Java™ Servlet Specification
Version 2.3

Please send technical comments to: servietapi-feedback@eng.sun.com
Please send business comments to: danny.coward@sun.com

Final Release 8/13/01
Danny Coward (danny.coward@sun.com)

Java(TM) Servlet API Specification ("Specification")
Version: 2.3

Status: Final Release

Release: September 17, 2001

Copyright 2001 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by
one or more U.S. patents, foreign patents, or pending applications. Except as provided under the fol-
lowing license, no part of the Specification may be reproduced in any form by any means without the
prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the
Specification and the information described therein will be governed by the terms and conditions of this
license and the Export Control Guidelines as set forth in the Terms of Use on Sun’s website. By view-
ing, downloading or otherwise copying the Specification, you agree that you have read, understood, and
will comply with all of the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (wit out
the right to sublicense), under Sun’s intellectual property rights that are essential to practice the Specifi-
cation, to internally practice the Specification for the purpose of designing and developing your Java
applets and applications intended to run on the Java platform or creating a clean room implementation
of the Specification that: (i) includes a complete implementation of the current version of the Specifica-
tion, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of the
Specification without subsetting or supersetting; (iii) includes a complete implementation of any
optional components (as defined by the Specification) which you choose to implement, without subset-
ting or supersetting; (iv) implements all of the interfaces and functionality of such optional components,
without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the
"java.*" or "javax.*" packages or subpackages or other packages defined by the Specification; (vi) satis-
fies all testing requirements available from Sun relating to the most recently published version of the
Specification six (6) months prior to any release of the clean room implementation or upgrade thereto;
(vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any
Sun source code or binary code materials without an appropriate and separate license from Sun. The
Specification contains the proprietary information of Sun and may only be used in accordance with the
license terms set forth herein. This license will terminate immediately without notice from Sun if you
fail to comply with any provision of this license. Upon termination or expiration of this license, you
must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licen-
sors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo,
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICA-
TION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE
SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or imple-
ment any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION,

IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR

THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in
the Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean
room implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S.
Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R.
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (i)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subl
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feed-
back for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#95810/Form 1D#011801)

Contents

Java™ Servlet Specification Version2.3 [
Preface e Xili
Additional Sources Xiii
Who Should Read This Specification Xiv
APl Reference Xiv
Other Java™ Platform Specifications Xiv
Other Important References XV
Providing Feedback XVi
Acknowledgements XVi
SRV.1 OVeIVIBW . . . e 17
SRV.1.1 WhatisaServlet? 17
SRV.1.2 Whatis a ServletContainer? 17
SRV.1.3 AnExample 18
SRV.1.4 Comparing Servlets with Other Technologies 18
SRV.1.5 Relationship to Java 2, Platform Enterprise Edition 19
SRV.2 The ServletInterface. 21
SRV.2.1 Request Handling Methods 21
SRV.2.1.1 HTTP Specific Request Handling Methods21
SRV.2.1.2 Additional Methods 22
SRV.2.1.3 Conditional GET Support 22
SRV.2.2 Numberofinstances 22
SRV.2.2.1 Note About The Single Thread Model 23

CONTENTS i

SRV.2.3 ServletLifeCycle 23
SRV.2.3.1 Loading and Instantiation 23
SRV.2.3.2 Initialization 24
SRV.2.3.3 RequestHandling 24
SRV.2.34 EndofService............ ... i, 26

SRV.3 Servlet Context. e 27

SRV.3.1 Introduction to the ServletContext Interface 27

SRV.3.2 Scope of a ServletContext Interface 27

SRV.3.3 Initialization Parameters 28

SRV.3.4 Context Attributes 28
SRV.3.4.1 Context Attributes in a Distributed Container . .28

SRV.3.5 RESOUICES e e 29

SRV.3.6 Multiple Hosts and Servlet Contexts 29

SRV.3.7 Reloading Considerations 29
SRV.3.7.1 Temporary Working Directories 30

SRV.4 TheRequest 31

SRV.4.1 HTTP Protocol Parameters 31
SRV.4.1.1 When Parameters Are Available 32

SRV.4.2 Attributes. 32

SRV.4.3 Headers e 33

SRV.4.4 RequestPathElements 33

SRV.4.5 Path Translation Methods 35

SRV.4.6 CoOKIESot 35

SRV.4.7 SSLAttributes 36

SRV.4.8 Internationalization 36

SRV.49 Requestdataencoding0.0..... 37

SRV.4.10 Lifetime of the Request Object 37

SRV.5 TheReSpONSe e 39

SRV.5.1 Buffering 39

SRV.5.2 Headersi e 40

SRV.5.3 ConvenienceMethods 41

SRV.5.4 Internationalization 42

SRV.5.5 Closure of Response Object 42

CONTENTS Vii

SRV.5.6 Lifetime of the Response Object................... 42
SRV.6 Filtering. 43
SRV.6.1 Whatisafilter? 43
SRV.6.1.1 Examples of Filtering Components 44
SRV.6.2 Main Conceptso .. 44
SRV.6.2.1 FilterLifecycle 44
SRV.6.2.2 Wrapping Requests and Responses 46
SRV.6.2.3 Filter Environment 46
SRV.6.2.4 Configuration of Filters in a Web Application . . 47
SRV.7 SEBSSIONS . . . 49
SRV.7.1 Session Tracking Mechanisms 49
SRV.7.1.1 CoOKI€Sot 49
SRV.7.1.2 SSLSESSIONSttt 49
SRV.7.1.3 URLRewriting 50
SRV.7.1.4 SessioniIntegrity 50
SRV.7.2 Creatinga SessSionuiiiiinnnnenn.. 50
SRV.7.3 SESSION SCOPE . ..t 50
SRV.7.4 Binding Attributes intoa Session 51
SRV.7.5 Session TIMEOULSt 51
SRV.7.6 LastAccessed TIMES, 52
SRV.7.7 Important Session Semantics 52
J2EE.7.7.1 Threadinglssues 52
SRV.7.7.2 Distributed Environments 52
SRV.7.7.3 ClientSemantics 53
SRV.8 DispatchingRequests. oo... 55
SRV.8.1 Obtaining a RequestDispatcher.................... 55
SRV.8.1.1 Query Strings in Request Dispatcher Paths56
SRV.8.2 Using a Request Dispatcher 56
SRV.8.3 ThelInclude Method 57
SRV.8.3.1 Included Request Parameters 57
SRV.8.4 The Forward Method 57
SRV.8.4.1 QueryStringoiiiiiiiinn. 58
SRV.85 ErrorHandling 58

SRV.9 Web Applications. 59

CONTENTS Viii

SRV.9.1 Web Applications Within Web Servers 59
SRV.9.2 Relationship to ServletContext 59
SRV.9.3 Elements of a Web Application 60
SRV.9.4 Deployment Hierarchies 60
SRV.9.5 Directory Structure 60
SRV.9.5.1 Example of Application Directory Structure ... 61
SRV.9.6 Web Application Archive File 62
SRV.9.7 Web Application Deployment Descriptor 62
SRV.9.7.1 Dependencies On Extensions............... 62
SRV.9.7.2 Web Application Classloader 63
SRV.9.8 Replacing a Web Application 63
SRV.9.9 ErrorHandling i 63
SRV.9.9.1 RequestAttributes 63
SRV.9.9.2 ErorPages............c.iiiiii... 64
SRV.9.10 Welcome Files i 65
SRV.9.11 Web Application Environment 67
SRV.10 Application Lifecycle Events 69
SRV.10.1 Introduction e 69
SRV.10.2 Event Listenerst 69
SRV.10.2.1 Event Types and Listener Interfaces 69
SRV.10.2.2 An Example of ListenerUse 70
SRV.10.3 Listener Class Configuration 71
SRV.10.3.1 Provision of Listener Classes 71
SRV.10.3.2 Deployment Declarations 71
SRV.10.3.3 Listener Registration 71
SRV.10.3.4 Notifications At Shutdown 71
SRV.10.4 Deployment Descriptor Example 71
SRV.10.5 Listener Instances and Threading 72
SRV.10.6 Distributed Containers 72
SRV.10.7 SesSiON Events 73
SRV.11 Mapping RequeststoServlets 75
SRV.11.1Useof URLPaths 75

SRV.11.2 Specification of Mappings 76

CONTENTS ix

SRV.11.2.1 Implicit Mappings 76
SRV.11.2.2 Example MappingSet 77
SRV.12 SECUMtY. . .ttt e e 79
SRV.12.1 Introduction i 79
SRV.12.2 Declarative Security 80
SRV.12.3 Programmatic Security 80
SRV.12AR0lES 82
SRV.12.5 Authentication 82
SRV.12.5.1 HTTP Basic Authentication 82
SRV.12.5.2 HTTP Digest Authentication 83
SRV.12.5.3 Form Based Authentication 83
SRV.12.5.4 HTTPS Client Authentication 85
SRV.12.6 Server Tracking of Authentication Information 85
SRV.12.7 Propagation of Security Identity in EJBTM Calls 85
SRV.12.8 Specifying Security Constraints 86
SRV.12.9 Default Policies 87
SRV.13 DeploymentDescriptor. 89
SRV.13.1 Deployment Descriptor Elements 89
SRV.13.2 Rules for Processing the Deployment Descriptor 90
SRV.13.2.1 Deployment Descriptor DOCTYPE 91
SRV.13.83DTD ...ttt e 91
SRV.13.4 Examples 116
SRV.13.4.1 ABasicExample 116
SRV.13.4.2 An Example of Security 117
SRV.14 javax.servlet.............. . . 119
SRV.14.1 Generic Servlet Interfaces and Classes 119
SRV.14.2 The javax.servlet package 119
SRV.14.2.1 Filter e 121
SRV.14.2.2 FilterChain 123
SRV.14.2.3 FilterConfig, 124
SRV.14.2.4 GenericServlet, 125
SRV.14.2.5 RequestDispatcher 129
SRV.14.2.6 Servlet 131
SRV.14.2.7 ServletConfig 133

SRV.14.2.8 ServletContext 135

CONTENTS X

SRV.14.2.9 ServletContextAttributeEvent 143
SRV.14.2.10 ServletContextAttributeListener 144
SRV.14.2.11 ServletContextEvent 145
SRV.14.2.12 ServletContextListener 146
SRV.14.2.13 ServletException 146
SRV.14.2.14 ServletinputStream 148
SRV.14.2.15 ServletOutputStream 149
SRV.14.2.16 ServletRequest 153
SRV.14.2.17 ServletRequestWrapper 160
SRV.14.2.18 ServletResponse 166
SRV.14.2.19 ServletResponseWrapper 170
SRV.14.2.20 SingleThreadModel 174
SRV.14.2.21 UnavailableException 174
SRV.15 javax.servlethttp........ 177
SRV.15.1 Servlets Using HTTP Protocol 177
SRV.15.1.1 COOKI€ . .. v i it 179
SRV.15.1.2 HttpServlet 184
SRV.15.1.3 HttpServiletRequest 192
SRV.15.1.4 HttpServletRequestWrapper 200
SRV.15.1.5 HttpServletResponse 205
SRV.15.1.6 HttpServletResponseWrapper 216
SRV.15.1.7 HttpSession i 220
SRV.15.1.8 HttpSessionActivationListener 225
SRV.15.1.9 HttpSessionAttributeListener 226
SRV.15.1.10 HttpSessionBindingEvent 226
SRV.15.1.11 HttpSessionBindingListener 228
SRV.15.1.12 HttpSessionContext 229
SRV.15.1.13 HttpSessionEvent 229
SRV.15.1.14 HttpSessionListener 230
SRV.1I5.1.15HttpUtils 231
Changes since version 2.2, CCXXXiii
Changes in this document since version 2.2 cCxXxxiii
Changes since PublicDraft cCxXxXiii
Changes since Proposed FinalDraft1 CCXXXVil
Changes since Proposed FinalDraft2 CCXXXVil

SRV.A Deployment Descriptor Version 2.2 239

CONTENTS Xi

SRV.A.1 Deployment Descriptor DOCTYPE 239
SRV.A2 DTD .. 239
SRV.B GloSSaryccoiiiii e 253

CONTENTS Xii

Prefacé

This document is the Java™ Servlet Specification, v2.3. The standard for the Java
servlet APl is described here.

SRV.P.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java serv-
lets, but if questions remain the following may be consulted:

» Areference implementation (RI) has been made available which provides a be-
havioral benchmark for this specification. Where the specification leaves im-
plementation of a particular feature open to interpretation, implementators
may use the reference implementation as a model of how to carry out the in-
tention of the specification.

« A compatibility test suite (CTS) has been provided for assessing whether im-
plementations meet the compatibility requirements of the Java Servlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard. |

« If further clarification is required, the working group for the Java servlet API
under the Java Community Process should be consulted, and is the final arbiter
of such issues.

Comments and feedback are welcomed, and will be used to improve future
versions.

Xiii

xiv PREFACE

SRV.P.2 Who Should Read This Specification
The intended audience for this specification includes the following groups:
» Web server and application server vendors that want to provide servlet engines

that conform to this standard.

» Authoring tool developers that want to support web applications that conform
to this specification

» Experienced servlet authors who want to understand the underlying mecha-
nisms of servlet technology.

We emphasize that this specification is not a user’s guide for servlet develop-

ers and is not intended to be used as such. References useful for this purpose are
available fromhttp://java.sun.com/products/serviet.

SRV.P.3 API| Reference
Chapter 14, "API Details" includes the full specifications of classes, interfaces,

and method signatures, and their accompanying javédtat define the servlet |
API.

SRV.P.4 Other Java™ Platform Specifications

The following Java API specifications are referenced throughout this specifica-
tion:

« Java 2 Platform, Enterprise Edition, v1.3 (J2BE
« JavaServer Pages™, vi1.1 (J9P
« Java Naming and Directory Interfag(JNDI)

These specifications may be found at the Java 2 Platform,Enterprise Editjon
website:http://java.sun.com/j2ee/.

Final Version |

Other Important References XV

SRV.P.5 Other Important References

The following Internet specifications provide information relevant to the develop-
ment and implementation of the Servlet API and standard servlet engines:

RFC 1630 Uniform Resource Identifiers (URI)

« RFC 1738 Uniform Resource Locators (URL)

* RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

* RFC 1808 Relative Uniform Resource Locators

* RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

* RFC 2045 MIME Part One: Format of Internet Message Bodies

* RFC 2046 MIME Part Two: Media Types

* RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
* RFC 2048 MIME Part Four: Registration Procedures

* RFC 2049 MIME Part Five: Conformance Criteria and Examples
 RFC 2109 HTTP State Management Mechanism

e RFC 2145 Use and Interpretation of HTTP Version Numbers

» RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCPY/1.0)
* RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

 RFC 2617 HTTP Authentication: Basic and Digest Authentication

Online versions of these RFCs ar@atp: //www.rfc-editor.org/.

The World Wide Web Consortiumh{tp://www.w3.0rg/) is a definitive
source of HTTP related information affecting this specification and its implemen-
tations.

The Extensible Markup Language (XML) is used for the specification of the
Deployment Descriptors described in Chapter 13 of this specification. More infor-
mation about XML can be found at the following websites:

L This reference is mostly tongue-in-cheek although most of the concepts
described in the HTCPCP RFC are relevant to all well designed web
servers.

Xvi

PREFACE

http://java.sun.com/xml
http://www.xml.org/

SRV.P.6 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your
comments tgervletapi-feedback@eng.sun.com.

Please note that due to the volume of feedback that we receive, you will not
normally receive a reply from an engineer. However, each and every comment is
read, evaluated, and archived by the specification team.

SRV.P.7 Acknowledgements

The formulation of this public draft is the result of the teamwork of the JSR053
expert group.

Final Version |

cnerendRVL]

Overview

SRV.1.1 What is a Servlet?

A servlet is a Java technology based web component, managed by a container]that
generates dynamic content. Like other Java-based components, servlets are platform
independent Java classes that are compiled to platform neutral bytecode that can be
loaded dynamically into and run by a Java enabled web server. Containers, sgjne-
times called servlet engines, are web server extensions that provide servlet function-
ality. Servlets interact with web clients via a request/response paradigm
implemented by the servlet container.

SRV.1.2 What is a Servlet Container?

The servlet container is a part of a web server or application server that provides the
network services over which requests and responses are sent, decodes MIME based
requests, and formats MIME based responses. A servlet container also contains and
manages servlets through their lifecycle.

A servlet container can be built into a host web server, or installed as an add-
on component to a Web Server via that server’s native extension API. Servlet con-
tainers can also be built into or possibly installed into web-enabled application
servers.

All servlet containers must support HTTP as a protocol for requests and
responses, but additional request/response based protocols such as HTTPS (HTTP
over SSL) may be supported. The minimum required version of the HTTP specifi-
cation that a container must implement is HTTP/1.0. It is strongly suggested that
containers implement the HTTP/1.1 specification as well.

A Servlet Container may place security restrictions on the environment in
which a servlet executes. In a J&02 Platform, Standard Edition 1.2 (J28%or |

17

18

OVERVIEW

Javd“ 2 Platform, Enterprise Edition 1.3 (J2EE) environment, these restrictions
should be placed using the permission architecture defined by the Java 2 platform.
For example, high-end application servers may limit the creation tiraad |
object, to insure that other components of the container are not negatively
impacted.

J2SE 1.2 is the minimum version of the underlying Java platform with whig
servlet containers must be built. r

SRV.1.3 An Example
The following is a typical sequence of events:

1. Aclient (e.g., a web browser) accesses a web server and makes an HTTP re-
quest.

2. The requestis received by the web server and handed off to the servlet contain-
er. The servlet container can be running in the same process as the host web
server, in a different process on the same host, or on a different host from the
web server for which it processes requests.

3. The servlet container determines which servlet to invoke based on the config-
uration of its servlets, and calls it with objects representing the request and re-
sponse.

4. The servlet uses the request object to find out who the remote user is, what
HTTP POST parameters may have been sent as part of this request, and dther
relevant data. The servlet performs whatever logic it was programmed with,
and generates data to send back to the client. It sends this data back to the client
via the response object.

5. Once the servlet has finished processing the request, the servlet container en-
sures that the response is properly flushed, and returns control back to the host
web server.

SRV.1.4 Comparing Servlets with Other Technologies

In functionality, servlets lie somewhere between Common Gateway Interface (CGlI)
programs and proprietary server extensions such as the Netscape Server API
(NSAPI) or Apache Modules.

Servlets have the following advantages over other server extension mecha-
nisms:

Final Version |

Relationship to Java 2, Platform Enterprise Edition 19

» They are generally much faster than CGI scripts because a different process
model is used.

» They use a standard API that is supported by many web servers.

* They have all the advantages of the Java programming language, including
ease of development and platform independence.

» They can access the large set of APIs available for the Java platform.

SRV.1.5 Relationship to Java 2, Platform Enterprise Edition |

The Servlet API v2.3 is a required API of the J&¥a Platform, Enterprise Edition,
v1.3". Servlet containers and servlets deployed into them must meet additional
requirements, described in the J2EE specification, for executing in a J2EE environ-
ment.

! Please see the Jd¥a2 Platform, Enterprise Edition specification avail-
able athttp://java.sun.com/j2ee/

20

Final Version

OVERVIEW

cineren DRV, 2

The Servlet Interface

The servilet interface is the central abstraction of the servlet API. All servlets
implement this interface either directly, or more commonly, by extending a class
that implements the interface. The two classes in the servlet API that implement the
Servlet interface ar@enericServlet andHttpServlet. FOr most purposes, devel-
opers will extendittpServiet to implement their servlets.

SRV.2.1 Request Handling Methods

The basicserviet interface defines aervice method for handling client requests.
This method is called for each request that the servlet container routes to an instance
of a servlet.

The handling of concurrent requests to a web application generally requires
the web developer design servlets that can deal with multiple threads executing
within theservice method at a particular time.

Generally the web container handles concurrent requests to the same servlet
by concurrent execution of tkervice method on different threads.

SRV.2.1.1 HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods beyond the basic
Servlet interface which are automatically called by thervice method in the
HttpServlet class to aid in processing HTTP based requests. These methods are:
* doGet for handling HTTRGET requests
* doPost for handling HTTFPOST requests

* doPut for handling HTTPPUT requests

21

22

THE SERVLET INTERFACE

* doDelete for handling HTTRDELETE requests
* doHead for handling HTTR4EAD requests
* doOptions for handling HTTROPTIONS requests

* doTrace for handlingHTTP TRACE requests

Typically when developing HTTP based servlets, a Servlet Developer will
only concern himself with theoGet anddoPost methods. The other methods are
considered to be methods for use by programmers very familiar with HTTP pro-
gramming.

SRV.2.1.2 Additional Methods

ThedoPut anddoDelete methods allow Servlet Developers to support HTTP/
1.1 clients that employ these features. Tdaglead method inHttpServiet is a
specialized form of th@oGet method that returns only the headers produced by
the doGet method. ThedoOptions method responds with which HTTP methods
are supported by the servlet. Thelfrace method generates a response containing
all instances of the headers sent inTkeCE request.

In containers that support only HTTP/1.0, only du€et, doHead anddoPost
methods are supported, as HTTP/1.0 does not defiretheELETE, OPTIONS, and
TRACE methods.

SRV.2.1.3 Conditional GET Support

TheHttpServiet interface defines thgetLastModified method to support condi-
tional GET operations. A conditionaET operation requests a resource be sent only if

it has been modified since a specified time. In appropriate situations, implementa-
tion of this method may aid efficient utilization of network resources.

SRV.2.2 Number of Instances

The servlet declaration which is part of the deployment descriptor of the web appli-
cation containing the servlet, as described in Chapter SRV.13, “Deployment
Descriptor”, controls how the servlet container provides instances of the servlet.

For a servlet not hosted in a distributed environment (the default), the servlet
container must use only one instance per servlet declaration. However, for a serv-
let implementing theSingleThreadModel interface, the servlet container may

Final Version |

Servlet Life Cycle 23

instantiate multiple instances to handle a heavy request load and serialize requests
to a particular instance.

In the case where a servlet was deployed as part of an application marked in
the deployment descriptor as distributable, a container may have only one instance
per servlet declaration per virtual machine (VM). However, if the servlet in a dis-
tributable application implements tiséngleThreadModel interface, the container
may instantiate multiple instances of that servlet in each VM of the container.

SRV.2.2.1 Note About The Single Thread Model

The use of thesingleThreadModel interface guarantees that only one thread at a
time will execute in a given servlet instance'srvice method. It is important to

note that this guarantee only applies to each servlet instance, since the container
may choose to pool such objects. Objects that are accessible to more than one serv-
let instance at a time, such as instancasepsession, may be available at any par-
ticular time to multiple servlets, including those that implement
SingleThreadModel.

SRV.2.3 Servlet Life Cycle

A servlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, handles requests from clients, and how it is taken out of
service. This life cycle is expressed in the API by ilhet, service, anddestroy
methods of thgavax.servlet.Servlet interface that all servlets must implement
directly, or indirectly through theenericServiet orHttpServlet abstract classes.

SRV.2.3.1 Loading and Instantiation

The servlet container is responsible for loading and instantiating servlets. The load-
ing and instantiation can occur when the container is started, or delayed until the
container determines the servlet is needed to service a request.

When the servlet engine is started, needed servlet classes must be located by
the servlet container. The servlet container loads the servlet class using normal
Java class loading facilities. The loading may be from a local file system, a remote
file system, or other network services.

After loading the Servlet class, the container instantiates it for use.

