speculative subtree the deepest work on the left-hand branch is theleast speculative and should have the highest priority.Earlier schedulers could not handle speculative work at all e�ectively. Our aim is to implement an e�ectivespeculative scheduling technique within the Bristol scheduler. The bottom-most dispatching strategy helpsin directing workers to deeper regions of the search tree but this is not su�cient on its own as a schedulingstrategy since the deeper branches may not be the least speculative. What we require is some way ofconcentrating workers in the leftmost region of a speculative subtree.This suggests that rather than rely on taking work from busy workers, idle workers would need to scan aspeculative subtree to �nd the least speculative available work. Our design allows us to experiment withsuch a strategy.A problem with bottom-most dispatching is that it increases the size of the public region of the tree andbacktracking through this region (public backtracking) is more expensive than private backtracking. We willtry to analyse the e�ect of this problem by comparing bottom-most and topmost dispatching strategies usingthe Bristol scheduler.4.4 Implementation of the Bristol schedulerDuring this section we will discuss some of the issues involved in the implementation of the Bristol scheduler.4.4.1 Data structuresWe include the notion of richness introduced by the Muse scheduler and use an estimate of the number oflive nodes on a branch as the richness of each branch. Actually, each node is given a richness which is anestimate of how many live nodes there are above it.Primarily a worker wants to know if another worker has work available and must be able to send a messageto it, for example, to ask for work. In our implementation, each worker has a message area, enabling other53

workers to send messages to it, and a record of the richness of its current branch which can be read by otherworkers.To give some indication of a worker's position in the tree, each worker has an associated root node, which isde�ned to be the root of the subtree in which that worker is leftmost. Initially, this is equal to the workers'sentry node when it �rst starts work. The identi�er of the worker is stored in its root node, and that workerwill be known as the owner of the node. All nodes subsequently created will contain a pointer (so called rootpointer) to that workers' root node.A worker's root may change due to the actions of other workers in backtracking. When a worker backtracksto a fork node from the �rst child, leaving another worker below, then the backtracking worker must movethe root of the remaining worker up the tree to re�ect the change. This is illustrated in Figure 4.1 whereworker A backtracks out of the left subtree, leaving worker B as the new leftmost worker (the letters in theroot nodes show the identity of the worker they belong to). In this case, worker A will put B's identity intoits old root and make that node the new root of worker B. B's old root has its root pointer set to point tothe new root.
A

B

Worker A

Worker B

B

Live parallel node

Parent Pointer

Worker A

Worker B

B

Root node with
worker id.

Root pointer Figure 4.1: Worker A backtracking to a fork nodeIn a speculative region we will want to �nd the leftmost (least speculative) task, and therefore will needsome way of searching a subtree from left to right. By following the root pointers to a root node and �ndingits owner, we have a way of �nding the leftmost worker in any subtree, and we can also tell if that workerhas work available. To continue searching for work, a worker requires some way of �nding the bottom of theleftmost branch and moving right. Each worker maintains a pointer to its sentry node which marks the leafof the public branch. After identifying the owner of a root node and if that worker has no private work thenthe worker's sentry node pointer is used as a way of gaining access to the bottom of that worker's branch.The owners identity in a root node acts as a leaf pointer.In order to simplify the further search for work the notion of right pointer is introduced. This is illustratedin Figure 4.2 where we can see how the tree is organised. The right pointer points to the next sibling, if thereis one. For the rightmost child of a live node the right pointer will point to itself, indicating the potentialwork present there. For the rightmost child of a dead node the right pointer will point upwards to the �rstancestor which has either a right sibling or a live parent.We use a �ag to indicate that the right pointer of a node points to a right sibling and not to some othernode. Using the root, leaf and right pointers a worker can search around the tree from left to right. Thismethod of linking the nodes of a tree to allow left to right traversal was taken from the data structure usedin Andorra-1 for maintaining the goal list [10].4.4.2 Looking for workThe engine will hand over control to the scheduler when the worker backtracks to its sentry node and thescheduler will be responsible for �nding work in the public region of the tree. We are exploring two di�erent54

A

B

C

Worker A

Worker B

Worker C

B

Live parallel node

Right Pointer

Parent Pointer

Root node with
worker id.
(leaf pointer)

Root pointer

Figure 4.2: Organisation of the treestrategies which the scheduler will use to �nd work, the richest worker strategy and the left-to-right searchstrategy.4.4.2.1 The richest worker strategyFollowing the richest worker strategy, the scheduler will attempt to �nd work in two ways; Firstly it willbacktrack through the nodes above the worker's current position to see if any work can be found nearby. Ifa live parallel node can be found then the scheduler takes an alternative from it and returns control back tothe engine to restart work. If no work can be found then the other workers will be scanned to see if theyhave work available. The idle worker will identify the worker which is working on the richest branch andinterrupt it for work. That worker will then make all of its private nodes public and the idle worker canbegin work at the bottom of that branch. Note that the number of nodes being made public is �exible inthat we could limit this number and therefore bottom most dispatching need not necessarily be used.This strategy has the advantage that work is made public only on demand, so if a worker is not interruptedfor work it will not make any nodes public. Workers may have to migrate further when taking work fromanother worker. We hope that the bottom-most dispatching strategy will minimise the number of majortask switches, and most work will be found quickly from a node just above the workers current position.4.4.2.2 Left to right searchWe want to get some indication of how much can be gained by treating speculative work di�erently from non-speculative work and have explored an alternative strategy, which we call left-to-right search. The assumptionbehind this strategy is that the whole tree is speculative and that work on the leftmost branch has the highestpriority, and the priority of work decreases the further away it is from the leftmost branch. This assumptionclearly represents too narrow a view of speculative work; in general all work is non-speculative unless it is inthe scope of a pruning operator. Setof (and bagof) create subtrees which are locally non-speculative even ifthe setof itself is speculative, ie all branches should have equal priority. We describe a more re�ned strategyfor handling speculative work in Section 4.6. 55

Related work by Sindaha [11] uses a similar method to search for work in a speculative subtree. Howeverthe left to right search is implemented by explicitly linking the sentry nodes of all branches to create a datastructure similar to the wavefront. Workers �nd work by traversing this data structure. This work is not asfar advanced as the Bristol scheduler but we hope later to compare this approach with our own.The left to right search strategy also uses bottom-most dispatching. Finding work will again begin bybacktracking through the nodes immediately above the worker's current position to �nd nearby work. If nowork can be found the worker will search the tree from left to right, by following the root, leaf and rightpointers. The leftmost worker can be identi�ed as the owner of the root of the tree, the scheduler will searchright from the leftmost worker until it �nds either a worker with private work which it can share, or a liveparallel node.4.4.3 Side-e�ects and suspensionA goal of the Aurora system is to implement all standard Prolog built-in predicates, preserving their sequen-tial semantics. To achieve this, we delay the execution of a call to a side-e�ect predicate until it becomesleftmost in the whole tree. We implement this delay by allowing workers to suspend a branch when executinga side-e�ect predicate. There are some special predicates, for example those used in the implementation ofsetof, where it is su�cient to ensure that the branch is leftmost within some subtree. Checking whethera worker is leftmost within some subtree is done simply by testing if the worker's root node is at or abovethe root of the subtree. Asynchronous versions of these side-e�ect predicates are also provided and thesesuspend only if they occur within the scope of a cut and may be pruned.To suspend a branch, all a worker must do is to mark its root node as suspended and make the root of thesuspended node point down to the sentry node on the suspended branch. The scheduler will then �nd a newtask for the suspending worker to begin.We next look at how suspended branches can be restarted. If a worker backtracks out of, and reclaims, theleftmost child of a node, it will check to see if there is a suspended right sibling of that node. If there is, itwill delete the suspended �ag and proceed to check if the branch has now become leftmost in the subtreein which it was suspended. If this is the case the worker will restart the suspended branch. If the branchcannot be restarted the worker will set the suspended �ag in its own root and carry on looking for work. Thesuspended branch will wait until some other worker notices the new suspended node while backtracking.4.4.4 Cut and commitAurora supports two pruning operators: the conventional Prolog cut, which prunes all branches to its rightand a symmetric version of cut called commit, which prunes branches both to its left and right. To preservethe sequential semantics, a pruning operation will not go ahead if there is a chance of it being pruned itselfby a cut with a smaller scope. It may be possible to improve on this and we are investigating the methodwhich has been implemented in Muse where the worker will not suspend the branch but partially do thepruning and leave the rest to be done as and when it ceases to be endangered by the cut.A pruning operation should suspend only if a branch to its left leads to a cut of smaller scope. But, todetermine whether a particular pruning operation should suspend or not we need some information aboutthe presence and scope of cuts in the tree.The engine-scheduler interface [13] makes the necessary information available to the scheduler and we use itto implement the Bristol scheduler's pruning operators in the following way.The scheduler decorates the tree with information about the presence and scope of cuts. When a node iscreated which has parallel alternatives containing cut, then that node is marked as a cut boundary node.Each node contains a cut counter, which indicates the number of cuts in the worker's continuation when thenode was created. The worker also keeps a cut counter and this is incremented when a clause containingcuts is entered and decremented whenever a cut is executed. When executing a cut, a worker will check ifany of the nodes below the cut boundary have children to the left and are either marked as a cut boundaryor have a cut counter greater than the workers current cut counter. If such a left sibling is found then thecut will be suspended. For a more detailed description of decorating the tree with cut scope information thereader is referred elsewhere [7].We will now look at how pruning is implemented in the Bristol scheduler. A pruning worker will visit each56

node below the boundary node of the cut (or commit), �rst removing all unexplored alternatives at thenode's parent, and then pruning all the right siblings of the node. If the pruning operation is commit thenleft siblings must be pruned too. All siblings except the leftmost will be root nodes.To prune a sibling, the worker will mark the node as pruned and try to identify the worker which willtake responsibility for clearing the pruned subtree away. Unless the sibling node is suspended, this meansthe worker will interrupt the owner of the node. That worker will then pass on the interrupt to any otherworkers in the subtree. To prune the leftmost sibling in the case of commit, then the worker must follow thenode's root pointer to �nd its root. If its root is not marked suspended then the owner of the root will beinterrupted with the information that its subtree is pruned.If any of the siblings are suspended, it is not possible to identify workers which are in the subtree below thatnode. These subtrees must be searched to inform any workers which are working there that they have beenpruned, although all the pruning worker will do is to marked them as unsearched. The search will be carriedout by one of the pruned workers as it moves out of its own pruned subtree. The pruning worker will onlysearch pruned subtrees if no other worker can be found to do the job for it. In this case it will search untilit �nds the �rst worker to be pruned and then that worker will take over any further searching.
Cut node

A

B

C

D

E F

Wkr: A Wkr: B Wkr: C Wkr: D

Wkr: E Wkr: F

Region to
be pruned

A

suspended node

Left root node

Figure 4.3: Worker A About to perform a cutFigure 4.3 shows an example where worker A wants to perform a cut up to the cut boundary and thereare �ve other workers in the region which is to be pruned. Worker A will be able to identify and interruptworkers B, E and F. Worker B will search the subtree whose root was suspended at the time worker A did thepruning and will interrupt worker C. That worker will in turn interrupt worker D. The interrupted workerswill then backtrack out of the pruned region and look for work elsewhere.4.5 Performance resultsTo assess the performance of various aspects of the Bristol scheduler, we have used a number of benchmarksand application programs, descriptions of which can be found elsewhere [12][8]. All the programs were runon a Sequent Symmetry using the Foxtrot version of Aurora.To discover which dispatching strategy should be preferred, we have run the Bristol scheduler on a numberof programs using 10 workers under both topmost and bottom-most dispatching. We obtained �gures on the57

frequency and duration of task switches in each program. Task switching begins when a worker backtracksto its sentry node and ends when a new task is found and control passes back to the engine. A distinction isdrawn between minor task switches, which end when work is discovered on the same branch, and major taskswitches, when the worker �nds that no work is left on its current branch and it must �nd work from anotherpart of the tree. Bottom-most dispatching should reduce the number of expensive major task switches, whileincreasing the number of minor task switches. Table 4.1 shows for each program the average number of taskswitches made by each worker, and also gives the average duration of each task switch in microseconds.Number Average durationBottom-most Topmost Bottom-most Topmostdispatching dispatching dispatching dispatchingProgram Major Minor Major Minor Major Minor Major Minorparse1 7.7 12.5 8.5 11.5 2315 310 2037 232parse2 11.0 26.0 14.2 19.7 1554 219 1377 187parse3 7.2 12.0 7.7 10.5 2431 209 2342 202parse4 12.2 47.2 34.7 46.5 1929 229 1560 212parse5 13.0 87.2 58.7 75.0 2114 213 1707 187db4 4.5 21.5 5 14.7 1808 196 1386 175db5 5.0 25.7 6.5 17.7 1465 191 1351 170farmer 3.7 4.7 4.0 4.2 3298 192 3596 180house 4.2 13.2 4.0 3.2 1756 255 1873 1848queens1 1.5 9.25 10.2 10.2 2623 247 1293 2048queens2 1.7 18.7 16.0 15.5 2674 217 1096 165tina 21.5 92.7 17.7 52.7 3925 208 4072 168saltmustard 1.0 3.7 1.0 1.5 2256 231 2276 190protein 12.0 163.0 74.0 232.0 2804 103 1264 97warplan 12.7 60.0 30.5 37.2 5347 247 2864 209Table 4.1: Table showing the average number of task switches made by each worker and theaverage duration in microseconds, of each task switchWe �nd that the number of major task switches is signi�cantly reduced while the number of minor taskswitches is slightly increased. Also the average duration of both major and minor task switches tends toincrease somewhat. This re�ects the increased size of the public region of the tree, under bottom-mostdispatching there will be more public backtracking to be done before the worker eventually �nds a new task.To get a clearer picture of how much time was spent in task switching we computed the percentage of totaltime, which on average, each worker spent in task switching. This information is shown in Figure 4.4. Wecan see from this graph that bottom-most dispatching leads to less time spent task switching in all but�ve of our programs. From this we can conclude that in general it will be better to employ bottom-mostdispatching, although there will be some occasions when we will lose out. It may eventually be possible forthe scheduler to recognise which dispatching strategy should be used but currently we do not have enoughinformation to implement this.We next compare the Bristol scheduler with the Manchester scheduler, a topmost dispatching schedulerwhich is the most developed of the existing Aurora schedulers. The results, given in Table 4.2, re�ect fairlyclosely what we would expect from the comparison of topmost and bottom-most dispatching in the Bristolscheduler, although the Manchester scheduler performs better on a couple of the benchmarks where wemight have predicted equal or better performance by the Bristol scheduler. This may be partly due to theManchester scheduler's strategy of matching idle workers to the nearest available work whereas, with theBristol scheduler, this does not happen.To obtain a comparison of two similar bottom-most dispatching schedulers, we have compared Aurora underthe Bristol scheduler with Muse 0.6 (Figure 4.3). This version of Muse supports some form of delayed releasewhich is not yet supported by the Bristol scheduler. Also, the muse system has been compiled using theGNU C compiler, which allows use of inline declarations, while the Bristol scheduler was not.Generally the Bristol scheduler produces better speedups than the Muse scheduler, but this is generally58

10

20

30

40

50

60

70

parse2

parse3

parse5

db4

db5

farm
er

house

8queens1

8queens2

tina

csm

protein

w
arplan

Bottom most
dispatching

Topmost
dispatching

parse4

parse1

Percentage of time spent
task switching (per worker)

Figure 4.4: Graph of the percentage of total time each worker spends in task switchingsomewhat outweighed by the faster engine performance of Muse. Muse's faster engine performance is due tothe overhead of the SRI model in Aurora which adds about 25% to the single worker runtime. This is muchgreater than the corresponding overhead in Muse which is around 5%.The next part of our performance analysis looks at our strategies for handling speculative work. The leftto right search strategy is used here to �nd out what the bene�ts might be of treating speculative workdi�erently and what the overheads are. We will later propose a better strategy for adapting the Bristolscheduler for speculative work. We �rst look at the overheads of the left to right search strategy in �ndingall solutions. Table 4.4 shows that the 10 worker performance is degraded by about 11%, and this is dueboth to the extra synchronisation required in searching for work in this manner, and also due to the factthat taking the leftmost available work may not give the worker access to as many live nodes as the deepestavailable work would have done. Therefore the number of major task switches is increased.We now take a number of application programs and look at the speedups obtained when �nding the �rst(leftmost) solution, comparing the Manchester scheduler with three versions of the Bristol scheduler; richestworker, an improved version of richest worker where idle workers try to �nd work from the leftmost workerbefore trying the richest worker and the left-to-right search. The results are shown in Table 4.5. Sincespeculative computation always gives some variation in runtimes, depending on how well the workers wereutilised during the computation, we present the speedups a ranges of best�worst. The results are givenin Table 4.5, and show that when the computation involves speculative work, the bottom-most dispatchingstrategies all perform better than the Manchester scheduler. The improved richest worker strategy gives someimprovement over the original richest worker strategy but the left-to-right search gives the best performance.59

Bristol Scheduler Manchester SchedulerGoals [*Times] 1wkr 10wkrs 1wkr 10wkrsparse1 *20 1.95 0.74(2.62) 1.94 0.81(2.38)parse2 *20 7.37 1.50(4.90) 7.35 1.69(4.34)parse3 *20 1.68 0.67(2.49) 1.66 0.72(2.29)parse4 *5 6.85 1.04(6.57) 6.80 1.24(5.47)parse5 4.96 0.64(7.78) 4.79 0.85(5.61)db4 *10 3.11 0.44(7.06) 3.06 0.41(7.53)db5 *10 3.79 0.52(7.30) 3.72 0.51(7.34)farmer*100 3.77 1.95(1.93) 3.80 2.26(1.68)house*20 5.55 0.94(5.88) 5.17 0.85(6.05)8-queens1 8.48 0.88(9.65) 8.28 0.83(9.93)8-queens2 21.89 2.21(9.91) 21.66 2.16(10.0)tina 19.72 2.14(9.23) 18.77 1.99(9.41)sm2 *10 11.65 1.32(8.82) 11.27 1.23(9.19)protein 28.56 3.01(9.49) 27.66 2.94(9.41)warplan (blocks) 2.73 0.33(8.27) 2.50 0.38(6.58)warplan (strips) 42.44 4.62(9.19) 40.40 4.46(9.06)AVERAGE (6.94) (6.64)Table 4.2: Table comparing Aurora under the Bristol and Manchester schedulers (runtimesin seconds with speedups in brackets)4.6 A strategy for scheduling speculative workIn order to improve on our relatively crude left to right search strategy for speculative work, we have designeda better strategy which will be implemented in a future version of the Bristol scheduler.For this more general strategy, we no longer treat the whole tree as being speculative but allow for in-termingling of speculative and non-speculative subtrees. We will want to distribute workers evenly amongspeculative subtrees so as not to focus too many resources into one particular subtree. We will also wantworkers to be able to reassess how speculative their current branch is. For example, a task which was theleast speculative of a particular subtree at one moment may later become the most speculative if branchesappear to its left. Workers should be able to suspend such a task in favour of a task on one of the higher pri-ority branches to its left, an operation known as voluntary suspension. We believe that voluntary suspensionis crucial for e�ective handling of speculative work.Since it is very di�cult to compare the speculativeness of two tasks in separate speculative subtrees we willnot allow workers to move from one speculative subtree to another.Our strategy can then be summarised as follows:� First try to obtain non-speculative work.� If only speculative work exists then �nd work from the speculative subtree containing the smallestnumber of workers.� Always search speculative subtrees from left to right.� Allow workers to periodically consider voluntary suspension of speculative work, in order to �nd lessspeculative work.4.7 ConclusionsWe presented a simple, �exible scheduler based on the principle of �dispatching on bottom-most�. Wehave described the algorithms for �nding work, public backtracking, pruning and suspension. The current60

Aurora MuseGoals [*Times] 1wkr 10wkrs 1wkr 10wkrsparse1 *20 1.95 0.74(2.62) 1.58 0.58(2.72)parse2 *20 7.37 1.50(4.90) 5.89 1.19(5.03)parse3 *20 1.68 0.67(2.49) 1.36 0.60(2.27)parse4 *5 6.85 1.04(6.57) 5.53 0.82(6.74)parse5 4.96 0.64(7.78) 3.91 0.51(7.67)db4 *10 3.11 0.44(7.06) 2.38 0.35(6.80)db5 *10 3.79 0.52(7.30) 2.91 0.42(6.93)farmer*100 3.77 1.95(1.93) 3.12 1.90(1.64)house*20 5.55 0.94(5.88) 4.35 0.89(4.89)8-queens1 8.48 0.88(9.65) 6.64 0.70(9.49)8-queens2 21.89 2.21(9.91) 17.14 1.77(9.68)tina 19.72 2.14(9.23) 14.79 1.66(8.91)AVERAGE (6.28) (6.06)Table 4.3: Aurora under the Bristol scheduler, compared with Muse (runtimes in secondswith speedups in brackets)implementation supports the full Prolog language.We have presented �gures to show that bottom-most dispatching generally produces better performance inAurora than topmost dispatching, since it decreases the duration of time workers spend in task switching.The results from running benchmark and application programs show that it is possible to get very goodspeedups for non-speculative computation from the Bristol scheduler using the richest worker strategy.Comparing that version of the Bristol scheduler with the Manchester scheduler we note that the Bristolscheduler's bottom-most dispatching strategy pays o� on the parsing examples where the search trees aredeep and narrow. The Manchester scheduler performs better on those examples where the search tree isshallow and broad.Speedups from the Bristol scheduler are generally better then those obtained from the Muse system, althoughthat system obtains somewhat better overall speed because of the lower overhead involved in adapting SicstusProlog to the Muse model.When working on programs with large amounts of speculative work we can bene�t by employing a strategywhich prefers to schedule work on left of the speculative region. We can conclude that even though there is anoverhead associated with using the left to right search strategy, which is due to the need for synchronisationduring the search, we can bene�t by using it to schedule work from regions where work on the left side is ofhigher priority.We have described a general strategy for handling speculative work, which, based on the results presentedhere, we believe will give improved performance on speculative work. Our future work will center on imple-menting this strategy and analysing its performance.4.8 AcknowledgementsThe Authors are indebted to other members of the Gigalips project for careful reading and invaluablecomments on this paper, to Mats Carlsson for his work on The Aurora engine and interface, to BogdanHausman for his work on speculative scheduling, and to Khayri Ali and Roland Karlsson for their commentsand for providing the benchmark timings from Muse.This work was supported by ESPRIT projects 2471 (�PEPMA�) and 2025 (�EDS�). S Muthu Raman wassupported by a UN Development Programme Fellowship.61

Richest Left toworker right searchGoals [*Times] 1wkr 10wkrs 10wkrsparse1 *20 1 2.62 2.44parse2 *20 1 4.90 4.14parse3 *20 1 2.49 2.24parse4 *5 1 6.57 5.71parse5 1 7.78 6.79db4 *10 1 7.06 6.78db5 *10 1 7.30 6.65farmer*100 1 1.93 1.68house*20 1 5.88 4.448-queens1 1 9.65 8.838-queens2 1 9.91 9.43tina 1 9.23 7.89sm2 *10 1 8.82 7.77AVERAGE 6.47 5.75Table 4.4: Speedups for different scheduling strategies (Bristol scheduler)Aurora Scheduling strategyone Manchester richest leftmost left toApplication worker scheduler Worker then richest right searchProtein 1 2.90�2.65 2.30�1.96 3.28�2.97 4.46�4.36Puzzle 1 1.13�1.09 1.33�1.25 2.64�1.77 6.10�5.06Warplan 1 1.15�1.08 1.11�1.06 1.12�1.10 1.57�1.3616Queens 1 1.05�1.05 3.35�2.31 3.38�3.30 6.40�3.78triangle 1 6.44�6.00 7.06�6.60 7.20�6.60 7.68�7.34tina 1 4.56�4.41 4.56�4.22 4.70�4.48 4.86�4.63Average 1 2.87�2.71 3.28�2.90 3.72�3.37 5.18�4.42Table 4.5: Speedups (best�worst) with 10 workers finding the first solutionReferences[1] Khayri Ali. Or-parallel execution of Prolog on BC-Machine. SICS Research Report, Swedish Instituteof Computer Science, 1987.[2] Khayri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog model and its performance. InProceedings of the North American Conference on Logic Programming, MIT Press, October 1990.[3] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D Warren. Flexible Scheduling ofOr-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference on Parallel Architecturesand Languages Europe, Springer Verlag, June 1991.[4] Per Brand. Wavefront scheduling. 1988. Internal Report, Gigalips Project.[5] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Proceedings of the Fifth International Conference on LogicProgramming, pages 1590�1605, MIT Press, August 1988.[6] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler.In Proceedings of the Sixth International Conference on Logic Programming, pages 419�435, MIT Press,June 1989. 62

[7] Bogumiª Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The RoyalInstitute of Technology, Stockholm, 1990.[8] Feliks Klu¹niak. Developing Applications for Aurora. Technical Report TR-90-17, University of Bristol,Computer Science Department, August 1990.[9] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. NewGeneration Computing, 7(2,3):243�271, 1990.[10] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A parallel implementationof the Basic Andorra model. In Logic Programming: Proceedings of the 8th International Conference,MIT Press, 1991.[11] Raed Sindaha. Scheduling speculative work in the Aurora or-parallel Prolog system. March 1990.Internal Report, Gigalips Project, University of Bristol.[12] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Proceedings of theNorth American Conference on Logic Programming, pages 713�732, MIT Press, October 1989.[13] Péter Szeredi, Mats Carlsson, and Rong Yang. Interfacing engines and schedulers in or-parallel prologsystems. In PARLE91: Conference on Parallel Architectures and Languages Europe, Springer Verlag,June 1991.[14] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.