24

THE SERVLET INTERFACE

SRV.2.3.2 Initialization

After the servlet object is instantiated, the container must initialize the servlet before
it can handle requests from clients. Initialization is provided so that a servlet can
read persistent configuration data, initialize costly resources (such as JDBC™ API
based connections), and perform other one-time activities. The container initializes
the servlet instance by calling th@it method of theServiet interface with a
unique (per servlet declaration) object implementings&e,1etConfig interface.

This configuration object allows the servlet to access name-value initialization
parameters from the web application’s configuration information. The configuration
object also gives the servlet access to an object (implementirgith@etContext
interface) that describes the servlet’s runtime environment. See Chapter SRV.3,
“Servlet Context” for more information about thervietContext interface.

SRV.2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can throwuavailableException Or @
ServletException. In this case the servlet must not be placed into active service
and must be released by the servlet containerdeékeroy method is not called as it

is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container after a
failed initialization. The exception to this rule is when @availableException
indicates a minimum time of unavailability, and the container must wait for the
period to pass before creating and initializing a new servlet instance.

SRV.2.3.2.2 Tool Considerations

The triggering of static initialization methods when a tool loads and introspects a
web application is to be distinguished from the calling of the init method. Develop-
ers should not assume a servlet is in an active container runtime untihthe
method of theserviet interface is called. For example, a servlet should not try to
establish connections to databases or Enterprise JavaBeans™ containers when only
static (class) initialization methods have been invoked.

SRV.2.3.3 Request Handling

After a servlet is properly initialized, the servlet container may use it to handle client
requests. Requests are represented by request objects sétypetRequest. The
servlet fills out respones to requests by calling methods of a provided object of type
ServletResponse. These objects are passed as parameters te théce method of
theserviet interface.

Final Version |

Servlet Life Cycle 25

In the case of an HTTP request, the objects provided by the container are of
typesHttpServletRequest andHttpServietResponse.

Note that a servlet instance placed into service by a servlet container may han-
dle no requests during its lifetime.

SRV.2.3.3.1 Multithreading Issues

A servlet container may send concurrent requests througbethe ce method of
the servlet. To handle the requests the developer of the servlet must make adequate
provisions for concurrent processing with multiple threads indheice method.

An alternative for the developer is to implement théngleThreadModel
interface which requires the container to guarantee that there is only one request
thread at a time in theervice method. A servlet container may satisfy this
requirement by serializing requests on a servlet, or by maintaining a pool of serv-
let instances. If the servlet is part of a web application that has been marked as dis-
tributable, the container may maintain a pool of servlet instances in each VM that
the application is distributed across.

For servlets not implementing th&ingleThreadModel interface, if the
service method (or methods such asGet or doPost which are dispatched to the
service method of theHttpServiet abstract class) has been defined with the
synchronized keyword, the servlet container cannot use the instance pool
approach, but must serialize requests through it. It is strongly recommended that
developers not synchronize tkervice method (or methods dispatched to it) in|
these circumstances because of detrimental effects on performance.

SRV.2.3.3.2 Exceptions During Request Handling

A servlet may throw either 8ervletException Or @anUnavailableException dur-
ing the service of a request. $ervietException signals that some error occurred
during the processing of the request and that the container should take appropriate
measures to clean up the request.

An UnavailableException signals that the servlet is unable to handle requests
either temporarily or permanently.

If a permanent unavailability is indicated by theavailableException, the
servlet container must remove the servlet from service, calleksroy method,
and release the servlet instance.

If temporary unavailability is indicated by thénavailableException, then
the container may choose to not route any requests through the servlet during the
time period of the temporary unavailability. Any requests refused by the container
during this period must be returned wittsERVICE_UNAVAILABLE (503) response

26

THE SERVLET INTERFACE

status along with ®etry-After header indicating when the unavailability will
terminate.

The container may choose to ignore the distinction between a permanent and
temporary unavailability and treat allhavailableExceptions as permanent,
thereby removing a servlet that throws anyvailableException from service.

SRV.2.3.3.3 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread
safe. This means that they should only be used within the scope of the request han-
dling thread.

References to the request and response objects must not be given to objects
executing in other threads as the resulting behavior may be nondeterministic.

SRV.2.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any particular
period of time. A servlet instance may be kept active in a servlet container for a
period of milliseconds, for the lifetime of the servlet container (which could be a
number of days, months, or years), or any amount of time in between.

When the servlet container determines that a servlet should be removed from
service, it calls théestroy method of theserviet interface to allow the servlet to
release any resources it is using and save any persistent state. For example, the
container may do this when it wants to conserve memory resources, or when it
itself is being shut down.

Before the servlet container calls thiestroy method, it must allow any
threads that are currently running in the-vice method of the servlet to complete
execution, or exceed a server defined time limit.

Once thedestroy method is called on a servlet instance, the container may
not route other requests to that instance of the servlet. If the container needs to
enable the servlet again, it must do so with a new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the
servlet instance so that it is eligible for garbage collection. |

Final Version |

cineren RV

Servilet Context

SRV.3.1 Introduction to the ServletContext Interface

TheservietContext interface defines a servlet's view of the web application within

which the servlet is running. The Container Provider is responsible for providing an

implementation of theervietContext interface in the servlet container. Using the

ServletContext Object, a servlet can log events, obtain URL references to

resources, and set and store attributes that other servlets in the context can access.
A sServletContext is rooted at a known path within a web server. For example

a servlet context could be locatechatp: //www.mycorp.com/catalog. All

requests that begin with thieatalog request path, known as tkkentext pathare

routed to the web application associated withs#@TetContext.

SRV.3.2 Scope of a ServletContext Interface

There is one instance object of hevietContext interface associated with each
web application deployed into a container. In cases where the container is
distributed over many virtual machines, a web application will have an instance of
thesServletContext for each VM.

Servlets in a container that were not deployed as part of a web application are
implicitly part of a “default” web application and have a defaadtvietContext.
In a distributed container, the defasdirvietContext is non-distributable and
must only exist in one VM.

27

28

SERVLET CONTEXT

SRV.3.3 Initialization Parameters

The following methods of th&rvietContext interface allow the servlet access to
context initialization parameters associated with a web application as specified by
the Application Developer in the deployment descriptor:

* getInitParameter

* getInitParameterNames

Initialization parameters are used by an application developer to convey setup
information. Typical examples are a webmaster’s e-mail address, or the name of a
system that holds critical data.

SRV.3.4 Context Attributes

A servlet can bind an object attribute into the context by name. Any attribute bound
into a context is available to any other servlet that is part of the same web
application. The following methods &érvietContext interface allow access to

this functionality:

* setAttribute
* getAttribute
* getAttributeNames

* removeAttribute

SRV.3.4.1 Context Attributes in a Distributed Container

Context attributes are local to the VM in which they were created. This prevents
ServletContext attributes from being a shared memory store in a distributed
container. When information needs to be shared between servlets running in a
distributed environment, the information should be placed into a session (See
Chapter SRV.7, “Sessions”), stored in a database, or set in an Enterprise
JavaBeart$' component. |

Final Version |

Resources 29

SRV.3.5 Resources

TheserviletContext interface provides direct access to the hierarchy of static
content documents that are part of the web application, including HTML, GIF, and
JPEG files, via the following methods of thevietContext interface:

* getResource

* getResourceAsStream

ThegetResource andgetResourceAsStream methods take string with a
leading “/” as argument which gives the path of the resource relative to the root of
the context. This hierarchy of documents may exist in the server’s file system, in a
web application archive file, on a remote server, or at some other location.

These methods are not used to obtain dynamic content. For example, in a
container supporting the JavaServer Pafspecificatioh, a method call of the
form getResource("/index.jsp") would return the JSP source code and not the
processed output. See Chapter SRV.8, “Dispatching Requests” for more
information about accessing dynamic content.

The full listing of the resources in the web application can be accessed using
thegetResourcePaths(String path) method. The full details on the semantics of
this method may be found in the API documentation in this specification.

SRV.3.6 Multiple Hosts and Servlet Contexts

Web servers may support multiple logical hosts sharing one IP address on a server.
This capability is sometimes referred to as "virtual hosting". In this case, each
logical host must have its own servlet context or set of servlet contexts. Servlet
contexts can not be shared across virtual hosts.

SRV.3.7 Reloading Considerations

Although a Container Provider implementation of a class reloading scheme for ease
of development is not required, any such implementation must ensure that all
servlets, and classes that they may,use loaded in the scope of a single class
loader. This requirement is needed to guarantee that the application will behave as

“The JavaServer Pagd¥s specification can be found abttp://
java.sun.com/products/jsp

30

SERVLET CONTEXT

expected by the Developer. As a development aid, the full semantics of notification
to session binding listeners should be be supported by containers for use in the
monitoring of session termination upon class reloading.

Previous generations of containers created new class loaders to load a servlet,
distinct from class loaders used to load other servlets or classes used in the servlet
context. This could cause object references within a servlet context to point at
unexpected classes or objects, and cause unexpected behavior. The requirement is
needed to prevent problems caused by demand generation of new class loaders.

SRV.3.7.1 Temporary Working Directories

A temporary storage directory is required for each servlet context. Servlet
containers must provide a private temporary directory per servlet context, and make
it available via thgjavax.servlet.context.tempdir context attribute. The objects
associated with the attribute must be of typea.io.File.

The requirement recognizes a common convenience provided in many servlet
engine implementations. The container is not required to maintain the contentgjof
the temporary directory when the servlet container restarts, but is required to
ensure that the contents of the temporary directory of one servlet context is nqt
visible to the servlet contexts of other web applications running on the servlet
container.

% An exception is system classes that the servlet may use in a different class
loader.

Final Version |

e RV, 4

The Requeét

The request object encapsulates all information from the client request. Inthe HTTP
protocol, this information is transmitted from the client to the server in the HTTP
headers and the message body of the request.

SRV.4.1 HTTP Protocol Parameters

Request parameters for the servlet are the strings sent by the client to a servlet

container as part of its request. When the requesttggservletRequest object,

and conditions set out below are met, the container populates the parameters from

the URI query string and POST-ed data. |
The parameters are stored as a set of name-value pairs. Multiple parameter

values can exist for any given parameter name. The following methods of the

ServletRequest interface are available to access parameters:

* getParameter
* getParameterNames

* getParameterValues

ThegetParametervalues method returns an array $fring objects
containing all the parameter values associated with a parameter name. The value
returned from th@etParameter method must be the first value in the array of
String objects returned byetParametervalues.

Data from the query string and the post body are aggregated into the request
parameter set. Query string data is presented before post body data. For example,
if a request is made with a query stringagiiel1o and a post body of
a=goodbye&a=wor1d, the resulting parameter set would be ordargéel7o,
goodbye, world).

31

32

THE REQUEST

Path parameters that are part of a GET request (as defined by HTTP 1.1) are not
exposed by these APIs. They must be parsed frorathisg values returned by the
getRequestURI method or th@etPathInfo method.

SRV.4.1.1 When Parameters Are Available

The following are the conditions that must be met before post form data will
be populated to the parameter set:

1. The request is an HTTP or HTTPS request.
2. The HTTP method is POST
3. The content type isplication/x-www-form-urlencoded

4. The servlet has made an initial call of any of theParameter family of meth-
ods on the request object.

If the conditions are not met and the post form data is not included in the
parameter set, the post data must still be available to the servlet via the request
object’s input stream. If the conditions are met, post form data will no longer b
available for reading directly from the request object’s input stream. r

SRV .4.2 Attributes

Attributes are objects associated with a request. Attributes may be set by the
container to express information that otherwise could not be expressed via the API,
or may be set by a servlet to communicate information to another servlet (via the
RequestDispatcher). Attributes are accessed with the following methods of the
ServletRequest interface:

* getAttribute
* getAttributeNames
* setAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the prefixes pdvia.” and “javax.” are
reserved for definition by this specification. Similarly attribute names beginning
with the prefixes oféun.”, and ‘com.sun.” are reserved for definition by Sun
Microsystems. It is suggested that all attributes placed into the attribute set be

Final Version |

Headers 33

named in accordance with the reverse domain name convention suggested by the
Java Programming Language Specification package naming.

SRV.4.3 Headers

A servlet can access the headers of an HTTP request through the following methods
of theHttpServletRequest interface:

* getHeader
* getHeaders

« getHeaderNames

ThegetHeader method returns a header given the name of the header. There can
be multiple headers with the same name, @ghe-Control headers, inan HTTP
request. If there are multiple headers with the same namgstheder method
returns the first head in the request. BheHeaders method allows access to all the
header values associated with a particular header name, returaigedation
of String objects.

Headers may contaBtring representations aht or Date data. The
following convenience methods of thetpServletRequest interface provide
access to header data in a one of these formats:

* getIntHeader
* getDateHeader

If the getIntHeader method cannot translate the header value tmgm
NumberFormatException is thrown. If thegetDateHeader method cannot translate
the header to Bate Object, art11egalArgumentException is thrown.

SRV.4.4 Request Path Elements

The request path that leads to a servlet servicing a request is composed of many
important sections. The following elements are obtained from the request URI path
and exposed via the request object:

1 The Java Programming Language Specification is availabietat: //
java.sun.com/docs/books/j1s

34 THE REQUEST

» Context Path: The path prefix associated with th&vietContext that this
servlet is a part of. If this context is the “default” context rooted at the base of
the web server's URL namespace, this path will be an empty string. Otherwise,
if the context is not rooted at the root of the server’s namespace, the path stgrts
with @’ /’ character but does not end wittya character.

» Servlet Path: The path section that directly corresponds to the mapping
which activated this request. This path starts with’acharacter except in the
case where the request is matched with the ‘/*' pattern, in which case it is the
empty string.

» Pathinfo: The part of the request path that is not part of the Context Path or
the Servlet Path. It is either null if there is no extra path, or is a string with a
leading /.

The following methods exist in thetpServletRequest interface to access
this information:

* getContextPath

* getServletPath
e getPathInfo

It is important to note that, except for URL encoding differences between the
request URI and the path parts, the following equation is always true:

requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following:

Table 1: Example Context Set Up

Context Path /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServiet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServiet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServiet

Final Version |

Path Translation Methods 35

The following behavior is observed:

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/Tawn/index.html ContextPath: /catalog
ServletPath: /Tawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null

SRV.45 Path Translation Methods

There are two convenience methods inahewhich allow the Developer to obtain |
the file system path equivalent to a particular path. These methods are:

« ServletContext.getRealPath
* HttpServletRequest.getPathTranslated

ThegetRealPath method takes string argument and returnssaring
representation of a file on the local file system to which a path corresponds. The
getPathTranslated method computes the real path of f@hinfo of the request.

In situations where the servlet container cannot determine a valid file path for
these methods, such as when the web application is executed from an archive, on a
remote file system not accessible locally, or in a database, these methods must
return null.

SRV.4.6 Cookies

TheHttpServletRequest interface provides thgetCookies method to obtain an

array of cookies that are present in the request. These cookies are data sent from the
client to the server on every request that the client makes. Typically, the only
information that the client sends back as part of a cookie is the cookie name and the
cookie value. Other cookie attributes that can be set when the cookie is sent to the
browser, such as comments, are not typically returned.

36

THE REQUEST

SRV.4.7 SSL Attributes

If a request has been transmitted over a secure protocol, such as HTTPS, this
information must be exposed via thsecure method of theervletRequest
interface. The web container must expose the following attributes to the servlet
programmer:

Table 3: Protocol Attributes

Attribute Attribute Name Java Type
cipher suite javax.servlet.request.cipher_suite String
bit size of the algo- javax.servlet.request.key_size Integer

rithm

If there is an SSL certificate associated with the request, it must be exposed by
the servlet container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible viasarvletRequest
attribute ofjavax.servlet.request.X509Certificate.

The order of this array is defined as being in ascending order of trust. The first
certificate in the chain is the one set by the client, the next is the one used to
authenticate the first, and so on.

SRV.4.8 Internationalization

Clients may optionally indicate to a web server what language they would prefer the
response be given in. This information can be communicated from the client using
theAccept-Language header along with other mechanisms described in the HTTP/
1.1 specification. The following methods are provided irs#i@TletRequest

interface to determine the preferred locale of the sender:

* getlLocale

* getlLocales

ThegetLocale method will return the preferred locale that the client will
accept contentin. See section 14.4 of RFC 2616 (HTTP/1.1) for more information
about how theccept-Language header must interpreted to determine the
preferred language of the client.

Final Version |

Request data encoding 37

ThegetlLocales method will return aminumeration of Locale Objects
indicating, in decreasing order starting with the preferred locale, the locales that
are acceptable to the client.

If no preferred locale is specified by the client, the locale returned by the
getLocale method must be the default locale for the servlet container and the
getLocales method must contain an enumeration of a singtale element of
the default locale.

SRV.4.9 Request data encoding

Currently, many browsers do not send a char encoding qualifier withrttent-
Type header, leaving open the determination of the character encoding for reading
HTTP requests. The default encoding of a request the container uses to create fhe
request reader and parse POST data must be “ISO-8859-1", if none has been
specified by the client request. However, in order to indicate to the developer in this
case the failure of the client to send a character encoding, the container returnsjnull
from thegetCharacterEncoding method.
If the client hasn't set character encoding and the request data is encoded with
a different encoding than the default as described above, breakage can occur]To
remedy this situation, a new methagCharacterEncoding(String enc) has
been added to thsarvietRequest interface. Developers can override the
character encoding supplied by the container by calling this method. It must be
called prior to parsing any post data or reading any input from the request. Calling
this method once data has been read will not affect the encoding.

SRV.4.10 Lifetime of the Request Object

Each request object is valid only within the scpoe of a sergkatid ce method, or
within the scope of a filter'soFilter method. Containers commonly recycle

request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining references to request objects
outside the scope described above may lead to non-deterministic behavior.

38

Final Version

THE REQUEST

cineren DRV

The Responée

The response object encapsulates all information to be returned from the server to
the client. In the HTTP protocol, this information is transmitted from the server to
the client either by HTTP headers or the message body of the request.

SRV.5.1 Buffering

A servlet container is allowed, but not required, to buffer output going to the client
for efficiency purposes. Typically servers that do buffering make it the default, but
allow servlets to specify buffering parameters.

The following methods in thg&ervletResponse interface allow a servlet to
access and set buffering information:

* getBufferSize
* setBufferSize
* isCommitted

* reset

* resetBuffer

¢ flushBuffer

These methods are provided on $lhevietResponse interface to allow
buffering operations to be performed whether the servlet is using a
ServletOutputStream Or aWriter.

ThegetBufferSize method returns the size of the underlying buffer being
used. If no buffering is being used, this method must returinthealue ofe
(zero).

39

40

THE RESPONSE

The servlet can request a preferred buffer size by usingthefferSize
method. The buffer assigned is not required to be the size requested by the servlet,
but must be at least as large as the size requested. This allows the container to
reuse a set of fixed size buffers, providing a larger buffer than requested if
appropriate. The method must be called before any content is written using a
ServletOutputStream Of Writer. If any content has been written, this method
must throw art1legalStateException.

TheisCommitted method returns a boolean value indicating whether any
response bytes have been returned to the clienttThkeBuffer method forces
content in the buffer to be written to the client.

Thereset method clears data in the buffer when the response is not
committed. Headers and status codes set by the servlet prior to the reset call must
be cleared as well. ThesetBuffer method clears content in the buffer if the
response is not committed without clearing the headers and status code.

If the response is committed and #eeet or resetBuffer method is called,
anIllegalStateException must be thrown. The response and its associated
buffer will be unchanged.

When using a buffer, the container must immediately flush the contents of a
filled buffer to the client. If this is the first data is sent to the client, the response is
considered to be committed.

SRV.5.2 Headers

A servlet can set headers of an HTTP response via the following methods of the
HttpServletResponse interface:

* setHeader
¢ addHeader

ThesetHeader method sets a header with a given name and value. A previous
header is replaced by the new header. Where a set of header values exist for the
name, the values are cleared and replaced with the new value.

TheaddHeader method adds a header value to the set with a given name. If
there are no headers already associated with the name, a new set is created.

Headers may contain data that representsaor abate object. The
following convenience methods of thetpServletResponse interface allow a
servlet to set a header using the correct formatting for the appropriate data type:

Final Version |

Convenience Methods 41

¢ setIntHeader
* setDateHeader
* addIntHeader
¢ addDateHeader

To be successfully transmitted back to the client, headers must be set before
the response is committed. Headers set after the response is committed will be
ignored by the servlet container.

Servlet programmers are responsible for ensuring thabthent-Type
header is appropriately set in the response object for the content the servlet is
generating. The HTTP 1.1 specification does not require that this header be set in
an HTTP response. Servlet containers must not set a default content type when the
servlet programmer does not set the type.

SRV.5.3 Convenience Methods
The following convenience methods exist in#liepServietResponse interface:

* sendRedirect

* sendError

ThesendRedirect method will set the appropriate headers and content body
to redirect the client to a different URL. It is legal to call this method with a
relative URL path, however the underlying container must translate the relative
path to a fully qualified URL for transmission back to the client. If a partial URL
is given and, for whatever reason, cannot be converted into a valid URL, then this
method must throw anllegalArgumentException

ThesendError method will set the appropriate headers and content body for
an error message to return to the client. An optietieing argument can be
provided to theenderror method which can be used in the content body of the
error.

These methods will have the side effect of committing the response, if it has
not already been committed, and terminating it. No further output to the client
should be made by the servlet after these methods are called. If data is written to
the response after these methods are called, the data is ignored.

If data has been written to the response buffer, but not returned to the client
(i.e. the response is not committed), the data in the response buffer must be
cleared and replaced with the data set by these methods. If the response is
committed, these methods must throwI®alStateException.

42

THE RESPONSE

SRV.5.4 Internationalization

A servlet will set the language attributes of a response wittethecale method

of theServletResponse interface when the client has requested a document in a
particular language, or has set a language preference. This method must correctly
set theContent-Language header (along with other mechanisms described in the
HTTP/1.1 specification), to accurately communicateLtirale to the client.

For maximum benefit, thetLocale method should be called by the
Developer before thgetwriter method of theservietResponse interface is
called. This ensures that the returrredntwriter is configured appropriately for
the targetLocale.

Note that a call to theetContentType method with acharset component for
a particular content type, will override the value set via a prior ca#ltimcale.

The default encoding of a response is “ISO-8859-1" if none has been
specified by the servlet programmer.

SRV.5.5 Closure of Response Object

When a response is closed, the container must immediately flush all remaining
content in the response buffer to the client. The following events indicate that the
servlet has satisfied the request and that the response object is to be closed:

* The termination of theervice method of the servlet.

» The amount of content specified in #w@ContentLength method of the re-
sponse has been written to the response.

* ThesendError method is called.

ThesendRedirect method is called.

SRV.5.6 Lifetime of the Response Object

Each response object is valid only within the scpoe of a sendet'gice
method, or within the scope of a filter'soFilter method. Containers
commonly recycle response objects in order to avoid the performange
overhead of response object creation. The developer must be aware fhat
maintaining references to response objects outside the scope described apove
may lead to non-deterministic behavior.

Final Version |

cireren DRV, 0O

Filtering

Filters are a new feature of the Java servlet APl in version 2.3. Filters allow on the
fly transformations of payload and header information in both the request into a
resource and the response from a resource.

This chapter describes the new servlet API classes and methods that provide a
lightweight framework for filtering active and static content. It describes how
filters are configured in a web application, and conventions and semantics for their
implementation.