63

Chapter 5Interfacing Engines and Schedulers inOr-Parallel Prolog Systems1Péter Szeredi2, Rong YangDepartment of Computer ScienceUniversity of BristolBristol BS8 1TR, U.K. Mats CarlssonSwedish Institute of Computer ScienceP.O. Box 1263S-164 28 Kista, SwedenAbstractParallel Prolog systems consist, at least conceptually, of two components: an engine and a scheduler.This paper addresses the problem of de�ning a clean interface between these components. Such aninterface has been designed for Aurora, a prototype or-parallel implementation of the full Prologlanguage for shared memory multiprocessors.The practical purpose of the interface is to enable di�erent engine and scheduler implementationsto be used interchangeably. The development of the interface has, however, contributed in greatextent to the clari�cation of issues in exploiting or-parallelism in Prolog. We believe that theseissues are relevant to a wider circle of research in the area of or-parallel implementations of logicprogramming.We believe that the concept of an engine-scheduler interface is applicable to a wider range of parallelProlog implementations. Indeed, the present interface has been used in the Andorra-I system, whichsupports both and- and or-parallelism.Keywords: Or-Parallel Execution, Multiprocessors, Implementation Techniques, Scheduling.5.1 IntroductionParallel Prolog systems consist, at least conceptually, of two components: an engine, which is responsible forthe actual execution of the Prolog code, and a scheduler, which provides the engine component with work.This paper addresses the problem of de�ning a clean interface between these components. We focus on aparticular interface which has evolved within the implementation of an or-parallel Prolog system, Aurora.The interface has successfully been used to connect the Aurora engine with four di�erent schedulers. It hassubsequently been applied in the implementation of the and-or-parallel language Andorra-I, thus provingthat its generality extends beyond or-parallel Prolog.Aurora is a prototype or-parallel implementation of the full Prolog language for shared memory multipro-1This paper has appeared in the proceedings of PARLE'91 [16]2On leave from SZKI IQSOFT, Donáti u. 35-45, Budapest, Hungary.64

cessors, based on the SRI model of execution [17], and currently running on Sequent and Encore machines.It has been developed in the framework of the Gigalips project [11], a collaborative e�ort between groupsat the Argonne National Laboratory in Illinois, the University of Bristol (previously at the University ofManchester) and the Swedish Institute of Computer Science (SICS) in Stockholm.The issue of de�ning a clear interface between the engine and scheduler components of Aurora was raisedin the early stages of the implementation e�ort. Ross Overbeek made the �rst attempt to formulate suchan interface and Alan Calderwood produced the version [7] used in the �rst generation of Aurora (based onSICStus Prolog version 0.3).A fundamental revision of the interface was necessitated by several factors. Performance analysis work onAurora [14] has shown that some unnecessary overheads are caused by design decisions enforced by theinterface. Development of new schedulers and extensions to existing algorithms required the interface to bemade more general. The Aurora engine has also been rebuilt on the basis of SICStus Prolog version 0.6.The new interface, described in the present paper, is part of the second generation of Aurora. The majorchanges with respect to the previous interface are the following:� execution is governed by the engine, rather than the scheduler;� the set of basic concepts has been made simpler and more uniform;� several potential optimisations are supported;� the interface is extended to support transfer of information related to pruning operators [10].The paper is organised as follows. Section 5.2 summarises the SRI model and de�nes the necessary concepts.Section 5.3 gives a top level view of the interface. Section 5.4 presents the data structures involved inthe interface, while Sections 5.5 and 5.6 describe engine-scheduler interactions in various phases of Auroraexecution. Section 5.7 shows the extensions: handling of pruning information and various optimisations.Section 5.8 discusses the major issues involved in implementing the Aurora engine side of the interface.Section 5.9 describes how the interface was utilised to introduce or-parallelism into the Andorra-I system[12]. Section 5.10 presents preliminary performance results from the Aurora implementation. We end witha short concluding section.A complete description of the interface is contained in [15].5.2 PreliminariesAurora is based on the SRI model [17]. According to this model the system consists of several workers(processes) exploring the search tree of a Prolog program in parallel. Each node of the tree correspondsto a Prolog choicepoint with a branch associated with each alternative clause. A predicate can optionallybe declared sequential by the user, to prohibit parallel exploration of alternative clauses of a predicate.Corresponding nodes are also annotated as sequential. All other nodes are parallel.As the tree is being explored, each node can be either live, i.e. have at least one unexplored alternative, ordead. A node is a fork node if there are two or more branches below it; otherwise, it is a nonfork node. Afork node cannot be sequential. Live parallel nodes, and live sequential nodes with no branches below them,correspond to tasks that can be executed by workers. Each worker has to perform activities of two basictypes:� executing the actual Prolog code;� �nding work in the tree, providing other workers with work and synchronising with other workers.In accordance with the SRI model each worker has a separate binding array, in which it stores its ownbindings to potentially shared variables (conditional bindings). This technique allows constant time accessto the value of a shared variable, but imposes an overhead of updating the binding arrays whenever a workerhas to move within the search tree.The or-tree is divided into an upper, public, part accessible to all workers and a lower, private, part accessibleto only one worker. A worker exploring its private region does not have to be concerned with synchronisation65

or maintaining scheduling data; it can work very much like a standard Prolog engine. The boundary betweenthe public and private regions changes dynamically. It is one of the critical aspects of the scheduling algorithmto decide when to make a node public, allowing other workers to share work at it. In the majority ofschedulers, the worker will make his sentry node, i.e. his topmost private node, public when all nodes aboveit have become dead, i.e. have no more alternatives to explore. This means that each worker tries to keep apiece of work on its branch available to other workers.

W1 W2 W3 W4

PUBLIC

PRIVATE
S1 S2 S3 S4

= dead node

= live node

D2

Figure 5.1: The or-tree of the SRI modelFor example, in Figure 5.1, an or-tree being explored by four workers (W1�W4) is shown. The workers'sentry nodes are denoted S1�S4. Assume that there is an unexplored alternative at node D2. Now if thebranch being explored by worker W1 dies back and W1 takes the alternative at D2, the node D2 will becomedead, and the scheduler will normally extend the public region to include nodes S2�S3 so as to keep a pieceof work available on every branch.The exploration by a worker of its private region constitutes that worker's assignment, which normallyterminates if the worker backtracks into the public part. The assignment terminates prematurely if thebranch is suspended, or if it is pruned by some other worker.There are three pruning operators currently supported by Aurora: the conventional Prolog cut, which prunesall branches to its right and a symmetric version of cut called commit, which prunes branches both to itsleft and right. A cut or a commit must not, and will not, go ahead if there is a chance of being pruned bya cut with a smaller scope. The third type of pruning operator is the cavalier commit which is executedimmediately, even if endangered by a smaller cut. The cavalier commit is provided for experimental purposesonly, it is expected to be used in exceptional circumstances, for operations similar to abort in Prolog. Workdone in the scope of a pruning operator is said to be speculative.Suspension is used to preserve the observable semantics of Prolog programs executed by Aurora: when abuilt-in predicate with some side-e�ect is reached on a non-leftmost branch of the search tree, or whena pruning operator is reached on a branch which could be pruned by a cut with a smaller scope, theexecution must be suspended. Furthermore the scheduler may decide to suspend the current branch whenless speculative work can be done somewhere else in the tree.66

Four separate schedulers are currently being developed for Aurora. The Argonne scheduler [6] relies ondata stored in the tree itself to implement a local strategy according to which live nodes �attract� workerswithout work. When several workers are idle they will compete to get to a given piece of work and thefastest one will win. The Manchester scheduler [8] tries to select the nearest worker in advance, withoutmoving over the tree. It uses global data structures to store some of the information on available work andworkers. The wavefront scheduler [5] uses a special distributed data structure, the wavefront, to facilitateallocation of work to workers. The Bristol scheduler [3] tries to minimise scheduler overhead by extendingthe public region eagerly: sequences of nodes are made public instead of single nodes, and work is takenfrom the bottommost live node of a branch.5.3 The Top Level View of the InterfaceThe principal duty of the scheduler is to provide the engine with work. The thread of control thus alternatesbetween the two components: the engine executes a piece of Prolog code, then the scheduler �nds the nextassignment, passes control back to the engine, etc. A possible way of implementing this interaction is to putthe scheduler above the engine: the scheduler calls the engine when it �nds a suitable piece of work to beexecuted and the engine returns when such an assignment has been �nished. In fact this scheme was thebasis of earlier interfaces in Aurora [7].We use a di�erent approach in the current version of Aurora. The execution is governed by the engine:whenever it �nishes an assignment, it calls an appropriate scheduler function to provide a new piece of work.The advantage of this scheme is that the environment for Prolog execution (e.g. the set of WAM-registers)is not destroyed when an assignment is terminated and need not be rebuilt upon returning to work. This isof special importance for Prolog programs with �ne granularity (i.e. small assignment size), where switchingbetween engine and scheduler code is very frequent [14].Figure 5.2 shows the top view of the current interface. This is centered around the engine doing work. Allthe other boxes in the picture represent scheduler functions called by the engine. Note the convention thatthe names of all scheduler functions are pre�xed with `Sched_'.The functions shown in Figure 5.2 are arranged in three groups:� �nding work (left side of Figure 5.2);� communication with other workers during work (lower part of Figure 5.2), e.g. when cuts or side e�ectpredicates are to be executed;� certain events during work that may be of interest to the scheduler (right side of Figure 5.2), e.g.creation and destruction of nodes.The four boxes on the left of Figure 5.2 represent the so called functions for �nding work:Sched_Start_Work is used to acquire work for the �rst time, immediately after the initialisation of theworker;Sched_Die_Back is called when the engine backtracks to a public node;Sched_Be_Pruned is invoked when the worker's current branch is pruned o� by another worker;Sched_Suspend is called when the worker has to suspend its current branch.These functions di�er in their initial activities, but normally continue with a common algorithm for �lookingfor work� (see Section 5.5). This algorithm has two possible outcomes: either work is found, or the wholesystem is halted. Correspondingly each of the functions for �nding work has two exits: the normal one(shown on the right side of the function boxes in Figure 5.2) leads back to work, while the other exit (lefthand side) leads to the termination of the whole Aurora invocation.The next group of interface functions provided by the scheduler is depicted at the bottom of Figure 5.2.These functions are called during work, when the engine may require some assistance from the scheduler(mainly in order to communicate with other workers):67

Sched_Prune � when a cut or commit is executed;Sched_Synch � when a predicate with side e�ects is encountered;Sched_Check � at every Prolog procedure call (to check for interrupts).The above functions have three exits. The normal exit (depicted by upwards arrows in Figure 5.2) leadsback to work. The other two exits correspond to premature termination of the current assignment, when thecurrent branch has been pruned or has to suspend (leftward and downward arrows). In both cases the enginewill do the housekeeping operations necessary for the given type of assignment termination, and proceed tocall the scheduler to �nd the next assignment. See Section 5.6 for a more detailed description of the functionsfor communication with other workers.The third group of functions shown in Figure 5.2 (right hand side) corresponds to some events during workthat may be of interest to the scheduler. A common property of this group is that the interface does notprescribe any speci�c activity to be done by these functions: the scheduler is merely given an opportunityto do whatever is needed for maintaining its data structures. As an example, Sched_Node_Created (andthe corresponding Sched_Node_Destroyed) can be used to keep track of the presence of parallel nodes inthe private region�as a prospective source of work for other workers. Similarly Sched_Clause_Entered canbe utilised for maintaining information about the presence of pruning operators in the current branch (seeSection 5.7.2).There are further groups of scheduler functions, not shown in Figure 5.2. These are used in the initialisationof the whole system, in handling keyboard interrupts , and in the implementation of certain optimisations(Section 5.7.1).The engine side of the interface consists of several groups of functions that support the scheduler algorithm:� providing access to certain data structures (nodes and alternatives) maintained by the engine,� extending the public region on the current branch of execution,� positioning the engine (i.e. the binding array) in the search tree, while looking for work,� notifying the engine of certain events, e.g. work being found.The data structure aspects of the engine interface are presented in Section 5.4. Other interface functionsprovided by the engine will be described in Sections 5.5 and 5.6.5.4 Common Data StructuresThe engine is responsible for maintaining the node stack, a principal data area of major importance to thescheduler. The engine de�nes the node data type, but the scheduler is expected to supply a number of �eldsto be included in this structure for its own purposes.Among the node �elds de�ned by the engine, some are of interest to the scheduler. Access functions forthese �elds are provided in the interface:Node_Level � the distance of the node from the root of the search tree,Node_Parent � a pointer to the parent node in the tree,Node_Alternatives � a pointer to the next unexplored alternative of the node.The scheduler-speci�c �elds of the node data structure normally include pointers describing the topology ofthe tree. For example, most schedulers will have �elds storing a pointer to the �rst child and the next siblingof a node.An additional common static data structure, the alternative, is introduced to allow the schedulers to keepstatic data related to clauses. This data structure is used in the Aurora engine to replace the `try', `retry'and `trust' instructions of WAM [9]. Each clause of the user program is represented by an alternative,which stores a pointer to the code of the clause and a pointer to the successor alternative, if any. If a68

predicate is subject to indexing, the compiler may create several chains of alternatives to cater for di�erentvalues in the indexing argument position. This means that several alternatives can refer to the same clause.The scheduler may supply a number of �elds to be included in the alternative structure, to accommodate any(static) information to be associated with clauses. The scheduler can derive this data from the informationsupplied by the engine when alternatives are created (Sched_Alternative_Created). There are two typesof static data supplied by the engine:� information about sequential predicates�this information is normally stored in each alternative of thepredicate.� pruning information�data on the number of pruning operators (cuts, commits and conditional expres-sions) contained in the clause or the predicate (see Section 5.7.2).The only engine �eld in the alternative structure that is of interest to the scheduler is the one pointing tothe successor alternative (Alternative_Next). This �eld is used, for example, when the scheduler starts anew branch from a public node and needs to advance the next alternative pointer of the node.5.5 Finding WorkFigure 5.3 shows the engine functions used by the scheduler while it is looking for work. The actual algorithmsof the four functions for �nding work will normally di�er, but they all use the same set of engine supportfunctions.Functions Move_Engine_Up and Move_Engine_Down, shown on the right hand side of Figure 5.3, instruct theengine to move the binding array up or down the current branch. Initially, the binding array is positionedat or below the youngest public node on the branch. Before returning, the scheduler has to position thebinding array above the new sentry node.Di�erent schedulers employ di�erent strategies in moving over the tree. The Argonne scheduler moves node-by-node, when approaching the potential work node. Other schedulers locate a piece of work from a distanceand move the engine to the appropriate place in a few big jumps.There is no need to move the engine if work is taken from the parent of the old sentry node. An additionalentry point to the scheduler, Sched_Get_Work_At_Parent (see Section 5.7.1), has been provided for thisspecial case.The left hand side of Figure 5.3 shows the engine functions for memory management of the node stack. Aworker may have to remove some dead nodes from the tree as it moves upwards. This involves deleting thesenodes from the scheduler data structures (normally the sibling chain) and invoking the Mark_Node_Reclaimableengine function. As a special case, the old sentry node will have to be deleted from the tree at the beginningof Sched_Die_Back and Sched_Be_Pruned.When the scheduler decides to reserve a new piece of work from a live public node (work node), it has to createa sentry node for the new branch. This involves calling the Allocate_Node function, which �rst removesall the nodes that have been marked as reclaimable from the top of the worker's stack and then allocates anew sentry node. The related Allocate_Foreign_Node function is used if another worker allocates a nodeon the stack of the worker looking for work. This is used in the Manchester scheduler to implement handingwork to an idle worker.The new sentry node serves as a placeholder for the new assignment. The scheduler inserts the sentry intothe search tree and simultaneously reserves an alternative to be explored by the new branch (by reading andadvancing the Node_Alternatives �eld of the work node).The bottom part of Figure 5.3 shows the possible exit paths from the functions for �nding work. The actualwork found can correspond either to a new branch or to a branch which was hitherto suspended and canbe resumed now. Functions Found_New_Work and Found_Resumed_Work are used to notify the engine aboutthe type of the work found, and to supply the new sentry node. The box for Found_New_Work in Figure 5.3shows the SENTRY argument to highlight the fact that this argument should be the same as the one returnedin Allocate_: : :Node. 69

5.6 Communication with Other WorkersThe need for communication with other workers arises when a pruning operator or a built-in predicate withside e�ects is to be executed. In addition, a periodic check is needed to examine if there are communicationrequests from other workers.The Sched_Prune function is invoked when a pruning operator is encountered. At this moment the enginehas already executed the private part of the pruning. The scheduler receives a pointer to the cut node(showing the scope of pruning) and an argument indicating the type of the pruning operator (cut, commitor cavalier commit). It has to check if the preconditions for pruning are satis�ed: the current branch shouldnot be pruned itself, and, except for the cavalier commit, it should not be endangered by cuts with a smallerscope, as discussed in [10]. The latter condition can be replaced by a requirement for the branch to beleftmost in the subtree rooted at the child of the cut node, if the scheduler does not maintain speci�cpruning information.If the preconditions of pruning are not satis�ed, Sched_Prune uses one of the abnormal exits (cf. Figure 5.2)to indicate that the branch has been killed or that it has to suspend (waiting to become leftmost). If thepruning operation can go ahead, the scheduler has to locate the workers that are in the pruned subtree andinterrupt them. There may be branches in this subtree which have previously been suspended. A specialengine function, Mark_Suspended_Branch_Reclaimable, is used for cleaning up such branches.The Sched_Synch function is invoked when a call to a built-in predicate with side-e�ects is encountered.Normally such calls are executed only when their branch becomes leftmost in the whole tree. There are,however, some special predicates (e.g. those used to assert solutions in a setof), for which the order ofinvocation is not signi�cant: their execution can go ahead if not endangered by a cut within a speci�csubtree. The Sched_Synch function receives an argument encoding the type of the check needed, and apointer to the root of the subtree concerned.The third communication function, Sched_Check, is called at every Prolog procedure call. Frequent invo-cation of this function is necessary so that the scheduler can answer requests (e.g. interrupts) from otherworkers without too much delay. Note, however, that a scheduler may choose to do the checks only after acertain number of Sched_Check invocations (as is the case for the Manchester and Argonne schedulers).The nature of requests to be handled by Sched_Check varies from scheduler to scheduler. There are, however,two common sets of circumstances: the worker may be requested to kill its assignment or to make some ofits private nodes public (to make work available to other workers). The latter activity needs assistance fromthe engine: the function Make_Public extends the public region on the current branch down to a speci�ednode.5.7 Extensions of the Basic Interface5.7.1 Simpli�ed BacktrackingWhen a worker backtracks to a live public node and is able to take a new branch from there, severaladministrative activities can be avoided. The sentry node can be re-used, rather than being marked asreclaimable and re-allocated. There is scope for a related optimisation in the scheduler: instead of deletingthe old sentry from the sibling chain and then installing it as the last sibling, the scheduler can move thesentry node to the end of the sibling chain (or do nothing if the old sentry was the last child). The interfacesupports this important optimisation by a function Sched_Get_Work_At_Parent, called when the enginebacktracks to a live public node. If the scheduler, following the necessary synchronisation operations, still�nds the node to be live, it can reserve an alternative from that node. If the scheduler cannot take work fromthe node in question, it returns to the engine, which will subsequently invoke Sched_Die_Back to acquire anew piece of work.The Sched_Get_Work_At_Parent function also supports the contraction operation of the SRI model [17].This operation removes a dead nonfork node after the last alternative has been taken from it. The node inquestion can be physically removed only if it is on the top of the stack of the worker executing the givenbranch. 70

5.7.2 Pruning InformationInformation about the presence of pruning operators in a clause may be needed by the scheduler to performpruning more e�ciently or to distinguish between speculative and non-speculative work. Various algorithmsrelated to pruning have been developed and discussed in [10]. When designing the interface, we tried togeneralise and extend the format of pruning data as described in [10], so that other possible approaches (e.g.[13]) can be supported as well.If one disregards disjunctions, the information needed about pruning is quite simple. A scheduler maywish to know whether a clause contains cuts or commits3. For more exact pruning algorithms the numberof occurrences of each pruning operator may be needed. The fact that a clause must fail, may also be ofinterest: when such a clause is entered, the pruning operators in the current continuation (i.e. in the previousresolvent) become inaccessible. The simple set of pruning data would thus consist of three items for eachclause: the number of cuts, the number of commits and the Boolean value indicating whether the clauseends in a failing call (i.e. fail, but in the future, global compile time analysis might discover this propertyfor other calls).The presence of disjunctions and conditionals makes the situation more complicated. In [15] we present aset of pruning data consisting of seven items, to describe the pruning properties of a general clause (one thatmay contain disjunctions and conditionals).5.8 Implementation of the Interface in the Aurora EngineThe Aurora emulator [9] was produced by modifying the SICStus emulator to support the SRI model andby converting it from a stand-alone program to an Aurora worker component connected by an algorithmicinterface to a scheduler component. The total performance degradation resulting from these changes hasbeen found to be around 25%. In an earlier paper [11] we gave an overview of the changes imposed by theSRI model. In this section we concentrate on the impacts of the interface on the engine and on changesintroduced in the new design.5.8.1 BoundariesThe engine needs to maintain the boundary between the public and private regions. Within the privateregion, it must distinguish between local nodes, i.e. nodes adjacent to the top of the worker's own stack, andremote nodes. This is achieved by storing a pointer to the respective boundary nodes in certain registers.These registers are initialised when an assignment is started (Found: : :Work). They are updated when thepublic region is extended (Make_Public) or contracted (Sched_Get_Work_At_Parent), and when backtrack-ing in the private region winds back to the worker's own stack. They are consulted to distinguish di�erentcases of backtracking and pruning operations.5.8.2 BacktrackingFrom the engine's point of view, the main complication of or-parallel execution is its impact on the backtrack-ing routine. This routine has to check whether it is about to backtrack into the public region, in which case thescheduler must be invoked to perform public backtracking (Sched_Die_Backor Sched_Get_Work_At_Parent).Private backtracking has to face the complication that the private region may extend to other workers' stacks,and possibly wind back to the worker's own back again. As explained earlier, remote nodes cannot be re-claimed when they are trusted; instead, Mark_Node_Reclaimable is invoked when dying back over a remotenode.Shallow backtracking is optimised in the private region, but only if the current node is on the top of theworker's own stack.3Note that data on cavalier commits is not included in the pruning information, as this operation is expected to be usedonly for handling exceptional circumstances. 71

5.8.3 Memory ManagementAs stated earlier, the stack memory management relies on the node stack. While �nding work, each workermaintains a pointer to the youngest node that has to be kept for the bene�t of other workers. Such pointersare used and updated by the Allocate: : :Node functions. When an assignment is started (Found: : :Work)the top of stack pointers for the other WAM stacks are initialised from relevant �elds of the node physicallypreceding the embryonic node of the new assignment, as these �elds de�ne how much of the other stacks hasto be kept.5.8.4 Pruning OperatorsPruning operations must distinguish between (i) pruning local nodes only, (ii) pruning remote nodes, and(iii) pruning public nodes. In cases (i) and (ii), the node can be pruned right away, but the memory occupiedby the pruned node can only be reclaimed in case (i). The trail must be tidied in all three cases, as explainedin [11]. In case (iii), the scheduler is responsible for pruning the public nodes, but may decide to suspendor abort the current assignment instead, forcing the engine to invoke Sched_Suspend or Sched_Be_Pruned,respectively. Note that Sched_Prune is invoked in all three cases, to give the scheduler an opportunity tokeep pruning information up to date.To support suspension of cuts and commits, the compiler provides extra information about what temporaryvariables need to be saved until the suspended task is resumed. This extra information also encodes the typeof the pruning operator.5.8.5 Premature TerminationTo suspend the current assignment when the scheduler uses the �suspend� exit in Sched_Prune,Sched_Synch, or Sched_Check, the engine creates an auxiliary node which stores the current state of com-putation and calls Sched_Suspend. It is up to the scheduler to decide when the suspended work may beresumed.To abort the current assignment when the scheduler uses the �be_pruned� exit in the above functions,the engine deinstalls all conditional bindings made by the current assignment, marks all remote nodes asreclaimable except the sentry node, and calls Sched_Be_Pruned.5.8.6 MovementWhile executing Prolog code, the binding array is kept in phase with the trail stack: whenever a bindingis added to or removed from the trail, the bound value is also stored or erased in the binding array. While�nding work, the engine maintains a pointer to a node in the tree corresponding to the current contents ofthe binding array. When the scheduler asks the engine to �move� the binding array up to a new position(Move_Engine_Up), bindings which were recorded on the trail path between the current and the new positionare deinstalled from the binding array, and the current position is updated. Similarly, Move_Engine_Downinstalls a number of trailed binding in the binding array and updates the current position.When an assignment is started (Found: : :Work), the engine positions its binding array at the tip node of thenew or resumed branch in order to get ready to start executing the Prolog code.5.9 Applying the Interface to Andorra-IThe engine-scheduler interface has been originally designed for the Aurora or-parallel Prolog system. Itsprimary purpose has been to support exchangeable use of several schedulers with a single engine (i.e. theAurora engine based on Sicstus). Recently the interface has been used to link the and-parallel engine of theAndorra-I system with the Bristol scheduler developed in the context of Aurora.In contrast with the Sicstus engine, Andorra-I performs and-parallel execution: any goals which can bereduced without making choicepoints (so called determinate goals) are executed eagerly in parallel; a teamof workers work together to exploit and-parallelism. However, when no determinate goals remain, Andorra-I72

behaves similarly to Prolog: it uses the leftmost goal to make a choicepoint. Moreover, the backtrackingroutine resembles Prolog, as well: when a goal fails, the team backtracks to the nearest choicepoint, andstarts to explore the next branch. Thus, despite the and-parallel execution phase, Andorra-I and Aurorabehave in exactly the same way in exploring the or-tree. From the point of view of the interface, an Andorra-Iteam is exactly the same as an Aurora worker.In the Andorra-I implementation the following data structures have been introduced to support the interface.First, in a way similar to Aurora, Andorra-I requires two additional pointers for each team: one for markingthe boundary between the public and the private regions of the tree, and another for storing the currentbinding array position. Second, a parent pointer has to be added to each node (Andorra-I originally did notrequire the parent pointer because of the �xed node size). The backtracking routine is modi�ed so that enginealways calls the scheduler (Sched_Die_Back), if it is in the public region. To simplify the implementation,Andorra-I currently does not allow a worker to work on other workers' stacks. Therefore, when a workerresumes a suspended branch which belongs to someone else, the branch has to be made public.The main di�erence between Aurora and Andorra-I arises in the handling of pruning operators. According tothe interface, the engine should call the scheduler whenever it executes a pruning operator (Sched_Prune). Ifthe scheduler decides that the pruning cannot go ahead, the engine is required to suspend the current branchand call Sched_Suspend immediately. In Andorra-I, however, the pruning operator is executed during theand-parallel phase, and there might be some other goals being executed simultaneously by fellow workers inthe team. When a worker needs to suspend because of the pruning operator, it has to take care of its team,i.e. inform all other workers to stop and then �nd new work together. In fact, even if there is only one workerin the team, it is not easy to stop the and-parallel execution phase prematurely, without slowing down thewhole execution process. Therefore, we have decided to let the team carry on the and-parallel phase andsuspend later, if necessary. As a special case it may happen that the computation fails after Sched_Pruneis called. In this case, the Andorra-I engine marks the suspended node as a cut_fail node. Later on, whenthe scheduler resumes the given branch, the engine will backtrack immediately.Preliminary performance results of the Andorra-I system are very promising [2], showing that Andorra-I iscapable of exploiting or-parallelism with similar e�ciency as in Aurora. The overall experience of using theinterface in the Andorra-I implementation is very positive: the interface proved to be well designed and ofappropriate abstraction level.5.10 Performance ResultsNo detailed performance analysis work has been done for the new Aurora implementation yet. Preliminarymeasurements have been performed with the Manchester scheduler, on the benchmark suite introduced inthe performance analysis of the earlier Aurora version [14]. The benchmarks are divided into three groupsaccording to granularity: course granularity (top section in the tables), medium granularity (middle section),and �ne granularity (bottom section).Table 5.1 shows the running times for that benchmark suite on the �rst generation of Aurora (using theold interface and an engine based on Sicstus Prolog 0.3). Table 5.2 shows the running times for the samebenchmarks in the second generation of Aurora. There is an overall improvement of up to 60% in terms ofabsolute speed, mostly due to the new, much faster engine. For some of the �ne granularity benchmarks therelative speedups have deteriorated; this is because the increase in engine speed implies a relative increasein scheduler overheads. For benchmarks with coarse granularity, and especially for the ones with frequentsuspension and resumption (e.g. tina), the relative speedups have improved, showing the advantages of thenew interface.5.11 Conclusions and Future WorkWe have described the engine-scheduler interface used in the second generation of the Aurora or-parallelProlog system. We have de�ned a simple set of functions to cover the two basic areas of engine-schedulerinteraction: �nding work and communication between workers. We have identi�ed those events duringProlog execution that may be of potential interest to schedulers, e.g. creation of nodes, entering clauses, etc.We have also developed a general characterisation of pruning properties of Prolog clauses that can be usedboth for scheduling speculative work and for improving the implementation of pruning operators.73