API documentation for servlet filters is provided in the API definitions
chapters of this document. The configuration syntax for filters is given by the
document type definition (DTD) in Chapter SRV.13. The reader should use these
sources as references when reading this chapter.

SRV.6.1 What is a filter?

A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters do not generally create a response or
respond to a request as servlets do, rather they modify or adapt the requests for a
resource, and modify or adapt responses from a resource.

Filters can act on dynamic or static content. For the purposes of this chapter,
dynamic and static contents are referred to as web resources.

Among the types of functionality available to the filter author are

« The accessing of a resource before a request to it is invoked.

* The processing of the request for a resource before it is invoked.

» The modification of request headers and data by wrapping the request in cus-
tomized versions of the request object.

43

44

FILTERING

» The madification of response headers and response data by providing custom-
ized versions of the response object.

» The interception of an invocation of a resource after its call.

» Actions on a servlet, on groups of servlets or static content by zero, one or more
filters in a specifiable order.

SRV.6.1.1 Examples of Filtering Components

 Authentication filters |
* Logging and auditing filters

» Image conversion filters

» Data compression filters

» Encryption filters

» Tokenizing filters

* Filters that trigger resource access events

o XSL/T filters that transform XML content

* MIME-type chain filters

» Caching filters

SRV.6.2 Main Concepts

The main concepts in this filtering model are described in this section.

The application developer creates a filter by implementing the
javax.servlet.Filter interface and providing a public constructor taking no
arguments. The class is packaged in the Web Archive along with the static content
and servlets that make up the web application. A filter is declared using the
filter elementin the deployment descriptor. A filter or collection of filters can be
configured for invocation by definirfg 1ter-mapping elements in the
deployment descriptor. This is done by mapping filters to a particular servlet by
the servlet’s logical name, or mapping to a group of servlets and static content
resources by mapping a filter to a URL pattern.

SRV.6.2.1 Filter Lifecycle

After deployment of the web application, and before a request causes the container
to access a web resource, the container must locate the list of filters that must be
applied to the web resource as described below. The container must ensure that it

Final Version |

Main Concepts 45

has instantiated a filter of the appropriate class for each filter in the list, and called its
init(FilterConfig config) method. The filter may throw an exception to indicate
that it cannot function properly. If the exception is of typ&vailableException,

the container may examine th&Permanent attribute of the exception and may
choose to retry the filter at some later time.

Only one instance petilter declaration in the deployment descriptor is
instantiated per Java virtual machine of the container. The container provides the
filter config as declared in the filter's deployment descriptor, the reference to the
ServletContext for the web application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter |
instance in the list and calls itsFi1ter method, passing in thsrvietRequest
andservletResponse, and a reference to tiie1terChain object it will use.

ThedoFilter method of a Filter will typically be implemented following this
or some subset of the following pattern

Step 1: The method examines the request’s headers.

Step 2: It may wrap the request object with a customized implementation
of ServletRequest Or HttpServletRequest in order to modify request
headers or data.

Step 3: It may wrap the response object passed in toitslter method
with a customized implementation 6&rvietResponse Or
HttpServietResponse t0 modify response headers or data.

Step 4: The filter may invoke the next entity in the filter chain. The next
entity may be another filter, or if the filter making the invokation is the last
filter configured in the deployment descriptor for this chain, the next entit
is the target web resource.The invocation of the next entity is effected b
calling thedoFilter method on theilterChain object, passing in the
request and response it was called with, or wrapped versions it may have
created.

The filter chain’s implementation of therFi1ter method, provided by the
container, must locate the next entity in the filter chain and invoke its
doFiTlter method, passing in the appropriate request and response objects.

Alternatively, the filter chain can block the request by not making the call to
invoke the next entity leaving the filter responsible for filling out the response
object.

Step 5: After invocation of the next filter in the chain, the filter may
examine response headers. |

46

FILTERING

Step 6: Alternatively, the filter may have thrown an exception to indicate
an error in processing. If the filter throws @RavailableException during
its doFilter processing, the container must not attempt continued

processing down the filter chain. It may choose to retry the whole chain at

a later time if the exception is not marked permanent.

When the last filter in the chain has been invoked, the next entity accessed is

the target servlet or resource at the end of the chain.

Before a filter instance can be removed from service by the container, the ¢
tainer must first call theestroy method on the filter to enable the filter to
release any resources and perform other cleanup operations.

SRV.6.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or response i

order that it can override behavior to perform a filtering task. In this model, the

developer not only has the ability to override existing methods on the request ar
response objects, but to provide new API suited to a particular filtering task to a
filter or target web resource down the chain. For example, the developer may wish

to

extend the response object with higher level output objects that the output strean} or

the writer, such as API that allows DOM objects to be written back to the client.

In order to support this style of filter the container must support the following
requirement. When a filter invokes ttheFi1ter method on the container’s filter
chain implementation, the container must ensure that the request and respong
object that it passes to the next entity in the filter chain, or to the target web
resource if the filter was the last in the chain, is the same object that was pass
into thedoFilter method by the calling filter.

e

ed

The same requirement of wrapper object identity applies to the case where fhe

developer passes a wrapped request or response object into the request dispat]
the request and response objects passed into the servlet invoked must be the 4
objects as were passed in.

SRV.6.2.3 Filter Environment

Cher;
ame

A set of initialization parameters can be associated with a filter usinthike
params element in the deployment descriptor. The names and values of these
parameters are available to the filter at runtime viaélagnitParameter and
getInitParameterNames methods on the filter'si1terConfig object. Additionally,
theFilterConfig affords access to tlservietContext of the web application for

Final Version |

Main Concepts a7

the loading of resources, for logging functionality, and for storage of state in the
ServletContext’s attribute list.

SRV.6.2.4 Configuration of Filters in a Web Application

A filter is defined in the deployment descriptor usingfthiecer element. In this
element, the programmer declares the

e filter-name: used to map the filter to a servlet or URL
* filter-class: used by the container to identify the filter type

* init-params; initialization parameters for a filter

and optionally can specify icons, a textual description and a display hame for tool

manipulation. The container must instantiate exactly one instance of the Java clpss

defining the filter per filter declaration in the deployment descripor. Hence, two

instances of the same filter class will be instantiated by the container if the develogper

makes two filter declarations for the same filter class.
Here is an example of a filter declaration:

<filter>
<filter-name>Image Filter</filter-name>
<filter-class>com.acme.ImageServiet</filter-class>
</filter>

Once a filter has been declared in the deployment descriptor, the assembler
uses therilter-mapping element to define servlets and static resources in the
web application to which the Filter is to be applied. Filters can be associated with
a servlet by using theerviet-name element. For example, the following maps
the Image Filter filter to the ImageServlet servlet:

<filter-mapping>
<filter-name>Image Filter</filter-name>
<servlet-name>ImageServlet</serviet-name>
</filter-mapping>

Filters can be associated with groups of servlets and static content using the
url-pattern style of filter mapping:

<filter-mapping>
<filter-name>Logging Filter</filter-name>

48

FILTERING

<url-pattern>/*</url-pattern>
</filter-mapping>

Here the Logging Filter is applied to all the servlets and static content pages
in the web application, because every request URI matches-thdéRL pattern.

When processing &i1ter-mapping element using ther1-pattern style, the
container must determine whether ti@-pattern matches the request URI
using the path mapping rules defined in Chapter SRV.11, “CHAPTER.

The order the container uses in building the chain of filters to be applied for a
particular request URI is

1. Theur1-pattern matching filter-mappings in the same order that these ele-
ments appear in the deployment descriptor, and then

2. Theservlet-name matching filter-mappings in the same order that these ele-
ments appear in the deployment descriptor.

This requirement means that the container, when receiving an incoming
request:

* Identifies the target web resource according to the rules of SRV.11.2.

* If there are filters matched by servlet name and the web resourcedias a
let-name, the container builds the chain of filters matching in the order de-
clared in the deployment descriptor. The last filter in this chain corresponds fo
the lastservlet-name matching filter and is the filter that invokes the target
web resource.

* If there are filters usingri1-pattern matching and ther1-pattern matches
the request URI according to the rules of SRV.11.2, the container builds the
chain ofur1-pattern matched filters in the same order as declared in the dé
ployment descriptor. The last filter in this chain is the last-pattern match-
ing filter in the deployment descriptor for this request URI. The last filter in
this chain is the filter that invokes the first filter in teervlet-name macthing
chain, or invokes the target web resource if there are none.

Itis expected that high performance web containers will cache filter chains $o
that they do not need to compute them on a per request basis.

Final Version |

cineren DRV

Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build
effective web applications, it is imperative that requests from a particular client be
associated with each other. Many strategies for session tracking have evolved over
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simpletpSession interface that allows a servlet
container to use any of several approaches to track a user’s session without
involving the Application Developer in the nuances of any one approach.

SRV.7.1 Session Tracking Mechanisms

The following sections describe approaches to tracking a user’s sessions

SRV.7.1.1 Cookies

Session tracking through HTTP cookies is the most used session tracking
mechanism and is required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the
cookie on each subsequent request to the server, unambiguously associating the
request with a session. The name of the session tracking cookie must be
JSESSIONID.

SRV.7.1.2 SSL Sessions

Secure Sockets Layer, the encryption technology used in the HTTPS protocol, has a
mechanism built into it allowing multiple requests from a client to be
unambiguously identified as being part of a session. A servlet container can easily
use this data to define a session.

49

50

SESSIONS

SRV.7.1.3 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. When a
client will not accept a cookie, URL rewriting may be used by the server as the basis
for session tracking. URL rewriting involves adding data, a session id, to the URL
path that is interpreted by the container to associate the request with a session.

The session id must be encoded as a path parameter in the URL string. The
name of the parameter mustjessionid. Here is an example of a URL
containing encoded path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234 |

SRV.7.1.4 Session Integrity

Web containers must be able to support the HTTP session while servicing HTTP
requests from clients that do not support the use of cookies. To fulfil this
requirement, web containers commonly support the URL rewriting mechanism.

SRV.7.2 Creating a Session

A session is considered “new” when it is only a prospective session and has not been
established. Because HTTP is a request-response based protocol, an HTTP session
is considered to be new until a client “joins” it. A client joins a session when session
tracking information has been returned to the server indicating that a session has
been established. Until the client joins a session, it cannot be assumed that the next
request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

» The client does not yet know about the session
» The tlient chooses not to join a session.
These conditions define the situation where the servlet container has no
mechanism by which to associate a request with a previous request.
A Servlet Developer must design his application to handle a situation wherg a
client has not, can not, or will not join a session.

SRV.7.3 Session Scope

HttpSession Objects must be scoped at the application (or servlet context) level.
The underlying mechanism, such as the cookie used to establish the session, can be

Final Version |

Binding Attributes into a Session 51

the same for different contexts, but the object referenced, including the attributes in
that object, must never be shared between contexts by the container.

To illustrate this requirement with an example: if a servlet uses the
RequestDispatcher to call a servlet in another web application, any sessions
created for and visible to the callee servlet must be different from those visible to
the calling servlet.

SRV.7.4 Binding Attributes into a Session

A servlet can bind an object attribute intot@rtpSession implementation by name.

Any object bound into a session is available to any other servlet that belongs to the
sameservletContext and handles a request identified as being a part of the same
session.

Some objects may require notification when they are placed into, or removed
from a session. This information can be obtained by having the object implement
theHttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a
session.

« valueBound
¢ valueUnbound

ThevalueBound method must be called before the object is made available via
thegetAttribute method of theélittpSession interface. ThealueUnbound
method must be called after the object is no longer available vigett¥e tribute
method of theittpSession interface.

SRV.7.5 Session Timeouts

In the HTTP protocol, there is no explicit termination signal when a client is no
longer active. This means that the only mechanism that can be used to indicate when
a client is no longer active is a timeout period.

The default timeout period for sessions is defined by the servlet container and
can be obtained via thetMaxInactiveInterval method of theittpSession
interface. This timeout can be changed by the Developer using the
setMaxInactiveInterval method of theittpSession interface. The timeout
periods used by these methods are defined in seconds. By definition, if the timeout
period for a session is set4n the session will never expire.

52

SESSIONS

SRV.7.6 Last Accessed Times

ThegetLastAccessedTime method of theittpSession interface allows a servlet to
determine the last time the session was accessed before the current request. The
session is considered to be accessed when a request that is part of the session is first
handled by the servlet container.

SRV.7.7 Important Session Semantics

J2EE.7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to a single
session object at the same time. The Developer has the responsibility for
synchronizing access to session resources as appropriate.

SRV.7.7.2 Distributed Environments

Within an application marked as distributable, all requests that are part of a session
must handled by one virtual machine at a time. The container must be able to handle
all objects placed into instances of thepSession class using theetAttribute Or
putvalue methods appropriately. The following restrictions are imposed to meet
these conditions:

» The container must accept objects that implemenddhializable interface

» The container may choose to support storage of other designated objects in
theHttpSession, such as references to Enterprise JavaBean components and
transactions.

» Migration of sessions will be handled by container-specific facilities.

The servlet container may throw amnlegalArgumentException if an object is
placed into the session that is netializable or for which specific support has
not been made available. ThElegalArgumentException must be thrown for
objects where the container cannot support the mechanism necessary for
migration of a session storing them.

These restrictions mean that the Developer is ensured that there are no
additional concurrency issues beyond those encountered in a non-distributed
container.

Final Version |

Important Session Semantics 53

The Container Provider can ensure scalability and quality of service features
like load-balancing and failover by having the ability to move a session object,
and its contents, from any active node of the distributed system to a different node
of the system.

If distributed containers persist or migrate sessions to provide quality of
service features, they are not restricted to using the native JVM Serialization
mechanism for serializingctpSessions and their attributes. Developers are not
guaranteed that containers will cedhdobject andwriteObject methods on
session attributes if they implement them, but are guaranteed that the
Serializable closure of their attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation after
deserialization of a session.

Application Developers writing distributed applications should be aware that
since the container may run in more than one Java virtual machine, the developer
cannot depend on static variables for storing an application state. They should
store such states using an enterprise bean or a database.

SRV.7.7.3 Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the web
browser process and are not associated with any particular window of the browser,
requests from all windows of a client application to a servlet container might be part
of the same session. For maximum portability, the Developer should always assume
that all windows of a client are participating in the same session.

54

Final Version

SESSIONS

cineren RV,

Dispatching Requeéts

When building a web application, it is often useful to forward processing of a
request to another servlet, or to include the output of another servlet in the response.
TheRequestDispatcher interface provides a mechanism to accomplish this.

SRV.8.1 Obtaining a RequestDispatcher

An object implementing theequestDispatcher interface may be obtained from
theServletContext Via the following methods:

* getRequestDispatcher

* getNamedDispatcher

ThegetRequestDispatcher method takes string argument describing a
path within the scope of th&rvletContext. This path must be relative to the root
of theservietContext and begin with a‘/". The method uses the path to look up a
servlet, wraps it with 8equestDispatcher object, and returns the resulting
object. If no servlet can be resolved based on the given patlauastDispatcher
is provided that returns the content for that path.

ThegetNamedDispatcher method takes string argument indicating the
name of a servlet known to tiservietContext. If a servlet is found, it is wrapped
with aRequestDispatcher object and the object returned. If no servlet is
associated with the given name, the method must retain

To allowRequestDispatcher Objects to be obtained using relative paths that
are relative to the path of the current request (not relative to the root of the
ServletContext), the following method is provided in tlservietRequest
interface:

55

56

DISPATCHING REQUESTS

* getRequestDispatcher

The behavior of this method is similar to the method of the same name in the
ServletContext. The servlet container uses information in the request object to
transform the given relative path to a complete path. For example, in a context
rooted at/’ and a request t@ggarden/tools.html, a request dispatcher obtained
via ServletRequest.getRequestDispatcher("header.htm1") Will behave exactly
like a call toServletContext.getRequestDispatcher("/garden/header.html")

SRV.8.1.1 Query Strings in Request Dispatcher Paths

TheServletContext andServletRequest methods that creakequestDispatcher
objets using path information allow the optional attachment of query string
information to the path. For example, a Developer may obtRég@estDispatcher
by using the following code:

String path = “/raisons.jsp?orderno=5";
RequestDispatcher rd = context.getRequestDispatcher(path);
rd.include(request, response);

Parameters specified in the query string used to creakethestDispatcher
take precedence over other parameters of the same name passed to the included
servlet. The parameters associated wikaduestDispatcher are scoped to apply
only for the duration of thenclude or forward call.

SRV.8.2 Using a Request Dispatcher

To use a request dispatcher, a servlet calls eithenthede method offorward
method of th&equestDispatcher interface. The parameters to these methods can
be either the request and response arguments that were passed igeviai the
method of th&erviet interface, or instances of subclasses of the request and
response wrapper classes that have been introduced for version 2.3 of the
specification. In the latter case, the wrapper instances must wrap the request or
response objects that the container passed intethiéce method.

The Container Provider must ensure that the dispatch of the request to a target
servlet occurs in the same thread of the same VM as the original request.

Final Version |

The Include Method 57

SRV.8.3 The Include Method

Theinclude method of thekequestDispatcher interface may be called at any time.
The target servlet of thmcTude method has access to all aspects of the request
object, but its use of the response object is more limited:

It can only write information to th&rvietOutputStream orWriter of the
response object and commit a response by writing content past the end of the
response buffer, or by explicitly calling thtushBuffer method of the
ServletResponse interface. It cannot set headers or call any method that affects
the headers of the response. Any attempt to do so must be ignored.

SRV.8.3.1 Included Request Parameters

Except for servlets obtained by using gaeéNamedDispatcher method, a servlet
being used from within ainclude has access to the path by which it was invoked.
The following request attributes are set:

javax.servlet.include.request_uri
javax.servlet.include.context_path
javax.servlet.include.servlet_path
javax.servlet.include.path_info
javax.servlet.include.query_string

These attributes are accessible from the included servlet vigthetribute
method on the request object.

If the included servlet was obtained by usingd&eamedDispatcher
method these attributes are not set.

SRV.8.4 The Forward Method

The forward method of th@equestDispatcher interface may be called by the
calling servlet only when no output has been committed to the client. If output data
exists in the response buffer that has not been committed, the content must be
cleared before the target servletis-vi ce method is called. If the response has been
committed, art1legalStateException must be thrown.

The path elements of the request object exposed to the target servlet must
reflect the path used to obtain #eguestDispatcher.

The only exception to this is if tiRequestDispatcher was obtained via the
getNamedDispatcher method. In this case, the path elements of the request object
must reflect those of the original request.

58

DISPATCHING REQUESTS

Before theforward method of the&kequestDispatcher interface returns, the
response content must be sent and committed, and closed by the servlet container.

SRV.8.4.1 Query String

The request dispatching mechanism is responsible for aggregating query string
parameters when forwarding or including requests.

SRV.8.5 Error Handling

If the servlet that is the target of a request dispatcher throws a runtime exception or a
checked exception of tyservletException Or I0Exception, it should be

propagated to the calling servlet. All other exceptions should be wrapped as
ServletExceptions and the root cause of the exception set to the original exception
before being propagated.

Final Version |

cireren D RVL9

Web Application's

A web application is a collection of servlets, html pages, classes, and other
resources that make up a complete application on a web server. The web application
can be bundled and run on multiple containers from multiple vendors.

SRV.9.1 Web Applications Within Web Servers

A web application is rooted at a specific path within a web server. For
example, a catalog application could be locatedat: //www.mycorp.com/
catalog. All requests that start with this prefix will be routed to the
ServletContext Which represents the catalog application.

A servlet container can establish rules for automatic generation of web
applications. For example~aser/ mapping could be used to map to a web
application based athome/user/public_html/.

By default, an instance of a web application must run on one VM at any one
time. This behavior can be overridden if the application is marked as
“distributable” via its deployment descriptor. An application marked as
distributable must obey a more restrictive set of rules than is required of a normal
web application. These rules are set out throughout this specification.

SRV.9.2 Relationship to ServletContext
The servlet container must enforce a one to one correspondence between a web

application and 8ervletContext. A ServletContext Object provides a servlet
with its view of the application.

59

WEB APPLICATIONS

SRV.9.3 Elements of a Web Application

A web application may consist of the following items:

Servlets
JSP" Page$ |

Utility Classes

Static documents (html, images, sounds, etc.)

Client side Java applets, beans, and classes

» Descriptive meta information which ties all of the above elements together.

SRV.9.4 Deployment Hierarchies

This specification defines a hierarchical structure used for deployment and
packaging purposes that can exist in an open file system, in an archive file, or in
some other form. It is recommended, but not required, that servlet containers
support this structure as a runtime representation.

SRV.9.5 Directory Structure

A web application exists as a structured hierarchy of directories. The root of this
hierarchy serves as the document root for files that are part of the application. Fgr
example, for a web application with the context patitalog in a web container,
theindex.html file at the base of the web application hierarchy can be served to
satisfy a request frontatalog/index.htm1. The rules for matching URLSs to

context path are laid out in Chapter SRV.11. Since the context path of an application
determines the URL namespace of the contents of the web application, web
containers must reject web applications defining a context path could cause
potential conflicts in this URL namespace. This may occur, for example, by
attempting to deploy a second web application with the same context path, or two
web applications where one context path is a substring of the other. Since requests
are matched to resources case sensitively, this determination of potential conflict
must be performed case sensitively as well. |

1 See the JavaServer Pages specification available frafp://
java.sun.com/products/jsp.

Final Version |

Directory Structure

A special directory exists within the application hierarchy narmesl-INF”.
This directory contains all things related to the application that aren’t in the
document root of the application. ThEs-INF node is not part of the public
document tree of the application. No file contained irwtBeINF directory may
be served directly to a client by the container. However, the contentswaBthe
INF directory are visible to servlet code using §berResource and
getResourceAsStream method calls on th&ervietContext. Hence, if the
Application Developer needs access, from servlet code, to application specific
configuration information that he does not wish to be exposed to the web client,
may place it under this directory. Since requests are matched to resource
mappings case-sensitively, client requests f@fE-INF/foo’, * /WEb-iNf/foo’,
for example, should not result in contents of the web application located unde

61

WEB-INF being returned, nor any form of directory listing thereof.
The contents of thees-INF directory are:

* The /WEB-INF/web.xm1 deployment descriptor.

e The /WEB-INF/classes/ directory for servlet and utility classes. The classes
in this directory must be available to the application class loader.

» The /WEB-INF/1ib/*.jar area for Java ARchive files. These files contain

servlets, beans, and other utility classes useful to the web application. The web
application class loader must be able to load classes from any of these archive

files.

The web application classloader must load classes fromethanF/ classes
directory first, and then from library JARs in theB-INF/1ib directory.

SRV.9.5.1 Example of Application Directory Structure

The following is a listing of all the files in a sample web application:

/index.html

/howto.jsp

/feedback.jsp

/images/banner.gif

/images/jumping.gif

/WEB-INF/web.xm]l

/WEB-INF/Tib/jspbean.jar
/WEB-INF/classes/com/mycorp/servlets/MyServilet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class

62

WEB APPLICATIONS

SRV.9.6 Web Application Archive File

Web applications can be packaged and signed into a Web ARchive format (war) file
using the standard Java Archive tools. For example, an application for issue tracking
might be distributed in an archive file callebuetrack.war.

When packaged into such a formyeaa-INF directory will be present which
contains information useful to Java Archive tools. This directory must not be
directly served as content by the container in response to a web client’s request,
though its contents are visible to servlet code vigéresource and
getResourceAsStream calls on theservletContext.