AuroraGoals Workers* repetitions 1 4 8 11 Sicstus 0.38-queens1 10.11 2.54(3.98) 1.29(7.84) 0.97(10.4) 8.19(1.23)8-queens2 29.37 7.32(4.01) 3.73(7.87) 2.76(10.6) 23.60(1.24)tina 21.30 5.57(3.83) 3.02(7.06) 2.37(8.98) 17.29(1.23)salt-mustard 11.71 3.03(3.87) 1.63(7.18) 1.27(9.24) 9.50(1.23)AVERAGE (3.92) (7.49) (9.80) (1.23)parse2 *20 9.24 2.92(3.17) 2.08(4.44) 1.96(4.72) 7.54(1.23)parse4 *5 8.54 2.50(3.42) 1.67(5.11) 1.40(6.10) 6.91(1.24)parse5 6.02 1.74(3.46) 1.17(5.15) 0.98(6.14) 4.89(1.23)db4 *10 3.12 0.87(3.60) 0.53(5.87) 0.45(6.96) 2.69(1.16)db5 *10 3.80 1.04(3.66) 0.64(5.93) 0.55(6.92) 3.28(1.16)house *20 8.13 2.26(3.60) 1.40(5.81) 1.19(6.84) 6.51(1.25)AVERAGE (3.48) (5.38) (6.28) (1.21)parse1 *20 2.49 0.90(2.77) 0.81(3.08) 0.87(2.87) 2.02(1.23)parse3 *20 2.13 0.84(2.54) 0.80(2.66) 0.83(2.57) 1.72(1.24)farmer *100 4.83 2.34(2.06) 2.41(2.00) 2.49(1.94) 3.80(1.27)AVERAGE (2.46) (2.58) (2.46) (1.25)Table 5.1: Run times, first generation of AuroraThe interface described in this paper is fundamentally revised with respect to earlier versions. The newinterface is designed to help avoid scheduling overheads, to make the set of basic concepts simpler and moreuniform, to give scope for potential optimisations including better memorymanagement, improved treatmentof pruning operations, and avoidance of speculative work.The main purpose of the interface is to enable di�erent engines and schedulers to be used interchangeably.To date, four separate schedulers have been written and connected to two di�erent engines by means ofthe interface. Perhaps more importantly, the evolution of the interface has helped clarify many issues inimplementing or-parallelism in Prolog, such as contraction and handling of pruning information.The interface has contributed to the overall improvement of Aurora performance. We also believe that thenew interface has played a signi�cant part in the good performance results of the Bristol scheduler. TheBristol scheduler has been designed with the new interface in mind, and, in spite of applying a very simplescheduling strategy, its performance is comparable (and sometimes better than) that of the earlier schedulers[3].The main outstanding issue which has not been treated in the interface is garbage collection. PatrickWeemeeuw [18] has addressed the problem of garbage collection of the public parts of the tree. Since suchactivities involve synchronisation between workers and possibly relocation of scheduler data, it is likely thatthe interface will have to be extended to support garbage collection.The interface has recently been utilised in a project based on the Muse approach to or-parallel Prolog [1].An or-parallel version of BIM_Prolog [4] is currently being produced by modifying the BIM engine andconnecting it via the interface to the Muse scheduler.We are convinced that the applicability of the interface extends beyond or-parallel Prolog systems. TheAndorra experience is powerful evidence of this fact, but it must be stressed that in this case, the interfacewas used to add or-parallelism to an already and-parallel system. Generalising the interface to cover issuesof and-or-parallel scheduling could be an interesting research direction to be pursued in the future.5.12 AcknowledgementsThe work on engine-scheduler interfaces was initiated by David Warren. Earlier versions of the interfacewere developed by Ross Overbeek and Alan Calderwood. The design of the new interface bene�ted from74

AuroraGoals Workers* repetitions 1 4 8 11 Sicstus 0.68-queens1 8.01 2.03(3.95) 1.03(7.75) 0.76(10.6) 6.77(1.18)8-queens2 20.63 5.25(3.93) 2.64(7.81) 1.93(10.7) 16.45(1.25)tina 18.40 4.65(3.96) 2.39(7.69) 1.79(10.3) 13.78(1.34)salt-mustard 10.89 2.82(3.86) 1.48(7.36) 1.11(9.86) 8.85(1.23)AVERAGE (3.92) (7.65) (10.4) (1.25)parse2 *20 7.16 2.40(2.99) 1.71(4.18) 1.64(4.37) 5.87(1.22)parse4 *5 6.67 1.85(3.60) 1.40(4.76) 1.19(5.60) 5.40(1.24)parse5 4.71 1.42(3.33) 0.96(4.89) 0.81(5.81) 3.82(1.23)db4 *10 2.94 0.81(3.63) 0.46(6.39) 0.38(7.82) 2.24(1.31)db5 *10 3.56 0.97(3.67) 0.57(6.25) 0.47(7.64) 2.73(1.30)house *20 5.07 1.47(3.46) 0.93(5.48) 0.79(6.42) 4.22(1.20)AVERAGE (3.45) (5.32) (6.28) (1.25)parse1 *20 1.89 0.76(2.47) 0.73(2.61) 0.78(2.42) 1.57(1.20)parse3 *20 1.62 0.72(2.24) 0.68(2.37) 0.72(2.25) 1.34(1.21)farmer *100 3.61 1.92(1.88) 2.13(1.69) 2.19(1.65) 3.06(1.18)AVERAGE (2.20) (2.22) (2.11) (1.20)Table 5.2: Run times, second generation of Auroraseveral discussions with Tony Beaumont, Per Brand, Bogumiª Hausman and Ewing Lusk.The authors are indebted to Feliks Klu¹niak, Ewing Lusk, and the anonymous referees for careful readingand valuable comments on drafts of this paper.This work was supported by ESPRIT projects 2471 (�PEPMA�) and 2025 (�EDS�).References[1] Khayri A. M. Ali and Roland Karlsson. The Muse approach to or-parallel Prolog. International Journalof Parallel Programming, 19(2):129�162, April 1990.[2] Anthony Beaumont, S. Muthu Raman, Vítor Santos Costa, Péter Szeredi, David H. D. Warren, andRong Yang. Andorra-I: An implementation of the Basic Andorra Model. Technical Report TR-90-21,University of Bristol, Computer Science Department, September 1990. Presented at the Workshop onParallel Implementation of Languages for Symbolic Computation, July 1990, University of Oregon.[3] Anthony Beaumont, S. Muthu Raman, and Péter Szeredi. Flexible scheduling or-parallelism in Aurora:the Bristol scheduler. In PARLE 91, Conference on Parallel Architectures and Languages Europe.Springer-Verlag, June 1991.[4] BIM. BIM_Prolog release 2.4. 3078 Everberg, Belgium, March 1989.[5] Per Brand. Wavefront scheduling. Internal Report, Gigalips Project, 1988.[6] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Proceedings of the Fifth International Conference on LogicProgramming, pages 1590�1605. MIT Press, August 1988.[7] Alan Calderwood. Aurora�description of scheduler interfaces. Internal Report, Gigalips Project,January 1988.[8] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora�the Manchester scheduler.In Proceedings of the Sixth International Conference on Logic Programming, pages 419�435. MIT Press,June 1989. 75

[9] Mats Carlsson and Péter Szeredi. The Aurora abstract machine and its emulator. SICS Research ReportR90005, Swedish Institute of Computer Science, 1990.[10] Bogumiª Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The RoyalInstitute of Technology, Stockholm, 1990.[11] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. NewGeneration Computing, 7(2,3):243�271, 1990.[12] Vítor Santos Costa, David H. D. Warren, and Rong Yang. Andorra-I: A parallel Prolog system thattransparently exploits both and- and or-parallelism. In Proceedings of the Third ACM SIGPLAN Sym-posium on Principles and Practice of Parallel Programming. ACM Press, April 1991.[13] Raed Sindaha. Scheduling speculative work in the Aurora or-parallel Prolog system. Internal Report,Gigalips Project, March 1990.[14] Péter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In Proceedings of theNorth American Conference on Logic Programming, pages 713�732. MIT Press, October 1989.[15] Péter Szeredi and Mats Carlsson. The engine-scheduler interface in the Aurora or-parallel Prolog system.Technical Report TR-90-09, University of Bristol, Computer Science Department, April 1990.[16] Péter Szeredi, Mats Carlsson, and Rong Yang. Interfacing engines and schedulers in or-parallel Prologsystems. In PARLE91: Conference on Parallel Architectures and Languages Europe, pages 439�453.Springer Verlag, Lecture Notes in Computer Science, Vol 506, June 1991.[17] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.[18] Patrick Weemeeuw. Memory compaction for shared memory multiprocessors, design and speci�cation.In Proceedings of the North American Conference on Logic Programming. MIT Press, October 1990.

76

Sched_Die_Back

Sched_Be_Pruned

Sched_Suspend

Work

Sched_Start_Work

Sched_Prune

Sched_Synch

Finding work Events of interest
to the scheduler

Communication with other workers

Sched_Node_Created

S._Clause_Entered

Halt

Start

Sched_Check

Sched_Node_Reused

S._Node_Destroyed

Figure 5.2: The top level view of the interface
77

Sched_Start_Work

Sched_Die_Back

Sched_Suspend

Sched_Be_Pruned

Look
for
work

Allocate_Foreign_Node

Move_Engine_Up

Found_Resumed_WorkFound_New_Work(SENTRY)

Normal exit Halt

(SENTRY)

Move_Engine_Down

Mark_Node_Reclaimable

Allocate_Node(SENTRY)

Figure 5.3: Engine functions in looking for work
78

Part IILanguage extensions

79

Chapter 6Using Dynamic Predicates in anOr-Parallel Prolog System1Péter SzerediSZKI Intelligent Software Ltd. (IQSOFT)H-1011 Budapest, Iskola u. 10, Hungaryszeredi@iqsoft.huandDepartment of Computer ScienceUniversity of Bristol, Bristol, U.K.AbstractAurora is a prototype or-parallel implementation of Prolog for shared memory multiprocessors. Itsupports the full Prolog language, thus being able to execute existing Prolog programs without anychange. For some programs, however, typically those relying on dynamic database handling, fullcompatibility with Prolog may cause unnecessary sequencing delays. Aurora therefore supports anumber of extensions to Prolog, including asynchronous versions of all side-e�ect predicates.Programs often rely on dynamic predicates because of bad programming style. There are, however,applications where dynamic predicates are the most natural way of expressing a solution. In thispaper we look at a simple, yet interesting such application: a program for playing the game ofmastermind. This is a typical example of a search using a continually changing knowledge base.We �rst look at sequential search strategies for playing the game of mastermind. We then proceedto discuss the problems arising when these strategies are executed in parallel, with asynchronousdatabase handling. We present several versions of the mastermind program, discussing varioussynchronisation techniques and outlining proposals for higher level synchronisation primitives tobe incorporated into Aurora. We discuss performance results for the presented programs using anexperimental implementation of the synchronisation primitives.Keywords: Logic Programming, Programming Methodology, Parallel Execution, Synchronisa-tion.6.1 IntroductionAurora is a prototype or-parallel implementation of the full Prolog language for shared memory multipro-cessors, currently running on Sequent, Encore and BBN machines. It has been developed in the framework1This paper has appeared in the proceedings of ILPS'91 [14]80

of the Gigalips project [7], a collaborative e�ort between groups at the Argonne National Laboratory in Illi-nois, the University of Bristol, and the Swedish Institute of Computer Science (SICS) in Stockholm. SZKIIntelligent Software (IQSOFT) in Budapest has recently joined the Gigalips Project.Aurora uses the SRI model of execution [15]. According to this model the system consists of several workers(processes) exploring the search tree of a Prolog program in parallel. Each node of the tree corresponds toa Prolog choicepoint with a branch associated with each alternative clause.Aurora is based on SICStus Prolog, an e�cient, portable, Edinburgh style Prolog implementation. A newversion of Aurora has been �nished recently, which is fairly robust and fully compatible with the underlyingSICStus Prolog.A number of applications have been used to evaluate the e�ciency of parallel execution in Aurora [7, 6].One of the major outstanding problems in this respect is the poor e�ciency of programs relying on dynamicpredicates.We would like to emphasise that we do not want to advocate unnecessary usage of dynamic predicates.We believe, however, that there are problems where usage of dynamic predicates is justi�ed. For examplethere are search problems where the standard depth-�rst search of Prolog is inadequate: in such casesdynamic predicates can be used for providing the more sophisticated control of the search. Similarly, dynamicpredicates may be the most natural way to implement search problems which use a continually changingknowledge base. A simple example of such search problem is the one encountered in a straightforwardalgorithm for playing the game of mastermind, which is the subject of a case study presented in this paper.We also believe that the usage of non-declarative features in logic programming languages should be reducedin the future. This can be achieved, for example, by introducing higher order language extensions toencapsulate frequently used algorithms that currently can only be programmed in a non-declarative way. Thebagof and setof predicates of current Prologs are typical examples of such higher order functions. Recentlywe have developed a proposal for a maxof predicate that encapsulates several optimum search techniques,including branch-and-bound and alpha-beta pruning [12]. We plan to develop parallel implementations forsuch higher order predicates within Aurora itself, in a way similar to how setof is implemented in most ofthe current Prolog systems. We need appropriate synchronisation techniques and tools for this task, thusproviding further motivation for the work presented in the sequel.We �rst describe the asynchronous dynamic database handling predicates as provided in the present versionof Aurora (Section 6.2). We then proceed to the case study of various implementations of the mastermindprogram. We start with a discussion of basic search strategies for mastermind and presenting a (sequen-tial) Prolog program (Section 6.3) . We then examine how asynchronous built-in predicates can be used togeneralise the mastermind search algorithm in a way appropriate for parallel execution. We �rst deal withthe basic synchronisation problems (Section 6.4) and then proceed to discuss several alternative implemen-tations of the mastermind program, suitable for parallel execution (Sections 6.5, 6.6 and 6.7). We presentperformance results for these program-variants in Section 6.8. We end with a discussion of related work andreiterating the conclusions of the paper. An expanded form of this paper has appeared as [13].6.2 Extensions to Prolog in AuroraAurora supports or-parallel execution of the full Prolog language. To preserve compatibility with Prolog,restrictions in exploiting parallelismhave to be introduced in the case of certain non-pure language primitives.The most notable examples of such primitives are the built-in predicates with side e�ects.To preserve Prolog semantics, the side-e�ect predicates have to be executed in exactly the same left-to-rightorder as in sequential Prolog. In the Aurora implementation this is achieved by suspending the execution ofnon-leftmost branches that are to invoke a side-e�ect predicate. Such branches are resumed only when theybecome leftmost.Frequent suspension leads to serious overheads and degradation of parallel performance. On the other hand,side-e�ect predicates are often used in a context where there is no real need to preserve the strict left-to-rightorder. The present implementation of Aurora therefore provides two additional variants for each side-e�ectpredicate Pred. These are written asasynch Pred e.g. asynch assert(foo) andcavalier Pred e.g. cavalier write(bar).81

Here asynch and cavalier are pre�x operators. The asynch Pred call will be executed immediately onlyif it is not in the scope of a cut operator, to prevent the occurrence of undesired side e�ects (as discussedby Hausman in [3]). If the asynch call is in the scope of a cut, then the current branch will be suspendeduntil the danger of being cut ceases to exist. The cavalier form of the side e�ect predicate will be executedunconditionally. A typical usage of this form is to display tracing information on how the parallel executionproceeds.Both the asynchronous and the cavalier predicates are executed atomically. This means that if two competingbranches reach a side-e�ect predicate a�ecting the same resource2 simultaneously, then these predicates willbe executed in some arbitrary order, one after the other.Aurora also provides a commit operator, denoted by a vertical bar (|). This is the symmetrical versionof the cut operator, which prunes branches both to its left and to its right. The commit is comparable toasynchronous side e�ect predicates, as it is not allowed to proceed in the scope of a (smaller) cut [3]. Notethat Aurora does not provide a completely cavalier commit operator, as this is not a meaningful operation.6.3 The Game of MastermindThe game of mastermind is a well known game for two players. One of the players chooses a secret code(normally four pegs of various colours). The other player makes a sequence of guesses until the secret codeis found out. For each guess, the �rst player displays a score, consisting of two types of special scoring pegs:a �bull� is shown for each exact match and a �cow� is given for each inexact match.There is a natural strategy for playing the game of mastermind, which, in the context of logic programming,was �rst described by van Emden [2]. The strategy is based on the observation that, at each stage of thegame, the scores received so far restrict the set of possible secret codes. Only those secret codes are feasiblewhich are consistent with all the guess-score pairs played so far, i.e. which would give identical scores forthese guesses. The very simple but e�ective strategy described by van Emden is the following: determinethe next guess as an arbitrary one of the feasible secret codes.The problem of �nding feasible secret codes involves a fairly large search space, hence its suitability for Prologand for exploiting or-parallelism. There are two basic strategies for exploring this search space, which wewill call the multi-search and the single-search approach.According to the �rst approach (used in van Emden's original paper), one can view the process of playingthe game as consisting of several searches, one for each turn of the game. Each such search is based onthe history of previous guesses and corresponding scores, and attempts to �nd a new guess consistent withthis history. As soon as an appropriate guess is found, the search is abandoned, the corresponding scoreis obtained from the opponent, and the next turn is started with the extended history (unless the game is�nished).An important property of this algorithm for playing mastermind is that each guess has to be tried only onceduring the whole game3. This leads to an alternative, single-search strategy, in which the whole game isimplemented as a single scan through the search space of all possible guesses. Every guess is then checkedfor consistency with the current history, which is updated in each turn of the game. There is only a singlepruning operation in this case, when the game is �nished. This strategy was used in the variant of mastermindpresented by Sterling and Shapiro [11].There is no signi�cant di�erence between the e�ciency of the two search strategies in a sequential Prologsystem. In fact the multi-search strategy can be made to �simulate� the other strategy: if one introduces anarbitrary ordering on the set of all guesses, then each constituent search can start enumerating the guessesfrom the �rst yet untried one. If, however, the mastermind search is to be performed in or-parallel, thenthe drawbacks of the multi-search approach become apparent. Since the search space has to be pruned ineach turn, all the e�ort spent on exploring the search space to the right of the leftmost consistent guess iswasted. It is possible to relax the algorithm, and accept any consistent guess (rather than the leftmost one)for the next turn. In this case, however, there is no straightforward way of excluding the guesses consideredso far, and so the whole search space has to be enumerated in each turn.We will implement the single-search strategy for playing mastermind using the dynamic database of Prolog2e.g. the same dynamic predicate, or the same output stream3This is because any guess which has been considered earlier, has either been found inconsistent with a sub-history, or hasbeen played in a turn and a non-�nal score has been received.82

to store the current history. We will use this program as a vehicle for the exploration of the problems involvedin parallel execution of Prolog programs relying on dynamic predicates. We would like to emphasise thatour principal goal is to present general problems and techniques rather than to o�er improvements to themastermind program itself4.mastermind(Code):-init_history,generate_guess(Code),current_history(History), consistent_history(Code, History),ask(Code, Score), extend_history(Code, Score),final_score(Score), !.% Return the current history.current_history(H):-history(H).% Add the Code-Score pair to the front of the current history.extend_history(Code, Score):-retract(history(H)), assert(history([Code-Score|H])).% Set up an empty history.init_history:-retractall(history(_)), assert(history([])).% consistent_history(Guess, History)% Guess is consistent with each code-score pair in the History list.% generate_guess(Guess)% Guess is a guess.% ask(Guess, Score)% Score is the score for Guess.% final_score(Score)% Score is final, i.e. the secret code has been found out.Figure 6.1: The Prolog program for the game of mastermindFigure 6.1 shows a version of the mastermind program based on the single search approach. It is similar tothe one presented by Sterling and Shapiro, but the whole history list is stored in a single clause, rather thenhaving a separate clause for each guess-score pair. This makes our initial discussion of parallel executionsimpler�we will consider a multi-clause representation in Section 6.6.The program is based on a generate and test loop. We start with initialising our data structure: assertingan empty list as the current history (init_history). We then proceed to enumerate all possible secretcodes (generate_guess), and check their consistency against the current history as retrieved from thedatabase (current_history5). If a code is found to be consistent, we proceed to make a turn, i.e. ask forthe corresponding score and extend the history accordingly (extend_history). We now check if the scorereceived is �nal, in which case the remaining choices are pruned and the game is �nished. Otherwise webacktrack to generate_guess and continue checking the remaining codes.Figure 6.1 also shows a brief description of the predicates implementing the lower layer of the mastermindprogram. This lower layer, which is common to all examples of this paper, is presented in full in [13].6.4 Synchronisation Primitives in AuroraThe mastermind program of Figure 6.1 is inherently sequential. When run on the Aurora or-parallel Prologsystem, all the predicates that access or modify the dynamic database are executed in strict left-to-rightorder. This means that only the call to generate_guess will be expanded in parallel. As soon as execution4As van Hentenryck [5] pointed out, constraint based techniques yield very good results in improving the e�ciency of themastermind algorithm.5The current_history predicate is introduced here for the sake of future, more complex, versions of the program.83

reaches the call of history in current_history, the branch has to suspend and wait until it becomesleftmost.As discussed in Section 6.2, Aurora provides an asynchronous version for each dynamic database handlingpredicate. It is fairly obvious, however, that replacing all dynamic database predicates by their asynchronouscounterparts does not produce the desired e�ect. What we need in the �rst place is the atomicity ofmore complex operations, such as replacing a clause in a dynamic predicate (e.g. in extend_history). Inalgorithmic languages such complex atomic operations are normally constructed with the help of locks. Onewould thus be tempted to advocate the introduction of locking primitives into Aurora. It may be interestingto note, however, that the presence of the atomic retract operation in Aurora can be used to provide anexperimental implementation of locks (Figure 6.2).init_lock(LockName):-asynch retractall(lock_data(LockName)),asynch assert(lock_data(LockName)).lock(LockName):-repeat, asynch retract(lock_data(LockName)), !.unlock(LockName):-asynch assert(lock_data(LockName)).Figure 6.2: Basic operations on locksLocks are implemented here using a dynamic predicate lock_data. Creating a lock (init_lock) meansasserting a clause lock_data(LockName), where LockName is an arbitrary ground term. The presence ofsuch a clause in the database corresponds to the lock being free. Grabbing the lock (lock) is done byretracting the appropriate clause. The repeat-loop ensures that the retract operation is re-tried if the lockis being currently held, thus forming a busy-waiting loop. Freeing the lock is done by asserting the clauseagain (unlock).One can use such locking primitives to ensure atomicity and exclusivity of dynamic predicate operations(current_history and extend_history in our case). We believe, however, that these primitives are stilltoo low-level and unsafe in the context of an or-parallel Prolog. Our main concern is that each lockingoperation should be paired with a corresponding unlock operation. The control structure of Prolog is muchricher than that of the traditional algorithmic languages: the execution of a predicate can abruptly endbecause of failure or because of its being pruned. For the locking scheme to be safe, the programmer thushas to cater for the possibility of both failure and pruning, in all regions of code where locks are held. Afurther problem can be caused by the fact that, in a system like Aurora, side-e�ect predicates can causebranches to suspend. The interaction of locking and suspension can lead to undesired behaviour, includingdeadlocks.In order to overcome the problems of the locking scheme, we propose a higher level synchronisation primitive,very similar to the notion of monitor, as advocated by Boyle et al. [1] in the context of the C language.The essence of our proposal is that the user should explicitly mark the critical sections of code (i.e. thoserequiring exclusive access to some resource), by encapsulating such sections in a callasynch_section(Key, Goal).The �rst argument of the asynch_section predicate identi�es the type of the critical section, while thesecond argument is a goal, or a sequence of goals, actually constituting the critical section. The meaningof this construct is to execute Goal in such a way that no other asynch_section(Key,: : :) goal (with thesame Key) will be run during the execution of Goal. Since we want to keep the notion of critical section assimple as possible, we assume that Goal is determinate6.The Key argument of asynch_section allows several independent critical sections to be established withinthe same program. It is very similar to the name of a lock, in fact an experimental implementation ofasynch_section can be easily built using locks, as shown in Figure 6.3.6Note that it is fairly easy to modify the implementation of the asynch_section predicate in Figure 6.3 to cater for nonde-terministic goals. 84

asynch_section(Key, Goal):-lock(Key), asynch_call(Goal), !, unlock(Key).asynch_section(Key, _):-unlock(Key), fail.asynch_call((Goal, Goals)):-!, asynch Goal, asynch_call(Goals).asynch_call(Goal):-asynch Goal.init_asynch_section(Key):-init_lock(Key).Figure 6.3: An experimental implementation of asynch_sectionOnly non-synchronised side-e�ect predicates are allowed in critical sections. As seen in Figure 6.3, thesubgoals textually present in the second argument of asynch_section are automatically executed in asyn-chronous mode. If a side-e�ect predicate is called indirectly within asynch_section, then it has to beexplicitly pre�xed with asynch or cavalier. This restriction enables us to avoid suspension within criticalsections: if the implementation ensures (possibly via suspension) that the whole asynch_section call isembarked upon only when not endangered by cuts, then any non-synchronised side-e�ect predicate withinthe asynch_section call will be able to proceed without suspension.The experimental implementation takes care of unlocking (i.e. exiting the critical section) at both the successand the failure exit of Goal. We intend to build a lower level implementation of asynch_section which willhandle the case of the critical section being subject to pruning as well. Such a lower level implementationwill also be able to replace busy waiting by suspension, using appropriate scheduling techniques.6.5 The Parallel Mastermind ProgramLet us now turn to producing a parallel version of the mastermind algorithm of Figure 6.1. As a �rstattempt one could suggest enclosing the predicates that access or modify the history dynamic predicate inasynch_section calls. This modi�cation, however, is not su�cient, as it does not cater for the interaction ofthe simultaneous extensions. For example, it may happen that two guesses, both consistent with the currenthistory, are checked simultaneously and then added to the history. Now the second of these extensions maynot be consistent with the whole current history, as it has not been checked against the most recent extension.This is contrary to the basic assumption of our mastermind algorithm, i.e. that only such guesses are madethat are consistent with the history of the game so far.A simple solution would be to make the asynchronous section bigger so that it covers all operations fromaccessing the current history up to the possible update of history. This would mean, however, that only thegenerate_guess call would be explored in parallel, and all the remaining calls, being in a critical section,would be sequentialised. We are therefore looking for a solution where signi�cant parts of the computationare done outside the critical section.mastermind(Code):-init_asynch_section(mm), init_history,generate_guess(Code),current_history(History), consistent_history(Code, History),asynch_section(mm, (history(NewHistory), append(Unchecked, History, NewHistory),consistent_history(Code, Unchecked), ask(Code, Score),asserta(history([Code-Score|NewHistory])),retract(history(NewHistory)))),final_score(Score), |.Figure 6.4: The mastermind predicate with proper consistency check85

Our �rst attempt to achieve this goal is shown in Figure 6.4. The critical section now contains the following:reading the current state of history again (NewHistory), using append to calculate the (possibly empty)di�erence between this NewHistory and the portion of history already checked for consistency, and checkingthe di�erence for consistency. If the code in question is found to be consistent with the unchecked part ofthe history then the score is asked for and the history is extended. Note that the cut in the mastermindpredicate has been replaced by a commit (|), so that we do not insist on �nding the leftmost solution (aswe actually know that the solution is unique).The repeated consistency check can be moved out of the critical section at the expense of making the wholealgorithm slightly more complex. Figure 6.5 shows the �nal version of the mastermind program using thesingle clause data representation. A new, recursive procedureask_if_consistent(Code, CheckedHistory, Score)is introduced with the overall task of checking Code against the current history, under the assumption thatit has already been checked against CheckedHistory.mastermind(Code):-init_asynch_section(mm), init_history,generate_guess(Code),current_history(History), consistent_history(Code, History),ask_if_consistent(Code, History, Score), final_score(Score), |.% Assume Code has already been found consistent with Checked.% If Code is not consistent with the current history then fail,% otherwise ask for the Score and extend the history.ask_if_consistent(Code, Checked, Score):-asynch_section(mm, (history(Checked), % Has the whole history been checked?ask(Code, Score),asserta(history([Code-Score|Checked])),retract(history(Checked)))), !.ask_if_consistent(Code, Checked, Score):-current_history(NewHistory),append(UnChecked, Checked, NewHistory),consistent_history(Code, UnChecked),ask_if_consistent(Code, NewHistory, Score).current_history(H):-asynch history(H), !.init_history:-retractall(history(_)), assert(history([])).Figure 6.5: Parallel mastermind with single clause representationThe �rst clause of ask_if_consistent succeeds only if there were no changes in the current history sinceit has been last read and checked. If this is the case, the opponent is asked for the score and the historyextended. The whole body of this clause is a critical section, so that no further changes can take place untilthe given guess is processed completely.The second clause of ask_if_consistent reads the current history, calculates the di�erence, checks it, andrecursively calls itself. These activities do not have to be included in a critical section.Both versions of the mastermind program introduced in this section (Figures 6.4 and 6.5) properly implementthe mastermind algorithm and at the same time allow the exploration of the search tree to be performed inparallel. Note also that both programs contain critical sections that can fail. For example, in the �rst clauseof ask_if_consistent in Figure 6.5, the critical section fails when the current history has been modi�edsince the last check. If we had to program this algorithm using locks, we would have to use a much morecomplex control structure. 86