SRV.9.7 Web Application Deployment Descriptor

The following are types of configuration and deployment information in the web
application deployment descriptor (see Chapter SRV.13, “Deployment Descriptor”):

» ServletContext Init Parameters
» Session Configuration

» Servlet / JSP Definitions

» Servlet / ISP Mappings

* MIME Type Mappings

» Welcome File list

» Error Pages

» Security

SRV.9.7.1 Dependencies On Extensions

When a number of applications make use of the same code or resources, they Will
typically be installed as library files in the container. These files are often common
or standard APIs that can be used without portability being sacrificed. Files used
only by one, or a few, applications will be made available for access as part of the
web application.

Application developers need to know what extensions are installed on a web
container, and containers need to know what dependencies on such libraries
servlets in a WAR may have, in order to preserve portability.

Web containers are recommended to have a mechanism by which web
applications can learn what JAR files containing resources and code are available,

Final Version |

Replacing a Web Application 63

and for making them available to the application. Containers should provide a
convenient procedure for editing and configuring library files or extensions.

It is recommended that Application developers providera-InNF/
MANIFEST.MF entry in the WAR file listing extensions, if any, needed by the WAR.
The format of the manifest entry should follow standard JAR manifest format. In
expressing dependencies on extensions installed on the web container, the
manifest entry should follow the specification for standard extensions defined at
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

Web Containers should be able to recognize declared dependencies expressed
in the manifest entry of any of the library JARs undem#iBe INF/11b entry in a
WAR. If a web container is not able to satisfy the dependencies declared in this
manner, it should reject the application with an informative error message.

SRV.9.7.2 Web Application Classloader

The classloader that a container uses to load a servlet in a WAR must allow the
developer to load any resources contained in library JARs within the WAR
following normal J2SE semantics usiggtResource. It must not allow the WAR to
override J2SE or Java servlet API classes. It is further recommended that the loader
not allow servlets in the WAR access to the web container’'s implementation classes.
It is recommended also that the application class loader be implemented sp
that classes and resources packaged within the WAR are loaded in preference to
classes and resources residing in container-wide library JARs.

SRV.9.8 Replacing a Web Application

A server should be able to replace an application with a new version without
restarting the container. When an application is replaced, the container should
provide a robust method for preserving session data within that application.

SRV.9.9 Error Handling

SRV.9.9.1 Request Attributes

A web application must be able to specify that when errors occur other resources in
the application are used. The specification of these resources is done in the
deployment descriptor.

64

WEB APPLICATIONS

If the location of the error handler is a servlet or a JSP page, the request
attributes in Table SRV.9-1 must be set.

Table SRV.9-1Request Attributes and their types

Request Attributes Type
javax.servlet.error.status_code java.lang.Integer
javax.servlet.error.exception_type java.lang.Class
javax.servlet.error.message java.lang.String
javax.servlet.error.exception java.lang.Throwable
javax.servlet.error.request_uri java.lang.String
javax.servlet.error.servlet_name java.lang.String

These attributes allow the servlet to generate specialized content depending
on the status code, the exception type, the error message, the exception object
propagated, and the URI of the request processed by the servlet in which the error
occurred (as determined by therRequestURI call), and the logical name of the
servlet in which the error occurred.

With the introduction of the exception object to the attributes list for version
2.3 of this specification, the exception type and error message attributes are
redundant. They are retained for backwards compatibility with earlier versions of
the API.

SRV.9.9.2 Error Pages

To allow developers to customize the appearance of content returned to a web client
when a servlet generates an error, the deployment descriptor defines a list of error
page descriptions. The syntax allows the configuration of resources to be returned
by the container either when a servlet sets a status code to indicate an error on the
reponse, or if the servlet generates an exception or error that propogates to the
container.

If a status code indicating an error is set on the response, the container
consults the list of error page declarations for the web application that use the
status-code syntax and attempts a match. If there is a match, the container returns
the resource as indicated by the location entry.

A servlet may throw the following exceptions during processing of a request:

Final Version |

Welcome Files 65

 runtime exceptions or errors
» ServletExceptions or subclasses thereof
» |OExceptions or subclasses thereof

The web application may have declared error pages usingtaetion-type
element. In this case the container matches the exception type by comparing the
exception thrown with the list of error-page definitions that usextwtion-
type element. A match results in the container returning the resource indicated in
the location entry. The closest match in the class heirarchy wins.

If no error-page declaration containing afxception-type fits using the
class-heirarchy match, and the exception throwrsis-a@l etException Or
subclass thereof, the container extracts the wrapped exception, as defined by the
ServletException.getRootCause method. A second pass is made over the error
page declarations, again attempting the match against the error page declarations,
but using the wrapped exception instead.

Error-page declarations using theception-type element in the deployment
descriptor must be unique up to the class name of the exception-type. Similarly,
error-page declarations using thetus-code element must be unique in the
deployment descriptor up to the status code.

The error page mechanism described does not intervene when errors occur in
servlets invoked using ttRequestDispatcher. In this way, a servlet using the
RequestDispatcher to call another servlet has the opportunity to handle errors
generated in the servlet it calls.

If a servlet generates an error that is not handled by the error page mechanism
as described above, the container must ensure the status code of the response is set
to status code 500.

SRV.9.10 Welcome Files

Web Application developers can define an ordered list of partial URIs called
welcome files in the web application deployment descriptor. The deployment
descriptor syntax for the list is described in the web application deployment
descriptor DTD.

The purpose of this mechanism is to allow the deployer to specify an ordered
list of partial URIs for the container to use for appending to URIs when there is a
request for a URI that corresponds to a directory entry in the WAR not mapped to
a web component. This kind of request is known as a valid partial request.

The use for this facility is made clear by the following common example: A
welcome file of index.htm1’ can be defined so that a request to a URL like

66

WEB APPLICATIONS

host:port/webapp/directory Where directory’ is an entry in the WAR that is
not mapped to a servlet or JSP page is returned to the clientasport/
webapp/directory/index.html’.

If a web container receives a valid partial request, the web container must
examine the welcome file list defined in the deployment descriptor. The welcome
file list is an ordered list of partial URLs with no trailing or leading /. The web
server must append each welcome file in the order specified in the deployment
descriptor to the partial request and check whether a resource in the WAR is
mapped to that request URI. The web container must send the request to the first
resource in the WAR that matches.

If no matching welcome file is found in the manner described, the container
may handle the request in a manner it finds suitable. For some configurations this
may mean invoking a default file servlet, or returning a directory listing. For other
configurations it may return a 404 response.

Consider a web application where

» The deployment descriptor listadex.html1, anddefault.jsp as its welcome
files.

» Servlet A is an exact mapping t6oo/bar

The static content in the WAR is as follows

/foo/index.html
/foo/default.html
/foo/orderform.html
/foo/home.gif
/catalog/default.jsp
/catalog/products/shop.jsp
/catalog/products/register.jsp

» Arequest URI of/foo or /foo/ will be returned agfoo/index.htm1
» Arequest URI of/catalog/ will be returned agcatalog/default.jsp

» Arequest URI of/catalog/index.htm1 will cause a 404 not found

» Arequest URI of/catalog/products/ may cause a 404 not found, may cause
adirectory listing okhop. jsp and/orregister. jsp, or other behavior suitable
for the container.

Final Version |

Web Application Environment 67

SRV.9.11 Web Application Environment

The Javd” 2 Platform, Enterprise Edition defines a naming environment that allows
applications to easily access resources and external information without explicit
knowledge of how the external information is named or organized.

As servlets are an integral component type of J2EE technology, provision hps
been made in the web application deployment descriptor for specifying
information allowing a servlet to obtain references to resources and enterprise
beans. The deployment elements that contain this information are:

* env-entry

* ejb-ref

* ejb-Tocal-ref
* resource-ref

* resource-env-ref

These developer uses these elements describe certain objects that the wep
application requires to be registered in the JNDI namespace in the web contaiher
at runtime.

The requirements of the J2EE environment with regards to setting up the
environment are described in Chapter J2EE.5 of the"J&/®&Ilatform, Enterprise
Edition v 1.3 specificatidn Servlet containers that are not part of a J2EE
technology compliant implementation are encouraged, but not required, to |
implement the application environment functionality described in the J2EE
specification. If they do not implement the facilities required to support this |
environment, upon deploying an application that relies on them, the container
should provide a warning.

Servlet containers that are part of a J2EE technology compliant
implementation are required to support this syntax and should consult tH¥ 2ava
Platform, Enterprise Edition v 1.3 specification for more details.

Such servlet containers must support lookups of such objects and calls mgde
to those objects when performed on a thread managed by the servlet containg

Such servlet containers should support this behavior when performed on
threads created by the developer, but are not currently required to do so. Sucl| a
requirement will be added in the next version of this specification. Developers ge

-

2 The J2EE specification is availablenatp://java.sun.com/j2ee

68

WEB APPLICATIONS

cautioned that depending on this capability for application-created threads is
portable.

Final Version |

o

cneren RV 10

| Application Lifecycle Even'ts

SRV.10.1 Introduction

Support for application level events is new in version 2.3 of this specification. The
application events facility gives the web application developer greater control over
interactions with th@ervletContext andHttpSession objects, allows for better

code factorization, and increases efficiency in managing the resources that the web
application uses.

SRV.10.2 Event Listeners

Application event listeners are classes that implement one or more of the servle}
event listener interfaces. They are instantiated and registered in the web container at
the time of the deployment of the web application. They are provided by the
developer in the WAR.

Servlet event listeners support event notifications for state changes in the
ServletContext andHttpSession Objects. Servlet context listeners are used to
manage resources or state held at a VM level for the application. HTTP session
listeners are used to manage state or resources associated with a series of requests
made into a web application from the same client or user.

There may be multiple listener classes listening to each event type, and the
developer may specify the order in which the container invokes the listener beans
for each event type.

SRV.10.2.1 Event Types and Listener Interfaces

Events types and the listener interfaces used to monitor them are shi@btein
SRV.10-1

69

APPLICATION LIFECYCLE EVENTS

Table SRV.10-1 Eents and Listener Interfaces

Event Type Description Listener Interface

Servlet Context
Events

Lifecycle The servlet context has javax.servilet.ServletContextL
just been created and is 1stener
available to service its
first request, or the serv-
let context is about to be
shut down

Changes to attributes Attributes on the servigavax.serviet.ServietContextA
context have been addedttributesListener
removed, or replaced.

Http Session Events

Lifecycle An HttpSession has beegavax.servlet.http.HttpSessio
created, invalidated, or nListener
timed out

Changes to attributes Attributes have been javax.servlet.HttpSessionAttr
added, removed, or ibutesListener
replaced on an HttpSes-
sion

For details of the API, refer to the API reference in Chapter SRV.14 and
Chapter SRV.15.

SRV.10.2.2 An Example of Listener Use

To illustrate a use of the event scheme, consider a simple web application containing
a number of servlets that make use of a database. The developer has provided a
servlet context listener class for management of the database connection.

1. When the application starts up, the listener class is notified. The application
logs on to the database, and stores the connection in the servlet context.

2. Servlets in the application access the connection as needed during activity in
the web application.

3. When the web server is shut down, or the application is removed from the web
server, the listener class is notified and the database connection is closed.

Final Version |

Listener Class Configuration 71
SRV.10.3 Listener Class Configuration

SRV.10.3.1 Provision of Listener Classes

The developer of the web application provides listener classes implementing one or
more of the four listener classes in the servlet API. Each listener class must have a
public constructor taking no arguments. The listener classes are packaged into the
WAR, either under theeB-INF/classes archive entry, or inside a JAR in thies-

INF/1ib directory.

SRV.10.3.2 Deployment Declarations

Listener classes are declared in the web application deployment descriptor using the
listener element. They are listed by class name in the order in which they are to be
invoked.

SRV.10.3.3 Listener Registration

The web container creates an instance of each listener class and registers it for event
notifications prior to the processing of the first request by the application. The web
container registers the listener instances according to the interfaces they implement
and the order in which they appear in the deployment descriptor. During web
application execution listeners are invoked in the order of their registration.

SRV.10.3.4 Notifications At Shutdown

On application shutdown, listeners are notified in reverse order to their declarations
with notifications to session listeners preceeding notifications to context listeners.
Session listeners must be notified of session invalidations prior to context listeners
being notified of application shutdown.

SRV.10.4 Deployment Descriptor Example

The following example is the deployment grammar for registering two servlet
context lifecycle listeners and antpSession listener.

Suppose thatom.acme.MyConnectionManager andcom.acme.
MyLoggingModule both implemengavax.serviet.ServietContextListener, and
thatcom.acme .MyLoggingModule additionally implements
javax.servlet.HttpSessionListener. Also the developer wants

72 APPLICATION LIFECYCLE EVENTS

com.acme .MyConnectionManager t0 be notified of servlet context lifecycle events
beforecom.acme.MyLoggingModule. Here is the deployment descriptor for this
application:
<web-app>
<display-name>MyListeningAppTlication</display-name>
<listener>
<listener-class>com.acme.MyConnectionManager</1istener-
class>
</1istener>
<listener>
<listener-class>com.acme.MylLoggingModule</1istener-class>
</1listener>
<serviet>
<display-name>RegistrationServiet</display-name>
...etc
</serviet>
</web-app>

SRV.10.5 Listener Instances and Threading

The container is required to complete instantiation of the listener classes in a web
application prior to the start of execution of the first request into the application. The
container must maintain a reference to each listener instance until the last request is
serviced for the web application.

Attribute changes teervietContext andHttpSession objects may occur
concurrently. The container is not required to synchronize the resulting
notifications to attribute listener classes. Listener classes that maintain state are
responsible for the integrity of the data and should handle this case explicitly.

SRV.10.6 Distributed Containers

In distributed web containens;tpSession instances are scoped to the particluar
VM servicing session requests, and thevietContext object is scoped to the web
container’s VM. Distributed containers are not required to propogate either servlet
context events afttpSession events to other VMs. Listener class instances are
scoped to one per deployment descriptor declaration per Java virtual machine.

Final Version |

Session Events 73

SRV.10.7 Session Events

Listener classes provide the developer with a way of tracking sessions within a web
application. It is often useful in tracking sessions to know whether a session became
invalid because the container timed out the session, or because a web component
within the application called thiewvalidate method. The destinction may be
determined indirectly using listeners and#HimerSession API methods.

74

Final Version

APPLICATION LIFECYCLE EVENTS

cneren RV 11

Mapping Requests to Serviets

The mapping techniques described in this chapter are required for web containers
mapping client requests to servlkts.

SRV.11.1 Use of URL Paths

Upon receipt of a client request, the web container determines the web application
to which to forward it. The web application selected must have the the longest
context path that matches the start of the request URL. The matched part of the URL
is the context path when mapping to servlets.

The web container next must locate the servlet to process the request using the
path mapping procedure described below:

The path used for mapping to a servlet is the request URL from the request
object minus the context path. The URL path mapping rules below are used in
order. The first successful match is used with no further matches attempted:

1. The container will try to find an exact match of the path of the request to the
path of the servlet. A successful match selects the servlet.

2. The container will recursively try to match the longest path-prefix: Thisis done
by stepping down the path tree a directory at a time, using'theeharacter as
a path separator. The longest match determines the servlet selected.

- Previous versions of this specification made use of these mapping tech-
niques a suggestion rather than a requirement, allowing servlet containers
to each have their different schemes for mapping client requests to serv-
lets.

75

MAPPING REQUESTS TO SERVLETS

3. If the last segment in the URL path contains an extension (¢sg@), the serv-
let container will try to match a servlet that handles requests for the extension.
An extension is defined as the part of the last segment after the lashar- |
acter.

4. If neither of the previous three rules result in a servlet match, the container will
attempt to serve content appropriate for the resource requested. If a "default"
servlet is defined for the application, it will be used.

The container must use case-sensitive string comparisons for matching.

SRV.11.2 Specification of Mappings

In the web application deployment descriptor, the following syntax is used to define
mappings:

A string beginning with & /* character and ending witht @** postfix is used
for path mapping.

» A string beginning with a=.’ prefix is used as an extension mapping.

» Astring containing only theé /* character indicates the "default” servlet of the

application. In this case the servlet path is the request URI minus the context
path and the path info is null.

All other strings are used for exact matches only.

SRV.11.2.1 Implicit Mappings

If the container has an internal JSP container.ge extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an implicit
mapping. If &jsp mapping is defined by the web application, its mapping take$
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as
explicit mappings take precedence. For example, an implicit mapping of
*shtml could be mapped to include functionality on the server.

Final Version |

Specification of Mappings

SRV.11.2.2 Example Mapping Set
Consider the following set of mappings:

Table SRV.11-1Example Set of Maps

path pattern servlet

/foo/bar/* servletl
/baz/* servlet2
/catalog serviet3
*.bop servlet4

The following behavior would result:

Table SRV.11-2Incoming Paths applied to Example Maps

incoming path servlet handling request
/foo/bar/index.html servletl
/foo/bar/index.bop servietl

/baz servlet2
/baz/index.html servlet2

/catalog serviet3
/catalog/index.html “default” servlet
/catalog/racecar.bop servlet4

/index.bop servlet4

Note that in the case @gtatalog/index.html and/catalog/racecar.bop, the
servlet mapped to/tatalog” is not used because the match is not exact.

77

78

Final Version

MAPPING REQUESTS TO SERVLETS

cuneren RV, 12

Securitil

Web applications are created by Application Developers who give, sell, or otherwise
transfer the application to a Deployer for installation into a runtime environment.
Application Developers need to communicate to Deployers how the security is to be
set up for the deployed application. This is accomplished declaratively by use of the
deployment descriptors mechanism.

This chapter describes deployment representations for security requirements.
Similarly to web application directory layouts and deployment descriptors, this
section does not describe requirements for runtime representations. It is
recommended, however, that containers implement the elements set out here as
part of their runtime representations.

SRV.12.1 Introduction

A web application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of web applications will have security
requirements.

Although the quality assurances and implementation details may vary, servlet
containers have mechanisms and infrastructure for meeting these requirements
that share some of the following characteristics:

79

80

SECURITY

» Authentication: The means by which communicating entities prove to one an-
other that they are acting on behalf of specific identities that are authorized for
access.

» Access control for resourcesThe means by which interactions with resourc-
es are limited to collections of users or programs for the purpose of enforcing
integrity, confidentiality, or availability constraints.

» Data Integrity: The means used to prove that information has not been mod-
ified by a third party while in transit.

» Confidentiality or Data Privacy: The means used to ensure that information
is made available only to users who are authorized to access it.

SRV.12.2 Declarative Security

Declarative security refers to the means of expressing an application’s security
structure, including roles, access control, and authentication requirements in a form
external to the application. The deployment descriptor is the primary vehicle for
declarative security in web applications.

The Deployer maps the application’s logical security requirements to a
representation of the security policy that is specific to the runtime environment. At
runtime, the servlet container uses the security policy representation to enforce
authentication and authorization.

The security model applies to the static content part of the web application
and to servlets within the application that are requested by the client. The security
model does not apply when a servlet use®éheestDispatcher to invoke a
static resource or servlet usin@icaward Or an include.

SRV.12.3 Programmatic Security

Programmatic security is used by security aware applications when declarative
security alone is not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the
HttpServletRequest interface:

Final Version |

Programmatic Security 81

* getRemoteUser
* isUserInRole

* getUserPrincipal

ThegetRemoteUser method returns the user name the client used for
authentication. ThésUserInRole method determines if a remote user is in a
specified security role. ThtUserPrincipal method determines the principal
name of the current user and returja\a.security.Principal object. These
APIs allow servlets to make business logic decisions based on the information
obtained.

If no user has been authenticated, daeRemoteUser method returnsull, the
isUserInRole method always returrfalse, and thegetUserPrincipal method
returnsnull.

The1isUserInRole method expects $tring user role-name parameter. A
security-role-ref element should be declared in the deployment descriptor
with arole-name sub-element containing the rolename to be passed to the
method. Asecurity-role element should contain éle-1ink sub-element
whose value is the name of the security role that the user may be mapped into. The
container uses the mappingseturity-role-ref 10 security-role when
determining the return value of the call.

For example, to map the security role reference "FOO" to the security role
with role-name "manager" the syntax would be:

<security-role-ref>
<role-name>F00</role-name>
<role-Tink>manager</manager>

</security-role-ref>

In this case if the servlet called by a user belonging to the "manager"” securgy
role made the API cailsUserInRole("F00") the result would be true. r

If NO security-role-ref element matching aecurity-role element has
been declared, the container must default to checkingplleename element
argument against the list eécurity-role elements for the web application. The
isUserInRole method referencesthe list to determine whether the caller is
mapped to a security role. The developer must be aware that the use of this deffult
meachism may limit the flexibility in changing rolenames in the application
wihout having to recompile the servlet making the call.

82

SECURITY

SRV.12.4 Roles

A security role is a logical grouping of users defined by the Application Developer
or Assembler. When the application is deployed, roles are mapped by a Deployer to
principals or groups in the runtime environment.

A servlet container enforces declarative or programmatic security for the
principal associated with an incoming request based on the security attributes of
the principal. This may happen in either of the following ways:

1. A deployer has mapped a security role to a user group in the operational envi-
ronment. The user group to which the calling principal belongs is retrieved
from its security attributes. The principal is in the security role only if the prin-
cipal's user group matches the user group to which the security role has been
mapped by the deployer.

2. A deployer has mapped a security role to a principal name in a security policy
domain. In this case, the principal name of the calling principal is retrieved
from its security attributes. The principal is in the security role only if the prin-
cipal name is the same as a principal name to which the security role was
mapped.

SRV.12.5 Authentication

A web client can authenticate a user to a web server using one of the following
mechanisms:

HTTP Basic Authentication
HTTP Digest Authentication
HTTPS Client Authentication

* Form Based Authentication

SRV.125.1 HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests a web client to authenticate the user. As part of the request, the web server
passes theealm(a string) in which the user is to be authenticated. The realm string

of Basic Authentication does not have to reflect any particular security policy

Final Version |

Authentication 83

domain (confusingly also referred to as a realm). The web client obtains the
username and the password from the user and transmits them to the web server. The
web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords
are sent in simple base64 encoding, and the target server is not authenticated.
Additional protection can alleviate some of these concerns: a secure transport
mechanism (HTTPS), or security at the network level (such as the IPSEC protocol
or VPN strategies) is applied in some deployment scenarios.

SRV.12.5.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user
based on a username and a password. However the authentication is performed by
transmitting the password in an encrypted form which is much more secure than the
simple base64 encoding used by Basic Authentication, e.g. HTTPS Client
Authentication. As Digest Authentication is not currently in widespread use, servlet
containers are encouraged but not required to support it.

SRV.12.5.3 Form Based Authentication

The look and feel of the “login screen” cannot be varied using the web browser’s
built-in authentication mechanisms. This specification introduces a required form
based authentication mechanism which allows a Developer to control the look and
feel of the login screens.

The web application deployment descriptor contains entries for a login form
and error page. The login form must contain fields for entering a username and a
password. These fields must be namadername andj_password, respectively.

When a user attempts to access a protected web resource, the container checks
the user’s authentication. If the user is authenticated and possesses authority to
access the resource, the requested web resource is activated and a reference to it is
returned. If the user is not authenticated, all of the following steps occur:

1. The login form associated with the security constraint is sent to the client and
the URL path triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and password
fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from the

84

SECURITY

form.

5. If authentication fails, the error page is returned using either a forward or a re-
direct, and the status code of the response is set to 401.