6.6 Using Multiple Clause Data RepresentationThe synchronisation scheme used in the previous section interferes with the logic of our algorithm, as itrequires an extra level of recursion7 to process the history. This section presents an alternative solution,which avoids this by storing the history as a sequence of clauses and using a single loop for processing theclauses. The clauses are of the form history(N, Guess-Score) and express the fact that the guess Guesswas put forward and the score Score received in the Nth turn.mastermind(Code):-init_asynch_section(mm), init_history,generate_guess(Code),ask_if_consistent(1, Code, Score), final_score(Score), |.% Assume Code has already been found consistent with all turns% before Turn. Fail if turn Turn exists and Code is not% consistent with it. If Turn does not exist, make it.ask_if_consistent(Turn, Code, Score):-asynch history(Turn, GuessScore), !,consistent_guess(Code, GuessScore),Next is Turn+1, ask_if_consistent(Next, Code, Score).ask_if_consistent(Turn, Code, Score):-asynch_section(mm, (\+ asynch history(Turn,_),ask(Code, Score), asserta(history(Turn, Code-Score)))), !.ask_if_consistent(Turn, Code, Score):-ask_if_consistent(Turn, Code, Score).init_history:- retractall(history(_, _)).% consistent_guess(Guess, CodeScore)% Guess is consistent with the CodeScore pair.Figure 6.6: Parallel mastermind (multiple clause representation)The program is shown in Figure 6.6. The �rst argument of the predicate ask_if_consistent (Turn) isnow a number, the serial number of the next turn to be checked for consistency. The �rst clause of thispredicate is applicable when such a turn has already been made, i.e. there is a corresponding historyclause. In this case the code is checked for consistency against the guess-score pair stored in the history(consistent_guess(Code, GuessScore)). When all turns made so far have been found consistent, the �rstclause of ask_if_consistent fails and the second clause is executed. The task of the second clause is tomake the next turn, by asking the opponent for the score and extending the history. The whole of this clauseis a critical section, which actually contains a repeated check whether Turn is still non-existent (\+ asynchhistory(Turn,_)). If the history has been extended by another worker in the meantime, the second clausefails and the third clause causes the predicate to be called again, so that the recent extension is checked forconsistency as well. We could have avoided this repetition by transposing the �rst two clauses. This wouldmean, however, loss of e�ciency as the much less frequently succeeding clause (which also contains a criticalsection) would be tried �rst.6.7 Predicates for Handling Shared DataOur last version of mastermind was based on incremental construction of the history predicate. If we viewthis dynamic predicate as the representation of the history list, we could consider the process of addingclauses to it analogous to the extension of a shared open-ended list. With this view in mind, we propose aset of primitives for incremental building of general Prolog terms in the shared database. The shared termsare referred to by some special data objects, called references. The basic operations on these objects include7in the ask_if_consistent predicate�the lower level of recursion is in the predicate consistent_history which scans thehistory list. 87

the following:create_ref(Ref) creates a new reference to a shared data object in Ref.expand_ref(Ref, Term, Goal) associates Term with reference Ref, having previously executed Goal, ifthis is possible. If Ref has already been associated with a value, or Goal fails, expand_ref fails as well.The whole operation is atomic.access_ref(Ref, Term) returns the Term associated with Ref, if there is one; otherwise it fails.mastermind(Code):-create_ref(History), generate_guess(Code),ask_if_consistent(History, Code, Score), final_score(Score), |.% Check Code for consistency with History.% If found consistent, make the next turn and return Score.ask_if_consistent(History, Code, Score):-access_ref(History, [GuessScore|RestHistory]), !,consistent_guess(Code, GuessScore),ask_if_consistent(RestHistory, Code, Score).ask_if_consistent(History, Code, Score):-expand_ref(History, [Code-Score|NewHistory],(ask(Code, Score), create_ref(NewHistory))), !.ask_if_consistent(History, Code, Score):-ask_if_consistent(History, Code, Score).Figure 6.7: The mastermind program using referencesFigure 6.7 shows the mastermind algorithm based on the above predicates. The structure of the programclosely resembles our previous version. The �rst argument of ask_if_consistent is now a reference to theyet unchecked part of the history list. If this reference is instantiated (access_ref), then the appropriateconsistency check is made, and the recursion continues with the tail of the list. If the unchecked part isempty, an attempt is made to extend the history list, using the atomic expand_ref predicate. If this fails,due to the history having been extended in the meantime by another worker, the third clause provides forthe repetition of the whole predicate.Figure 6.8 shows an experimental implementation of the reference-handling primitives. The references arerepresented by facts of form ref(Ref, Term). Such a fact is added to the database when Ref becomesassociated with Term. In this implementation references are just numbers. Consecutive reference numbersare generated using a counter last_ref (cf. create_ref). Expanding a reference is a critical section, which�rst checks if the reference is still unexpanded, then calls the goal argument of expand_ref, and �nallycreates the new reference by asserting it. Accessing a reference simply translates to checking whether thegiven reference is present in the database. Note that, due to lack of space, the code for initialisation ofreference-handling operations is not shown here.create_ref(Ref):-asynch_section(last_ref, (retract(last_ref(Last)), Ref is Last+1, assert(last_ref(Ref)))).expand_ref(Ref, Term, Goal):-asynch_section(ref, (\+ asynch ref(Ref, _), Goal, asserta(ref(Ref, Term)))).access_ref(Ref, Term):-asynch ref(Ref, Term).Figure 6.8: An experimental implementation of reference-handling primitives88

We envisage a lower level implementation of these primitives, in which the references will be actual pointersto shared Prolog terms. Accessing a reference in such an implementation will be a constant time operation.6.8 Experimental Performance ResultsTable 6.1 shows preliminary performance results (on a Sequent Symmetry with 12 processors) for the fourversions of the mastermind program presented in this paper: the Prolog version (Figure 6.1), the one using asingle clause for storing the history (Figure 6.5), the one with the multiple clause representation (Figure 6.6)and the one using references (Figure 6.7). The experimental implementation of synchronisation predicates(locking, asynch_section and reference handling) was used as shown in Figures 6.2, 6.3 and 6.8.The �rst column in the table gives the average execution time for the one-worker case while the remainingnine columns show the speedups relative to the �rst column. Each of the programs was run with three secretcodes taken from di�erent parts of the search tree, and measurements for each secret code were repeatedthree times. The table shows average run times and speedups.WorkersVersion 1 2 3 4 5 6 7 8 9 10(Time) (Speedup)Prolog 2.18s 0.83 0.83 0.82 0.83 0.83 0.83 0.83 0.83 0.83single-clause 3.05s 1.69 3.17 3.97 4.13 5.81 6.23 6.46 6.94 7.01multi-clause 5.56s 2.02 3.63 4.27 4.72 7.24 7.25 8.42 8.51 8.39reference 5.73s 2.01 3.45 4.30 4.78 6.91 7.12 7.38 8.31 8.32Table 6.1: Execution times and speedups for the mastermind programThere is a signi�cant increase of the single worker execution time for the parallel versions of mastermindwith respect to the Prolog version (see the �rst column of the table). This is clearly due to the overheadsassociated with the experimental implementation of synchronisation predicates. On the other hand, theProlog version shows a constant slow-down of 17�18% when run with multiple workers, due to the overheadsof suspension (necessitated by the usage of synchronous database predicates). The other three asynchronousvariants show fairly good, sometimes superlinear speedups8 . These program variants, run with 10 workers,are 3�5 times faster, in terms of absolute speed, then the Prolog version run with a single worker. We believethat these results are very promising.6.9 Related WorkWork on using side-e�ect predicates and pruning operators in the context of Aurora was started by Hausman,Ciepielewski and Calderwood [4]. Hausman's thesis [3] contains a detailed discussion of the implementationissues of side-e�ect predicates. Sehr [10] presents an alternative approach to the implementation of dynamicdatabase predicates, based on incremental updating of the search tree when changes are made in the database.Neither of these papers deals with the issues of explicit synchronisation and atomicity of more complex side-e�ect operations.Reynolds and Kefalas [8] addresses the problems of or-parallel execution of search problems in Prolog withintheir Brave system. They introduce a special database for storing partial results or lemmas, with a restrictedset of update operators. While this approach is certainly useful for some applications, it is not capable ofhandling more complex programs, e.g. the parallel versions of mastermind described here. On the otherhand, it may be of interest to implement the lemma-handling primitives of Brave using the synchronisationtechniques presented in this paper.Saraswat [9] develops a family of concurrent constraint programming languages, and deals with the issues ofsynchronisation and atomicity with respect to and-parallel execution. We believe that some of the techniquesintroduced in the context of (and-parallel) concurrent logic programming can be utilised in or-parallel systems8The superlinearity is due to the decrease in the number of Prolog reduction steps required to �nd a solution, because ofthe concurrent exploration of the search space. 89

as well. In fact, the predicates for creating and accessing shared data (Section 6.7) were inspired by the Askand Tell constraints as described by Saraswat9.6.10 Conclusions and Further WorkWe have presented a case study of various programs for playing the game of mastermind in the context of theAurora or-parallel Prolog system. We have discussed the main problems associated with parallel executionof programs using dynamic database handling predicates. We have shown how asynchronous databasehandling predicates can be used to generalise the mastermind search algorithm, to make parallel executionmore e�cient. We have discussed synchronisation techniques in general and presented proposals for two typesof higher level synchronisation primitives to be incorporated into Aurora: the asynch_section predicate formarking critical sections of database updates, and the set of predicates for incremental construction of shareddata, based on the notion of reference. We have shown promising performance results using an experimentalimplementation of the proposed predicates.Work on parallel execution of Prolog programs relying on dynamic predicates can be pursued further inseveral directions. First, a broad spectrum of existing Prolog applications should be examined and �ported�to Aurora. By the term �porting� here we mean an appropriate transformation of the program that eliminatesunnecessary sequentialisation. We believe that the synchronisation primitives introduced in this paper, asopposed to the raw atomic asynchronous operations of Aurora, can serve as useful tools in this process.As a second direction of further work we should mention the problems of interaction between synchronisationpredicates and pruning operators. Some progress in this area, extending the work presented in this paper,has been reported in [12].As already mentioned, our longer term goals include developing higher order predicates that encapsulatesome of the algorithms currently requiring dynamic predicates, and at the same time allow e�cient parallelexecution. The synchronisation techniques and tools presented in this paper have already been used inthe implementation of such a higher order predicate (the maxof predicate, [12]). We believe that suchsynchronisation tools are indispensable in further experiments aiming at the development of new higherorder predicates of this kind.6.11 AcknowledgementsThe author would like to thank his colleagues in the Gigalips project at Argonne National Laboratory, theUniversity of Bristol, the Swedish Institute of Computer Science and IQSOFT. Special thanks are due toDavid H. D. Warren for continous encouragement and help in this work, as well as to Mats Carlsson andFeliks Klu¹niak for detailed comments on earlier drafts of this paper.This work was supported by the ESPRIT project 2025 �EDS�, the Hungarian National Committee forTechnical Development under project G1-11-034, and the Hungarian-U.S. Science and Technology JointFund in cooperation with the Hungarian National Committee for Technical Development and the U.S.Department of Energy under project J.F. No. 031/90.References[1] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek, JamesPatterson, and Rick Stevens. Portable Programs for Parallel Processors. Holt, Rinehart, and Winston,1987.[2] Maarten H. van Emden. Relational programming illustrated by a program for the game of mastermind.Technical Report CS-78-48, Department of Computer Science, University of Waterloo, Ontario, Canada,1978.[3] Bogumiª Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The RoyalInstitute of Technology, Stockholm, 1990.9I am indebted to Vijay Saraswat for enlightening discussions on this topic.90

[4] Bogumiª Hausman, Andrzej Ciepielewski, and Alan Calderwood. Cut and side-e�ects in or-parallelProlog. In International Conference on Fifth Generation Computer Systems 1988. ICOT, 1988.[5] Pascal van Hentenryck. Constraint Satisfation in Logic programming. The MIT Press, 1989.[6] Feliks Klu¹niak. Developing applications for Aurora. Technical Report TR-90-17, University of Bristol,Computer Science Department, August 1990.[7] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. NewGeneration Computing, 7(2,3):243�271, 1990.[8] T. J. Reynold and P. Kefalas. OR-parallel Prolog and search problems in AI applications. In LogicProgramming: Proceedings of the Seventh International Conference, pages 340�354. MIT Press, 1990.[9] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-MellonUniversity, January 1989.[10] David C. Sehr. Or-parallel execution of Prolog programs with side-e�ects. Master's thesis, Universityof Illinois at Urbana-Champaign, 1988.[11] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, 1986.[12] Péter Szeredi. Design and implementation of Prolog language extensions for or-parallel systems. Tech-nical Report, SZKI IQSOFT and University of Bristol, December 1990.[13] Péter Szeredi. Using dynamic predicates in Aurora � a case study. Technical Report TR-90-23,Universityof Bristol, November 1990.[14] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vijay Saraswat andKazunori Ueda, editors, Logic Programming: Proceedings of the 1991 International Logic ProgrammingSymposium, pages 355�371. The MIT Press, October 1991.[15] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.

91

Chapter 7Exploiting Or-parallelism inOptimisation Problems1Péter Szeredi2IQSOFT�SZKI Intelligent Software Ltd.,Iskola u. 10, H-1011 Budapest, Hungary,szeredi@iqsoft.huAbstractSeveral successful multiprocessor implementations of Prolog have been developed in recent years,with the aim of exploiting various forms of parallelism within the Prolog language. Or-parallelimplementations, such as Aurora or Muse were among the �rst to support the full Prolog language,thus being able to execute existing Prolog programs without any change. There are, however,several application areas where the simple built-in control of Prolog execution hinders e�cientexploitation of or-parallelism.In this paper we discuss the area of optimisation problems, a typical application area of this kind.The e�ciency of an optimum search can be dramatically improved by replacing the exhaustivedepth-�rst search of Prolog by more sophisticated control, e.g. the branch-and-bound algorithmor the minimax algorithm with alpha-beta pruning. We develop a generalised optimum searchalgorithm, covering both the branch-and-bound and the minimax approach, which can be executede�ciently on an or-parallel Prolog system. We de�ne appropriate language extensions for Prolog�in the form of new higher order predicates�to provide a user interface for the general optimumsearch, describe our experimental implementation within the Aurora system, and present exampleapplication schemes.Keywords: Logic Programming,ProgrammingMethodology, Parallel Execution, OptimumSearch.7.1 IntroductionDevelopment of parallel Prolog systems for multiprocessor architectures has been one of the new researchdirections of the recent years. Implementation techniques have been developed for various parallel executionmodels and for various types of parallelism. Or-parallel execution models were among the �rst to be imple-mented. Several such systems have been completed recently, such as PEPSys [6], Aurora [8], ROPM [9] andMuse [2].1This paper has appeared in the proceedings of JICSLP'92 [16]2Part of the work reported here has been carried out while the author was at the Department of Computer Science, Universityof Bristol, U.K. 92

Our present work is based on Aurora, a prototype or-parallel implementation of Prolog for shared memorymultiprocessors. Aurora provides support for the full Prolog language, contains graphics tracing facilities,and gives a choice of several scheduling algorithms [4, 5, 3].One of the major outstanding problems in the context of parallel execution of Prolog is the question ofnon-declarative language primitives. These primitives, e.g. the built in predicates for modi�cation of theinternal data base, are quite often used in large applications. As these predicates involve side e�ects, theyare normally executed in strict left-to-right order. The basic reason for this is the need to preserve thesequential semantics, i.e. compatibility with the sequential Prolog. Such restrictions on the execution order,however, involve signi�cant overheads and consequent degradation of parallel performance.There are two main directions for the investigation of this problem. First, one can look at using theunrestricted, �cavalier� versions of the side e�ect predicates. This opens up a whole range of new problems:from the question of synchronisation of possibly interfering side e�ects, to the ultimate issue of ensuring thatthe parallel execution produces the required answers. Since one is using the non-logical features of Prologhere, it is natural that the problems encountered are similar to those of imperative parallel languages. Wehave explored some of these issues in [15].Another approach, that can be taken, is to investigate why these non-logical features are used in the �rstplace. One can try to identify typical subproblems which normally require dynamic data base handling inProlog. Having done this, one can then de�ne appropriate higher order language extensions to encapsulatethe given subproblem and thus avoid the need for explicit use of such non-logical predicates. A typicalexample already present in the standard Prolog is the 'setof' predicate: this built-in predicate collects allsolutions of a subgoal, a task which otherwise could only be done using dynamic data base handling.In this paper we attempt to pursue the second path of action for the application area of optimum searchproblems. E�cient optimum search techniques, such as the branch-and-bound algorithm and the minimaxalgorithm with alpha-beta pruning, require sophisticated communication between branches of the searchtree. Rather than to rely on dynamic data base handling to solve this problem, we propose the introductionof appropriate higher order predicates. We develop a general optimum search algorithm to be used in theimplementation of these higher order predicates, which covers both the branch-and-bound and the minimaxalgorithm, and which can be executed e�ciently on an or-parallel Prolog system such as Aurora.The structure of the paper is the following. Section 7.2 introduces the abstract domain, i.e. the abstractsearch tree with appropriate annotations, suitable for describing the general optimum search technique.Section 7.3 presents our parallel algorithm for optimum search, within this abstract framework. Section 7.4describes appropriate language extensions for Prolog, in the form of new built-in predicates, for embeddingthe algorithm within a parallel Prolog system. Section 7.5 outlines our experimental Aurora implementationof the language extensions using the parallel algorithm. In Section 7.6 we describe two application schemesbased on the language extensions, preliminary performance data for which is given in Section 7.7. Section 7.8discusses related work, while Section 7.9 summarises the conclusions.7.2 The Abstract DomainThe abstract representation of the optimum search space is a tree with certain annotations. Leaf nodes haveeither a numeric value associated with them, or are marked as failure nodes. The root node and certain othernon-leaf nodes are called optimum nodes. These nodes are annotated with either a min or a max symbol,indicating that the minimal (maximal) value of the given subtree should be calculated. Some non-leaf nodescan be annotated with constraints of form <relational-op> Limit, where Limit is a number, and <relational-op> is one of the comparison operators <, �, > or �. Constraints express some domain related knowledgeabout values associated with nodes, as explained below. Figure 7.1 shows an example of an annotated tree.We will use the term value node for the non-failure leaf nodes and the optimum nodes together. We de�nea value function, which assigns a value to each value node. For a leaf node, the value is the one given as theannotation. For a max (min) node, the value is the maximum (minimum) of the values of all the value nodesdirectly below the given node. If there are no value nodes below an optimum node (i.e. all nodes below arefailure nodes), then the value of a max node can be assumed to be �1 and that of a min node to be +1.To simplify the initial discussion we will assume that each optimum (and also each constraint node) has atleast one value node below it, and so there is no need for in�nite values. We will discuss the general case atthe end of Section 7.3. 93

maxfail min 20 30< 15 40 50min 10> 20 525 35Figure 7.1: An example annotated treeA node annotated with a constraint <relational-op> Limit expresses the validity of the following fact:For each of the value nodes directly below the constraint node their value V satis�es the followingrelation: V <relational-op> Limit.The example tree in Figure 7.1 contains two constraints. To check that e.g. the upper one (<15) is valid,one has to examine the value nodes directly below (the min node and the leaf node with value 10) both ofwhich do have a value smaller than 15.The goal of the optimum search is to �nd the value of the root node. In our example the two min nodesboth have a value 5, and the value of the root node is 30.The notion of search tree presented here is more general than that required by the branch-and-bound andminimax algorithms. The branch-and-bound algorithm uses a search tree with only a single optimum node(the root) and several constraint nodes below. The minimax algorithm applies to trees where there areseveral layers of alternating optimum nodes but there are no constraint nodes.We have to introduce a further type of annotation in the search tree to cover some aspects of scheduling:each node can have a numeric priority assigned to it. This priority value will be used to control a best-�rsttype search, i.e. nodes with higher priorities will be searched �rst (see the examples in Section 7.6).7.3 The Parallel AlgorithmIn our model several processing agents (workers) explore the search tree in parallel, in a way analogous to theSRI model [17]. The workers traverse the tree according to some exhaustive search strategy (e.g. depth-�rstor best-�rst) and maintain a �best-so-far� value in each optimum node.We introduce the notion of neutral interval, generalising the alpha and beta values used in the alpha-betapruning algorithm. A neutral interval, characterised by a constraint of form <relational-op> Limit can beassociated with a particular node if the following condition is satis�ed:The value of the root node will not be a�ected if we replace the value of a (value) node directlybelow the given node, which falls into the neutral interval, by another value falling into theneutral interval.As the workers traverse the tree they assign neutral intervals to constraint and optimum nodes. When aconstraint node is processed, the complement of the constraint interval is assigned to the node as a neutralinterval. This neutral interval must be valid, according to the above de�nition, as there can be no valuenodes directly below the given constraint node, that have a value falling into the neutral interval3. Forexample, when the constraint <15 of the tree in Figure 7.1 is reached, the neutral interval �15 is assignedto the given constraint node.In a similar way, a neutral interval � B (� B) can be associated with each max (min) node, which hasa best-so-far value B. For example, when the child of the root with the value 20 is reached in our sample3Note that because of the inheritance of neutral intervals this seemingly trivial fact can be utilised for pruning subtreesbelow the constraint node (see later). 94

tree, the root's best-so far value becomes 20, and so a neutral interval �20 can be associated with the root.This can be interpreted as the statement of the following fact: �values � 20 are indi�erent, i.e. need not bedistinguished from each other�4.An important property of neutral intervals is that they are inherited by descendant nodes, i.e. if a neutralinterval is associated with a node, then it can be associated with any descendant of the node as well. Thiscan be easily proven using the continuity property of intervals, as outlined below.The only non-trivial case of inheritance is the one when a neutral interval is associated with the parent P ofan optimum node N . To prove that the same neutral interval can be associated with node N , let us considerthe e�ect of changing the value of a node directly below N within the given neutral interval (say the valueis changed from V1 to V2, where both V1 and V2 are within the neutral interval). A simple examination ofcases shows that if the old value of N or the new value of N is outside the closed interval bounded by V1and V2, then the value of N (and consequently the value of the root) could not have changed. This meansthat if the value of N changes, it changes within the closed interval bounded by V1 and V2, that is withinthe given neutral interval. Using the premise that this neutral interval is associated with node P , we canconclude that the value of the root is unchanged in this case as well. This �nishes the proof that the givenneutral interval is inherited by the child node N .There are basically two types of neutral intervals, ones containing +1 and the ones containing �1. Twointervals of the same type can always be replaced by the bigger one. This, together with the inheritanceproperty, means that the worker can keep two actual neutral intervals as part of the search status, when thetree is being traversed (which is analogous to the alpha and beta values of the minimax search).Neutral intervals can be used to prune the search tree. When a worker reaches a node the constraint of whichis subsumed by a currently valid neutral interval, then the tree below the constraint node does not haveto be explored, and a single solution with an arbitrary value within the neutral interval can be assumed5.Optimum nodes act as special constraint nodes in this respect: a max (min) node with a best-so-far valueB is equivalent to a constraint � B (� B). maxfail min 20 30< 15 40 50min 10> 20 525 35
W1

W2 Î 15Figure 7.2: First snapshot of exploration of the sample treeFigure 7.2 shows a snapshot of the exploration of the tree in Figure 7.1 by two workers. Worker w1 hasreached the leftmost failure node, while worker w2 descended on the second branch down to the secondconstraint. Processing of the upper constraint resulted in a neutral interval �15 being created (shown asa rectangular box in the �gure). When the lower constraint of >20 is reached, the worker notices that theconstraint is subsumed by the inherited neutral interval and so the subtree below is pruned (as shown bythe dotted line).A second snapshot is shown in Figure 7.3. Worker w1 has now reached the third child of the root, with thevalue 20. As outlined earlier, this results in a neutral interval �20 being associated with the root. Thisneutral interval is now propagated downwards, and its interaction with the constraint <15 results in thewhole subtree rooted at that constraint being pruned, i.e a solution with an arbitrary value <15 is assumed(say 0). This example shows why it is necessary to assume an arbitrary solution, instead of discarding thewhole subtree. The latter approach would result in an incorrect solution 40 being assigned to the min node,and consequently to the root node as well.4For value nodes directly below the root a stronger statement is valid: �values �20 can be discarded�. For the sake ofinheritance, however, the above weaker form is required.5This is the point where we use our simplifying assumption (the existence of a value node below each constraint node).95

maxfail min 20 30< 15 40 50min 10> 20 525 35
W1

W2
Í 20

Figure 7.3: Second snapshot of exploration of the sample treeThe propagation of neutral intervals, as exempli�ed by Figure 7.3, is one of the crucial features of ouralgorithm. In general, propagation is required when a worker is updating the best-so-far value (and so theneutral interval) of an optimum node, while other workers are exploring branches below this node. The newneutral interval should now be brought to the attention of all workers below the given node. There are twobasic approaches for handling this situation:� The workers below are noti�ed about the new neutral interval, i.e. the information on changes ispropagated downwards.� The downwards propagation is avoided at the expense of each worker scanning the tree upwards everytime it wants to make use of the neutral interval (e.g. for pruning).Reynolds and Kefalas [10] have used the second approach in their proposed extension of the Brave system.A serious drawback of this approach is, however, that it slows down the exploration, even if only a singleworker happens to be working on a subtree. Therefore the �rst approach seems to be preferable, i.e. theworker updating a best-so-far value in an optimum node should notify all the workers below the given nodeabout the new neutral interval.So far we have assumed that each optimum and constraint node has at least one value node below it. Letus now expand the domain of discussion to include trees where this condition is not enforced. If we extendthe range of values that can be associated with nodes to include the in�nite values �1 and +1, then eachfailure node can be viewed as a proper value node, with the actual value being �1 if the optimum nodeimmediately above is a max node, and +1 if the optimum node immediately above is a min node.The notion of constraint can have two interpretations in this extended framework. One can consider strongconstraints, which actually guarantee the presence of a (�nite) value node below; and weak constraints whichmay still hold if there is no proper value node in the subtree below. The implicit constraints generated byoptimum nodes are obviously of the strong type. On the other hand, not all constraints can be assumed tobe strong, as e.g. the constraints used in the branch and bound algorithm are normally of the weak type.A weak constraint can be utilised (for pruning or for producing a neutral interval) only in one of the twokinds of optimum searches. For example, a weak constraint < B occurring in a minimum search expressesthe fact that the contribution of the current subtree to the minimum search will either be a value < B,or +1. This means that such a constraint can not be used to prune the subtree, as it can not guaranteethat all values will be part of a single neutral interval. On the other hand a weak constraint of form > Boccurring in a minimum search will be equivalent to a strong constraint, and thus can safely be used forpruning, as the �failure� value +1 is actually part of the constraint interval > B.In our example this means that the �rst pruning step, shown in Figure 7.2, which is based on the constraint>20 in a minimum search, can be carried out even if the constraint is weak, i.e. if all value nodes below theconstraint are replaced by failure nodes. On the other hand, the second pruning step (Figure 7.3) can notbe carried out if the the constraint is weak. 96