6. If authentication succeeds, the authenticated user’s principal is checked to see
if it is in an authorized role for accessing the resource.

7. If the user is authorized, the client is redirected to the resource using the stored
URL path.

The error page sent to a user that is not authenticated contains information
about the failure.

Form Based Authentication has the same lack of security as Basic
Authentication since the user password is transmitted as plain text and the target
server is not authenticated. Again additional protection can alleviate some of these
concerns: a secure transport mechanism (HTTPS), or security at the network level
(such as the IPSEC protocol or VPN strategies) is applied in some deployment
scenarios.

J2EE.12.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implement.
Form based login should be used only when sessions are being maintained by
cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the login
form must always bé_security_check. This restriction is made so that the login
form will work no matter which resource it is for, and to avoid requiring the server
to specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTML

page:

<form method="POST” action="j_security_check”>
<input type="text” name="j_username”>

<input type="password” name="j_password”>
</form>

If the form based login is invoked because of an HTTP request, the original
request parameters must be preserved by the container for use if, on successful
authentication, it redirects the call to the requested resource.

If the user is authenticated using form login and has created an HTTP sessipn,
the timeout or invalidation of that session leads to the user being logged out in tFue

Final Version |

Server Tracking of Authentication Information 85

sense that subsequent requests must cause the user to be re-authenticated. The
scope of the logout is that same as that of the authentication: for example, if te
container supports single signon, such as J2EE technology compliant web
containers, the user would need to reauthenticate with any of the web applicatigns
hosted on the web container.

SRV.12.54 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the user to possess a Public Key Certificate
(PKC). Currently, PKCs are useful in e-commerce applications and also for a single-
signon from within the browser. Servlet containers that are not J2EE technolog
compliant are not required to support the HTTPS protocol.

SRV.12.6 Server Tracking of Authentication Information

As the underlying security identities (such as users and groups) to which roles are
mapped in a runtime environment are environment specific rather than application
specific, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web
application is deployed in.

2. Be able to use the same authentication information to represent a principal to
all applications deployed in the same container, and

3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Therefore, a servlet container is required to track authentication information
at the container level (rather than at the web application level). This allows users
authenticated for one web application to access other resources managed by the
container permitted to the same security identity.

SRV.12.7 Propagation of Security Identity in EJB" Calls |

A security identity, or principal, must always be provided for use in a call to an
enterprise bean. The default mode in calls to enterprise beans from web applications
is for the security identity of a web user to be propagated to th&' EdBtainer. |

86 SECURITY

In other scenarios, web containers are required to allow web users that are not
known to the web container or to the EdBontainer to make calls: |

» Web containers are required to support access to web resources by clients that
have not authenticated themselves to the container. This is the common mode
of access to web resources on the Internet.

» Application code may be the sole processor of signon and customization of
data based on caller identity.

In these scenarios, a web application deployment descriptor may specify a
run-as element. When it is specified, the container must propagate the security
identity of the caller to the EJB layer in terms of the security role name defined in
therun-as element. The security role name must one of the security role names
defined for the web application.

For web containers running as part of a J2EE platform, the use of run-as
elements must be supported both for calls to EJB components within the sam
J2EE application, and for calls to EJB components deployed in other J2EE T
applications.

SRV.12.8 Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection of
web content. A constraint consists of the following elements:

» web resource collection
« authorization constraint
e user data constraint

A web resource collection is a set of URL patterns and HTTP methods that
describe a set of resources to be protected. All requests that contain a request path
that matches a URL pattern described in the web resource collection is subject to
the constraint. The container matches URL patterns defined in security constraints
using the same algorithm described in this specification for matching client
requests to servlets and static resources as described in SRV.11.1.

An authorization constraint is a set of security roles at least one of which users
must belong for access to resources described by the web resource collection. If
the user is not part of an allowed role, the user must be denied access to the
resource requiring it. If the authorization constraint defines no roles, no user is

Final Version |

Default Policies 87

allowed access to the portion of the web application defined by the security
constraint.

A user data constraint describes requirements for the transport layer of the
client server. The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing
reading while in transit). The container must at least use SSL to respond to
requests to resources markedegral or confidential. If the original request
was over HTTP, the container must redirect the client to the HTTPS port.

SRV.12.9 Default Policies |

By default, authentication is not needed to access resources. Authentication is
needed for requests for a web resource collection only when specified by the
deployment descriptor.

88

Final Version

SECURITY

cneren RV 13

Deployment Descriptbr

This chapter specifies the J&{&ervlet Specification, v 2.3 requirements for web
container support of deployment descriptors. The deployment descriptor conveys
the elements and configuration information of a web application between
Application Developers, Application Assemblers, and Deployers.

For backwards compatibility of applications written to the 2.2 version of the
API, web containers are also required to support the 2.2 version of the deployment
descriptor. The 2.2 version is described in Appendix SRV.A.

SRV.13.1 Deployment Descriptor Elements

The following types of configuration and deployment information are required to be
supported in the web application deployment descriptor for all servlet containers:

» ServletContext Init Parameters

» Session Configuration

 Servlet Declaration

e Servlet Mappings

» Application Lifecyle Listener classes
« Filter Definitions and Filter Mappings
« MIME Type Mappings

* Welcome File list

* Error Pages

89

DEPLOYMENT DESCRIPTOR

Security information which may also appear in the deployment descriptor is
not required to be supported unless the servlet container is part of an
implementation of the J2EE specification.

The following additional elements exist in the web application deployment
descriptor to meet the requirements of web containers that are JSP pages engbled
or part of a J2EE application server. They are not required to be supported by
containers wishing to support only the servlet specification:

e taglib
 syntax for looking up JNDI objectér(v-entry, ejb-ref, ejb-Tocal-ref,
resource-ref, resource—env—ref)

The DTD comments may be consulted for further description of deployment
descriptor elements.

SRV.13.2 Rules for Processing the Deployment Descriptor

In this section is a listing of some general rules that web containers and developers
must note concerning the processing of the deployment descriptor for a web
application

» Web containers should ignore all leading whitespace characters before the first
non-whitespace character, and all trailing whitespace characters after the last
non-whitespace character for PCDATA within text nodes of a deployment de-
scriptor.

» Web containers and tools that manipulate web applications have a wide range
of options for checking the validity of a WAR. This includes checking the va-
lidity of the deployment descriptor document held within. It is recommended,
but not required, that web containers and tools validate deployment descrip-
tors against the DTD document for structural correctness.

Additionally, it is recommended that they provide a level of semantic check-
ing. For example, it should be checked that a role referenced in a security con-
straint has the same name as one of the security roles defined in the
deployment descriptor.

In cases of non-conformant web applications, tools and containers should
inform the developer with descriptive error messages. High end application
server vendors are encouraged to supply this kind of validity checking in the
form of a tool separate from the container.

Final Version |

DTD a1

» URI paths specified in the deployment descriptor are assumed to be in URL-
decoded form.

» Containers must attempt to canonicalize paths in the deployment descriptor.
For example, paths of the formey. . /b’ must be interpreted as/b’. Paths |
beginning or resolving to paths that begin with ‘.." are not valid paths in the
deployment descriptor.

* URI paths referring to a resource relative to the root of the WAR, or a path
mapping relative to the root of the WAR, unless otherwise specified, should
begin with a leading ‘/".

* In elements whose value is an "enumerated type", the value is case sensitjve.

SRV.13.2.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors for version 2.3 of this
specification must contain the followimgCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

SRV.13.3 DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

<l--

The web-app element is the root of the deployment descriptor for
a web application.

-—>

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param*, filter*, filter-mapping*,
Tlistener®, servlet*, servlet-mapping*, session-config?, mime-
mapping*, welcome-file-1ist?, error-page*, taglib*, resource-
env-ref*, resource-ref*, security-constraint*, login-config?,
security-role*, env-entry*, ejb-ref*, ejb-local-ref*)>

<l--
The auth-constraint element indicates the user roles that should
be permitted access to this resource collection. The role-name

92

DEPLOYMENT DESCRIPTOR

used here must either correspond to the role-name of one of the
security-role elements defined for this web application, or be

the specially reserved role-name "*" that is a compact syntax for
indicating all roles in the web application. If both "*" and
rolenames appear, the container interprets this as all roles.

If no roles are defined, no user is allowed access to the portion of
the web application described by the containing security-constraint.
The container matches role names case sensitively when determining
access.

Used in: security-constraint
-—>

<!ELEMENT auth-constraint (description?, role-name*)>

<!--

The auth-method element is used to configure the authentication
mechanism for the web application. As a prerequisite to gaining
access to any web resources which are protected by an authorization
constraint, a user must have authenticated using the configured
mechanism. Legal values for this element are "BASIC", "DIGEST",
"FORM", or "CLIENT-CERT".

Used in: login-config
-—>

<!ELEMENT auth-method (#PCDATA)>

<!--
The context-param element contains the declaration of a web
application’s servlet context initialization parameters.

Used in: web-app
-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The description element is used to provide text describing the parent
element. The description element should include any information that
the web application war file producer wants to provide to the
consumer of the web application war file (i.e., to the Deployer).
Typically, the tools used by the web application war file consumer
will display the description when processing the parent element that
contains the description.

Final Version |

DTD

Used 1in: auth-constraint, context-param, ejb-Tocal-ref, ejb-ref,
env-entry, filter, init-param, resource-env-ref, resource-ref, run-
as, security-role, security-role-ref, servlet, user-data-
constraint, web-app, web-resource-collection

-——>

<!ELEMENT description (#PCDATA)>

<l--
The display-name element contains a short name that is intended to be
displayed by tools. The display name need not be unique.

Used in: filter, security-constraint, servlet, web-app
Example:

<display-name>Employee Self Service</display-name>
-—>

<!ELEMENT display-name (#PCDATA)>

<!--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
programmed appropriately to be deployed into a distributed servlet
container

Used in: web-app

-—>
<!ELEMENT distributable EMPTY>

<!--

The ejb-1ink element is used in the ejb-ref or ejb-local-ref
elements to specify that an EJB reference is Tinked to an
enterprise bean.

The name in the ejb-Tink element is composed of a

path name specifying the ejb-jar containing the referenced
enterprise bean with the ejb-name of the target bean appended and
separated from the path name by "#". The path name 1is relative to
the war file containing the web application that is referencing the
enterprise bean.

This allows multiple enterprise beans with the same ejb-name to be

93

94

DEPLOYMENT DESCRIPTOR

uniquely identified.

Used in: ejb-local-ref, ejb-ref

Examples:
<ejb-Tink>EmployeeRecord</ejb-11ink>

<ejb-Tink>../products/product.jar#ProductEJB</ejb-1ink>

<!ELEMENT ejb-11ink (#PCDATA)>

<!--
The ejb-local-ref element is used for the declaration of a reference
to an enterprise bean’s local home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the web application
that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected Tocal home and Tocal interfaces of the referenced
enterprise bean

- optional ejb-Tink information, used to specify the referenced
enterprise bean

Used in: web-app
-=>

<!ELEMENT ejb-local-ref (description?, ejb-ref-name, ejb-ref-type,
local-home, local, ejb-1ink?)>

<l--
The ejb-ref element is used for the declaration of a reference to
an enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of
the web application that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced
enterprise bean

- optional ejb-1ink information, used to specify the referenced

Final Version |

DTD

enterprise bean

Used 1in: web-app
-——>

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The
EJB reference is an entry in the web application’s environment and is
relative to the java:comp/env context. The name must be unique
within the web application.

It is recommended that name is prefixed with "ejb/".
Used in: ejb-local-ref, ejb-ref
Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>
-—>

<!ELEMENT ejb-ref-name (#PCDATA)>

<l--
The ejb-ref-type element contains the expected type of the
referenced enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>
<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-Tocal-ref, ejb-ref
-—>

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of a web application’s
environment entry. The declaration consists of an optional
description, the name of the environment entry, and an optional
value. If a value is not specified, one must be supplied

during deployment.

95

96

DEPLOYMENT DESCRIPTOR

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
value?, env-entry-type)>

<!--

The env-entry-name element contains the name of a web applications’s
environment entry. The name is a IJNDI name relative to the
java:comp/env context. The name must be unique within a web
application.

Example:
<env-entry-name>minAmount</env-entry-name>

Used in: env-entry
-=>

<!ELEMENT env-entry-name (#PCDATA)>

<!--
The env-entry-type element contains the fully-qualified Java type of
the environment entry value that is expected by the web application’s
code.

The following are the Tegal values of env-entry-type:

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.String
java.lang.Short
java.lang.Integer
java.lang.Long
java.lang.Float
java.lang.Double

Used in: env-entry
-—>

<!ELEMENT env-entry-type (#PCDATA)>

<!--
The env-entry-value element contains the value of a web application’s
environment entry. The value must be a String that is valid for the

Final Version |

DTD

constructor of the specified type that takes a single String
parameter, or for java.lang.Character, a single character.

Example:
<env-entry-value>100.00</env-entry-value>

Used 1in: env-entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<l--
The error-code contains an HTTP error code, ex: 404

Used 1in: error-page
-——>

<!ELEMENT error-code (#PCDATA)>

<!l--
The error-page element contains a mapping between an error code
or exception type to the path of a resource in the web application

Used in: web-app
-—>

<!ELEMENT error-page ((error-code | exception-type), location)>

<l--
The exception type contains a fully qualified class name of a
Java exception type.

Used 1in: error-page
-—>

<!ELEMENT exception-type (#PCDATA)>

<l--
The extension element contains a string describing an
extension. example: "txt"

Used in: mime-mapping
-—>

97

98

DEPLOYMENT DESCRIPTOR

<!ELEMENT extension (#PCDATA)>

<!--

Declares a filter in the web application. The filter is mapped to
either a servlet or a URL pattern in the filter-mapping element,
using the filter-name value to reference. Filters can access the
initialization parameters declared in the deployment descriptor at
runtime via the FilterConfig interface.

Used in: web-app
-->

<!ELEMENT filter (icon?, filter-name, display-name?, description?,
filter-class, init-param*)>

<!--
The fully qualified classname of the filter.

Used in: filter
-—>

<!ELEMENT filter-class (#PCDATA)>

<!--

Declaration of the filter mappings in this web application. The
container uses the filter-mapping declarations to decide which
filters to apply to a request, and in what order. The container
matches the request URI to a Servilet in the normal way. To determine
which filters to apply it matches filter-mapping declarations either
on servlet-name, or on url-pattern for each filter-mapping element,
depending on which style is used. The order in which filters are
invoked is the order in which filter-mapping declarations that match
a request URI for a servlet appear in the 1list of filter-mapping
elements.The filter-name value must be the value of the <filter-name>
sub-eTements of one of the <filter> declarations in the deployment
descriptor.

Used in: web-app
-—>

<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-
name))>

<!--
The logical name of the filter. This name is used to map the filter.

Final Version |

DTD

Each filter name is unique within the web application.

Used 1in: filter, filter-mapping
-—>

<!ELEMENT f1ilter-name (#PCDATA)>

<!--

The form-error-page element defines the location in the web app
where the error page that 1is displayed when Togin is not successful
can be found. The path begins with a leading / and is interpreted
relative to the root of the WAR.

Used in: form-login-config
-—>

<!ELEMENT form-error-page (#PCDATA)>

<!--

The form-login-config element specifies the login and error pages
that should be used in form based login. If form based authentication
is not used, these elements are ignored.

Used in: login-config
-—>

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--

The form-login-page element defines the location in the web app
where the page that can be used for Togin can be found. The path
begins with a leading / and is interpreted relative to the root of
the WAR.

Used 1in: form-login-config
-——>

<!ELEMENT form-login-page (#PCDATA)>
<l--
The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref

99

100

DEPLOYMENT DESCRIPTOR

Example:

<home>com.aardvark.payroll.Payrol1Home</home>
-—>

<!ELEMENT home (#PCDATA)>

<l--
The http-method contains an HTTP method (GET | POST |...).

Used in: web-resource-collection
-—>

<!ELEMENT http-method (#PCDATA)>

<!--

The icon element contains small-icon and Targe-icon elements that
specify the file names for small and a Targe GIF or JPEG icon images
used to represent the parent element in a GUI tool.

Used in: filter, servlet, web-app
-

<!ELEMENT -1icon (small-icon?, large-icon?)>
<l--
The init-param element contains a name/value pair as an

initialization param of the servlet

Used in: filter, servlet
-—>

<!ELEMENT 1init-param (param-name, param-value, description?)>
<!l--
The jsp-file element contains the full path to a JSP file within

the web application beginning with a ‘/’.

Used in: servlet
-—>

<!ELEMENT jsp-file (#PCDATA)>

<!--
The Targe-icon element contains the name of a file

Final Version |

DTD 101

containing a large (32 x 32) icon image. The file
name is a relative path within the web application’s
war file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: dicon
Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>
-—>

<!ELEMENT Targe-icon (#PCDATA)>

<!l--
The listener element indicates the deployment properties for a web
application listener bean.

Used in: web-app
-->

<!ELEMENT 1istener (listener-class)>

<l--

The listener-class element declares a class in the application must
be registered as a web application Tistener bean. The value is the
fully qualified classname of the listener class.

Used in: Tlistener

-——>
<!ELEMENT Tistener-class (#PCDATA)>

<!--

The load-on-startup element indicates that this servlet should be
loaded (instantiated and have its init() called) on the startup
of the web application. The optional contents of

these element must be an integer indicating the order in which
the servlet should be Toaded. If the value is a negative integer,
or the element 1is not present, the container is free to load the
servlet whenever it chooses. If the value is a positive integer
or @, the container must load and initialize the servlet as the
application is deployed. The container must guarantee that

102

DEPLOYMENT DESCRIPTOR

serviets marked with Tower integers are Toaded before serviets
marked with higher integers. The container may choose the order
of loading of servlets with the same load-on-start-up value.

Used in: servlet
-

<!ELEMENT Tload-on-startup (#PCDATA)>
<l--

The Tocal element contains the fully-qualified name of the
enterprise bean’s local interface.

Used in: ejb-local-ref
-=>

<!ELEMENT Tocal (#PCDATA)>

<!l--
The Tlocal-home element contains the fully-qualified name of the
enterprise bean’s local home interface.

Used in: ejb-local-ref
-->

<!ELEMENT Tocal-home (#PCDATA)>

<!--

The location element contains the location of the resource in the web
application relative to the root of the web application. The value of
the location must have a leading ‘/’.

Used in: error-page
-—>

<!ELEMENT Tocation (#PCDATA)>

<l--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
Togin mechanism.

Used in: web-app

Final Version |

DTD 103

<!ELEMENT Togin-config (auth-method?, realm-name?, form-login-
config?)>

<!l--
The mime-mapping element defines a mapping between an extension
and a mime type.

Used in: web-app
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<l--
The mime-type element contains a defined mime type. example:
"text/plain"

Used in: mime-mapping

-—>
<!ELEMENT mime-type (#PCDATA)>

<!l--
The param-name element contains the name of a parameter. Each
parameter name must be unique in the web application.

Used 1in: context-param, init-param
-—>

<!ELEMENT param-name (#PCDATA)>

<l--
The param-value element contains the value of a parameter.

Used 1in: context-param, init-param

-—>
<!ELEMENT param-value (#PCDATA)>
<l--

The realm name element specifies the realm name to use in HTTP
Basic authorization.

104

DEPLOYMENT DESCRIPTOR

Used in: login-config
-—>

<!ELEMENT realm-name (#PCDATA)>

<!l--
The remote element contains the fully-qualified name of the
enterprise bean’s remote interface.

Used in: ejb-ref
Example:

<remote>com.wombat.empl.EmpTloyeeService</remote>
-—>

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the web application code signs
on programmatically to the resource manager, or whether the Container
will sign on to the resource manager on behalf of the web
application. In the latter case, the Container uses information that
is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>
<res-auth>Container</res-auth>

Used in: resource-ref

-—>
<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager
connection factory reference. The name is a IJNDI name relative to
the

java:comp/env context. The name must be unique within a web
application.

Used in: resource-ref
-—>
<!ELEMENT res-ref-name (#PCDATA)>

Final Version |

DTD 105

<!--

The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can
be

shared. The value of this element, if specified, must be one of the
two following:

<res-sharing-scope>Shareable</res-sharing-scope>
<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref

-—>
<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type
is specified by the fully qualified Java language class or interface
expected to be implemented by the data source.

Used in: resource-ref
-—>

<!ELEMENT res-type (#PCDATA)>

<l--

The resource-env-ref element contains a declaration of a web
application’s reference to an administered object associated with a
resource in the web application’s environment. It consists of an
optional description, the resource environment reference name, and
an indication of the resource environment reference type expected by
the web application code.

Used in: web-app

Example:

<resource-env-ref>
<resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

-—>

106 DEPLOYMENT DESCRIPTOR

<!ELEMENT resource-env-ref (description?, resource-env-ref-name,
resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the web application code. The name is a IJNDI name relative to the
java:comp/env context and must be unique within a web application.

Used in: resource-env-ref
-—>

<!ELEMENT resource-env-ref-name (#PCDATA)>

<l--

The resource-env-ref-type element specifies the type of a resource
environment reference. It is the fully qualified name of a Java
Tanguage class or interface.

Used in: resource-env-ref
-

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of a web
application’s reference to an external resource. It consists of an
optional description, the resource manager connection factory
reference name, the indication of the resource manager connection
factory type expected by the web application code, the type of
authentication (Application or Container), and an optional
specification of the shareability of connections obtained from the
resource (Shareable or Unshareable).

Used in: web-app
Example:

<resource-ref>
<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Final Version |

DTD 107

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth, res-sharing-scope?)>

<!l--

The role-Tlink element is a reference to a defined security role. The
role-Tink element must contain the name of one of the security roles
defined in the security-role elements.

Used in: security-role-ref
-->

<!ELEMENT role-T1ink (#PCDATA)>

<l--
The role-name element contains the name of a security role.
The name must conform to the lexical rules for an NMTOKEN.

Used 1in: auth-constraint, run-as, security-role, security-role-ref
-—>

<!ELEMENT role-name (#PCDATA)>

<!--

The run-as element specifies the run-as identity to be used for the
execution of the web application. It contains an optional
description, and

the name of a security role.

Used in: servlet
-——>

<!ELEMENT run-as (description?, role-name)>
<!l--
The security-constraint element is used to associate security

constraints with one or more web resource collections

Used in: web-app
-->

<!ELEMENT security-constraint (display-name?, web-resource-
collection+, auth-constraint?, user-data-constraint?)>

108 DEPLOYMENT DESCRIPTOR

<l--

The security-role element contains the definition of a security
role. The definition consists of an optional description of the
security role, and the security role name.

Used in: web-app
Example:

<security-role>
<description>
This role includes all employees who are authorized
to access the employee service application.
</description>
<role-name>employee</role-name>
</security-role>

<!ELEMENT security-role (description?, role-name)>

<!--

The security-role-ref element contains the declaration of a security
role reference in the web application’s code. The declaration
consists

of an optional description, the security role name used in the code,
and an optional 1link to a security role. If the security role is not
specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the
parameter to the EJBContext.isCallerInRole(String roleName) method

or the HttpServletRequest.isUserInRole(String role) method.

Used in: servlet

<!ELEMENT security-role-ref (description?, role-name, role-1ink?)>
<l--

The servlet element contains the declarative data of a

serviet. If a jsp-file is specified and the load-on-startup element

is present, then the JSP should be precompiled and Toaded.

Used in: web-app

Final Version |

DTD 109

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?, run-
as?, security-role-ref+*)>

<!l--
The servlet-class element contains the fully qualified class name
of the servlet.