7.4 Language ExtensionsWe propose new higher level predicates to be introduced to encapsulate the algorithm described in theprevious section. The optimum search is generalised to allow arbitrary Prolog terms, and an arbitraryordering relation LessEq instead of numbers and numerical comparison. The optimum search returns a pairof terms Value-Info, where the Value is used for ordering and Info can contain some additional information.To simplify the user interface, our experimental implementation assumes all (user-supplied) constraints tobe weak.The proposed new built-in predicates are the following:maxof(+LessEq, ?Value-Info, +Goal, ?Max)minof(+LessEq, ?Value-Info, +Goal, ?Min)Max(Min) is a Value-Info such that Goal is provable, and Value is the largest (smallest), according tothe binary relation LessEq, among these Value-Info pairs. LessEq can be an arbitrary binary predicate,either user-de�ned or built-in, that de�nes a complete ordering relation. If Goal is not provable, maxofand minof fails (this failure replaces the in�nite values of our abstract algorithm of the previoussection). The following example is an illustration for the use of maxof:biggest_country(Continent, Country, Area) :-maxof(=<, A-C,country(Continent, C, A),Area-Country).bestof(+Dir, +LessEq, ?Template, +Goal, ?Best)Dir can be either max or min. bestof(max, : : :) is equivalent to maxof(: : :) and bestof(min, : : :) isequivalent to minof(: : :). This predicate is just a notational tool for writing minimax-type algorithms.constraint(?Term1, +LessEq, ?Term2)Term1 is known to be less or equal to Term2 according to the binary relation LessEq. This meansthat all solutions of the current branch will satisfy the given condition. One of Term1 and Term2 isnormally a Value of a maxof, minof or bestof, in which case the constraint can be used for pruning.An example:country(europe, Country, Area) :-constraint(Area, =<, 600000),european_country(Country, Area).priority(+Priority)Priority should be an integer. This call declares that the current branch of execution is of priority Pri-ority. Several calls of the priority predicate can be issued on a branch, and the list of these priorities(earlier ones �rst), ordered lexicographically, will be used when comparing branches. Examples for theuse of the priority primitive will be given in Section 7.6.7.5 ImplementationWe have designed an experimental implementation of the language primitives described in the previoussection, within the current Aurora system itself. This uses a simpli�ed version of the proposed algorithm,as it does not implement the propagation of neutral intervals. The implementation applies the best-�rstsearch strategy by default, but depth-�rst control is also available. This section gives a brief description ofthe experimental implementation.Introduction of new control features is normally done via interpretation. We have decided to avoid theextra complexity and overheads of interpretation by introducing a meta-predicate called task, to be usedto encapsulate the new control primitives within the application program. A call of task has the followingform:task(Goal, NewContext - OldContext) 97

Here Goal is normally a conjunction, which begins with calls of the control predicates priority andconstraint. The invocation of task should always be the last subgoal in the surrounding bestof. Ifthe Goal in task contains an embedded call to bestof, this should be the last subgoal in the conjunction,to make the minimax algorithm applicable.The second argument of task is required for passing the control information on surrounding tasks andoptimum searches. Similarly, the bestof (and maxof/minof) predicates acquire an additional last argumentof the same structure. We use the form NewContext - OldContext to indicate that the role of this argumentis similar to a di�erence list. The OldContext variable links the given call with the surrounding bestofor task invocation (i.e. it is the same variable as the NewContext variable in the extra argument of thesurrounding control call). Similarly the NewContext variable is normally passed to the Goal argument, foruse in embedded task or bestof invocations.Let us show an example from the previous section in this modi�ed form:country(europe, Country, Area, Ctxt) :-task((constraint(Area, =<, 600000),european_country(Country, Area)),_ - Ctxt).Here we assume, that european_country does not contain any further invocations of task or bestof, henceNewContext is a void variable.The execution of an application in this experimental implementation is carried out as follows. If there are nocalls of task embedded in a bestof, then the optimum search is performed in a fairly straightforward way:a best-so-far value is maintained in the Prolog database which is updated each time a solution is reached.When an invocation of task is reached within the bestof predicate, �rst the constraints are processed: if aconstraint indicates that the subtree in question will not modify the best-so-far value (i.e. the constraint issubsumed by the currently applicable neutral interval), then the task call fails immediately. Otherwise thegoal of the task, paired with information on the constraint, priority and context, is asserted into the Prologdatabase and the execution fails as well. When all the subtasks have been created and the exploration of thebestof subtree �nishes, a best-�rst scheduling algorithm is entered: the subtask with the highest priorityis selected and its goal is started. Such a subtask may give rise to further bestof and/or task calls, whichare processed in a similar way.For the sake of such nested task structure the best-�rst scheduling is implemented by building a copy of thesearch tree in the Prolog database, but with the branches ordered according to the user supplied priorities(in descending order). This tree is then used for scheduling (�nding the highest priority task), as well as forpruning.Pruning may be required when a leaf node of the optimum search is reached and the best-so-far value isupdated. Following this update the internal tree is scanned and every task, which has become unnecessaryaccording to its constraint, is deleted.A more detailed description of the implementation can be found in [14].7.6 ApplicationsTwo larger test programs were developed to help in evaluating the implementation: a program for playing thegame of kalah, using alpha-beta pruning, which is based on a version presented by Sterling and Shapiro [13];and a program for the traveling salesman problem based on the branch-and-bound technique, as described in[1]. This section presents the general program schemes used in these programs, namely the branch-and-boundand alpha-beta pruning schemes. For the sake of readability we omit the additional context arguments inthis presentation, but we do include the invocation of the task predicate.7.6.1 The Branch-and-Bound AlgorithmWe describe a general program scheme for the branch-and-bound algorithm. We assume that the nodesof the search tree are represented by (arbitrary) Prolog terms. We expect the following predicates to be98

supplied by the lower layer of the application:child_of(Parent, Child) Node Child is a child of node Parent.leaf_value(Leaf, Value) Node Leaf is a leaf node, with Value being the value associated with it.node_bound(Node, Bound) All leaf nodes below the (non-leaf) node Node are known to have a value greateror equal to Bound.% Leaf is the leaf below node with the minimal Valuebranch_and_bound(Node, Leaf, Value):-minof(=<, V-L, leaf_below(Node, L, V), Value-Leaf).% Node has a Leaf descendant with value Valueleaf_below(Node, Node, Value):-leaf_value(Node, Value).leaf_below(Node, Leaf, Value):-child_of(Node, Child),node_bound(Child, Bound),Priority is -Bound, task((constraint(Bound, =<, Value),priority(Priority),leaf_below(Child, Leaf, Value))). Figure 7.4: The general scheme for the branch-and-bound algorithmFigure 7.4 shows the top layer of the branch-and-bound scheme based on the above predicates. The programuses a single minof call invoking the predicate leaf_below(Node, Leaf, Value). The latter predicatesimply enumerates all the Leaf nodes and corresponding Values below Node. The logic of this predicateis very simple: either we are at a leaf node (�rst clause), in which case we retrieve its value, or we pickup any child of the node and recursively enumerate all the descendants of that child (second clause). Thislogic is complemented with the calls providing the appropriate control (shown with a deeper indentation):calculating a lower bound for the relevant subtree (node_bound), calculating the Priority as the negatedvalue of Bound (so that the subtrees where the bound is lower have higher priority), notifying the systemabout the bound (constraint) and the priority for the best-�rst search (priority). The last three calls inthe clause are encapsulated within the auxiliary predicate task (shown with the deepest indentation).This general scheme of Figure 7.4 can be concretised to support a speci�c application by designing anappropriate node data structure, and providing the de�nition of the lower level predicates (child_of etc.).This has been done for the traveling salesman problem, the preliminary performance results for which arepresented in Section 7.7.7.6.2 The Alpha-Beta Pruning AlgorithmWe now proceed to describe a similar scheme for the minimax algorithmwith alpha-beta pruning (Figure 7.5).Again we allow the nodes of the game tree to be represented by arbitrary Prolog terms. The topology ofthe tree and the values associated with nodes are expected to be supplied through predicates of the sameform as for the branch-and-bound algorithm (child_of(Parent, Child) and leaf_value(Leaf, Value)).We require two additional auxiliary predicates:node_priority(Node, Prio) Prio is the priority of node Node.absolute_min_max(Min, Max) Min andMax are the absolute minimumand maximumvalues for the wholeof the game tree6. 99

% Node of type Type (min or max) has the value Value,% produced by Child.alpha_beta(Node, Type, Child, Value):-bestof(Type, =<, V-C,child_value(Node, Type, V, C), Value-Child).% Node of type Type has a Child with Value.child_value(Node, Type, Value, Child):-opposite(Type, OppType),absolute_min_max(Min, Max), task((constraint(Min, =<, Value),constraint(Value, =<, Max),child_of(Node, Child),node_value(Child, OppType, Value))).% Node of type Type has Value.node_value(Node, _, Value):-leaf_value(Node, Value).node_value(Node, Type, Value):-node_priority(Node, Priority), task((priority(Priority),bestof(Type, =<, V-null,child_value(Node, Type, V, _), Value-null))).opposite(max,min).opposite(min,max).Figure 7.5: The minimax algorithm with alpha-beta pruningThis scheme can be invoked by the alpha_beta(Node, max, Child, Value) call. Here Node represents anode of the game tree, and max indicates that this is a maximum node. The call will return the Child withthe maximal Value, from among all children of Node.The alpha_beta predicate is de�ned in terms of a bestof search over all Child-Value pairs enumerated bythe child_value predicate. This predicate, in its turn, issues appropriate constraint directives, enumeratesthe children (child_of), and invokes node_value for every child. The node_value predicate has two clauses,the �rst is applicable in the case of leaf nodes, while the second invokes the opposite bestof over child_valuerecursively, after having informed the system about the priority applicable to the given subtree.Note that the algorithm presented in Figure 7.5 calculates the optimum with respect to the complete gametree. It is fairly easy, however, to incorporate an appropriate depth limit, as usually done in game playingalgorithms, by a simple modi�cation of this scheme.7.7 Performance ResultsTable 7.1 gives some early performance �gures for the applications discussed in Section 7.6, using theexperimental implementation described in Section 7.5.The tests have been run on a SequentTM Symmetry S27 multiprocessor with 12 processors, and the Manch-ester scheduler [5] has been used. Time (in seconds) is given for the one-worker case, and speedups are shownfor 2-10 workers.6Note that the scheme is still usable if no such absolute bounds are available�one just has to delete those parts of theprogram, which deal with the constraints based on the absolute bounds.100

WorkersVersion 1 2 4 6 8 10(Time) (Speedup)Traveling salesman9 nodes 32.2 1.68 2.66 3.24 3.71 4.0711 nodes 152.86 1.64 2.67 3.48 3.93 4.37The game of kalahboard 1 13.71 1.39 1.83 2.35 2.96 3.32board 2 57.33 1.71 2.88 3.75 4.72 5.65board 3 31.20 1.70 3.08 4.04 5.18 5.67board 4 65.66 1.55 2.47 3.66 4.73 5.00Table 7.1: Run times and speedups for various optimisation problemsThe two traveling salesman sample runs involve complete graphs with 9 and 11 nodes, and 36 and 55 edges,respectively. A variant of the game of kalah is used as the second test program. Four di�erent board statesare tested with a limited depth of search (4 steps). Because of the search tree being so shallow, the depth-�rststrategy is used, rather than the best-�rst one.Considering the prototyping nature of our experimental implementation we view the results as quite promis-ing. We plan to carry out a detailed performance evaluation in the near future to identify the overheadsinvolved in various parts of the algorithm.7.8 Related WorkAn important issue is the relation of our work to the mainstream of research in constraint logic programming(CLP). In current CLP frameworks (as e.g. in the one described by van Hentenryck in [7]) the constraintsarising in optimum search algorithms are handled by special built-in predicates. The reason behind this isthat the generation of constraints is implicit in an optimum search, as the applicable constraint depends onthe best-so-far value. We believe that by replacing such special predicates with the bestof construct, ourextended algorithm can be smoothly integrated into a general CLP system.Another aspect of comparison may be the type of parallelism. Current CLP systems address the issues ofand-parallel execution of conjunctive goals as e.g. in the CLP framework described by Saraswat [12]. Ourapproach complements this by discussing issues of exploiting or-parallelism. Combination of the two typesof parallelism can lead to much improved performance as shown by existing and-or-parallel systems, such asAndorra [11].The problems of or-parallel execution of optimum search problems have been addressed by Reynolds andKefalas [10] in the framework of their meta-Brave system. They introduce a special database for storingpartial results or lemmas, with a restricted set of update operators. They describe programs implementingthe minimax and branch-and-bound algorithms within this framework. They do not, however, address theproblem of providing a uniform approach for both optimisation algorithms. Another serious drawback oftheir scheme is that pruning requires active participation of the processing agent to be pruned: e.g. in theminimax algorithm each processing agent has to check all its ancestor nodes, whether they make furtherprocessing of the given branch unnecessary.7.9 ConclusionsThe design and the implementationof the bestof predicate has several implications. First, we have developeda new higher order extension to Prolog, with an underlying algorithm general enough to encapsulate twoimportant search control techniques: the branch-and-bound and alpha-beta pruning algorithms. The bestofpredicate makes it possible to describe programs requiring such control techniques, in terms of special controlprimitives such as constraints and priority annotations. On the other hand we gained important experienceby implementing the new predicates on the top of Aurora system. We believe that this experience can be101

utilised later, in a more e�cient, lower level implementation as well.We view the development of the bestof predicate as a �rst step towards a more general goal: identifyingthose application areas and special algorithms where the simple control of Prolog is hindering e�cient parallelexecution, and designing appropriate higher order predicates that encapsulate these algorithms. We believethat the gains of this work will be twofold: reducing the need for non-declarative language components aswell as developing e�cient parallel implementations of such higher order primitives.AcknowledgementsThe author would like to thank his colleagues in the Gigalips project at Argonne National Laboratory, theUniversity of Bristol, the Swedish Institute of Computer Science and IQSOFT. Special thanks go to DavidH. D. Warren for continuous encouragement and help in this work. Thanks are also due to the anonymousreferees, for valuable comments and suggestions for improvement.This work was supported by the ESPRIT project 2025 �EDS�, and the Hungarian-U.S. Science and Tech-nology Joint Fund in cooperation with the Hungarian National Committee for Technical Development andthe U.S. Department of Energy under project J.F. No. 031/90.References[1] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and Algorithms. Addison-Wesley, 1983.[2] Khayri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog model and its performance. InProceedings of the North American Conference on Logic Programming. The MIT Press, October 1990.[3] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D Warren. Flexible Scheduling ofOr-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference on Parallel Architecturesand Languages Europe, pages 403�420. Springer Verlag, June 1991. Lecture Notes in Computer Science,Vol 506.[4] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Logic Programming: Proceedings of the Fifth InternationalConference, pages 1590�1605. The MIT Press, August 1988.[5] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler. InLogic Programming: Proceedings of the Sixth International Conference, pages 419�435. The MIT Press,June 1989.[6] J. Chassin de Kergommeaux and P. Robert. An abstract machine to implement e�ciently OR-ANDparallel Prolog. Journal of Logic Programming, 7, 1990.[7] Pascal van Hentenryck. Constraint Satisfation in Logic programming. The MIT Press, 1989.[8] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. NewGeneration Computing, 7(2,3):243�271, 1990.[9] B. Ramkumar and L.V. Kalé. Compiled execution of the reduce-OR process model on multiprocessors.In Proceedings of the North American Conference on Logic Programming, pages 331�331. The MITPress, October 1989.[10] T. J. Reynold and P. Kefalas. OR-parallel Prolog and search problems in AI applications. In LogicProgramming: Proceedings of the Seventh International Conference, pages 340�354. The MIT Press,1990.[11] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A parallel implementation ofthe Basic Andorra model. In Logic Programming: Proceedings of the Eighth International Conference.The MIT Press, 1991.[12] Vijay A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-MellonUniversity, January 1989. 102

[13] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, 1986.[14] Péter Szeredi. Design and implementation of Prolog language extensions for or-parallel systems. Tech-nical Report, IQSOFT and University of Bristol, December 1990.[15] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vijay Saraswat andKazunori Ueda, editors, Logic Programming: Proceedings of the 1991 International Logic ProgrammingSymposium, pages 355�371. The MIT Press, October 1991.[16] Péter Szeredi. Exploiting or-parallelism in optimisation problems. In Krzysztof R. Apt, editor, LogicProgramming: Proceedings of the 1992 Joint International Conference and Symposium, pages 703�716.The MIT Press, November 1992.[17] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.

103

Part IIIApplications

104

Chapter 8Applications of the Aurora ParallelProlog System to ComputationalMolecular Biology1Ewing LuskArgonne National LaboratoryArgonne, IL 60439U. S. A.lusk@mcs.anl.gov Shyam MudambiECRC GmbHD-81925, Munich, Arabellastr. 17Germanymudambi@ecrc.deRoss OverbeekArgonne National LaboratoryArgonne, IL 60439U. S. A.overbeek@mcs.anl.gov Péter SzerediIQSOFT Ltd.H-1142 Budapest Teleki B. u. 15-17Hungaryszeredi@iqsoft.huAbstractWe describe an investigation into the use of the Aurora parallel Prolog system in two applicationswithin the area of computational molecular biology. The computational requirements were large,due to the nature of the applications, and were carried out on a scalable parallel computer, theBBN �Butter�y� TC-2000. Results include both a demonstration that logic programming canbe e�ective in the context of demanding applications on large-scale parallel machines, and someinsights into parallel programming in Prolog.8.1 IntroductionAurora[8] is an OR-parallel implementation of full Prolog. The system is nearing maturity, and we arebeginning to use it for application work. The purpose of this paper is to present the results of our experiencesusing it for computational molecular biology, an area in which logic programming o�ers a particularlyappropriate technology.1This paper has appeared in the proceedings of ILPS'93 [9]105

The problems encountered in this area can be large in terms of data size and computationally intensive.Therefore one needs both an extremely robust programming environment and fast machines. Aurora cannow provide the former. The fast machine used here is the BBN TC-2000, which provides fast individualprocessor speeds, a large shared memory, and a scalable architecture (which means that access to memoryis non-uniform).We begin with a brief discussion of why molecular biology is a particularly promising application area forlogic programming. We then summarize some recent enhancements to Aurora as it has evolved from anexperimental, research implementation to a complete, production-oriented system. We describe in somedetail two di�erent problems in molecular biology, and describe the approaches taken in adapting each ofthem for a parallel logic programming solution. In each case we present results that are quite encouraging inthat they show substantial speedups on up to 42 processors, the maximumnumber available on our machine.Given the sizes of the problems that are of real interest to biologists, the speedups are su�cient to converta batch-oriented research methodology into an interactive one.8.2 Logic Programming and BiologyMany large-scale scienti�c applications running on parallel supercomputers are fundamentally numeric, arewritten in Fortran, and run best on machines optimized for operating on vectors of �oating-point numbers.One notable exception is the relatively new science of genetic sequence analysis. New technologies forextracting sequence information from biological material have shifted the scienti�c bottleneck from datacollection to data analysis. Biologists need tools that will help them interpret the data that is being providedby the laboratories. Logic programming, and Prolog in particular, is an ideal tool for aiding analysis ofbiological sequence data for several reasons.� Prolog has built-in pattern expression, recognition, and manipulation capabilities unmatched in con-ventional languages.� Prolog has built-in capabilities for backtracking search, critical in advanced pattern matching of thesort we describe here.� Prolog provides a convenient language for constructing interactive user interfaces, necessary for buildingcustomized analysis tools for the working biologist.� (The Aurora hypothesis) Prolog provides a convenient mechanism for expressing parallelism.Prolog has not traditionally provided supercomputer performance on scalable high-performance computers.The main point of this paper is that this gap is currently being closed.8.3 Recent Enhancements to AuroraAurora has been evolving from a vehicle for research on scheduling algorithms into a solid environment forproduction work. It supports the full Prolog language, including all the normal intrinsics of SICStus Prolog,a full-featured system. Certain enhancements for advanced synchronization mechanisms, modi�cations tothe top-level interpreter, and parallel I/O, have been described in [5]. Here we mention two recently-addedfeatures that were used in the present work.8.3.1 Aurora on NUMA MachinesAurora was developed on the Sequent Symmetry, which has a true shared-memory architecture. Sucharchitectures provide a convenient programming model, but are inherently non-scalable. For that reason,the Symmetry is limited by its bus bandwidth to about 30 processors, and previously-published Aurora resultswere similarly limited. Recent work by Shyam Mudambi, continuing that reported in [10], has resulted in aport of Aurora to the BBN TC-2000, a current scalable architecture with Motorola 88000 processors. Theresults here were carried out on the machine at Argonne National Laboratory, where 42 processors at a timecan be scheduled. We are currently planning to explore the performance of this version of the system onlarger TC-2000's. 106

Aurora, with its shared-memory design, could be ported to the BBN in a straightforward way since the BBNdoes provide a shared-memory programming model. However, the memory-access times when data is notassociated with the requesting processor are so much worse than when data accesses are local, it is criticalto ensure a high degree of locality. This has been done in the Butter�y version of Aurora by a combinationof duplicating read-only global data and allocating WAM stack space locally. Details can be found in [10].The three-level memory hierarchy of the BBN also a�ects the interface to foreign subroutines, critical in theapplications described here. In particular, it was necessary to change the original design of the C interface,which put dynamically-linked code in shared memory. Since on the Butter�y shared memory is not cached,we modi�ed the design so that both code and data are allocated in non-shared memory and can thereforebe cached.8.3.2 Visualization of Parallel Logic
Figure 8.1: Investigating grain size with upshotOne can often predict the behavior of ordinary programs by understanding the algorithms employed, butthe behavior of parallel programs is notoriously di�cult to predict. Even more than sequential programs,parallel programs are subject to �performance bugs�, in which the program computes the correct answer,but more slowly than anticipated. With this in mind, a number of tools have been added to Aurora in orderto obtain a visual representation of the behavior of the parallel program. The �rst of these was wamtrace,which provided an animation of Aurora's execution. More recently, a number of other visualization systemshave been integrated into Aurora. All of these tools provide post-mortem analysis of log �les created duringthe run. Two of the tools have been used in tuning the applications presented here. They are upshot, whichallows detailed analysis of events on a relatively small number of processes [6], and gsx, which is bettersuited to providing summary information on runs involving large numbers of processes. Other Aurora toolsare visandor and must. An example snapshot of an upshot session is shown in Figure 8.1. Here we see abackground window showing the details of individual processor activities, and, superimposed, subwindowsproviding a primitive animation of process states and histograms of state durations.Output from gsx for one of the applications will be shown in Figure 8.3.8.4 Use of Pattern Matching in Genetic Sequence AnalysisWhen trying to extract meaning from genetic sequences, one inevitably ends up looking for patterns. Wehave implemented two pattern matching programs�one for DNA sequences and one for protein sequences.107

Although these could certainly be uni�ed, it is true that the types of patterns one searches for in DNA arequite distinct from those used for proteins. For a general introduction to genetic sequences, see [7].8.4.1 Searching DNA for Pseudo-knotsDNA sequences are represented as strings composed from the characters {A,C,G,T}, each one of which repre-sents a nucleotide. For example, an interesting piece of DNA might well be represented by TCAGCCTATTCG....The types of patterns that are often sought involve the notion of complementary substrings, which are de�nedas follows:1. The character complement of A is T, of C is G, of G is C, and of T is A.2. The complement of a string a1a2a3 : : :an is cn : : : c3c2c1, where ci is the character complement of ai.To search for two 8-character substrings that are complementary and separated by from 3 to 8 characters,we would use a pattern of the formp1=8...8 3...8 ~p1which might be thought of as saying �Find a string of length 8 (from 8 to 8) and call it p1, then skip from3 to 8 characters, and then verify that the string that follows is the complement of p1.�The signi�cance of complementary substrings lies in the fact that complementary characters form bondswith each other, consecutive sets of which form biologically signi�cant physical structures.One particularly interesting type of pattern is called a pseudo-knot, which has the form1. a string (call it p1),2. a �ller,3. a second substring (call it p2),4. a �ller,5. the complement of p1,6. a �ller, and7. the complement of p2.These patterns correspond to stretches of the DNA sequence that look like the diagram in Figure 8.2.
p1

p2Figure 8.2: A pseudo-knotSuch patterns are often equally interesting when the complements of p1 and p2 are only approximate (i.e.,most of the characters are complements, but there may be some that are not). We have implemented alanguage (based on the work of David Searls [11]) for expressing such patterns and for rapidly scanningDNA strings for matches. For a search to be well-speci�ed, one has to express limits on the sizes of allsubstrings and �llers, as well as a level of tolerance when looking for complements. For example,p1=9...9 2...9 p2=9...9 0...4 ~p1[1,0,0] 12...19 ~p2[1,0,0]108

would represent a pattern in which p1 and p2 are 9 characters long, one character of each complement canmismatch (but there can be no insertions or deletions), and the three �llers are 2-9, 0-4, and 12-19 characterslong, respectively.8.4.2 Searching Protein SequencesProtein sequences are strings over a 20-character alphabet, each character of which represents an amino acid.Amos Bairoch[1] has created a remarkable set of patterns that identify functionally signi�cant sections ofprotein sequences. These patterns are composed of a sequence of pattern units, where a pattern unit can be1. any character in a speci�ed set, ([list of characters])2. any character not in a speci�ed set, ({list of characters})3. a �ller of length from a speci�ed range. (x)Pattern units can also have repetition counts (in parentheses). For example,[LIVMFYWC]-[LIVM](3)-[DE](2)-x-[LIVM]-x(2)-[GC]-x-[STA]means any of L,I,V,M,F,Y,W,C followed by three occurrences of any one of L,I,V,M, followed by two occur-rences of any one of D,E, followed by any one character, etc.This particular pattern identi�es a �Purine/pyrimidine phosphoribosyl transferases signature�. Given thissomewhat more constrained matching problem, one can easily construct programs to search for such patterns.The most common problem is of the form �given a set of protein sequences and about 600 such patterns,�nd all occurrences of all patterns�.8.5 Evaluation of Experiments8.5.1 The DNA Pseudo-knot ComputationA non-parallel program was already written (in Prolog) to attack the pseudo-knot problem. It ran on Sunworkstations and had part of the searching algorithm written in C to speed up the low-level string traversal.The main contribution of Aurora in this application was to provide a Prolog interface (desirable since theuser interface was already written in Prolog) to a high-performance parallel machine so that larger problemscould be done.The parallelization strategy was straightforward. A speci�c query asks for a restricted set of pseudo knotsto be extracted from the database of DNA fragments. Almost all of the parallelism comes from processingthe sequence fragments in parallel. Aurora detects and schedules this parallelism automatically.The fact that we were porting a sequential program with C subroutines required us to take some care inhandling the interface between Prolog and C. The structure of the mixed Prolog-C program is the following.The Prolog component parses a user query and through several interface routines passes the information onthe pattern to be searched to the C-code. The Prolog side then invokes the actual search routine in C. Theresults of the search are transferred back to the Prolog component through appropriate interface routinesagain.Several such searches are to be run in parallel independently of each other. For each search a separatememory area is needed in C. Since the original application wasn't programmed with parallel execution inmind, static C variables were used for storing the information to be communicated from one C subroutine toanother. Conceptually we need the static C memory area to be replicated for each of the parallel processes.In an earlier, similar application, we transformed the C program by replacing each static variable by an arrayof variables. Each of the parallel searches used one particular index position for storing its data. Indiceswere allocated and freed by the Prolog code at the beginning and at the end of the composite C computationtasks.For the present application we chose a simpler route. Using sequential declarations we ensured that noparallel execution took place during a single composite search task, i.e. it was always executed by a single109

process (worker). Consequently, all we had to ensure was that each process had a local piece of memoryallocated for the C routines.This goal was achieved in di�erent ways on the two multiprocessor platforms we worked with. The SequentSymmetry version of Aurora, like Quintus and SICStus, normally uses dynamic linking in the implementationof the foreign-language interface. Due to limitations in the Symmetry operating system, the dynamic linkingprocess ignores the shared annotation on C variables, making them either all shared or all local. Becauseof this limitation Aurora loads the foreign code into shared memory on the Sequent, making all C variablesshared by all the processes. Local allocation of variables can be thus achieved only by statically linking theC code with the emulator. This is what we did for the pseudo-knot application. The initial fork that createsmultiple Aurora workers thus provided the required separate copies of the global variables.On the BBN TC-2000, the situation was a little more complicated. In the �rst place, shared memory is notcached, so it was important to place the C code (and the Prolog WAM code as well) into the private memoryof each processor. This was done, even with dynamic linking, by modifying Aurora so that after code wasloaded, it was copied into each process's private memory. This provided both local copies of variables andcachability of all variables.We ran a series of queries on the BBN Butter�y TC-2000, each of them designed to identify a collection ofpseudo-knots (such as in Figure 8.2) of di�erent sizes in a database of 457 DNA sequences, varying in lengthfrom 22 to 32329 characters. The following queries all ask for collections of pseudo-knots of varying sizes.Goals Patternsps1_2 p1=11...11 2...9 p2=11...11 0...4 p1[2,0,0] 14...21 p2[2,0,0]ps2_1 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2[1,0,0]ps2_2 p1=9...9 2...9 p2=9...9 0...4 p1[1,0,0] 12...19 p2ps3 p1=7...7 2...9 p2=7...7 0...4 p1 10...17 p2ps5 p1=11...11 2...20 p2=11...11 2...20 p1[2,0,0] 14...23 p2[2,0,0]Table 8.1: Pseudo-knot QueriesGoals Workers1 16 32 36 42ps1_2 2973.43 196.37(15.1) 104.46(28.5) 90.06(33.0) 79.43(37.4)ps2_1 2775.75 185.10(15.0) 96.75(28.7) 86.76(32.0) 74.49(37.3)ps2_2 2774.66 182.69(15.2) 96.66(28.7) 88.78(31.3) 73.45(37.8)ps3 1771.56 120.62(14.7) 64.45(27.5) 59.51(29.8) 50.03(35.4)ps5 16601.91 1047.12(15.9) 528.32(31.4) 472.28(35.2) 403.28(41.2)� 26897.31 1733.68(15.5) 892.23(30.1) 799.56(33.6) 681.61(39.5)Table 8.2: Results of pseudo-knot query.The speci�c pseudo-knot queries used in our tests are shown in Table 8.1. The times in seconds for thesequeries, run with varying numbers of processes on the TC-2000, are shown in Table 8.2. The �gures inparentheses are speedups. Each value is the best of three runs.The gsx summary of the one ps3 query with 32 workers is shown in Figure 8.3. The various shades of gray(colors on a screen) indicate states of the Aurora parallel abstract machine. This particular picture indicatesthat the 32-worker machine was in the �work� state almost 90% of the time.In these runs we used upshot to help us optimize the program. It showed us that the grain size of the paralleltasks varied enormously due to the variation in the size of the sequence fragments. If a large task is startedlate in the run, all other processes can become idle waiting for it to �nish. We addressed this problem bypre-sorting the sequence fragments in decreasing order of length. This allows good load balancing from thebeginning of the run to the end.Table 8.3 shows the speed improvements obtained by pre-sorting sequence-fragments for selected queries.110

File: "ps3_32_new.gsx" Processors: 32

work bckt sleep search other srch-p

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 sec

File: "ps3_32_new.gsx" Processors: 32 [39544804.89]

Figure 8.3: E�ciency of pseudo-knot query on TC-2000They are small but de�nitely signi�cant.Goals Workersexecuted 16 32 36 42ps1_2 2.6% 6.7% 12.0% 8.0%ps2_1 3.1% 5.0% 6.7% 9.2%ps2_2 3.2% 5.7% 8.3% 11.7%ps3 3.3% 1.2% 0.1% 3.4%Table 8.3: Percentage improvements due to sorting8.5.2 The Protein Motif Search ProblemThis problem involves �nding all occurrences of some �protein motif� patterns in a set of proteins. The testdata contains about 600 motifs and 1,000 proteins, varying in length from a few characters to over 3700.The algorithm for this task was designed with consideration for parallel execution; therefore we describe itin more detail.The search algorithm is based on frequency analysis. The set of proteins to be searched is pre-processed todetermine the frequency of occurrence of each of the characters representing the amino acids. Subsequentlya probability is assigned to each character, inversely proportional to the frequency of occurrence in theproteins.The protein motif patterns are originally given in the form described in Section 8.4.2. This form is thentransformed to a Prolog clause, such as 111

prosite_pattern('PS00103',[any("LIVMFYWC"),any("LIVM",3),any("DE",2),arb,any("LIVM"),arb(2),any("GC"),arb,any("STA")]).For each pattern a �most characteristic� character position is selected, i.e. the position with the smallestprobability of matching. As the pattern matching algorithm will start at this most characteristic position,the pattern is split to three parts: the characters before, at, and after the given position, with the �before�part reversed. The split form is represented by one or more Prolog clauses, one for each choice for thecharacteristic position. The ASCII code of the character in this position is placed as the �rst argument ofthe clause, for the purpose of fast indexing.The above example pattern has the any("GC") position as the most characteristic, and thus the followingrepresentation is produced (note that 67 is ascii C and 71 is ascii G):/*prosite_dpat(Code, BeforeReversed, After, Name).*/prosite_dpat(67,[arb(2),any("LIVM"),arb,any("DE",2),any("LIVM",3),any("LIVMFYWC")],[arb,any("STA")],'PS00103').prosite_dpat(71,[arb(2),any("LIVM"),arb,any("DE",2),any("LIVM",3),any("LIVMFYWC")],[arb,any("STA")],'PS00103').The search algorithm has three levels of major choice-points: selection of a protein, selection of a patternand the selection of a position within the protein where the matching is attempted. The introduction of thecharacteristic position helps in reducing the search space by e�cient selection of patterns that can be matchedagainst a given position in a given protein. This implies a natural order of search shown in Figure 8.4.Select Proteins: select a protein, say P ,Select Positions: select a position within this protein, say N , with a character C ,Select Patterns: select a pattern M which has C as the most characteristic element,Check: check if pattern M matches protein P before and after position N .Figure 8.4: The search space of the protein motif problemWe have implemented the protein motif search program based on the above algorithm and data representa-tion. With the test case containing 1000 proteins and 600 patterns, in principle there is abundant parallelismin exploring the search space. Over 11000 matches are found in the database, so collecting the solutions alsorequires some caution.Let us �rst examine how easy it is to exploit the parallelism found in the problem. Table 8.4 shows theexecution times in seconds (and the speedups in parentheses) for the search program run in a failure drivenloop. This means that the the search space is fully explored, but solutions are not collected. The �rst lineof the table is for the original database of proteins. Although the results are very good for smaller numbersof workers, the speedup for 42 workers goes below 90% of the ideal linear speedup.Now we examine the search space as shown in Figure 8.4, and try to pinpoint the reasons for the disappointingspeedups. First, we can deduce that the coarse grain parallelism of the Proteins level is not enough to allowfor uniform utilization of all workers throughout the computation. Second, the �ner level parallelism at thelevel of Positions is not exploited su�ciently to compensate for the uneven structure of work on the proteinlevel.The �rst de�ciency of our program can be easily explained by reasons similar to those already described forthe pseudo-knot computation: the di�erent size proteins represent di�erent amounts of work. Consequently,if a larger protein is processed towards the end of the computation, the system may run out of other proteinsto process in parallel before the longer computation is �nished. The solution of sorting the proteins indecreasing order of size has been applied and the results are shown in second row of Table 8.4. The speedupsare almost linear, being less than 1% below the ideal speedup. Although this change is enough on its own112

Program Workersvariant 1 16 24 36 421. 2962.50 186.76(15.9) 127.14(23.3) 89.50(33.1) 79.72(37.2)2. 2965.79 185.49(16.0) 123.83(24.0) 82.89(35.8) 71.03(41.8)3. 2952.18 185.39(15.9) 125.10(23.6) 86.31(34.2) 75.67(39.0)4. 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)1 = original program 2 = sorted data 3 = bottom-up 4 = bothTable 8.4: Exploring the Search Space in the Protein Motifs Queryto solve our problem of poor speedup, the issue of exploiting �ner grain parallelism on the level Positionsis also worth exploring.The second level of choice in our search problem is the selection of a position within the given protein to beused as a candidate for matching against the most characteristic amino acid in each pattern. Since proteinsare represented by lists of characters standing for amino acids, this choice is implemented by a recursiveProlog predicate scanning the list. The following is a simpli�ed form of this predicate2, similar to the usualmember/2.find_match([C|Right],Left) :-find_a_matching_pattern(C,Right,Left).find_match([C|Right],Left) :-find_match(Right,[C|Left]).The or-parallel search space created by this program is shown in part (a) of Figure 8.5. When a search treeof this shape is explored in a parallel system such as Aurora, a worker entering the tree will �rst process theleftmost leaf and will make the second choice at the top choice-point available to other workers. This choiceis either taken up by someone else, or the �rst worker takes it after �nishing the leftmost leaf. In any case itcan be seen that the granularity of tasks is rather �ne (the work at a leaf is often only a few procedure callslong) and the workers will be getting in each other's way, causing considerable synchronization overheads.
(a) (b)Figure 8.5: Alternative parallel search treesThe exploration of the search space is thus done by descending from top to bottom, an approach analogousto the topmost scheduling strategy of early parallel Prolog implementations [3, 4]. Later research showedthat this type of scheduling is rather ine�cient for �ner grain granularity problems [2]. In our problem,topmost scheduling is forced on the system by the shape of the search tree, irrespectively of the schedulingstrategy of the underlying system3.To avoid top-to-bottom exploration, one would like the system to descend �rst on the recursive branch,thus opening up lots of choice-points. The left-to-right exploration of alternatives within a choice-point is,2We just show the search aspects of the program, omitting those parts which deal with returning the solution.3We actually used the Bristol scheduler with bottommost scheduling.113

however, an inherent feature of most or-parallel systems. In fact, rather than to require the system to changethe order of exploration, it is much easier to change the order of clauses in the program and thus direct thesystem to explore the search tree in a di�erent manner. This is analogous to the way users of a sequentialProlog system in�uence the search by writing the clauses of a predicate in appropriate order.In the case of the present search problem the desired e�ect of bottom-to-top exploration can be achieved bytransposing find_match's two clauses. This way the search tree will have the shape shown in part (b) ofFigure 8.5. The �rst worker entering the tree will run down the leftmost branch opening up all choice-points,which then will be processed by backtracking from bottom towards the top. Several workers may cooperatein this process, thus sharing the work through public backtracking rather then the more expensive means of�major task switching� as described in [2].The third row of Table 8.4 shows the e�ect of bottom-to-top exploration technique applied to the originaldatabase of proteins. The results are somewhat better than in the corresponding �rst row, although not asgood as the ones achieved by tuning the coarse grain parallelism (second row). The �nal row of the tableshows the results obtained with both improvements applied, showing a small improvement over the secondrow.Having explored the issues of parallel search space traversal, let us now turn to the problem of collectingthe solutions. We have experimented with several variants of this program; the test results are shown inTable 8.5. The very �rst row, showing the times for the failure driven loop, is identical to the last row ofTable 8.4 and is included to help assess the overheads of collecting the solutions. The runs shown here weredone using the bottom-to-top variant of the program with a sorted database. The last row of the table isour �nal, best variant, showing a speedup of 40.3 with 42 workers, an e�ciency of 96%.Goals Workersexecuted 1 16 24 36 42fail loop 2952.54 184.45(16.0) 123.00(24.0) 82.22(35.9) 70.80(41.7)1 setof 3072.26 232.26(13.2) 180.64(17.0) 150.16(20.5) 148.08(20.7)2 setof's 3114.44 198.96(15.7) 136.61(22.8) 97.39(32.0) 86.77(35.9)2 �ndall's 2971.16 188.30(15.8) 126.38(23.5) 86.26(34.4) 73.81(40.3)Table 8.5: Results of the Protein Motifs QueryIn the �rst variant of the program we used a single setof predicate to collect all the solutions (see the singlesetof row in Table 8.5). Our visualization and tuning tools (Figure 8.1) showed us that the low e�ciency weinitially attained was mainly due to the large number of solutions generated by the query. Since the parallelversion of the setof operation collects solutions serially at the end of the query, this led to a long �tail�at the end of the computation in which one worker was collecting all the solutions. In order to parallelizethe collection of solutions we replaced the single setof by a nested pair of setof's, i.e. the solutions foreach protein were collected separately, and a list of these solution-lists was returned at the top level of thesearch. The data for this improved version is shown in the double setof row of Table 8.5. Though thischange resulted in a slight increase in the sequential time, the overall parallel times improved a great dealsince more of the solution-gathering activity could proceed in parallel.In this second variant of the program a separate setof predicate is invoked for each protein. Since the setofscans its arguments in search for free variables, this involves scanning the huge list representing the protein.To avoid this overhead, the setof calls were replaced by calls to findall, resulting in further improvementin performance, in terms of absolute time and speedup as well. This �nal result is shown in the doublefindall row of Table 8.5).8.6 ConclusionThe success of parallel logic programming requires three things: scalable parallel machines (bus-based �true�shared-memory machines are being eclipsed by fast uniprocessor workstations), a robust parallel logic pro-gramming system, and appropriate applications. Our preliminary experiments here indicate that the BBNTC-2000, the Aurora parallel Prolog system, and two applications in molecular biology represent such a114

combination.Beyond the potential contribution of parallel logic programming to large-scale scienti�c applications, thework reported on here is interesting because it re�ects a new and di�erent phase of the Aurora parallelProlog project. In earlier papers on Aurora, we (and others) have written about Aurora's design goals, itssystem architecture, and alternative scheduling algorithms. Each of these was an interesting and fruitfulresearch topic in its own right. This paper reports on the use of Aurora. During this work there was notinkering with the system (except for the machine-dependent memorymanagement work described in Section8.5.1) or comparison of alternative scheduling mechanisms.The original goal of the Aurora project was to determine whether Prolog by itself could be an e�ectivelanguage for programming parallel machines. C and Fortran programmers still must concern themselveswith the explicit expression of a parallel algorithm, despite considerable e�orts to produce �automatic�parallelizing compilers. It was hoped that the parallelism implicit in Prolog could be exploited by thecompiler and emulator more e�ectively than is the case with lower-level languages. Our experiments here byand large con�rm this hypothesis: in both the pseudo-knot and the protein motif problems, good speedupswere obtained with our initial Prolog programs, written as if for a sequential Prolog system. On the otherhand, we also found that performance could be improved by altering the Prolog code so as to �expose�more of the parallelism to the system (top-to-bottom vs. bottom-to-top scanning), eliminate unnecessarysequential bottlenecks (two setofs vs. one) and permit load-balancing (pre-sorting of sequences). That wewere able to do this �ne-tuning at the Prolog level is a measure of success of the research into schedulingpolicies: when we gave the current Aurora system more freedom, it was able to exploit it to increase theamount of parallel execution.Thus Aurora remains a tool for parallel algorithm research, but at the Prolog level as opposed to the Clevel. At the same time, its ability to convert hours of computation into minutes of computation on scienti�cproblems of real interest attests to its readiness for a production environment.AcknowledgementsEwing Lusk and Ross Overbeek were supported in part by the O�ce of Scienti�c Computing, U.S. Depart-ment of Energy, under contract W-31-109-Eng-38. Shyam Mudambi's work was done while the author wasat Knox College, Galesburg, Illinois. Péter Szeredi and Ewing Lusk were both partially supported by theU.S.-Hungarian Science and Technology Joint Fund under project No. 031/90.References[1] A. Bairoch. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 19:2241-2245(1991).[2] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D Warren. Flexible Scheduling ofOr-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference on Parallel Architecturesand Languages Europe, pages 403�420. Springer Verlag, June 1991. Lecture Notes in Computer Science,Vol 506.[3] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. SchedulingOR-parallelism: an Argonne perspective. In Proceedings of the Fifth International Conference on LogicProgramming, pages 1590�1605, MIT Press, August 1988.[4] Alan Calderwood and Péter Szeredi. Scheduling or-parallelism in Aurora � the Manchester scheduler.In Proceedings of the Sixth International Conference on Logic Programming, pages 419�435, MIT Press,June 1989.[5] Mats Carlsson, Ewing L. Lusk, and Péter Szeredi. Smoothing rough edges in Aurora (Extended Ab-stract). In Proceedings of the First COMPULOG-NOE Area Meeting on Parallelism and ImplementationTechnology. Technical University of Madrid, May 1993.[6] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with Upshot. Technical ReportANL�91/15. Argonne National Laboratory, 1991.115

[7] Wen-Hsiung Li and Dan Graur. Fundamentals of Molecular Evolution. Sinauer and Associates, 1991.[8] Ewing Lusk, Ralph Butler, Terence Disz, Robert Olson, Ross Overbeek, Rick Stevens, D.H.D. Warren,Alan Calderwood, Péter Szeredi, Seif Haridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski, andBogumiª Hausman. The Aurora or-parallel Prolog system. New Generation Computing, 7(2,3):243�271,1990.[9] Ewing Lusk, Shyam Mudambi, Ross Overbeek, and Péter Szeredi. Applications of the Aurora parallelProlog system to computational molecular biology. In Dale Miller, editor, Proceedings of the Interna-tional Logic Programming Symposium, pages 353�369. The MIT Press, November 1993.[10] Shyam Mudambi. Performance of Aurora on NUMA machines. In Koichi Furukawa, editor, LogicProgramming: Proceedings of the Eighth International Conference on Logic Programming, pages 793�806, MIT Press, 1991.[11] David Searls. Investigating the Linguistics of DNA with De�nite Clause Grammars. In Ewing L.Lusk and Ross A. Overbeek, editors, Logic Programming: Proceedings of the 1989 North AmericanConference, pages 189�208, MIT Press, 1989.

116

Chapter 9Handling large knowledge bases inparallel Prolog1Péter Szeredi and Zsuzsa FarkasIQSOFT Intelligent Software Co. Ltd.H-1142 Budapest, Teleki Blanka utca 15-17, Hungary{szeredi,farkas}@iqsoft.huAbstractThe paper describes our work on using parallel Prolog systems for implementing relatively largehierarchical knowledge bases, carried out within the CUBIQ Copernicus project.The CUBIQ project is an attempt to integrate three strands of computing: expert systems, parallelcomputing and graphical interaction and visualisation. For core expert system development theCUBIQ basic tool-set has been developed; parallel computing is supported by two or-parallel Prologsystems: Aurora and Muse; and the graphical tools have been developed using the ICD-Edit 3-Ddiagrammatical interaction tool and the Tcl/Tk library.The problem of representing and using a large hierarchical knowledge base arose within the EMRM(Electronic Medical Record Management) system, one of the prototype applications developed inthe CUBIQ project. This application uses the SNOMED hierarchical medical thesaurus.The paper describes our experiments with several alternative representation techniques used forimplementing the SNOMED hierarchy of the EMRM system. We also describe how the results ofthese experiments in�uenced the development of the CUBIQ tool-set itself. We present parallelperformance results for typical searches within the SNOMED tree hierarchy for both Aurora andMuse.Keywords: Prolog, expert systems, parallel execution, Aurora, Muse, SICStus, Prolog Objects,SNOMED9.1 IntroductionThe CUBIQ Copernicus project aims at the integration of three strands of computing: expert systems,parallel computing and graphical interaction and visualisation [4]. The main objective of the project is toproduce a Prolog-based tool-set (called the CUBIQ tool-set), with features to aid expert system development1This report has been presented at the Workshop on High Performance Logic Programming Systems [9]117

and graphical interaction, which also supports parallel execution. The implementation of CUBIQ usesSICStus Prolog and its or-parallel extensions Aurora and Muse [5, 1]. The graphical components of thesystem are based on the ICD-Edit 3-D diagrammatical interaction tool [3] and the Tcl/Tk library. Moredetails on the graphical aspects of CUBIQ can be found in [10].The partners in the CUBIQ project are IQSOFT (Budapest, Hungary), University of Bristol (UK) and CityUniversity (London, UK).The CUBIQ project includes the development of two prototype applications of the tool-set: the CONSULTcredit rating expert system and the EMRM electronic medical record management system. This paper dealswith the medical thesaurus component of the EMRM application.The medical thesaurus is based on SNOMED (Systematized Nomenclature of Medical Knowledge), [7]. TheSNOMED thesaurus contains approximately 40,000 medical phrases arranged into a tree hierarchy. Thistree structure plays a vital role in two major functions of the EMRM system:browsing: selecting an appropriate SNOMED phrase using a substring of its (English) name, andinheritance in diagnosis: �nding a diagnosis rule applicable to a medical object by inheritance in theSNOMED hierarchy.The CUBIQ tool-set introduces the notion of frames and frame inheritance to support hierarchical knowledgerepresentation. The main implementation of the SNOMED hierarchy presented in this paper is built on topof CUBIQ frames.The paper describes our experiences in the design and implementation of the SNOMED component ofEMRM with special attention paid to issues of parallel performance. Section 9.2 gives basic backgroundinformation on CUBIQ, EMRM and the parallel Prolog systems used in the project. Section 9.3 outlinesour initial experiments on implementing SNOMED in plain Prolog and an existing library extension (PrologObjects). Section 9.4 describes the evolution of the frame representation in CUBIQ, as in�uenced by theEMRM application and its performance analysis. Section 9.5 describes our performance measurements forboth Aurora and Muse. Finally Section 9.6 summarises the conclusions of the paper and outlines futurework.9.2 Background9.2.1 The CUBIQ tool-setThe CUBIQ basic tool-set is built on top of (SICStus) Prolog. Several language extensions (based onterm_expansion/2) are provided to support the implementation of knowledge bases. The main extensionsare frames, functional rule notation, uncertainty handling [6], and memoisation. All these extensions areproperly integrated with each other.This section focuses on outlining the main features of CUBIQ frames, for a more detailed description of thesystem see [4, 10].The bottom layer of CUBIQ is a frame-extension of Prolog. The frames are objects of the world to bemodeled, arranged in a parentship hierarchy. Relations can be de�ned on one or more frames, and thenthese de�nitions are inherited from the more general to the more speci�c frames.CUBIQ uses the concept of the relation as a primary notion. That is, relations may be de�ned with framesas arguments. Formally, frames are introduced with a declaration of the following form::- frame(Frame, Parents, Attribute).where the Frame atom is a frame identi�er, Parents speci�es the parent(s) of Frame, being either a frameidenti�er or a list of frame identi�ers, and the optional Attribute is an arbitrary term, attached to Frameas a (non-inherited) attribute.Relations attached to frames are de�ned by so-called frame clauses containing frame references of the formframe::X. An argument of this form appearing in a clause head means that the clause applies to all de-scendants X of frame frame. Accordingly, when an argument of the form ::frame appears in a goal, the118

corresponding predicate de�nition is sought among all the ancestors of frame. We also allow ancestor::Xas a goal argument, in which case X is �rst instantiated to a descendant of ancestor (and all descendantsare enumerated on backtracking), and for each such instantiation of X, the inheritance search is used todetermine the applicable de�nition.CUBIQ frame handling is illustrated with a simple example in Figure 9.1.:- frame(animal,[]).:- frame(carnivore,animal).:- frame(herbivore,animal).:- frame(fox,carnivore).:- frame(rabbit,herbivore).size(rabbit::_, 8).size(fox::_, 30).eats(carnivore::C, herbivore::H) :-size(::C,S1), % A carnivore eats asize(::H,S2), % herbivore if it isS1 >= 2 * S2. % at least twice as big.% A sample invocation:?- eats(animal::X, animal::Y).X = foxY = rabbitFigure 9.1: A simple example illustrating CUBIQ framesBy default a multiple, overriding inheritance mechanism is used for frame relations, but the user can alsosupply an alternative inheritance mechanism.Note that the CUBIQ tool-set supports dynamic frame handling as well, but the application problem dis-cussed in this paper does not require this feature. This is important because, in order to preserve sequentialProlog semantics, most or-parallel systems execute dynamic predicates in a synchronised way, thus accruinglarge overheads and losing advantages of parallel execution.9.2.2 EMRM: a medical application with a large medical thesaurusOne of the prototype applications of the CUBIQ project chosen for testing the practical usability of its com-ponents is the EMRM (Electronic Medical Record Management) system. The goal of this application is togive knowledge-based assistance for the physician in the patient-related administration process. The knowl-edge representation of EMRM is built on top of the SNOMED hierarchical medical thesaurus. SNOMEDis a structured nomenclature and classi�cation of the terminology used in human and veterinary medicine,covering all important aspects of medicine. It is supported by the American Medical Society, and it is oneof the main candidates for emerging medical terminology standards.SNOMED constitutes a large though rather �at hierarchy: it contains about 40,000 nodes (but more than90% of these are leaf nodes, and the maximal depth is 5). Each SNOMED node has a unique (hexadecimal)code and contains a reference to its parent SNOMED code as well as a number of attributes. The mostimportant attribute is the textual description of the notion represented. Nodes can have further attributes,such as alternative descriptions (aliases), references to other SNOMED nodes, etc. In a somewhat simpli�edway a SNOMED node can thus be characterised by the following data:<SNOMED-code> <parent SNOMED-code> <attributes>The SNOMED thesaurus is divided into parts (called modules) according to the type of phrase in question.The biggest SNOMED module is that of the diseases, other modules include living organisms, chemicals,morphology, topography etc. 119

In the internal data structures of EMRM each medical phrase is represented by the SNOMED-code, possiblyre�ned using some free text quali�ers. When information from such data structures is displayed, the textualdescription is substituted for the code. Input of medical data is supported by the SNOMED browser which isa tool for navigating around the SNOMED thesaurus, combining browsing in the hierarchy with text search.Using the browser the user can arrive at the node representing the medical phrase to be entered withoutknowing the exact text associated with the node.Further to the SNOMED browser, the other main component of EMRM where the SNOMED hierarchyplays a crucial role is the diagnosis support function. Here the information inheritance principle is appliedto support re�nement of diagnoses. For example, in EMRM there is a rule expressing that a generic diseasegroup is indicated as a possible diagnosis by the family history, if a disease of that type (i.e. a SNOMED-descendant of the generic disease) has already appeared in the close family. Figure 9.2 shows how such arule can be expressed using CUBIQ frames. Implementation of such rules again requires e�cient search inthe SNOMED tree hierarchy.possible_diagnosis(disease::DiseaseGroup) :-relative_with_recurrent_disease(disease::DiseaseGroup, Relative),close_relative(Relative).relative_with_recurrent_disease(disease::DiseaseGroup, R) :-recurrent_disease_in_family_history(DiseaseGroup::Disease, R).recurrent_disease_in_family_history(disease::Disease, R) :-history_of_relative(R, Disease, recurrent, _).Figure 9.2: Diagnosis search using CUBIQ framesFor our parallel performance analysis we have selected four search problems, two from the browser and twofrom the diagnosis re�nement component. These are discussed in more detail in Section 9.5.9.2.3 Or-parallel Prolog systems used in CUBIQThe main parallel Prolog platform used in the CUBIQ project is Aurora. Aurora [5] is an or-parallelimplementation of full Prolog based on the SICStus 0.6 engine. Several schedulers were developed forAurora, in the present project the Bristol scheduler was used [2].In the �nal phase of the project the Muse [1] or-parallel implementation based on SICStus 3 was released.We included the Muse system in our evaluation for comparison with Aurora, and also for experiments withsome newer SICStus features (such as Prolog Objects) which were not supported by the Aurora engine.Aurora uses the binding array approach of the SRI model [11] to represent multiple bindings in or-parallelsearch, while Muse uses the copying approach for solving this problem. Although both systems are based onSICStus, they use di�erent versions: the Aurora engine is older and slower than that of Muse. On the otherhand Aurora supports a number of extensions, such as the commit pruning operator, non-synchronisinginput-output and database operations.In order to provide a fair comparison our experiments use only the common part of the two systems. Inthe process of program development we tried to eliminate the use of features for which the speed of the twosystems signi�cantly di�er. For example, the foreign interface of SICStus 0.6 is much slower than that ofSICStus 3, while atom composition and meta-calls turned out to be slower in SICStus 3 than in SICStus 0.6.9.3 Representing the SNOMED hierarchy in PrologSelecting the right representation for the SNOMED hierarchy was a crucial issue in the design of the EMRMsystem. At �rst, considering the size of this thesaurus, it seemed natural to use an external data base forstoring SNOMED. There were, however, strong arguments for representing SNOMED within Prolog: itshierarchical structure called for a hierarchical knowledge representation technique which can be easily builton top of Prolog. The Prolog representation also allowed us to explore the issues of or-parallel execution ofthe SNOMED search. 120