Used in: servlet
-

<!ELEMENT servlet-class (#PCDATA)>

<l--
The servlet-mapping element defines a mapping between a serviet
and a url pattern

Used in: web-app
-—>

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<l--
The servlet-name element contains the canonical name of the
servlet. Each servlet name is unique within the web application.

Used in: filter-mapping, servlet, servlet-mapping
-

<!ELEMENT servlet-name (#PCDATA)>

<!l--
The session-config element defines the session parameters for
this web application.

Used in: web-app
-—>

<!ELEMENT session-config (session-timeout?)>
<l--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application. The

110 DEPLOYMENT DESCRIPTOR

specified timeout must be expressed in a whole number of minutes.
If the timeout is @ or less, the container ensures the default
behaviour of sessions is never to time out.

Used in: session-config
-->

<!ELEMENT session-timeout (#PCDATA)>

<!--

The small-icon element contains the name of a file
containing a small (16 x 16) icon image. The file
name is a relative path within the web application’s
war file.

The image may be either in the JPEG or GIF format.
The icon can be used by tools.

Used in: 1icon
Example:

<smalT-icon>empTloyee-service-iconl6x16.jpg</small-icon>
-—>

<!ELEMENT small-icon (#PCDATA)>

<!--
The taglib element is used to describe a JSP tag library.

Used in: web-app
-—>

<!ELEMENT taglib (taglib-uri, taglib-location)>

<l--

the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag Tibrary.

Used in: taglib
-=>

<!ELEMENT taglib-Tocation (#PCDATA)>

Final Version |

DTD 111

<l--

The taglib-uri element describes a URI, relative to the Tocation
of the web.xml document, identifying a Tag Library used in the Web
Application.

Used 1in: taglib
-—>

<!ELEMENT taglib-uri (#PCDATA)>

<l--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or
CONFIDENTIAL. NONE means that the application does not require any
transport guarantees. A value of INTEGRAL means that the application
requires that the data sent between the client and server be sent in
such a way that it can’t be changed in transit. CONFIDENTIAL means
that the application requires that the data be transmitted in a
fashion that prevents other entities from observing the contents of
the transmission. In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use of SSL is required.

Used in: user-data-constraint
-—>

<!ELEMENT transport-guarantee (#PCDATA)>

<l--

The url-pattern element contains the url pattern of the mapping. Must
follow the rules specified in Section 11.2 of the Servlet API
Specification.

Used 1in: filter-mapping, servlet-mapping, web-resource-collection
-=>

<!ELEMENT url-pattern (#PCDATA)>

<l--
The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected.

Used in: security-constraint
-—>

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

112

DEPLOYMENT DESCRIPTOR

<!--

The web-resource-collection element is used to identify a subset
of the resources and HTTP methods on those resources within a web
application to which a security constraint applies. If no HTTP
methods are specified, then the security constraint applies to all
HTTP methods.

Used in: security-constraint
-—>

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern*, http-method*)>

<!--
The web-resource-name contains the name of this web resource
collection.

Used in: web-resource-collection
-

<!ELEMENT web-resource-name (#PCDATA)>

<l--
The welcome-file element contains file name to use as a default
welcome file, such as index.html

Used in: welcome-file-list
-=>

<!'ELEMENT welcome-file (#PCDATA)>

<l--
The welcome-file-1list contains an ordered Tist of welcome files
elements.

Used in: web-app
-—>

<!ELEMENT welcome-file-1ist (welcome-file+)>
<l--

The ID mechanism is to allow tools that produce additional deployment
information (i.e., information beyond the standard deployment

Final Version |

DTD

descriptor information) to store the non-standard information in a
separate file, and easily refer from these tool-specific files to the
information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the
standard deployment descriptor.

-=>

<!ATTLIST auth-constraint id ID #IMPLIED>

<!ATTLIST auth-method id ID #IMPLIED>

<!ATTLIST context-param id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name +id ID #IMPLIED>

<!ATTLIST distributable id ID #IMPLIED>

<!ATTLIST ejb-Tink id ID #IMPLIED>

<!ATTLIST ejb-local-ref id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST error-code id ID #IMPLIED>

<!ATTLIST error-page id ID #IMPLIED>

<!ATTLIST exception-type id ID #IMPLIED>

113

114

<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

<!ATTLIST

Final Version

extension id ID #IMPLIED>
filter id ID #IMPLIED>
filter-class id ID #IMPLIED>
filter-mapping id ID #IMPLIED>
filter-name id ID #IMPLIED>
form-error-page id ID #IMPLIED>
form-login-config id ID #IMPLIED>
form-login-page id ID #IMPLIED>
home id ID #IMPLIED>
http-method id ID #IMPLIED>
icon id ID #IMPLIED>

init-param id ID #IMPLIED>
jsp-file id ID #IMPLIED>
large-icon id ID #IMPLIED>
Tistener id ID #IMPLIED>
Tistener-class id ID #IMPLIED>
load-on-startup id ID #IMPLIED>
Tocal id ID #IMPLIED>
local-home +id ID #IMPLIED>
location id ID #IMPLIED>
login-config id ID #IMPLIED>
mime-mapping id ID #IMPLIED>

mime-type id ID #IMPLIED>

DEPLOYMENT DESCRIPTOR

DTD

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

param-name id ID #IMPLIED>
param-value id ID #IMPLIED>
realm-name id ID #IMPLIED>

remote id ID #IMPLIED>

res-auth id ID #IMPLIED>
res-ref-name id ID #IMPLIED>
res-sharing-scope id ID #IMPLIED>
res-type id ID #IMPLIED>
resource-env-ref id ID #IMPLIED>
resource-env-ref-name id ID #IMPLIED>
resource-env-ref-type id ID #IMPLIED>
resource-ref id ID #IMPLIED>
role-1ink id ID #IMPLIED>

role-name id ID #IMPLIED>

run-as id ID #IMPLIED>
security-constraint id ID #IMPLIED>
security-role id ID #IMPLIED>
security-role-ref +id ID #IMPLIED>
servlet id ID #IMPLIED>
servlet-class id ID #IMPLIED>
servlet-mapping id ID #IMPLIED>
servlet-name id ID #IMPLIED>

session-config id ID #IMPLIED>

115

116 DEPLOYMENT DESCRIPTOR

<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST taglib id ID #IMPLIED>

<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>

<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>
<!ATTLIST web-app id ID #IMPLIED>

<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>

<!ATTLIST welcome-file-list id ID #IMPLIED>

SRV.13.4 Examples

The following examples illustrate the usage of the definitions listed above DTD.

SRV.13.4.1 A Basic Example

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation 2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>
<dispTlay-name>A Simple Application</display-name>
<context-param>
<param-name>Webmaster</param-name>
<param-value>webmaster@mycorp.com</param-value>
</context-param>
<serviet>
<servlet-name>catalog</serviet-name>

Final Version |

Examples 117

<servlet-class>com.mycorp.CatalogServilet
</serviet-class>
<init-param>
<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
</serviet>
<servlet-mapping>
<servlet-name>catalog</servlet-name>
<url-pattern>/catalog/*</url-pattern>
</serviet-mapping>
<session-config>
<session-timeout>30</session-timeout>
</session-config>
<mime-mapping>
<extension>pdf</extension>
<mime-type>application/pdf</mime-type>
</mime-mapping>
<welcome-file-Tist>
<welcome-file>index.jsp</welcome-file>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
</welcome-file-Tist> |
<error-page>
<error-code>404</error-code>
<location>/404.html</location>
</error-page>
</web-app>

SRV.13.4.2 An Example of Security

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>A Secure Application</display-name>
<security-role>
<role-name>manager</role-name>
</security-role>
<servilet>
<servlet-name>catalog</servlet-name>
<servlet-class>com.mycorp.CatalogServilet
</serviet-class>
<init-param>

118 DEPLOYMENT DESCRIPTOR

<param-name>catalog</param-name>
<param-value>Spring</param-value>
</init-param>
<security-role-ref>
<role-name>MGR</role-name>
<!-- role name used in code -->
<role-Tink>manager</role-Tink>
</security-role-ref>
</serviet>
<servlet-mapping>
<servlet-name>catalog</serviet-name>
<url-pattern>/catalog/*</url-pattern>
</serviet-mapping>
<security-constraint>
<web-resource-collection>
<web-resource-name>SalesInfo
</web-resource-name>
<url-pattern>/salesinfo/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>CONFIDENTIAL
</transport-guarantee>
</user-data-constraint>
</security-constraint>
</web-app>

Final Version |

cneren RV, 14

javax.servlet

This chapter describes the javax.servlet package. The chapter includes content that
is generated automatically from javadoc embedded in the actual Java classes and
interfaces. This allows the creation of a single, authoritative, specification docu-
ment.

SRV.14.1 Generic Servlet Interfaces and Classes

The javax.servlet packageontains a number of classes and interfaces that describe
and define the contracts between a servlet class and the runtime environment pro-
vided for an instance of such a class by a conforming servlet container.

The Servletinterface is the central abstraction of the serviet API. All servlets
implement this interface either directly, or more commonly, by extending a class
that implements the interface. The two classes in the servlet API that implement
the Servletinterface areGenericServleand HttpServlet For most purposes,
developers will extendHttpServleto implement their servlets while
implementing web applications employing the HTTP protocol..

The basicServletinterface defines @ervicemethod for handling client
requests. This method is called for each request that the servlet container routes to
an instance of a servlet.

SRV.14.2 The javax.servlet package

The following section summarizes the javax.servlet package:

119

120

JAVAX.SERVLET

Class Summary

Interfaces
Filter

FilterChain

FilterConfig

RequestDispatcher

Serviet

ServletConfig

ServletContext

ServletContextAt-
tributelistener

ServletContextlistener

ServletRequest

ServletResponse

A filter is an object than perform filtering tasks
on either the request to a resource (a servlet or
static content), or on the response from a
resource, or both.

Filters perform filtering in the doFilter
method.

A FilterChain is an object provided by the
servlet container to the developer giving a view
into the invocation chain of a filtered request
for a resource.

A filter configuration object used by a servlet
container used to pass information to a filter
during initialization.

Defines an object that receives requests from
the client and sends them to any resource (such
as a servlet, HTML file, or JSP file) on the
server.

Defines methods that all servlets must
implement.

A servlet configuration object used by a servlet
container used to pass information to a servlet
during initialization.

Defines a set of methods that a servlet uses to
communicate with its servlet container, for
example, to get the MIME type of a file,
dispatch requests, or write to a log file.

Implementations of this interface recieve
notifications of changes to the attribute list on
the servlet context of a web application.

Implementations of this interface recieve
notifications about changes to the servlet
context of the web application they are part of.

Defines an object to provide client request
information to a servlet.

Defines an object to assist a servlet in sending a
response to the client.

Final Version

The javax.servlet package

Class Summary

SingleThreadModel

Classes
GenericServlet

ServletContextAttribu-
teEvent

ServletContextEvent

ServletInputStream

ServletQutputStream

ServletRequestWrapper

ServletResponseWrapper

Exceptions
ServletException

UnavailableException

Ensures that servlets handle only one request at a
time.

Defines a generic, protocol-independent servlet.

This is the event class for notifications about
changes to the attributes of the servlet context
of a web application.

This is the event class for notifications about
changes to the servlet context of a web
application.

Provides an input stream for reading binary
data from a client request, including an efficient
readLine method for reading data one line at a
time.

Provides an output stream for sending binary
data to the client.

Provides a convenient implementation of the
ServletRequest interface that can be subclassed
by developers wishing to adapt the request to a
Servlet.

Provides a convenient implementation of the
ServletResponse interface that can be subclassed
by developers wishing to adapt the response
from a Servlet.

Defines a general exception a servlet can throw
when it encounters difficulty.

Defines an exception that a servlet or filter
throws to indicate that it is permanently or tem-
porarily unavailable.

SRV.14.2.1 Filter

pubTlic interface Filter

121

A filter is an object than perform filtering tasks on either the request to a resource
(a servlet or static content), or on the response from a resource, or both.

122

JAVAX.SERVLET

Filters perform filtering in thedoFi1ter method. Every Filter has access to a
FilterConfig object from which it can obtain its initialization parameters, a refer-
ence to the ServletContext which it can use, for example, to load resources
needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
1) Authentication Filters

2) Logging and Auditing Filters

3) Image conversion Filters

4) Data compression Filters

5) Encryption Filters

6) Tokenizing Filters

7) Filters that trigger resource access events

8) XSL/T filters

9) Mime-type chain Filter

Since: Servlet 2.3

SRV.14.2.1.1 Methods

destroy()

public void destroy()

Called by the web container to indicate to a filter that it is being taken out of
service. This method is only called once all threads within the filter's doFilter
method have exited or after a timeout period has passed. After the web con-
tainer calls this method, it will not call the doFilter method again on this
instance of the filter.

This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that
any persistent state is synchronized with the filter's current state in memory.

doFilter(ServletRequest, ServletResponse, FilterChain)

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)
throws IOException, ServletException

ThedoFilter method of the Filter is called by the container each time a
request/response pair is passed through the chain due to a client request for a
resource at the end of the chain. The FilterChain passed in to this method
allows the Filter to pass on the request and response to the next entity in the
chain.

Final Version

The javax.servlet package 123

A typical implementation of this method would follow the following pattern:-
1. Examine the request

2. Optionally wrap the request object with a custom implementation to filter
content or headers for input filtering

3. Optionally wrap the response object with a custom implementation to fil-
ter content or headers for output filtering

4. a)Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()),

4. b)or not pass on the request/response pair to the next entity in the filter
chain to block the request processing

5. Directly set headers on the response after invokation of the next entity in
ther filter chain.

Throws:

ServletException, IOException

init(FilterConfig)

public void 1init(FilterConfig filterConfig)
throws ServletException

Called by the web container to indicate to a filter that it is being placed into
service. The servlet container calls the init method exactly once after instanti-

ating the filter. The init method must complete successfully before the filter is
asked to do any filtering work.

The web container cannot place the filter into service if the init method either
1.Throws a ServletException

2.Does not return within a time period defined by the web container

Throws:
ServletException

SRV.14.2.2 FilterChain
public interface FilterChain

A FilterChain is an object provided by the servlet container to the developer giv-
ing a view into the invocation chain of a filtered request for a resource. Filters use
the FilterChain to invoke the next filter in the chain, or if the calling filter is the
last filter in the chain, to invoke the rosource at the end of the chain.

Since: Servlet 2.3

See Also: Filter

124 JAVAX.SERVLET

SRV.14.2.2.1 Methods

doFilter(ServletRequest, ServletResponse)

pubTlic void doFilter(ServietRequest request,
ServletResponse response)
throws IOException, ServletException

Causes the next filter in the chain to be invoked, or if the calling filter is the
last filter in the chain, causes the resource at the end of the chain to be
invoked.

Parameters:
request - the request to pass along the chain.

response - the response to pass along the chain.

Throws:
ServletException, IOException

Since: 2.3

SRV.14.2.3 FilterConfig

pubTic interface FilterConfig

A filter configuration object used by a servlet container used to pass information
to a filter during initialization.

Since: Servlet 2.3

See Also: Filter

SRV.14.2.3.1 Methods

getFilterName()
public java.lang.String getFilterName()

Returns the filter-name of this filter as defined in the deployment descriptor.

getinitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns &tring containing the value of the named initialization parameter,
or nu11 if the parameter does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

Final Version

The javax.servlet package 125

getinitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an empthumeration if the servlet has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
servlet's initialization parameters

getServletContext()
public ServletContext getServletContext()

Returns a reference to thervletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its
servlet container

See Also:ServletContext

SRV.14.2.4 GenericServlet

public abstract class GenericServlet implements
javax.servlet.Servlet, javax.servlet.ServletConfig,
java.io.Serializable

All Implemented Interfaces: java.io.Serializable, Servlet, ServletCon-
fig

Direct Known Subclasses:javax.servlet.http.HttpServilet

Defines a generic, protocol-independent servlet. To write an HTTP servlet for use
on the Web, extenghvax.servlet.http.HttpServlet instead.

GenericServlet implements theServlet and ServiletConfig interfaces.
GenericServlet may be directly extended by a servlet, although it's more com-
mon to extend a protocol-specific subclass su¢hrgsserviet.

GenericServlet makes writing servlets easier. It provides simple versions of the
lifecycle methodsinit anddestroy and of the methods in th&ervletConfig
interface. GenericServlet also implements thdog method, declared in the
ServletContext interface.

To write a generic servlet, you need only override the absigacice method.

SRV.14.2.4.1 Constructors

GenericServlet()

public GenericServlet()

126

JAVAX.SERVLET

Does nothing. All of the servlet initialization is done by one ofithie
methods.

SRV.14.2.4.2 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. Sserviet.destroy(.

Specified By: Servlet.destroy() in interfaceServilet

getinitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns &tring containing the value of the named initialization parameter,
or nu11 if the parameter does not exist. See
ServletConfig.getInitParameter(String) .

This method is supplied for convenience. It gets the value of the named
parameter from the servleervletConfig object.

Specified By: ServletConfig.getInitParameter(String) in interface
ServletConfig

Parameters:
name - aString specifying the name of the initialization parameter

Returns: String aString containing the value of the initalization parameter

getInitParameterNames()

pubTlic java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an empthumeration if the servlet has
no initialization parameters. See
ServletConfig.getInitParameterNames() .

This method is supplied for convenience. It gets the parameter names from
the servlet'servietConfig object.

Specified By: ServletConfig.getInitParameterNames() in interface
ServletConfig

Returns: Enumeration an enumerationsifring objects containing the
names of the servlet’s initialization parameters

getServletConfig()

Final Version

The javax.servlet package 127

public ServletConfig getServletConfig()
Returns this servletServietConfig object.
Specified By: Servlet.getServletConfig() in interfaceServiet

Returns: ServletConfig thservletConfig object that initialized this
servlet

getServietContext()
public ServletContext getServletContext()

Returns a reference to thervietContext in which this servlet is running.
SeeServletConfig.getServietContext() .

This method is supplied for convenience. It gets the context from the servlet’s
ServletConfig object.

Specified By: ServletConfig.getServletContext() in interface
ServletConfig

Returns: ServletContext theervletContext object passed to this serviet
by theinit method

getServletinfo()
public java.lang.String getServletInfo()
Returns information about the servlet, such as author, version, and copyright.

By default, this method returns an empty string. Override this method to have
it return a meaningful value. Seervlet.getServietInfo() .

Specified By: Servlet.getServletInfo() in interfaceServilet

Returns: String information about this servlet, by default an empty string

getServletName()
public java.lang.String getServletName()

Returns the name of this servlet instance. See
ServletConfig.getServletName() .

Specified By: ServletConfig.getServletName() in interface
ServletConfig
Returns: the name of this servlet instance

init()
public void init(Q)
throws ServletException

128

JAVAX.SERVLET

A convenience method which can be overridden so that there’s no need to call

super.init(config).

Instead of overridingnit(ServletConfig) , Simply override this method
and it will be called byGenericServiet.init(ServietConfig config).
TheServletConfig object can still be retrieved vigtServletConfig() .

Throws:
ServletException - if an exception occurs that interrupts the servlet's
normal operation

init(ServletConfig)

pubTlic void init(ServietConfig config)
throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is being

placed into service. Seervlet.init(ServletConfig) .

This implementation stores tervietConfig object it receives from the

servlet container for later use. When overriding this form of the method, call

super.init(config).

Specified By: Servlet.init(ServletConfig) in interfaceServiet

Parameters:
config - theServletConfig object that contains configutation information
for this servlet

Throws:
ServletException - if an exception occurs that interrupts the servlet's
normal operation

See Also:UnavailableException

log(String)
pubTlic void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the servlet's

name. Se8ervletContext.log(String) .

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)
pubTlic void log(java.lang.String message, java.lang.Throwable t)
Writes an explanatory message and a stack trace for aTgiverable

exception to the servlet log file, prepended by the servlet's namgeSee
letContext.log(String, Throwable) .

Final Version

The javax.servlet package 129

Parameters:
message - aString that describes the error or exception

t - thejava.lang.Throwable error or exception

service(ServletRequest, ServletResponse)

public abstract void service(ServletRequest req,
ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a request.
SeeServlet.service(ServletRequest, ServletResponse) .

This method is declared abstract so subclasses, sduehpaarvlet, must
override it.

Specified By: Servlet.service(ServietRequest, ServletResponse) in
interfaceServiet

Parameters:
req - theServletRequest object that contains the client’s request

res - theServletResponse object that will contain the servlet's response

Throws:
ServletException - if an exception occurs that interferes with the servlet's
normal operation occurred

IOException - if an input or output exception occurs

SRV.14.2.5 RequestDispatcher

pubTlic interface RequestDispatcher

Defines an object that receives requests from the client and sends them to any
resource (such as a servlet, HTML file, or JSP file) on the server. The servlet con-
tainer creates thRequestDispatcher object, which is used as a wrapper around a
server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can create
RequestDispatcher objects to wrap any type of resource.

See Also: ServletContext.getRequestDispatcher(String), ServletCon-
text.getNamedDispatcher(String), ServletRequest.getRe-
questDispatcher(String)

SRV.14.2.5.1 Methods

forward(ServletRequest, ServletResponse)

130 JAVAX.SERVLET

pubTlic void forward(ServletRequest request,
ServletResponse response)
throws ServletException, IOException

Forwards a request from a servlet to another resource (servlet, JSP file, or
HTML file) on the server. This method allows one servlet to do preliminary
processing of a request and another resource to generate the response.

For aRequestDispatcher obtained viaetRequestDispatcher(), the
ServiletRequest oObject has its path elements and parameters adjusted to
match the path of the target resource.

forward should be called before the response has been committed to the cli-
ent (before response body output has been flushed). If the response already
has been committed, this method throwd HiegalStateException.
Uncommitted output in the response buffer is automatically cleared before
the forward.

The request and response parameters must be either the same objects as were
passed to the calling servlet’'s service method or be subclasses of the
ServletRequestWrapper OfServletResponseWrapper classes that wrap

them.

Parameters:
request - aServletRequest object that represents the request the client
makes of the servlet

response - aServletResponse Object that represents the response the
servlet returns to the client

Throws:
ServletException - if the target resource throws this exception

IOException - if the target resource throws this exception

I1legalStateException - if the response was already committed

include(ServletRequest, ServletResponse)

public void include(ServletRequest request,
ServletResponse response)
throws ServletException, IOException

Includes the content of a resource (servlet, JSP page, HTML file) in the
response. In essence, this method enables programmatic server-side includes.

ThesServletResponse object has its path elements and parameters remain
unchanged from the caller’s. The included servlet cannot change the response
status code or set headers; any attempt to make a change is ignored.

The request and response parameters must be either the same objects as were
passed to the calling servlet’s service method or be subclasses of the

Final Version

The javax.servlet package 131

ServletRequestWrapper Or ServletResponseWrapper classes that wrap
them.

Parameters:
request - aServletRequest Object that contains the client’s request

response - aServletResponse oObject that contains the servlet’s response

Throws:
ServletException - if the included resource throws this exception

IOException - if the included resource throws this exception

SRV.14.2.6 Servlet

public interface Servlet

All Known Implementing Classes: GenericServiet
Defines methods that all servlets must implement.

A servlet is a small Java program that runs within a Web server. Servlets receive
and respond to requests from Web clients, usually across HTTP, the HyperText
Transfer Protocol.

To implement this interface, you can write a generic servlet that extends
javax.servlet.GenericServlet or an HTTP servlet that extends
javax.servlet.http.HttpServiet.

This interface defines methods to initialize a servlet, to service requests, and to
remove a servlet from the server. These are known as life-cycle methods and are
called in the following sequence:

1.The servlet is constructed, then initialized with thiet method.
2.Any calls from clients to theervice method are handled.

3.The servlet is taken out of service, then destroyed wittietaoy method,
then garbage collected and finalized.

In addition to the life-cycle methods, this interface provides gbeServiet-
Config method, which the servlet can use to get any startup information, and the
getServletInfo method, which allows the servlet to return basic information
about itself, such as author, version, and copyright.

See Also: GenericServlet, javax.servlet.http.HttpServiet

SRV.14.2.6.1 Methods

destroy()

132 JAVAX.SERVLET

public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is being
taken out of service. This method is only called once all threads within the
servlet'sservice method have exited or after a timeout period has passed.
After the servlet container calls this method, it will not calldbevice

method again on this servlet.

This method gives the servlet an opportunity to clean up any resources that
are being held (for example, memory, file handles, threads) and make sure
that any persistent state is synchronized with the servlet’s current state in
memory.

getServletConfig()
pubTlic ServletConfig getServletConfig()

Returns &ervletConfig object, which contains initialization and startup
parameters for this servlet. TRervletConfig object returned is the one
passed to thénit method.

Implementations of this interface are responsible for storingeihe et-
Config object so that this method can return it. TheericServlet class,
which implements this interface, already does this.

Returns: theServletConfig object that initializes this servlet

See Also:init(ServletConfig)

getServletinfo()
public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyright.

The string that this method returns should be plain text and not markup of any
kind (such as HTML, XML, etc.).

Returns: aString containing servlet information

init(ServletConfig)

pubTlic void init(ServietConfig config)
throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is being
placed into service.

The servlet container calls theit method exactly once after instantiating
the servlet. Thénit method must complete successfully before the servlet
can receive any requests.

The servlet container cannot place the servlet into service ifrtiemethod

Final Version

The javax.servlet package 133

1. Throws &ervietException
2. Does not return within a time period defined by the Web server

Parameters:
config - aServletConfig oObject containing the servlet’s configuration and
initialization parameters

Throws:
ServletException - if an exception has occurred that interferes with the
servlet’s normal operation

See Also:UnavailableException, getServletConfig()

service(ServletRequest, ServletResponse)

public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a request.

This method is only called after the servig#ist() method has completed
successfully.

The status code of the response always should be set for a servlet that throws
or sends an error.

Servlets typically run inside multithreaded servlet containers that can handle
multiple requests concurrently. Developers must be aware to synchronize
access to any shared resources such as files, network connections, and as well
as the servlet's class and instance variables. More information on multi-
threaded programming in Java is available in the Java tutorial on multi-
threaded programming (http://java.sun.com/Series/Tutorial/java/threads/mul-
tithreaded.html).

Parameters:
req - theServiletRequest object that contains the client’s request

res - theServiletResponse object that contains the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the servlet's
normal operation

IOException - if an input or output exception occurs

SRV.14.2.7 ServletConfig

pubTlic interface ServletConfig

All Known Implementing Classes: GenericServlet

134 JAVAX.SERVLET

A servlet configuration object used by a servlet container used to pass informa-
tion to a servlet during initialization.

SRV.14.2.7.1 Methods

getinitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns &tring containing the value of the named initialization parameter,
or nu11 if the parameter does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getinitParameterNames()

public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an empthumeration if the servlet has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
servlet’s initialization parameters

getServletContext()
pubTlic ServletContext getServletContext()

Returns a reference to tRervletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its
servlet container

See Also:ServletContext

getServletName()
pubTlic java.lang.String getServletName()

Returns the name of this servlet instance. The name may be provided via
server administration, assigned in the web application deployment descriptor,
or for an unregistered (and thus unnamed) servlet instance it will be the serv-
let’s class name.

Returns: the name of the servlet instance

Final Version

The javax.servlet package 135

SRV.14.2.8 ServletContext

pubTlic interface ServletContext

Defines a set of methods that a servlet uses to communicate with its servlet con-
tainer, for example, to get the MIME type of a file, dispatch requests, or write to a
log file.

There is one context per “web application” per Java Virtual Machine. (A “web
application” is a collection of servlets and content installed under a specific sub-
set of the server's URL namespace suchi@salog and possibly installed via a
.war file.)

In the case of a web application marked “distributed” in its deployment descrip-
tor, there will be one context instance for each virtual machine. In this situation,
the context cannot be used as a location to share global information (because the
information won'’t be truly global). Use an external resource like a database
instead.

The ServletContext object is contained within th&ervietConfig oObject,
which the Web server provides the servlet when the servlet is initialized.

See Also: Servlet.getServletConfig(), ServletConfig.getServietCon-
text()

SRV.14.2.8.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the servlet container attribute with the given namey Orr if there is

no attribute by that name. An attribute allows a servlet container to give the
servlet additional information not already provided by this interface. See
your server documentation for information about its attributes. A list of sup-
ported attributes can be retrieved usiegAttributeNames.

The attribute is returned asjava.lang.0Object or some subclass. Attribute
names should follow the same convention as package names. The Java Serv-
let API specification reserves names matching. *, javax.*, andsun.*.

Parameters:
name - aString specifying the name of the attribute

Returns: anoObject containing the value of the attribute,nan 1 if no
attribute exists matching the given name

See Also: getAttributeNames ()

getAttributeNames()

136 JAVAX.SERVLET

pubTlic java.util.Enumeration getAttributeNames()

Returns arknumeration containing the attribute names available within this
servlet context. Use thgtAttribute(String) method with an attribute
name to get the value of an attribute.

Returns: anEnumeration of attribute names

See Also: getAttribute(String)

getContext(String)
public ServletContext getContext(java.lang.String uripath)

Returns e&ervietContext object that corresponds to a specified URL on the
server.

This method allows servlets to gain access to the context for various parts of
the server, and as needed obtraituestDispatcher objects from the con-

text. The given path must be begin with “/”, is interpreted relative to the
server’'s document root and is matched against the context roots of other web
applications hosted on this container.

In a security conscious environment, the servlet container may raflirn
for a given URL.

Parameters:
uripath - aString specifying the context path of another web application in
the container.

Returns: theServletContext object that corresponds to the named URL, or
null if either none exists or the container wishes to restrict this access.

See Also:RequestDispatcher

getinitParameter(String)

public java.lang.String getInitParameter(java.lang.String name)

Returns &tring containing the value of the named context-wide initializa-
tion parameter, aful11 if the parameter does not exist.

This method can make available configuration information useful to an entire
“web application”. For example, it can provide a webmaster’s email address
or the name of a system that holds critical data.

Parameters:
name - aString containing the name of the parameter whose value is
requested

Returns: aString containing at least the servlet container name and version
number

Final Version

The javax.servlet package 137

See Also:ServletConfig.getInitParameter(String)

getlnitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the context’s initialization parameters as an
Enumeration of String objects, or an emphumeration if the context has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
context’s initialization parameters

See Also:ServletConfig.getInitParameter(String)

getMajorVersion()

public int getMajorVersion()

Returns the major version of the Java Servlet API that this servlet container
supports. All implementations that comply with Version 2.3 must have this
method return the integer 2.

Returns: 2

getMimeType(String)
public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, mr11 if the MIME type is not
known. The MIME type is determined by the configuration of the servlet
container, and may be specified in a web application deployment descriptor.
Common MIME types arétext/htm1” and“image/gif”.

Parameters:
file - aString specifying the name of a file

Returns: aString specifying the file’s MIME type

getMinorVersion()

public int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container sup-
ports. All implementations that comply with Version 2.3 must have this
method return the integer 3.

Returns: 3

getNamedDispatcher(String)

public RequestDispatcher getNamedDispatcher(java.lang.String name)

138

JAVAX.SERVLET

Returns &equestDispatcher object that acts as a wrapper for the named
servlet.

Servlets (and JSP pages also) may be given names via server administration
or via a web application deployment descriptor. A servlet instance can deter-
mine its name usingervletConfig.getServietName() .

This method returnsull if the ServletContext cannot return Request-
Dispatcher for any reason.

Parameters:
name - aString specifying the name of a servlet to wrap

Returns: aRequestDispatcher object that acts as a wrapper for the named
servlet

See Also:RequestDispatcher, getContext(String),
ServletConfig.getServietName()

getRealPath(String)

public java.lang.String getRealPath(java.lang.String path)

Returns &tring containing the real path for a given virtual path. For exam-
ple, the path “/index.html” returns the absolute file path on the server’s file-
system would be served by a request for “http://host/contextPath/index.html”,
where contextPath is the context path of this ServletContext..

The real path returned will be in a form appropriate to the computer and oper-
ating system on which the servlet container is running, including the proper
path separators. This method retuia®] if the servlet container cannot
translate the virtual path to a real path for any reason (such as when the con-
tent is being made available fromwar archive).

Parameters:
path - aString specifying a virtual path

Returns: aString specifying the real path, or null if the translation cannot
be performed

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String
path)

Returns &RequestDispatcher object that acts as a wrapper for the resource
located at the given path.RequestDispatcher object can be used to for-

ward a request to the resource or to include the resource in a response. The
resource can be dynamic or static.

Final Version

The javax.servlet package 139

The pathname must begin with a “/” and is interpreted as relative to the cur-
rent context root. UsgetContext to obtain &RequestDispatcher for

resources in foreign contexts. This method retuun3 if the Servlet-

Context cannot return &equestDispatcher.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the
resource at the specified path

See Also:RequestDispatcher, getContext(String)

getResource(String)
public java.net.URL getResource(java.lang.String path)
throws MalformedURLException

Returns a URL to the resource that is mapped to a specified path. The path
must begin with a “/” and is interpreted as relative to the current context root.

This method allows the servlet container to make a resource available to serv-
lets from any source. Resources can be located on a local or remote file sys-
tem, in a database, or inwar file.

The servlet container must implement the URL handlersi®ndonnection
objects that are necessary to access the resource.

This method returnsu11 if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method using
the methods of the URL class.

The resource content is returned directly, so be aware that requesiig a
page returns the JSP source code. Uk @estDispatcher instead to
include results of an execution.

This method has a different purpose thava.lang.Class.getResource,
which looks up resources based on a class loader. This method does not use
class loaders.

Parameters:
path - aString specifying the path to the resource

Returns: the resource located at the named pathyor if there is no
resource at that path

Throws:
MalformedURLException - if the pathname is not given in the correct form

getResourceAsStream(String)

140 JAVAX.SERVLET

pubTlic java.io.InputStream getResourceAsStream(java.lang.String
path)

Returns the resource located at the named pathlas@rstream object.

The data in th@&nputStream can be of any type or length. The path must be
specified according to the rules giverg&tResource. This method returns
null if no resource exists at the specified path.

Meta-information such as content length and content type that is available via
getResource method is lost when using this method.

The servlet container must implement the URL handlersu&ndonnection
objects necessary to access the resource.

This method is different fronjava.lang.Class.getResourceAsStream,
which uses a class loader. This method allows servlet containers to make a
resource available to a servlet from any location, without using a class loader.

Parameters:
name - aString specifying the path to the resource

Returns: theInputStream returned to the servlet, au11 if no resource
exists at the specified path

getResourcePaths(String)
public java.util.Set getResourcePaths(java.lang.String path)

Returns a directory-like listing of all the paths to resources within the web
application whose longest sub-path matches the supplied path argument.
Paths indicating subdirectory paths end with a '/’. The returned paths are all
relative to the root of the web application and have a leading '/’. For example,
for a web application containing

/welcome.html

/catalog/index.html

/catalog/products.html

/catalog/offers/books.html
/catalog/offers/music.html

/customer/login.jsp

/WEB-INF/web.xml
/WEB-INF/classes/com.acme.OrderServlet.class,

getResourcePaths(“/”) returns {“/welcome.html”, “/catalog/”, “/customer/”,
“/\WEB-INF/"}

getResourcePaths(*/catalog/”) returns {*/catalog/index.html”, “/catalog/
products.html”, “/catalog/offers/"}.

Final Version

The javax.servlet package 141

Parameters:
the - partial path used to match the resources, which must start with a /

Returns: a Set containing the directory listing, or null if there are no
resources in the web application whose path begins with the supplied path.

Since: Servlet 2.3

getServerinfo()
public java.lang.String getServerInfo()

Returns the name and version of the servlet container on which the servlet is
running.

The form of the returned stringservernam&ersionnumber~or example,
the JavaServer Web Development Kit may return the stringServer Web
Dev Kit/1.0.

The servlet container may return other optional information after the primary
string in parentheses, for exampleyaServer Web Dev Kit/1.0 (JDK
1.1.6; Windows NT 4.0 x86).

Returns: aString containing at least the servlet container name and version
number

getServlet(String)

public Servlet getServlet(java.lang.String name)
throws ServletException

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

This method was originally defined to retrieve a servlet from a
ServletContext. In this version, this method always retunn31 and
remains only to preserve binary compatibility. This method will be
permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information using the
ServletContext class and can perform shared business logic by invoking
methods on common non-servlet classes.

Throws:
ServletException

getServiletContextName()
public java.lang.String getServletContextName()
Returns the name of this web application correponding to this ServiletContext

as specified in the deployment descriptor for this web application by the dis-
play-name element.

142 JAVAX.SERVLET

Returns: The name of the web application or null if no name has been
declared in the deployment descriptor.

Since: Servlet 2.3

getServletNames()

pubTlic java.util.Enumeration getServletNames()
Deprecated. As of Java Servlet API 2.1, with no replacement.

This method was originally defined to returneanmeration of all the

servlet names known to this context. In this version, this method always
returns an emptgnumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future version
of the Java Servlet API.

getServlets()

public java.util.Enumeration getServlets()
Deprecated. As of Java Servlet API 2.0, with no replacement.

This method was originally defined to returneanmeration of all the

servlets known to this servlet context. In this version, this method always
returns an empty enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future version
of the Java Servlet API.

log(Exception, String)

pubTlic void log(java.lang.Exception exception,
java.lang.String msg)

Deprecated. As of Java Servlet APl 2.1, u3eg(String, Throwable)
instead.

This method was originally defined to write an exception’s stack trace and an
explanatory error message to the servlet log file.

log(String)
pubTlic void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. The
name and type of the servlet log file is specific to the servlet container.

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)

Final Version

The javax.servlet package 143

public void log(java.lang.String message,
java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for aTgiv@able
exception to the servlet log file. The name and type of the servlet log file is
specific to the servlet container, usually an event log.

Parameters:
message - aString that describes the error or exception

throwable - theThrowable error or exception

removeAttribute(String)
public void removeAttribute(java.lang.String name)
Removes the attribute with the given name from the servlet context. After

removal, subsequent callsgetAttribute(String) to retrieve the
attribute’s value will returmull.

If listeners are configured on tiservietContext the container notifies them
accordingly.

Parameters:
name - aString specifying the name of the attribute to be removed

setAttribute(String, Object)

public void setAttribute(java.lang.String name,
java.lang.Object object)

Binds an object to a given attribute name in this servlet context. If the name
specified is already used for an attribute, this method will replace the attribute
with the new to the new attribute.

If listeners are configured on tiservietContext the container notifies them
accordingly.

If a null value is passed, the effect is the same as catéagveAttribute().

Attribute names should follow the same convention as package names. The
Java Servlet API specification reserves names matghing *, javax. *,
andsun.*.

Parameters:
name - aString specifying the name of the attribute

object - anObject representing the attribute to be bound

SRV.14.2.9 ServletContextAttributeEvent

public class ServletContextAttributeEvent extends
javax.servlet.ServietContextEvent

144 JAVAX.SERVLET

All Implemented Interfaces: java.io.Serializable

This is the event class for notifications about changes to the attributes of the serv-
let context of a web application.

Since: v 2.3

See Also: ServletContextAttributelistener

SRV.14.2.9.1 Constructors

ServletContextAttributeEvent(ServletContext, String, Object)

pubTic ServletContextAttributeEvent(ServietContext source,
java.lang.String name, java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the
given attribute name and attribute value.

SRV.14.2.9.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletContext.

getValue()
public java.lang.Object getValue()
Returns the value of the attribute that has been added removed or replaced. If
the attribute was added, this is the value of the attribute. If the attrubute was

removed, this is the value of the removed attribute. If the attribute was
replaced, this is the old value of the attribute.

SRV.14.2.10 ServletContextAttributeListener

pubTic interface ServletContextAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener
Implementations of this interface recieve notifications of changes to the attribute
list on the servlet context of a web application. To recieve notification events, the

implementation class must be configured in the deployment descriptor for the
web application.

Since: v 2.3

See Also: ServletContextAttributeEvent

Final Version

The javax.servlet package 145

SRV.14.2.10.1 Methods

attributeAdded(ServletContextAttributeEvent)
public void attributeAdded(ServietContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called after
the attribute is added.

attributeRemoved(ServietContextAttributeEvent)
public void attributeRemoved(ServiletContextAttributeEvent scab)

Notification that an existing attribute has been remved from the servlet con-
text. Called after the attribute is removed.

attributeReplaced(ServietContextAttributeEvent)
public void attributeReplaced(ServiletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Called
after the attribute is replaced.

SRV.14.2.11 ServletContextEvent

public class ServletContextEvent extends java.util.EventObject
All Implemented Interfaces: java.io.Serializable
Direct Known Subclasses:ServietContextAttributeEvent

This is the event class for notifications about changes to the servlet context of a
web application.

Since: v 2.3

See Also: ServletContextlistener

SRV.14.2.11.1 Constructors

ServletContextEvent(ServletContext)

pubTlic ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:
source - - the ServletContext that is sending the event.

SRV.14.2.11.2 Methods

getServietContext()

146 JAVAX.SERVLET

pubTlic ServletContext getServletContext()
Return the ServletContext that changed.

Returns: the ServletContext that sent the event.

SRV.14.2.12 ServletContextListener

pubTic interface ServletContextListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener
Implementations of this interface recieve notifications about changes to the serv-
let context of the web application they are part of. To recieve notification events,

the implementation class must be configured in the deployment descriptor for the
web application.

Since: v2.3

See Also: ServletContextEvent

SRV.14.2.12.1 Methods

contextDestroyed(ServiletContextEvent)

public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down.

contextlnitialized(ServletContextEvent)

pubTlic void contextInitialized(ServletContextEvent sce)

Notification that the web application is ready to process requests.

SRV.14.2.13 ServletException

public class ServletException extends java.lang.Exception
All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses:UnavailableException

Defines a general exception a servlet can throw when it encounters difficulty.

SRV.14.2.13.1 Constructors

ServletException()
public ServletException()

Constructs a new servlet exception.

Final Version

The javax.servlet package 147

ServletException(String)

public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The message
can be written to the server log and/or displayed for the user.

Parameters:
message - aString specifying the text of the exception message

ServletException(String, Throwable)

public ServletException(java.lang.String message,
java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered
with its normal operation, including a description message.

Parameters:
message - aString containing the text of the exception message

rootCause - theThrowable exception that interfered with the servlet's
normal operation, making this servlet exception necessary

ServletException(Throwable)
public ServletException(java.lang.Throwable rootCause)
Constructs a new servlet exception when the servlet needs to throw an excep-
tion and include a message about the “root cause” exception that interfered

with its normal operation. The exception’s message is based on the localized
message of the underlying exception.

This method calls thgetLocalizedMessage method on th&hrowable
exception to get a localized exception message. When subclassingt-
Exception, this method can be overridden to create an exception message
designed for a specific locale.

Parameters:
rootCause - theThrowable exception that interfered with the servlet's
normal operation, making the servlet exception necessary

SRV.14.2.13.2 Methods

getRootCause()
public java.lang.Throwable getRootCause()

Returns the exception that caused this servlet exception.

Returns: theThrowable that caused this servlet exception

148

JAVAX.SERVLET

SRV.14.2.14 ServletinputStream

public abstract class ServletinputStream extends java.io.InputStream

Provides an input stream for reading binary data from a client request, including
an efficientreadLine method for reading data one line at a time. With some pro-
tocols, such as HTTP POST and PUTReaxvletInputStream object can be used

to read data sent from the client.

A

ServletInputStream object is normally retrieved via the

ServletRequest.getInputStream() method.

This is an abstract class that a servlet container implements. Subclasses of this
class must implement thava.io.InputStream.read() method.

See Also: ServletRequest

SRV.14.2.14.1 Constructors

ServletinputStream()
protected ServletInputStream()

Does nothing, because this is an abstract class.

SRV.14.2.14.2 Methods

readLine(byte[], int, int)
public int readLine(byte[] b, int off, int Ten)

throws IOException

Reads the input stream, one line at a time. Starting at an offset, reads bytes
into an array, until it reads a certain number of bytes or reaches a newline
character, which it reads into the array as well.

This method returns -1 if it reaches the end of the input stream before reading
the maximum number of bytes.

Parameters:
b - an array of bytes into which data is read

off - an integer specifying the character at which this method begins reading
len - an integer specifying the maximum number of bytes to read

Returns: an integer specifying the actual number of bytes read, or -1 if the
end of the stream is reached

Throws:
IOException - if an input or output exception has occurred

Final Version

The javax.servlet package 149

SRV.14.2.15 ServletOutputStream

public abstract class ServletOutputStream extends
java.io.OutputStream

Provides an output stream for sending binary data to the cliererAlet-
OutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses of this
class must implement thi@va.io.OutputStream.write(int) method.

See Also: ServletResponse

SRV.14.2.15.1 Constructors

ServletOutputStream()
protected ServletOutputStream()

Does nothing, because this is an abstract class.

SRV.14.2.15.2 Methods

print(boolean)

public void print(boolean b)
throws IOException

Writes aboolean value to the client, with no carriage return-line feed
(CRLF) character at the end.

Parameters:
b - theboolean value to send to the client

Throws:
IOException - if an input or output exception occurred

print(char)

public void print(char c)
throws IOException

Writes a character to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters:
c - the character to send to the client

Throws:
IOException - if an input or output exception occurred

150 JAVAX.SERVLET

print(double)

public void print(double d)
throws IOException

Writes adouble value to the client, with no carriage return-line feed (CRLF)
at the end.

Parameters:
d - thedouble value to send to the client

Throws:
IOException - if an input or output exception occurred

print(float)

pubTlic void print(float f)
throws IOException

Writes afloat value to the client, with no carriage return-line feed (CRLF)
at the end.

Parameters:
f - thefloat value to send to the client

Throws:
IOException - if an input or output exception occurred

print(int)

public void print(int i)
throws IOException

Writes an int to the client, with no carriage return-line feed (CRLF) at the
end.

Parameters:
i - the int to send to the client

Throws:
IOException - if an input or output exception occurred

print(long)

pubTlic void print(long 1)
throws IOException

Writes along value to the client, with no carriage return-line feed (CRLF) at
the end.

Parameters:
1 - thelong value to send to the client

Throws:

Final Version

The javax.servlet package 151

IOException - if an input or output exception occurred

print(String)

public void print(java.lang.String s)
throws IOException

Writes aString to the client, without a carriage return-line feed (CRLF)
character at the end.

Parameters:
s - theString</code to send to the client

Throws:
IOException - if an input or output exception occurred

printin()

public void println()
throws IOException

Writes a carriage return-line feed (CRLF) to the client.