In this section we outline our experiments with a representation in plain Prolog and in Prolog Objects.Our �rst experiment was to transform the SNOMED thesaurus into a set of plain PROLOG clauses, to testthe feasibility of such a representation and to test whether or not SICStus Prolog was suitable for handlingthis large number of atoms and clauses.As a �rst attempt, the following trivial Prolog representation was chosen for SNOMED nodes:snomed(<SNOMED-code>, <parent SNOMED-code>, <attributes>).Here the attributes part is a structure of the form attr(Name,Aliases,OtherAttrs). An example of theProlog representation of a SNOMED node is shown in Figure 9.3.snomed('D0-01150','D0-01100/00',attr('Furuncle of skin and subcutaneous tissue, NOS',['Boil of skin and subcutaneous tissue, NOS'], [])).Figure 9.3: An example for simple representation of SNOMED nodesWe were able to compile and load the above Prolog representation of the whole SNOMED thesaurus intoSICStus 3, but not into Aurora, as the load time of large predicates (i.e. ones consisting of a large numberof clauses) in the SICStus 0.6 based engine of Aurora is prohibitively large.The speed of search with the above primitive representation was not satisfactory in SICStus 3 either. Thiswas partly due to the single-predicate representation, but also due to limited indexing: as SICStus hasindexing on the �rst argument only, the operation of �nding children of a parent SNOMED node is veryexpensive in the above representation.It became obvious that the representation should be improved, by splitting up the large predicate into a setof smaller ones, and also catering for fast access to children. However, we decided not to continue the devel-opment of the Prolog representation for the speci�c case of SNOMED thesaurus. Instead, in conformancewith the goals of the CUBIQ project, we proceeded to transform the generic frame representation of CUBIQin such a way that (parallel) handling of large hierarchical structures, such the SNOMED thesaurus, becamefeasible.Before embarking on this task, we have made an additional experiment, regarding the feasibility of using anexisting object-oriented extension of SICStus Prolog, Prolog Objects, for representing SNOMED.A straightforward representation, mapping each SNOMED node to an object is shown in Figure 9.4.<SNOMED-code> ::{super(<parent SNOMED-code>) &attributes(<attributes>)}.Figure 9.4: Representation of SNOMED nodes in Prolog ObjectsIt turned out that with this representation the memory requirements are prohibitively large when loadingthe disease part of the SNOMED thesaurus. This is because each object becomes a fully-�edged SICStusmodule, with signi�cant memory overheads.The newest release of Prolog Objects introduces the notion of object instance. As most of the nodes ofthe SNOMED tree are leaves, this feature can be used to reduce storage requirements by using instances torepresent SNOMED leaves. While in the earlier representation the built-in descendant method could bedirectly used to enumerate all the descendants, in the new version we had to de�ne our own method for thispurpose, using the descendant method inside the tree, and the has_instance built-in for leaves.The new representation allowed us to load the whole of the SNOMED disease module. The run-time of asearch involving scanning all the diseases was still prohibitively large. In our understanding, this is due to121

the complexity of object representation and rather crude implementation of certain primitives. For examplethe has_instance primitive actually enumerates all the instances of the �world� and then �lters out theinstances of the given object.We have experimented with the parallel behaviour of SNOMED searches in Prolog Objects using the Museor-parallel implementation. We have experienced a 10% slowdown for multiple processors (irrespective oftheir number). This is clearly due to the fact that the SICStus Prolog Objects enumeration predicateswere not created with parallel execution in mind. The enumeration process of (non-instance) children ofan object is based on a dynamic predicate, while the enumeration of instances of an object reduces to thecurrent_module built-in of SICStus, which, in turn, also relies on a dynamic predicate. The compulsorysynchronisation of dynamic predicates in Muse practically prohibits parallel execution of the search in theSICStus Prolog Objects inheritance tree structure.9.4 The evolution of the frame representation in CUBIQThis section describes the evolution of the CUBIQ frame representation format directed towards support-ing large frame hierarchies and their parallel search. In this process the following e�ciency factors wereconsidered:� execution speed (sequential and parallel),� program size,� development speed (time of consult, compile and load).The initial representation for frames was fairly straightforward, a frame declaration of the form::- frame(Frame, Parents, Attribute).was transformed into a clause:static_frame(Frame, Parents, Attribute).This directly corresponds to the initial SNOMED representation discussed in Section 9.3: a single predicatestores the whole frame inheritance structure. This representation produced acceptable execution speeds forhierarchies up to a few hundred frames, but for hierarchies with tens of thousands of frames, the drawbacksbecame apparent. Further to execution speed problems, the use of a single large predicate caused hugeslowdown in compilation and load time for Aurora.To remedy these problems, an alternative representation was developed, avoiding large predicates and pro-viding faster access to the children of a frame. In this representation a frame was translated to a clause ofthe form:Frame(Parents, Children, Attribute).Note that the name of the frame was used as the predicate name, so that each frame declaration was trans-formed into a separate predicate2. For example, the frames of the example in Figure 9.1 were transformedinto a set of clauses shown in Figure 9.5.With this representation we got a marked improvement in execution speed, however, for large frame struc-tures the size of the code became very big. Obviously, the detrimental e�ects were due to the large numberof additional predicates generated for frames.We have thus explored two extreme representation schemes for frames: all frames stored in a single predicateand a separate predicate for each frame. Both schemes proved to be unacceptable from some aspects, hencea compromise between the two approaches had to be sought.2A minor restriction associated with this solution is that frame names are not allowed to appear as predicate names in theuser program (at least with arity 3). 122

% Frame(Parents, Children, Attrs).animal([], [carnivore,herbivore], []).carnivore([animal], [fox], []).herbivore([animal], [rabbit], []).fox(carnivore, [], []).rabbit(herbivore, [], []).Figure 9.5: Optimised representation of CUBIQ frames of Fig. 9.1An obvious compromise is to split the set of frames into groups, and have each group represented by asingle predicate, where each clause of the predicate represents a frame within the group. In general form,let us assume there exists a f(Frame) hash-function, which maps a frame name to the corresponding groupname. The general frame representation scheme based on the grouping implied by the f function is thus thefollowing:f(Frame)(Frame, Parents, Children, Attribute).The hash function f has to be fairly cheap to evaluate and has to map atoms to atoms. As a �rst candidate,we selected a very simple such function, which maps an atom into (an atom composed of) its �rst threecharacters. Note that in the case of the SNOMED disease database, due to the format of SNOMED codes,two of the three initial characters of frame names are �xed. This solution thus resulted in partitioning theSNOMED disease representation into just 16 predicates. Although we got some slowdown in execution timewith regards to the previous approach, the space overhead with respect to the single predicate representationturned out to be negligible, and the development e�ciency became acceptable.Although the simple �name slicing� approach proved to be very good for the case of the SNOMED framehierarchy, it is very much dependent on the actual naming of the frames. Therefore we subsequently trieda �real� hash function using the term_hash predicate of the SICStus terms library with moduluses 17 and2573. We got very similar development e�ciency and size, and somewhat faster execution times. Detailedtime and space �gures and the analysis of the results are given in the next section.A further issue arising in parallel execution of frame hierarchy searches is that of the handling of dynamicframes. It was clear from the beginning that it is feasible to separate the representation of static and dynamicframes, so that the former ones can be compiled and executed in parallel. The tool-set functions accessing theframe structure thus have to look at both static and dynamic parts. Note, however, that in parallel Prologsystems that aim to preserve sequential semantics even an attempt to access an empty dynamic predicatede�nition will cause synchronisation and thus kill the parallelism. We have therefore introduced a load-timeswitch into the CUBIQ system, by which the user can assert that no dynamic frames will be used. Withthis switch set, the system disallows dynamic frames and searches using the static frame structure only.9.5 Performance analysis of SNOMED searchesIn this section we present and analyse sequential and parallel performance of SNOMED searches for both Au-rora and Muse. All measurements were carried out on a Sequent Symmetry with six 486/50MHz processors,running Dynix ptx 2.1.1.We use the following four benchmark problems, listed in increasing size:� diagn1: Check the presence of the descendants of three typical disease groups in a given family history.� diagn2: Check the presence of all diseases in a given family history.� browse1: Browse the whole tree hierarchy of the disease module looking for a node whose name oraliases contain a given substring.3We have moved the hashing algorithm (coded in C) of this SICStus 3 library predicate to Aurora with practically no change,in order to be able to use it in Aurora as well. 123

� browse2: Browse the whole disease hierarchy with a complex search term requiring the checking ofthree substring matches, their results being combined using and and or boolean operators.All these searches are concerned with the disease SNOMED module, containing approximately 18,500SNOMED terms, represented by the same number of clauses. About 45,000 di�erent Prolog atoms ap-pear in the representation of the disease module. The or-parallelism comes from the possibility of exploringalternative branches of the SNOMED tree in parallel.The diagnosis and browse benchmark groups are of a slightly di�erent nature. The former are dominated bythe tree search proper, with very little work to be done for most of the tree nodes. Furthermore, the diagn1search problem is very small, as it is concerned with only a part of the disease tree (diagn2 scans the wholedisease tree).The browse searches also scan the whole disease tree and do some non-trivial string (atom) processingtests for each node. The basic test for checking whether an atom contains another one (ignoring case) isimplemented in C, as a new built-in, in both Aurora and Muse4. In browse1 this basic test is run for thenode name and its aliases, while in browse2 a small boolean expression evaluator is invoked with the �atomcontains� test at the bottom. The browse searches are thus of coarser granularity than the diagnosis ones.9.5.1 Sequential performanceIn this section we discuss basic sequential performance of SNOMED disease hierarchy searches, using variousframe representations in both Aurora and Muse.Note that when comparing sequential behaviour of Aurora and Muse, most of the time we are actuallycomparing their engines (SICStus 0.6 and SICStus 3)5. As we have no access to SICStus 0.6 at the moment,we decided to use the single processor versions of the parallel systems for sequential comparison.Avrg Muse AuroraFrame representation pred Comp. Load Size diagn1 exec.size time (sec) (Mb) time (sec)1. single predicate 18500 331 593 5.2 502 8682. many predicates 1 401 37 11.4 0.93 0.74many* (simpl. meta-calls) 0.443. grouping by pre�x of 3 chars 1150 393 40 5.2 1.75 1.16pre�x 3* (no meta-calls) 1.07 0.934. grouping by hash mod 17 1100 391 46 5.4 0.51 0.915. grouping by hash mod 257 72 401 21 5.4 0.51 0.94Table 9.1: Comparison of the frame representation schemesTable 9.1 gives an overview of sequential performance data, with its rows corresponding to various framerepresentation schemes. Words printed in italics in the row headings are used to identify the scheme inthe sequel. The �rst column of the table shows the average size of the predicates (in terms of clauses)representing the frame hierarchy. The next four columns of the table give time and space measurements forthe Muse implementation:� the time (in seconds) needed to fcompile the representation of the whole disease hierarchy into quickload (.ql) format,� the time to load the .ql �le,� the memory used for loading (as displayed by the load built-in),� the (wall-clock) time needed to run the diagn1 benchmark on a single processor version of Muse.4We avoided the use of the foreign interface, because of signi�cant speed di�erence of its implementation in the two systems.5The only major exception to this is in the overheads of the multiple binding scheme: in Aurora the binding arrays techniqueof the SRI model has about 25% time overhead, while the Muse copying approach has about 5% overhead on single processorexecution. 124

The last column shows the single processor wall-clock execution time of Aurora on the diagn1 benchmark.As shown in row 1, the single predicate representation is characterised by very high load time as well asunacceptably high execution time. We therefore excluded this variant from our parallel experiments.Row 2 shows the many predicates variant, where each frame is stored as a separate predicate. This represen-tation has good execution time characteristics, but high storage requirements. It is interesting to note thatAurora is faster than Muse in this case. Further analysis shows that search in this representation inherentlyrelies on meta-calls, and these in the Muse engine are about a magnitude slower than in the Aurora engine.This is because the Muse implementation of meta-calls uses additional Prolog code to cater for modularityand goal expansion, features that are not present in Aurora. To make the comparison more fair, we addedto our evaluation a Muse variant, called many*, which, instead of the call/1 predicate, uses an internalsystem predicate (prolog:call_module/2), to avoid the overheads.Rows 3, 4 and 5 refer to representations using various hash functions to partition the frame representation intogroups: pre�x of 3 characters, and hashing with moduluses 17 and 257. They have very similar development�gures, except that the load time for the hash 257 representation is about half the other two. The averagepredicate size seems to have a big in�uence on the load time: for the single variant, with huge predicatesize, we get a very high load time, while for hash 257 variant, with a low average predicate size, we get thefastest load time.Regarding execution times, it is interesting to note that variant pre�x 3 is again faster on Aurora thanon Muse. Searching the frame hierarchy in the pre�x 3 representation relies on both meta-calls and theatom_chars/2 built-in predicate. It turns out that composition of atoms from their characters can beseveral times slower in the Muse engine than in Aurora, because of the di�erent atom table structure6 . Toseparate the issue of meta-calls and atom composition we introduced a variant of the search code for thisrepresentation, called pre�x 3*, which avoids meta-calls by the usual technique of a switch predicate7.Summing up, variants many and hash 17 are the two fastest for both Aurora and Muse in the sequentialexecution of the diagn1 benchmark. We noted the same tendency for the other benchmarks in our suite. Inthe next section we give timings for all benchmarks for selected representation variants.We now brie�y discuss the issue of development e�ciency of Aurora. As regards storage requirements,Aurora �gures vary only a few percent with respect to those shown for Muse in Table 9.1. However, Auroracompilation and load times are several magnitudes bigger than those for Muse, due to SICStus 0.6 scalingup very badly in this respect. For variants 1 and 2 several hours are needed to compile and load the diseasedatabase. For variants 3-5, compilation and load both take 700 to 1500 seconds each. This de�ciency of theAurora engine is in part o�set by its ability to produce saved states, which is absent in Muse8.9.5.2 Parallel performanceIn this section we discuss the parallel performance of various SNOMED search problems on both Auroraand Muse for 1 to 6 processors. The four benchmarks described earlier are used in the analysis. In the caseof diagn1, we use a sequence of ten invocations of the benchmark, to increase measurement accuracy. Wealso include the arithmetic mean of the four benchmarks in the tables9.Each benchmark has been measured 15 times for each number of processors and the smallest wall-clock timeswere taken into account. Entries in the tables show the (wall-clock) execution time in seconds followed bythe speedup �gure with respect to the 1 processor case (in italics).Table 9.2 shows the Aurora and Muse execution time of the benchmarks using the many representation, for6The Muse (SICStus 3) atom table is a tree structure that allows fast comparison of atoms, at the expense of slower atomconstruction. In Aurora (SICStus 0.6) atoms are stored in a simple hash table, resulting in fast construction of atoms (at leastof those which are entered in the table early enough). Note that in the presence of many atoms, hash con�icts can slow downthis algorithm as well.7Note that this technique cannot be applied to variant 2, because of the huge number of predicates to be invoked via ameta-call.8Restoring a saved state in Aurora, with the disease database loaded, takes about 35 seconds, which is comparable to theload time of the .ql �les in Muse.9We are aware of the fact that taking the arithmetic mean of execution times assigns a bigger weight to benchmarks runninglonger. However, having multiplexed diagn1 10 times, the benchmarks are roughly of the same size, and so taking an arithmeticmean does not distort the �gures too much. We have compared the harmonic mean of speedups (which puts an equal weight oneach benchmark) with the speedups calculated from the arithmetic mean of execution times, and found that these are within0.5% of each other. The advantage of using the arithmetic mean of times, rather than the harmonic mean of speedups, is thatthis way we get an overall time �gure, with which we can compare the two systems, Aurora and Muse.125

Goals Processors1 2 4 6Aurora (many)diagn1*10 7.41 3.77 (1.97) 2.04 (3.63) 1.57 (4.73)diagn2 4.36 2.19 (1.99) 1.13 (3.85) 0.81 (5.41)browse1 6.71 3.40 (1.97) 1.73 (3.89) 1.18 (5.67)browse2 10.07 5.07 (1.99) 2.58 (3.91) 1.75 (5.74)arith. mean 7.13 3.61 (1.98) 1.87 (3.82) 1.33 (5.38)Muse (many*)diagn1*10 4.42 2.27 (1.95) 1.24 (3.56) 0.89 (4.97)diagn2 2.38 1.19 (2.00) 0.63 (3.78) 0.43 (5.53)browse1 4.32 2.20 (1.96) 1.13 (3.82) 0.79 (5.47)browse2 6.84 3.46 (1.98) 1.80 (3.80) 1.23 (5.56)arith. mean 4.49 2.28 (1.97) 1.20 (3.74) 0.83 (5.38)Table 9.2: Parallel performance of the ``many'' representation1, 2, 4 and 6 processors. In the case of Muse the many* variant was used, to avoid excessive overheads ofmeta-calls. In this representation Muse is about 60% faster than Aurora, on average. With 6 processors,Aurora speedups are somewhat lower on the diagnosis benchmarks while Muse has lower e�ciency on thebrowse searches. Given the large amount of data to be searched, the overall speedup of about 5.4 for 6processors is very good. Also, the 6 processor execution time of the largest searches is below 2 seconds,which is acceptable for interactive use.Goals Processors1 2 4 6Auroradiagn1*10 9.26 4.73 (1.96) 2.54 (3.65) 1.96 (4.74)diagn2 4.79 2.44 (1.97) 1.23 (3.88) 0.88 (5.43)browse1 7.02 3.55 (1.98) 1.81 (3.88) 1.23 (5.72)browse2 10.32 5.22 (1.98) 2.64 (3.92) 1.79 (5.75)arith. mean 7.85 3.98 (1.97) 2.05 (3.82) 1.47 (5.36)Musediagn1*10 10.75 5.63 (1.91) 3.08 (3.49) 2.84 (3.79)diagn2 5.40 2.79 (1.94) 1.49 (3.62) 1.30 (4.15)browse1 6.92 3.58 (1.93) 1.93 (3.59) 1.39 (4.98)browse2 9.52 4.93 (1.93) 2.60 (3.66) 1.83 (5.20)arith. mean 8.15 4.23 (1.92) 2.27 (3.58) 1.84 (4.43)Table 9.3: Parallel performance of the ``prefix 3*'' representationTable 9.3 shows the performance �gures for the pre�x 3* representation. On a single processor Aurora isabout 10% slower on average for this variant than for the many representation. In contrast, the averageMuse execution time almost doubles. As discussed earlier, this is due to the di�erence in the implementationof the atom construction function in the underlying Prolog engines.The multi-processor performance of Muse is much worse than that of Aurora: the gap in the average speedupincreases with the number of processors. This highlights a further problem with atom construction: in bothAurora and Muse this operation is guarded by a single global lock, as adding a new atom to the table is126

required to be an atomic operation. As the Muse atom construction operation is more expensive, it causesmore contention for locks, and hence less e�cient exploitation of parallelism. This is more apparent for thediagnosis benchmarks, which are dominated by the tree search.In principle, locking at atom construction could be avoided, when this does not result in the creation of anew atom. This is actually the case in the frame representation discussed, as the atoms constructed are allnames of existing predicates. Unsynchronised atom search, on the other hand makes creation of new atomsa more complex operation, and also care has to be taken to avoid problems of interference between atomsearch and the creation of new atoms (e.g. new atom creation may cause the system to extend the atomtable at the same time when atom searches are done by other processors).We plan to experiment with modifying the or-parallel systems discussed to avoid locking at atom construc-tion, as this may seriously improve parallel e�ciency of programs intensively using atom-handling operations.Goals Processors1 2 4 6Auroradiagn1*10 9.14 4.65 (1.97) 2.48 (3.68) 1.91 (4.79)diagn2 4.75 2.40 (1.98) 1.23 (3.88) 0.86 (5.50)browse1 6.92 3.51 (1.97) 1.78 (3.89) 1.22 (5.69)browse2 10.02 5.09 (1.97) 2.58 (3.88) 1.76 (5.69)arith. mean 7.71 3.91 (1.97) 2.02 (3.82) 1.44 (5.36)Musediagn1*10 5.06 2.60 (1.95) 1.42 (3.56) 1.03 (4.91)diagn2 2.71 1.36 (1.99) 0.70 (3.87) 0.50 (5.42)browse1 4.54 2.31 (1.97) 1.19 (3.82) 0.82 (5.54)browse2 7.14 3.62 (1.97) 1.89 (3.78) 1.29 (5.53)arith. mean 4.86 2.47 (1.97) 1.30 (3.74) 0.91 (5.34)Table 9.4: Parallel performance of the ``hash 17'' representationTable 9.4 shows the parallel performance �gures for the hash 17 representation. This variant is on average8% slower than the one using the many representation. The speedups are roughly equal to those for themany variant.We have made parallel performance measurements for the hash 257 representation as well. We got data verysimilar to those in Table 9.4 with a very slight (1-3 %) overall reduction in both absolute speed and speedupsachieved. The slight slow-down seems to be connected to the size of the predicates involved: in the hash 17version each frame attribute access involves a call of a 17-clause predicate and (on average) a 1100-clauseone, while in the hash 257 variant the predicates invoked have 257 and 72 clauses on average. We plan tofurther explore the reasons behind this behaviour in the future.Processors Variantsmany many* pre�x 3 pre�x 3* hash 17 hash 2571 0.96 1.59 0.75 0.96 1.59 1.622 0.95 1.58 0.74 0.94 1.58 1.613 0.95 1.57 0.73 0.93 1.56 1.594 0.94 1.56 0.71 0.90 1.55 1.575 0.96 1.56 0.72 0.85 1.55 1.586 0.97 1.59 0.72 0.80 1.58 1.59Table 9.5: Muse/Aurora speed ratios for different representations127

As a �nal comparison of the two or-parallel systems examined, Table 9.5 shows the speed ratio of Muse andAurora for the arithmetic mean of the four benchmarks, measured using six di�erent frame representationtechniques for 1 to 6 processors. It is quite interesting to see how little the �gures in a single column vary:except for the pre�x 3* variant (which has a high contention for the atom table lock in Muse), the relativespeed of Aurora and Muse changes less than 5% when the number of processors changes. This means thaton the SNOMED benchmark suite Aurora and Muse achieve very similar speedups, although their singleprocessor speed varies, depending on the representation chosen.Columns with �gures below 1 highlight features that became slower in Muse with respect to Aurora: themany representation uses meta-calls, pre�x 3 uses meta-calls and atom construction, while pre�x 3* usesonly atom construction predicates. Interestingly, variant pre�x 3 does not show as much slow-down for Museas the pre�x 3* version, as the overhead of meta-calls results in longer execution time and thus reduces thecongestion for locks.9.5.3 SummaryAccording to performance results discussed above, the many frame-representation has the fastest executiontime, both for single and multiple processor execution, for Aurora as well as for Muse. Note, however, thatto achieve this speed in Muse the many* variant, with �doctored� meta-calls, had to be used.A signi�cant drawback of the many representation is its large storage requirement, which is over double theone for other variants. As the speed of the hash 17 representation is only 8% slower for both systems, wehave decided to use a hash-based frame-representation technique in the �nal version of the CUBIQ tool-set.We allow the modulus to be selected at the start-up of the tool-set, to allow �ne tuning of applications.9.6 ConclusionsWithin the CUBIQ expert system tool-set we have implemented a frame-extension of Prolog. We haveexplored several techniques for frame representation, examining their ability to support parallel search inlarge frame hierarchies.We have evaluated these techniques by implementing the SNOMED medical thesaurus using CUBIQ frames,and analysed the performance of searches within the SNOMED frame hierarchy using various representations.We have also examined the feasibility of implementing the SNOMED hierarchy in SICStus Prolog Objects.For our parallel experiments we have used two or-parallel Prolog systems, Aurora and Muse, both based on(di�erent versions of) SICStus Prolog.We have shown that the 18,000 node SNOMED disease hierarchy can be e�ciently represented in Prolog,using the general frame-extension of the CUBIQ tool-set. We have developed an implementation for CUBIQframes, based on the term_hash SICStus predicate, with good time and space characteristics. We haveshown that, for both Aurora and Muse, about 90% parallel e�ciency can be achieved for six processors incomplex searches of the SNOMED hierarchy.Our experiments with various frame representations highlighted a number of interesting features in the Prologimplementations used. We have found some Prolog elements, such as meta-calls and the atom constructionfunction, the implementation of which is much slower in the newest SICStus engine than in the older one.We have shown that the synchronisation done at atom construction hinders parallel execution of programsthat use this function very often. We have also pointed to some implementation details that make parallelexecution of object hierarchy searches in SICStus Prolog Objects infeasible.We have compared the parallel behaviour of Muse and Aurora on SNOMED searches using di�erent framerepresentation and search techniques. We have found that although their relative speed varies, the speedup�gures of the two systems are very similar.Our future plans include the modi�cation of some critical parts of Aurora and Muse to avoid some of theproblems highlighted by our experiments, such as unnecessary synchronisation at atom creation. We alsohope that with the further development of the EMRM prototype we will be able to test the parallel behaviourof other, more complex search problems as well. 128

AcknowledgmentThe authors are indebted to all their colleagues in the CUBIQ project and gratefully acknowledge the supportof the European Union Copernicus programme, under project CP93-10979 `CUBIQ'.References[1] Khayri A. M. Ali and Roland Karlsson. The Muse Or-Parallel Prolog model and its performance. InSaumyaDebray and Manuel Hermenegildo, editors, Proceedings of the 1990 North American Conferenceon Logic Programming, pages 757�776, Austin, 1990. ALP, MIT Press.[2] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H D Warren. Flexible Scheduling ofOr-Parallelism in Aurora: The Bristol Scheduler. In PARLE91: Conference on Parallel Architecturesand Languages Europe, pages 403�420. Springer Verlag, June 1991. Lecture Notes in Computer Science,Vol 506.[3] David Dodson, Hugh Reeves, and Rob Scott. ICD-Edit: A server for 23/4-D interactive connectiondiagram graphics with Prolog clients. Technical report TCU/CS/1995/2, Department of ComputerScience, City University, 1995. Poster presentation at GD'94, Princeton, New Jersey, October 1994.[4] Zsuzsa Farkas, Péter Szeredi, and Gábor Umann. CUBIQ tool-set reference manual, version 4. Technicalreport, IQSOFT Ltd., Hungary, 1995.[5] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog system. NewGeneration Computing, 7(2,3):243�271, 1990.[6] Katalin Molnár. Parallel Prolog with uncertainty handling. In EUROPAR'95 Parallel Processing, pages691�694. Springer, 1995. Lecture Notes in Computer Science 966.[7] D. J. Rothwell, R. A. Cote, J. P. Cordeau, and M. A. Boisvert. Developing a standard data structurefor medical language � the SNOMED proposal. In Proceedings of 17th Annual SCAMC, Washington,1993.[8] SICS Programming Systems Group. Prolog Objects. In SICStus Prolog User's Manual, chapter 29,pages 275�307. Swedish Institute of Computer Science, June 1995.[9] Péter Szeredi and Zsuzsa Farkas. Handling large knowledge bases in parallel Prolog, 1996. Presented atthe Workshop on High Performance Logic Programming Systems, in conjunction with Eighth EuropeanSummer School in Logic, Language, and Information, Prague, August 1996.[10] Gábor Umann, Robert B. Scott, David C. Dodson, Zsuzsa Farkas, Katalin Molnár, László Péter, andPéter Szeredi. Using graphical tools in the CUBIQ expert system tool-set. In Proceedings of the FourthInternational Conference on Practical Applications of Prolog, pages 405�422, 1996.[11] David H. D. Warren. The SRI model for or-parallel execution of Prolog�abstract design and imple-mentation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 92�102, 1987.
129

Chapter 10Serving Multiple HTML Clients from aProlog application1Péter Szeredi, Katalin Molnár and Rob Scott2IQSOFT Intelligent Software Ltd. H-1142 Teleki Blanka u. 15-17Budapest, Hungary{szeredi,molnark,scott}@iqsoft.huAbstractThe paper describes our experiences with transforming a medical expert system to a client-serverarchitecture using an HTML interface.We brie�y present the expert system and describe the experiences of its transformation to theHTML-based user interface. We then focus on the issue of designing a single Prolog server capableof serving multiple client requests.We present a solution based on an or-parallel Prolog system, Aurora. This approach allows theserver to perform independent Prolog searches for each client, controlled interactively by the remoteuser.Keywords: Expert systems, HTML, Client-server architectures, Prolog, Parallelism10.1 IntroductionThe EMRM (Electronic Medical Record Management) system prototype [1] has been developed in theCUBIQ Copernicus project, using SICStus Prolog [13] and its or-parallel extension, Aurora [9]. The originalEMRM system uses a Tcl/Tk-based [11] forms interface for interacting with a single client. To widen theusability of the system, we are now developing an HTML-based interface to EMRM. This approach allowsthe users to access the system from a heterogeneous computer network (local network or Internet), withmuch smaller resource requirements on the local computers.Our e�orts are an example of a general trend in the AI community, to use the extended visibility that WWWprovides to make applications available through the Internet. In order to interact with end-users throughthe WWW, such applications normally rely on socket-based inter-process communication features. Mostcommercial Prolog systems (ALS, Quintus, SICStus, etc.) already have such features implemented. Tools1This paper has appeared in the proceedings of the Workshop on Logic Programming Tools for INTERNET Applications[15]2Part of the work reported here has been carried out while the author was at the Computer Science Department, CityUniversity, Northampton Square, London EC1V 0HB, UK 130

have also been developed for helping the communication with the end-user, such as the CGI handler interfaceof [5] and the support functions of html.pl [4] for generating HTML documents from Prolog.One of the major issues that, we believe, have not been addressed so far is the problem of a single Prologprogram acting as a server for multipleWWW clients. This issue is important as AI applications are normallylarge and slow to start up, so having a separate copy of the application running for each request may not bea viable solution.Handling multiple clients means that multiple threads of control have to be handled in a single Prologprogram. Having explored several approaches to this problem, in the case of EMRM, we found that achievingthis goal in a traditional sequential Prolog implementation requires serious changes in the formulation ofexpert system rules, which results in losing the clarity of the original knowledge base. On the other handwe found that an or-parallel Prolog implementation can be used to provide the functionality of servingmultiple clients, while keeping the knowledge base intact and preserving the declarative style of knowledgerepresentation.In the following we brie�y outline the main functions of the EMRM and describe the major steps in trans-forming its user interface into HTML. We then discuss the problems stemming from the asynchronous natureof HTML communication, for both the single client and multiple client versions. Finally we outline a solutionfor asynchronous handling of multiple clients using an or-parallel Prolog implementation.10.2 An overview of EMRMEMRM is designed to help physicians to get as much relevant information about their patient as possiblebefore meeting the patient personally. While waiting for the doctor the patient can give information toa medical assistant who is supported by EMRM. Some of the questions are generated on the basis of theinformation already collected about the patient, and the medical knowledge incorporated in the knowledgebase of EMRM. The answers of the patient are stored using the relevant medical terms of SNOMED [12],a medical thesaurus of over 40,000 terms. The physician gets the collected data and the possible diagnosessuggested by EMRM before meeting the patient. He can then collect further information by examiningthe patient and checking for further symptoms. These data, the diagnoses and the further diagnostic andtherapeutic steps, are entered into the EMRM system by the physician and again stored as relations builtfrom SNOMED terms.The Prolog implementation of EMRM thus consists of the following main parts:� dialogue management� medical rule-base� SNOMED thesaurusEMRM is a relatively large program (requiring about 20 Mb memory in the present prototype phase).10.3 EMRM with a HTML user interfaceIn the process of transforming EMRM to a HTML interface we �rst implemented an HTML version of theSNOMED browser, an important component that allows the user to �nd the appropriate medical term bya combination of tree traversal and text search [10]. We then continued the transformation process for themain dialogue of EMRM, including data entry and the display of the results.The HTML version of the EMRM server consists of the Prolog program, a WWW server and and a smallCGI script that mediates between the Prolog program and the WWW server. The Prolog program is runningas a separate server process on the WWW server computer. Because of the large program size and relativelyslow startup time it is reasonable to have the Prolog program running all the time, rather than to start itup separately for each request.In the Prolog program there is a main loop waiting for client requests on a socket from the WWW-server.The user interface of the Prolog program is based on �lazy� querying techniques. i.e. the user is askedfor some information only when the deduction process requires this. The interaction with the user is done131

through forms that are dynamic HTML pages. Whenever the user is asked for some information throughsuch a form, the system sends out the dynamic HTML page and waits for the answer. The evaluation of theProlog program is then suspended until an answer from the client process arrives. Such a low level wait-loopis part of any program code that implements forms. By the nature of the application such form requests areembedded within the Prolog search tree generated by the medical rule-base.The WWW server communicates with the Prolog program through the CGI script, that is invoked wheneverthere is some communication from the user interface side.10.4 Problems with single clientThe �rst problem, due to the asynchronous nature of HTML communication, already arises in the case ofa single client. An HTML page does not completely disappear after the user has answered the query onthe page, as it normally remains available through the history function of the browser (Netscape, InternetExplorer, etc.). Thus, all the previous queries are there, and in principle the user can go back at any time,change and re-submit some of the earlier answers.In our present implementation we forbid such re-submission requests. In principle, the backtracking abilityof Prolog could be used to interpret such actions as requests to forget all information gathered since theoriginal of the re-submitted HTML page, and to restart the search with a new answer to the query on thatpage.This can be accomplished in a way similar to the implementation of the retry function available in mostProlog debuggers. This function relies on a choice point (such as created by repeat/0) being placed infront of each retry-point. The retry operation is then performed by doing a far-reaching cut (ancestor-cut),pruning all choice points up to the chosen retry-point and then failing the computation. This unwinds theProlog stacks up to the required point and, because of the repeat, restarts the computation there.For this approach to work, the program should not be altering the Prolog dynamic database, so that executionof the retried goal is restarted in the same setting as the original execution. As a possible exception to thisrule, earlier answers could be stored in the database, and used as the default selections in the repeatedqueries.10.5 Serving multiple clientsThe second, more serious problem arises when dealing with several clients. E.g. if we have two clients, itshould be possible to process their answers in some interleaved way, following the relative timing of theiranswers. In other words, we can have two clients, in di�erent stages of evaluation, both waiting for someuser answer, and we should be able to continue the execution with whichever client answers earlier.The simplest way to achieve this coroutining behaviour is by requiring that the program in question isformulated as a set of separate actions to be carried out in response to the arrival of an answer. Althoughsuch a set-up is easy to implement, in most cases it completely destroys the logic of the program. This is notonly because communication between phases has to be done through the Prolog dynamic database (ratherthan logic variables), but more importantly because the original logical structure of the rule-base cannot bepreserved.We have considered several options for implementing the coroutining execution of an existing Prolog program,without requiring its reformulation:� developing a coroutining interpreter,� using existing coroutining features (such as freeze), possibly combined with some compilation scheme,� using primitives for handling continuations as �rst class objects (as e.g. in the early implementation ofCS Prolog [7]).A common drawback of these schemes is that they work properly only with deterministic code. As they allrely on chronological backtracking in a single stack regime, backtracking in one of the coroutined brancheswill lead to (unnecessary) backtracking over the interleaved execution steps of other branches.132

As EMRM heavily relies on backtracking, we need a solution that allows independent backtracking in thecoroutined branches.A natural approach is to consider parallel Prolog systems. There are several approaches in this area whichsupport independent exploration of multiple searches: or-parallel systems, such as Aurora; systems sup-porting independent and-parallelism, such as the &-Prolog system [8]; and systems with explicit control ofparallelism, such as CSR Prolog [7], and BinProlog extensions [3].As one of goals of the CUBIQ project was to examine the usability of or-parallel Prolog systems in expertsystem applications, it was natural for us to explore whether Aurora can be used to support multi-clientEMRM execution.10.6 Using an or-parallel Prolog as a multi-client serverAurora [9] is an or-parallel implementation of full Prolog based on SICStus 0.6. In Aurora a numberof workers (i.e. processes, normally running on separate processors of a multiprocessor computer) worktogether on exploring the search tree corresponding to the Prolog program. Aurora preserves sequentialProlog semantics, e.g. the side-e�ect predicates, such as the ones for input-output and dynamic databasehandling, are executed in exactly the same left-to-right order as in a sequential Prolog.This section outlines how Aurora can be used to support the execution of multiple independent copies ofa Prolog program, which interact with remote users through the WWW. It is crucial for this purpose thatAurora supports non-synchronised execution of side-e�ect predicates, by providing so called cavalier variants,written ascavalier(Pred) e.g. cavalier(write(foo)).Cavalier predicates are executed immediately, without any synchronisation with other branches. A typicalusage of such predicates is to display tracing information on how the parallel execution proceeds.Cavalier predicates are executed atomically, i.e. if two competing branches reach a side-e�ect predicatea�ecting the same resource3 simultaneously, then these predicates will be executed in some arbitrary order,one after the other. For example, if a sequence of terms is displayed by a cavalier format predicate, thissequence is guaranteed not to be intermixed with output coming from other branches of the Prolog searchtree.Aurora also allows the user to control which predicates can be executed in parallel, by appropriate declara-tions.We now �rst present a general skeleton of a multi-client Prolog server (Figure 10.1) and then describe howthe process spawning and communication primitives of the skeleton can be implemented in Aurora.loop(Socket) :-repeat,next_event(Socket, Event),process_event(Event),fail.process_event(session(S)) :-spawn(run_session(S)).process_event(answer(Req, Answer)) :-out(Req, Answer).query(Req, Answer) :-in(Req, Answer).Figure 10.1: The main loop of the multi-client execution scheme3e.g. the same dynamic predicate, or the same output stream133

The predicate loop in Figure 10.1 implements the (non-terminating) main loop of the multi-client server.The argument of loop represents the socket used for network communication. This predicate �rst waits forthe next network event (in next_event), and then processes the event through process_event. An eventcan be a request to start a new session, represented by a Prolog term of form session(S). This is processedby spawning a fresh copy of the Prolog server program (run_session).When, applying the lazy querying technique, further input from the remote client is needed within a session,the Prolog code for the session has to call the query predicate of the above skeleton4. A query has a uniquerequest identi�er (Req) as its input argument, and when the answer arrives it instantiates its Answer outputargument. The answer to the query is detected as an event of form answer(Req, Answer) in the main loop.Processing of this event requires communicating the answer to the session waiting for it, this communicationis done through two procedures named following the Linda convention [6] as out(Req, Answer) (on thesender side, in the main loop) and in(Req, Answer) (at receiving end, in the Prolog session).We now proceed to show how the primitives spawn, in and out can be implemented in Aurora. As a �rststep let us assume that all of the user program (run_session) is declared to be sequential, i.e. parallelismis only used for implementing multiple execution of Prolog sessions.:- parallel spawn/1.spawn(Goal) :-(true; call(Goal) -> fail).in(Req, Answer) :-repeat,cavalier(retract(request(Req,Answer))),!.out(Req, Answer) :-cavalier(assert(request(Req,Answer))).Figure 10.2: Simple implementation of process handling primitivesFigure 10.2 shows a simple implementation of the communication primitives. Spawning is achieved by simplyopening a parallel choice with two alternatives: the �rst one is empty, thus returns to the callee immediately,while the second one calls the goal to be spawned. The Aurora parallel scheduler ensures that such a newparallel alternative is executed by an idle worker, if one exists. Note that this approach does not requirethe forking of a new process for each spawn operation: Aurora uses a �xed number of workers (processes),which are scheduled to execute tasks as they arrive (and sleep if there are no tasks to execute).In this implementation, the communication between the main loop and the spawned processes is implementedusing a dynamic predicate, request/2, as an application of general techniques described in [14]. The in/2predicate spins in a busy waiting loop until the out/2 asserts the requested answer. The assert and retractpredicates have to be cavalier, so that they are executed irrespectively of their position in the Prolog or-tree.The solution for process communication presented in Figure 10.2 has several drawbacks. First, workers waitin a busy loop, thus wasting computing resources. This problem could be overcome by inserting a Unix sleepin the loop, thus making the processor available for other computations. This solution, however, still doesnot make the or-parallel scheduler aware of the fact that the execution branch in question is suspended. Asthe Aurora system can be started up with a �xed number of workers, say N , this means that at most N � 1sessions can be alive at any moment (one worker is executing the main loop).As a fairly recent development, new primitives have been introduced in Aurora for user-controlled suspension4The call to query is normally preceded by sending an HTML page to be �lled in to the remote client. Communication inthis direction is fairly straightforward and is not discussed here.134

and resumption of execution branches [2]:� force_suspend(L)Forces the current branch to suspend, and assigns it the label L. Labels currently can only be integers.� resume_forced_suspend(L)This marks the suspended branch labeled L as resumable and continues with the current branch.The scheduler may schedule a worker to restart the suspended branch any time after this resumptionoperation has been executed.The new features make it possible to avoid the busy waiting in process communication.in(Req, Answer) :-force_suspend(Req),cavalier(retract(request(Req,Answer))).out(Req, Answer) :-cavalier(assert(request(Req,Answer))),resume_forced_suspend(Req).Figure 10.3: Process communication based on user controlled suspensionFigure 10.3 shows the implementation of in and out with the new primitives. This approach does notify theAurora scheduler about the branch becoming suspended and makes it possible for the scheduler to use theworker for executing code at other parts of the search tree. Consequently, it allows Aurora to be run withtwo workers only and still serve any number of requests, with interleaved execution. Since one of the workersis waiting for network input most of the time, we believe that such a two-worker Aurora con�guration canbe safely run on a mono-processor computer as well.On the other hand, if a multiprocessor is available as a server, there is no need to forbid the exploitation ofparallelism in the Prolog programs run. The Aurora scheduler will ensure that parallelism is exploited bothbetween the independent threads of execution and within such threads.10.7 Present status and future workWe have implemented the single-client version of EMRM. Figure 10.4 presents a Web page with the start-upquery of EMRM. We have designed the support for multi-client execution of Prolog servers and tested the�rst version of process communication primitives on simple examples.We plan to continue the development of the multi-client version of EMRM. We also hope to compare ourmethod with approaches based on other parallel Prolog systems, such as &-Prolog and parallel BinProlog.10.8 ConclusionWe have outlined EMRM, a Prolog application implementing a medical record management expert sys-tem. We have described our work on transforming the user interface of EMRM to apply a WWW browsercommunicating with the Prolog program through HTML forms and HTML pages.We have outlined some techniques for interleaved execution of multiple copies of a server application inProlog. We have pointed out that most of these are not capable of supporting the proper interleaving ofmultiple backtracking searches.We have presented our design for a single Prolog server, based on an or-parallel implementation Aurora,supporting multiple clients with full support for independent Prolog search. The main advantage of thisapproach over running a separate copy of the application for each client is the avoidance of lengthy start-up135

Figure 10.4: A snapshot of the EMRM opening pagetime and signi�cant reduction in memory requirements. As a further advantage the single server approachallows easy communication between the program instances serving the di�erent clients, which may be usefule.g. for caching certain common results, collecting statistics, etc. An important aspect is that the knowledgebase does not need to be changed and the commonly used lazy querying techniques can be safely applied.We hope to complete the development of the multi-client version of EMRM in the near future. We believethis server will be able to serve several clients simultaneously, at a reasonable speed and with reasonableresources.AcknowledgementThe authors are indebted to all their colleagues in the CUBIQ project and gratefully acknowledge the supportof the European Union Copernicus programme, under project CP93-10979 `CUBIQ'.References[1] László Balkányi, Zsuzsa Farkas, and Katalin Molnár. EMRM Electronic Medical Record ManagementSystem. CUBIQ Copernicus project deliverable report, IQSOFT Ltd., Hungary, 1995.[2] Tony Beaumont, David H. D. Warren, and Péter Szeredi. Improving Aurora scheduling. CUBIQCopernicus project deliverable report, University of Bristol and IQSOFT Ltd., 1995.[3] Koen de Bosschere and Paul Tarau. Blackboard-based extensions for parallel programming in BinProlog.In Dale Miller, editor, Logic Programming - Proceedings of the 1993 International Symposium, page 664,Vancouver, Canada, 1993. The MIT Press.[4] D. Cabeza and M. Hermenegildo. html.pl: A simple HTML package for Prolog and CLP systems.Technical report, Computer Science Department, Technical University of Madrid, 1996.136

[5] B Carpenter. A Prolog-based CGI handler, 1996.http://macduff.andrew.cmu.edu/cgparser/prolog-cgi.html.[6] N. Carreiro and D. Gelernter. Linda in context. Comm. of the ACM, 32(4), 1989.[7] Iván Futó. Prolog with communicating processes: From T-Prolog to CSR-Prolog. In David S. Warren,editor, Proceedings of the Tenth International Conference on Logic Programming, pages 3�17, Budapest,Hungary, 1993. The MIT Press.[8] M. V. Hermenegildo and K. J. Greene. &-Prolog and its performance: Exploiting independent And-Parallelism. In David H. D. Warren and Peter Szeredi, editors, Proceedings of the Seventh InternationalConference on Logic Programming, pages 253�268, Jerusalem, 1990. The MIT Press.[9] Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Overbeek, Rick Stevens, David H. D.Warren, Alan Calderwood, Péter Szeredi, Seif Haridi, Per Brand, Mats Carlsson, Andrzej Ciepielewski,and Bogumiª Hausman. The Aurora or-parallel Prolog system. New Generation Computing, 7(2,3):243�271, 1990.[10] Katalin Molnár, Robert B. Scott, and Zsuzsa Farkas. HTML as a user interface for a (Prolog) program.In Poster Proceedings of the 4th World Wide Web Conference, 1995.[11] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.[12] D. J. Rothwell, R. A. Cote, J. P. Cordeau, and M. A. Boisvert. Developing a standard data structurefor medical language � the SNOMED proposal. In Proceedings of 17th Annual SCAMC, Washington,1993.[13] SICS Programming Systems Group. SICStus Prolog User's Manual. Swedish Institute of ComputerScience, June 1995.[14] Péter Szeredi. Using dynamic predicates in an or-parallel Prolog system. In Vijay Saraswat andKazunori Ueda, editors, Logic Programming: Proceedings of the 1991 International Logic ProgrammingSymposium, pages 355�371. The MIT Press, October 1991.[15] Péter Szeredi, Katalin Molnár, and Rob Scott. Serving multipleHTML clients from a Prolog application.In Paul Tarau, Andrew Davison, Koen de Bosschere, and Manuel Hermenegildo, editors, Proceedingsof the 1st Workshop on Logic Programming Tools for INTERNET Applications, in conjunction withJICSLP'96, Bonn, Germany, pages 81�90. COMPULOG-NET, September 1996.

137

ConclusionsThis thesis describes work on the Aurora or-parallel Prolog system. To conclude, we �rst summarise thecontributions of the author, and then give a brief evaluation of the problems encountered, their solutions,and the signi�cance of the results.ContributionsThe following is a summary of the main results achieved by the author of this thesis.Implementation: I developed a pro�ling technique for Aurora and carried out detailed performance analy-sis in the early stages of the project. This pro�ling technique has been used throughout the project andsigni�cantly helped subsequent design decisions. I was the principal designer of the engine-schedulerinterface, which enabled the development of multiple scheduler and engine components. I designed thebasic Bristol scheduler which later evolved to be the main scheduler used in Aurora.Extensions: I developed two language extension proposals to support advanced search techniques in or-parallel Prolog systems: for synchronisation of dynamic predicate updates and for advanced optimisa-tion search involving branch-and-bound and alpha-beta pruning. I developed a prototype implemen-tation for both extensions in Aurora and carried out case studies to prove their usefulness.Applications: I was a principal contributor to several application projects in diverse areas: computationalmolecular biology, hierarchical knowledge bases and WWW-servers. These applications prove theviability of Aurora and of or-parallel Prolog systems in general.EvaluationThe conclusion of the Aurora overview paper (Chapter 2, Section 2.7) gives a summary of how the Auroradevelopment team viewed its results as of 1989. We now try to reiterate the main issues raised there andgive an up-to-date evaluation of the Aurora project.We already stated in 1989 that Aurora demonstrated the feasibility of the SRI model as a means for trans-forming an e�cient sequential Prolog to an or-parallel engine. Since then, the main improvements on theengine side were linked to the development of the second generation of Aurora with SICStus 0.6 as its core.This Aurora system contains the new engine-scheduler interface, as described in Chapter 5.Today, the SICStus 0.6-based Aurora engine is fairly outdated. Re-building the engine on top of an up-to-date Prolog, such as the current SICStus3 implementation, does not pose any conceptual problems, but itdoes require substantial e�ort to be invested.The 1989 Aurora paper lists several outstanding issues in scheduling, which have been solved since then,such as better scheduling heuristics and handling of speculative work. The Bristol scheduler, described inChapter 4, applied a new, �dispatching on bottom-most� heuristics, which resulted in coarser task granularityand reduced task switching overheads. Further improvements to Bristol scheduler [1] provided support forbetter scheduling of speculative work. Also, a new scheduler, called Dharma, was developed [8], applyingthe so called �branch level scheduling� approach, which also gives good results on both speculative andnon-speculative work. 138

The main problems of supporting the full Prolog language in an or-parallel setup were solved by 1989.However, to make the system usable in practice, several further issues had to be tackled: selecting theprecise set of asynchronous built-in predicates; de�ning and implementing the dynamic database updatesemantics for the asynchronous case; solving the problems of parallel �le input-output; providing immediate(as opposed to post-mortem) parallel tracing facilities. Having solved these problems [2], Aurora becamethe �rst full-�edged Prolog system capable of exploiting or-parallelism in arbitrary Prolog programs.The 1989 paper lists three major applications of Aurora, Since then several further applications were suc-cessfully ported to Aurora, including the ones described in this thesis (Chapters 8�10) as well as others, e.g.[4, 7, 3]. Exploration of further application areas is opened up by work described in the language extensionpart of the thesis (Chapters 6�7).Regarding the multiprocessor hardware, an important new development was the porting of Aurora to theBBN GP1000 and TC2000 machines, with non-uniform memory access (NUMA) architecture [5]. While thetraditional multiprocessors scale up to about 30 CPUs, the NUMA machines can have a much larger numberof processors. Aurora has shown almost linear speedups for programs with large search trees, including themolecular biology application of Chapter 8. A related development was the implementation of an emulatorfor the Data Di�usion Machine (DDM) virtual shared memory architecture [10] on transputer networks [6].Aurora was ported to the DDM emulator and promising speedups were obtained.As discussed in the 1989 paper, the biggest obstacle in obtaining truly competitive bottom-line performanceis still the relatively high cost of multiprocessors. Machines with a high number of processors are still fairlyexpensive, but personal computers with 2 to 8 processors are becoming relatively cheap. We believe thatsuch low-cost multiprocessor PCs, running a parallel Prolog implementation such as Aurora, will becomecost-e�ective tools for solving search problems.The main insights gained from the development of Aurora are the following. First, the decomposition ofAurora into scheduler and engine components was crucial in the development process. The strict engine-scheduler interface made it possible to experiment with di�erent scheduling strategies and to re-use an Aurorascheduler in the Andorra-I implementation. Second, the problems of scheduling dominated the Auroradevelopment. Five schedulers were developed with di�erent scheduling principles and di�erent underlyingdata structures. The scheduling algorithms became more and more concerned with exploiting parallelismin �di�cult� cases such as very �ne-grained parallelism, or speculative work. Third, Prolog, in spite ofits declarative roots is still very much a sequential language. The Prolog community seems to prefer tothink sequentially, e.g. the Prolog standard insists on all-solution predicates, such as bagof, returning thelist of solutions in the sequential order. Observing such a restriction implies a signi�cant overhead onparallel execution, which is unnecessary in a lot of cases. A positive example in this respect is the Mercurylanguage[9], a new fully declarative logic programming language, the semantics of which does not containany restrictions on execution order.We believe that work on Aurora had a signi�cant impact on research in parallel logic programming. Aurorahas proved that it is feasible to support the full Prolog language in an or-parallel implementation. Aurorawork included substantial research on scheduling or-parallelism, which can be used in other parallel imple-mentations of logic programming. Aurora served as a basis for the Andorra-I system supporting both or- andand-parallelism. Aurora has proved that exploiting parallelism implicitly, without programmer intervention,is viable and can lead to substantial speedups in real-life applications.References[1] Tony Beaumont and David H. D. Warren. Scheduling Speculative Work in Or-parallel Prolog Systems.In Logic Programming: Proceedings of the 10th International Conference. MIT Press, 1993.[2] Mats Carlsson, Ewing L. Lusk, and Péter Szeredi. Smoothing rough edges in Aurora (Extended Ab-stract). In Proceedings of the First COMPULOG-NOE Area Meeting on Parallelism and ImplementationTechnology. Technical University of Madrid, May 1993.[3] K. Eshghi and C. Preist. Model-based diagnosis applied to a real problem. Technical Report HPL-91-115, Hewlett Packard Laboratories, Bristol, UK, 1991.[4] Feliks Klu¹niak. Developing applications for Aurora. Technical Report TR-90-17, University of Bristol,Computer Science Department, August 1990. 139

[5] Shyam Mudambi. Performances of aurora on NUMA machines. In Koichi Furukawa, editor, Proceedingsof the Eighth International Conference on Logic Programming, pages 793�806, Paris, France, 1991. TheMIT Press.[6] Henk L. Muller, Paul W. A. Stallard, and David H. D. Warren. The Data Di�usion Machine with ascalable point-to-point network. Technical Report CSTR-93-17, University of Bristol, October 1993.[7] C.J. Rawlings, W.R.T. Taylor, J. Nyakairu, J. Fox, and M.J.E. Sternberg. Using Prolog to representand reason about protein structure. In Ehud Shapiro, editor, Third International Conference on LogicProgramming, London, pages 536�543. Springer-Verlag, 1986.[8] Raéd Yousef Sindaha. Branch-level scheduling in Aurora: The Dharma scheduler. In Dale Miller, editor,Logic Programming - Proceedings of the 1993 International Symposium, pages 403�419, Vancouver,Canada, 1993. The MIT Press.[9] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm of Mercury: ane�cient purely declarative logic programming language. Journal of Logic Programming, 29(1-3):17�64,1996.[10] David H. D. Warren and Seif Haridi. Data Di�usion Machine�a scalable shared virtual memory multi-processor. In International Conference on Fifth Generation Computer Systems 1988. ICOT, 1988.

140