Throws:
IOException - if an input or output exception occurred

printin(boolean)

public void printin(boolean b)
throws IOException

Writes aboolean value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
b - theboolean value to write to the client

Throws:
I0Exception - if an input or output exception occurred

printin(char)

pubTlic void printin(char c)
throws IOException

Writes a character to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
c - the character to write to the client

Throws:
IOException - if an input or output exception occurred

152 JAVAX.SERVLET

printin(double)

public void println(double d)
throws IOException

Writes adoubTle value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
d - thedouble value to write to the client

Throws:
IOException - if an input or output exception occurred

printin(float)

pubTlic void printin(float f)
throws IOException

Writes afloat value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
f - thefloat value to write to the client

Throws:
IOException - if an input or output exception occurred

printin(int)

public void println(int i)
throws IOException

Writes an int to the client, followed by a carriage return-line feed (CRLF)
character.

Parameters:
i - the int to write to the client

Throws:
IOException - if an input or output exception occurred

printin(long)

pubTlic void printin(long 1)
throws IOException

Writes along value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
1 - thelong value to write to the client

Throws:

Final Version

The javax.servlet package 153

IOException - if an input or output exception occurred

printin(String)

public void printin(java.lang.String s)
throws IOException

Writes aString to the client, followed by a carriage return-line feed (CRLF).

Parameters:
s - the String to write to the client

Throws:
IOException - if an input or output exception occurred

SRV.14.2.16 ServletRequest

pubTlic interface ServletRequest

All Known Subinterfaces: javax.servlet.http.HttpServletRequest

All Known Implementing Classes: ServletRequestWrapper

Defines an object to provide client request information to a servlet. The servlet
container creates servletRequest Object and passes it as an argument to the
servlet'sservice method.

A ServletRequest Object provides data including parameter name and values,
attributes, and an input stream. Interfaces that exgemdletRequest can pro-
vide additional protocol-specific data (for example, HTTP data is provided by
javax.servlet.http.HttpServletRequest .

See Also: javax.servlet.http.HttpServletRequest

SRV.14.2.16.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute agbgact, ornull if no attribute
of the given name exists.

Attributes can be set two ways. The servlet container may set attributes to
make available custom information about a request. For example, for requests
made using HTTPS, the attribute

javax.servlet.request.X509Certificate can be used to retrieve informa-
tion on the certificate of the client. Attributes can also be set programatically
usingsetAttribute(String, Object) . This allows information to be
embedded into a request beforeguestDispatcher call.

154 JAVAX.SERVLET

Attribute names should follow the same conventions as package names. This
specification reserves names matchjaga. *, javax.*, andsun.*.

Parameters:
name - aString specifying the name of the attribute

Returns: anobject containing the value of the attribute,rof 1 if the
attribute does not exist

getAttributeNames()

pubTlic java.util.Enumeration getAttributeNames()

Returns artnumeration containing the names of the attributes available to
this request. This method returns an empiymeration if the request has no
attributes available to it.

Returns: anEnumeration of strings containing the names of the request’s
attributes

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this request.
This method returnsul1 if the request does not specify a character encoding

Returns: aString containing the name of the chararacter encodingudt
if the request does not specify a character encoding

getContentLength()
public int getContentLength()

Returns the length, in bytes, of the request body and made available by the
input stream, or -1 if the length is not known. For HTTP servlets, same as the
value of the CGI variable CONTENT_LENGTH.

Returns: an integer containing the length of the request body or -1 if the
length is not known

getContentType()
public java.lang.String getContentType()

Returns the MIME type of the body of the requestudn if the type is not
known. For HTTP servlets, same as the value of the CGI variable
CONTENT_TYPE.

Returns: aString containing the name of the MIME type of the request, or
null if the type is not known

Final Version

The javax.servlet package 155

getlnputStream()

public ServletInputStream getInputStream()
throws IOException

Retrieves the body of the request as binary data using a
ServletInputStream . Either this method ogetReader() may be called to
read the body, not both.

Returns: aServletInputStream object containing the body of the request

Throws:
ITlegalStateException - if the getReader () method has already been
called for this request

IOException - if an input or output exception occurred

getLocale()
public java.util.Locale getLocale()
Returns the preferracale that the client will accept content in, based on

the Accept-Language header. If the client request doesn’t provide an Accept-
Language header, this method returns the default locale for the server.

Returns: the preferredocale for the client

getLocales()
public java.util.Enumeration getLocales()

Returns artnumeration of Locale objects indicating, in decreasing order
starting with the preferred locale, the locales that are acceptable to the client
based on the Accept-Language header. If the client request doesn’t provide an
Accept-Language header, this method returngnameration containing
onelocale, the default locale for the server.

Returns: anEnumeration of preferred.ocale objects for the client

getParameter(String)

public java.lang.String getParameter(java.lang.String name)

Returns the value of a request parameterss-ang, ornul11 if the parameter
does not exist. Request parameters are extra information sent with the
request. For HTTP servlets, parameters are contained in the query string or
posted form data.

You should only use this method when you are sure the parameter has only
one value. If the parameter might have more than one value, use
getParameterValues(String) .

156

JAVAX.SERVLET

If you use this method with a multivalued parameter, the value returned is
equal to the first value in the array returnedybyParametervalues.

If the parameter data was sent in the request body, such as occurs with an
HTTP POST request, then reading the body directlg&tanputStream(
or getReader() can interfere with the execution of this method.

Parameters:
name - aString specifying the name of the parameter

Returns: aString representing the single value of the parameter

See Also: getParameterValues(String)

getParameterMap()

public java.util.Map getParameterMap()

Returns a java.util.Map of the parameters of this request. Request parameters

are extra information sent with the request. For HTTP servlets, parameters
are contained in the query string or posted form data.

Returns: an immutable java.util. Map containing parameter names as keys
and parameter values as map values. The keys in the parameter map are of
type String. The values in the parameter map are of type String array.

getParameterNames()

pubTlic java.util.Enumeration getParameterNames()

Returns arknumeration of String objects containing the names of the
parameters contained in this request. If the request has no parameters, the
method returns an emptylumeration.

Returns: anEnumeration of String objects, eachtring containing the
name of a request parameter; or an erapiyieration if the request has no
parameters

getParameterValues(String)

public java.lang.String[] getParameterValues(java.lang.String name)

Returns an array &ftring objects containing all of the values the given
request parameter has,nofl 1 if the parameter does not exist.

If the parameter has a single value, the array has a length of 1.

Parameters:
name - aString containing the name of the parameter whose value is
requested

Returns: an array oftring objects containing the parameter’s values

Final Version

The javax.servlet package 157

See Also: getParameter(String)

getProtocol()
public java.lang.String getProtocol ()

Returns the name and version of the protocol the request uses in the form
protocol/majorVersion.minorVersigor example, HTTP/1.1. For HTTP
servlets, the value returned is the same as the value of the CGl variable
SERVER_PROTOCOL.

Returns: aString containing the protocol name and version number

getReader()

public java.io.BufferedReader getReader()
throws IOException

Retrieves the body of the request as character data uiif@jearedReader.

The reader translates the character data according to the character encoding
used on the body. Either this methodgettInputStream() may be called to

read the body, not both.

Returns: aBufferedReader containing the body of the request

Throws:
UnsupportedEncodingException - if the character set encoding used is not
supported and the text cannot be decoded

I1legalStateException - if getInputStream() method has been called on
this request

IOException - if an input or output exception occurred

See Also: getInputStream()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Deprecated. As of Version 2.1 of the Java Servlet API, use
ServletContext.getRealPath(String) instead.

getRemoteAddr()
public java.lang.String getRemoteAddr ()

Returns the Internet Protocol (IP) address of the client that sent the request.
For HTTP servlets, same as the value of the CGI varkaieTE_ADDR.

Returns: aString containing the IP address of the client that sent the
request

158 JAVAX.SERVLET

getRemoteHost()
public java.lang.String getRemoteHost()
Returns the fully qualified name of the client that sent the request. If the
engine cannot or chooses not to resolve the hostname (to improve perfor-

mance), this method returns the dotted-string form of the IP address. For
HTTP servlets, same as the value of the CGI variabB#®TE_HOST.

Returns: aString containing the fully qualified name of the client

getRequestDispatcher(String)

pubTlic RequestDispatcher getRequestDispatcher(java.lang.String
path)

Returns &RequestDispatcher object that acts as a wrapper for the resource
located at the given path.RequestDispatcher object can be used to for-

ward a request to the resource or to include the resource in a response. The
resource can be dynamic or static.

The pathname specified may be relative, although it cannot extend outside the
current servlet context. If the path begins with a “/” it is interpreted as relative
to the current context root. This method retutunsl if the servlet container
cannot return 8equestDispatcher.

The difference between this method and
ServletContext.getRequestDispatcher(String) is that this method can
take a relative path.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the
resource at the specified path

See Also:RequestDispatcher,
ServletContext.getRequestDispatcher(String)

getScheme()
public java.lang.String getScheme()

Returns the name of the scheme used to make this request, for exanple,
https, or ftp. Different schemes have different rules for constructing URLSs,
as noted in RFC 1738.

Returns: aString containing the name of the scheme used to make this
request

getServerName()

Final Version

The javax.servlet package 159

public java.lang.String getServerName()

Returns the host name of the server that received the request. For HTTP serv-
lets, same as the value of the CGI varisiii/ER_NAME.

Returns: aString containing the name of the server to which the request
was sent

getServerPort()
public int getServerPort()

Returns the port number on which this request was received. For HTTP serv-
lets, same as the value of the CGI varisiiRvER_PORT.

Returns: an integer specifying the port number

isSecure()

public boolean 1isSecure()

Returns a boolean indicating whether this request was made using a secure
channel, such as HTTPS.

Returns: a boolean indicating if the request was made using a secure
channel

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally needed
as attributes only persist as long as the request is being handled.

Attribute names should follow the same conventions as package names.
Names beginning withava.*, javax.*, andcom.sun.*, are reserved for use
by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute to remove

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests. This
method is most often used in conjunction wiglauestDispatcher .

Attribute names should follow the same conventions as package names.
Names beginning withava. *, javax.*, andcom. sun.*, are reserved for use
by Sun Microsystems.

If the value passed in is null, the effect is the same as calling
removeAttribute(String) .

160 JAVAX.SERVLET

Parameters:
name - aString specifying the name of the attribute

o - theObject to be stored

setCharacterEncoding(String)

pubTlic void setCharacterEncoding(java.lang.String env)
throws UnsupportedEncodingException

Overrides the name of the character encoding used in the body of this
request. This method must be called prior to reading request parameters or
reading input using getReader().

Parameters:
a - String containing the name of the chararacter encoding.

Throws:
java.io.UnsupportedEncodingException - if this is not a valid encoding

SRV.14.2.17 ServletRequestWrapper

pubTlic class ServletRequestWrapper impTements
javax.servlet.ServletRequest

All Implemented Interfaces: ServletRequest
Direct Known Subclasses:javax.servlet.http.HttpServietRequestWrapper

Provides a convenient implementation of the ServletRequest interface that can be
subclassed by developers wishing to adapt the request to a Servlet. This class
implements the Wrapper or Decorator pattern. Methods default to calling through
to the wrapped request object.

Since: v2.3
See Also: ServletRequest

SRV.14.2.17.1 Constructors

ServletRequestWrapper(ServletRequest)
pubTlic ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adaptor wrapping the given request object.

Throws:
java.lang.I1legalArgumentException - if the request is null

SRV.14.2.17.2 Methods

getAttribute(String)

Final Version

The javax.servlet package 161

public java.lang.Object getAttribute(java.lang.String name)

The default behavior of this method is to call getAttribute(String name) on
the wrapped request object.

Specified By: ServletRequest.getAttribute(String) in interface
ServletRequest

getAttributeNames()

public java.util.Enumeration getAttributeNames()

The default behavior of this method is to return getAttributeNames() on the
wrapped request object.

Specified By: ServletRequest.getAttributeNames() in interface
ServletRequest

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped request object.

Specified By: ServletRequest.getCharacterEncoding() in interface
ServiletRequest

getContentLength()
public int getContentLength()

The default behavior of this method is to return getContentLength() on the
wrapped request object.

Specified By: ServietRequest.getContentLength() in interface
ServiletRequest

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped request object.

Specified By: ServletRequest.getContentType() in interface
ServletRequest

getlnputStream()

pubTlic ServletInputStream getInputStream()
throws IOException

162

JAVAX.SERVLET

The default behavior of this method is to return getinputStream() on the
wrapped request object.

Specified By: ServletRequest.getInputStream() in interface
ServiletRequest

Throws:
IOException

getLocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped
request object.

Specified By: ServletRequest.getlLocale() in interfaceServletRequest

getLocales()

pubTlic java.util.Enumeration getLocales()

The default behavior of this method is to return getLocales() on the wrapped
request object.

Specified By: ServletRequest.getlocales() in interface
ServletRequest

getParameter(String)

public java.lang.String getParameter(java.lang.String name)

The default behavior of this method is to return getParameter(String name)
on the wrapped request object.

Specified By: ServletRequest.getParameter(String) in interface
ServletRequest

getParameterMap()
public java.util.Map getParameterMap()

The default behavior of this method is to return getParameterMap() on the
wrapped request object.

Specified By: ServletRequest.getParameterMap() in interface
ServletRequest

getParameterNames()

pubTlic java.util.Enumeration getParameterNames()

The default behavior of this method is to return getParameterNames() on the
wrapped request object.

Final Version

The javax.servlet package 163

Specified By: ServletRequest.getParameterNames() in interface
ServletRequest

getParameterValues(String)

public java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method is to return getParameterValues(String
name) on the wrapped request object.

Specified By: ServletRequest.getParameterValues(String) ininterface
ServiletRequest

getProtocol()
public java.lang.String getProtocol ()

The default behavior of this method is to return getProtocol() on the wrapped
request object.

Specified By: ServletRequest.getProtocol() in interface
ServiletRequest

getReader()

public java.io.BufferedReader getReader()
throws IOException

The default behavior of this method is to return getReader() on the wrapped
request object.

Specified By: ServletRequest.getReader() in interfaceServletRequest

Throws:
TIOException

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

The default behavior of this method is to return getRealPath(String path) on
the wrapped request object.

Specified By: ServletRequest.getRealPath(String) in interface
ServletRequest

getRemoteAddr()
public java.lang.String getRemoteAddr()

The default behavior of this method is to return getRemoteAddr() on the
wrapped request object.

164 JAVAX.SERVLET

Specified By: ServletRequest.getRemoteAddr() in interface
ServletRequest

getRemoteHost()
public java.lang.String getRemoteHost()

The default behavior of this method is to return getRemoteHost() on the
wrapped request object.

Specified By: ServletRequest.getRemoteHost() in interface
ServiletRequest

getRequest()
pubTlic ServletRequest getRequest()
Return the wrapped request object.

getRequestDispatcher(String)

public RequestDispatcher getRequestDispatcher(java.lang.String
path)

The default behavior of this method is to return getRequestDispatcher(String
path) on the wrapped request object.

Specified By: ServietRequest.getRequestDispatcher(String) in
interfaceServletRequest

getScheme()
public java.lang.String getScheme()

The default behavior of this method is to return getScheme() on the wrapped
request object.

Specified By: ServletRequest.getScheme() in interfaceServletRequest

getServerName()

public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the
wrapped request object.

Specified By: ServietRequest.getServerName() in interface
ServletRequest

getServerPort()
public int getServerPort()

Final Version

The javax.servlet package 165

The default behavior of this method is to return getServerPort() on the
wrapped request object.

Specified By: ServietRequest.getServerPort() in interface
ServiletRequest

isSecure()

pubTlic boolean -+isSecure()

The default behavior of this method is to return isSecure() on the wrapped
request object.

Specified By: ServletRequest.isSecure() in interfaceServletRequest

removeAttribute(String)

public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String name)
on the wrapped request object.

Specified By: ServietRequest. removeAttribute(String) in interface
ServiletRequest

setAttribute(String, Object)

public void setAttribute(java.lang.String name, java.lang.Object o)

The default behavior of this method is to return setAttribute(String name,
Object 0) on the wrapped request object.

Specified By: ServletRequest.setAttribute(String, Object) in
interfaceServietRequest

setCharacterEncoding(String)

public void setCharacterEncoding(java.lang.String enc)
throws UnsupportedEncodingException

The default behavior of this method is to set the character encoding on the
wrapped request object.

Specified By: ServletRequest.setCharacterEncoding(String) in
interfaceServietRequest

Throws:
UnsupportedEncodingException

setRequest(ServletRequest)

public void setRequest(ServletRequest request)

Sets the request object being wrapped.

166 JAVAX.SERVLET

Throws:
java.lang.I1legalArgumentException - if the request is null.

SRV.14.2.18 ServletResponse

pubTlic interface ServletResponse

All Known Subinterfaces: javax.servlet.http.HttpServietResponse

All Known Implementing Classes: ServletResponseWrapper

Defines an object to assist a servlet in sending a response to the client. The servlet
container creates $ervletResponse object and passes it as an argument to the
servlet’sservice method.

To send binary data in a MIME body response, useS#e/TetOutputStream
returned bygetOutputStream() . To send character data, use thentwWriter
object returned byetwriter() . To mix binary and text data, for example, to
create a multipart response, usgeavletOutputStream and manage the charac-
ter sections manually.

The charset for the MIME body response can be specified with
setContentType(String) . For example, “text/html; charset=Shift_JIS”. The
charset can alternately be set usiw@locale(Locale) . If no charset is speci-
fied, 1ISO-8859-1 will be used. ThetContentType Or setLocale method must

be called beforgetwriter for the charset to affect the construction of the writer.

See the Internet RFCs such as RFC 2045 (http://info.internet.isi.edu/in-notes/rfc/
files/rfc2045.txt) for more information on MIME. Protocols such as SMTP and
HTTP define profiles of MIME, and those standards are still evolving.

See Also: ServletOutputStream

SRV.14.2.18.1 Methods

flushBuffer()

pubTlic void flushBuffer()
throws IOException
Forces any content in the buffer to be written to the client. A call to this
method automatically commits the response, meaning the status code and
headers will be written.

Throws:
IOException

See Also: setBufferSize(int), getBufferSize(), isCommitted(),
reset()

Final Version

The javax.servlet package 167

getBufferSize()
public int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is used,
this method returns 0.

Returns: the actual buffer size used

See Also: setBufferSize(int), flushBuffer(), isCommitted(), reset()

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the charset used for the MIME body sent in this
response.

If no charset has been assigned, it is implicitly s@s008859-1 (Latin-1).

See RFC 2047 (http://ds.internic.net/rfc/rfc2045.txt) for more information
about character encoding and MIME.

Returns: aString specifying the name of the charset, for examyse;
8859-1

getLocale()

public java.util.Locale getLocale()
Returns the locale assigned to the response.

See Also:setlocale(lLocale)

getOutputStream()

public ServletOutputStream getQutputStream()
throws IOException

Returns a&ervletOutputStream Suitable for writing binary data in the
response. The servlet container does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either this
method omgetwWriter() may be called to write the body, not both.

Returns: aServletOutputStream for writing binary data

Throws:
I1legalStateException - if thegetWriter method has been called on this
response

IOException - if an input or output exception occurred
See Also:getWriter()

getWriter()

168 JAVAX.SERVLET

public java.io.PrintWriter getWriter()
throws IOException

Returns @rintWriter object that can send character text to the client. The
character encoding used is the one specified ibhheset= property of the
setContentType(String) method, which must be calldzbforecalling this
method for the charset to take effect.

If necessary, the MIME type of the response is modified to reflect the charac-
ter encoding used.

Calling flush() on the PrintWriter commits the response.

Either this method agetOutputStream() may be called to write the body,
not both.

Returns: aPrintWriter object that can return character data to the client

Throws:
UnsupportedEncodingException - if the charset specified in
setContentType cannot be used

I1legalStateException - if the getOutputStream method has already been
called for this response object

IOException - if an input or output exception occurred

See Also: getOutputStream(), setContentType(String)

isCommitted()

public boolean isCommitted()

Returns a boolean indicating if the response has been committed. A com-
mited response has already had its status code and headers written.

Returns: a boolean indicating if the response has been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
reset()

reset()
public void reset()
Clears any data that exists in the buffer as well as the status code and headers.

If the response has been committed, this method throwslagalState-
Exception.

Throws:
I1legalStateException - if the response has already been committed

See Also: setBufferSize(int), getBufferSize(), flushBuffer(),
isCommitted()

Final Version

The javax.servlet package 169

resetBuffer()
public void resetBuffer()

Clears the content of the underlying buffer in the response without clearing
headers or status code. If the response has been committed, this method
throws ani1legalStateException.

Since: 2.3

See Also: setBufferSize(int), getBufferSize(), isCommitted(),
reset()

setBufferSize(int)

public void setBufferSize(int size)

Sets the preferred buffer size for the body of the response. The servlet con-
tainer will use a buffer at least as large as the size requested. The actual buffer
size used can be found usigerBufferSize.

A larger buffer allows more content to be written before anything is actually
sent, thus providing the servlet with more time to set appropriate status codes
and headers. A smaller buffer decreases server memory load and allows the
client to start receiving data more quickly.

This method must be called before any response body content is written; if
content has been written, this method throwFldrgalStateException.

Parameters:

size - the preferred buffer size

Throws:

I1legalStateException - if this method is called after content has been
written

See Also: getBufferSize(), flushBuffer(), isCommitted(), reset()

setContentLength(int)
public void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, this
method sets the HTTP Content-Length header.

Parameters:
len - an integer specifying the length of the content being returned to the
client; sets the Content-Length header

setContentType(String)
public void setContentType(java.lang.String type)

170

JAVAX.SERVLET

Sets the content type of the response being sent to the client. The content type
may include the type of character encoding used, for examyte/html;
charset=IS0-8859-4.

If obtaining aPrintwWriter, this method should be called first.

Parameters:
type - aString specifying the MIME type of the content

See Also: getOutputStream(), getWriter()

setLocale(Locale)

public void setLocale(java.util.Locale loc)

Sets the locale of the response, setting the headers (including the Content-
Type’s charset) as appropriate. This method should be called before a call to
getWriter() . By default, the response locale is the default locale for the
server.

Parameters:
loc - the locale of the response

See Also: getlocale()

SRV.14.2.19 ServletResponseWrapper

public class ServletResponseWrapper impTlements
javax.servlet.ServletResponse

All Implemented Interfaces: ServietResponse

Direct Known Subclasses:javax.servlet.http.HttpServletResponseWrap-

per

Provides a convenient implementation of the ServletResponse interface that can
be subclassed by developers wishing to adapt the response from a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling
through to the wrapped response object.

Since: v 2.3

See Also: ServletResponse

SRV.14.2.19.1 Constructors

ServletResponseWrapper(ServletResponse)

pubTlic ServletResponseWrapper(ServletResponse response)

Creates a ServletResponse adaptor wrapping the given response object.

Throws:

Final Version

The javax.servlet package 171

java.lang.I1legalArgumentException - if the response is null.

SRV.14.2.19.2 Methods

flushBuffer()

public void flushBuffer()
throws IOException

The default behavior of this method is to call flushBuffer() on the wrapped
response object.

Specified By: ServletResponse. flushBuffer() in interface
ServletResponse

Throws:
IOException

getBufferSize()
public int getBufferSize()

The default behavior of this method is to return getBufferSize() on the
wrapped response object.

Specified By: ServletResponse.getBufferSize() in interface
ServletResponse

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding() on
the wrapped response object.

Specified By: ServletResponse.getCharacterEncoding() in interface
ServletResponse

getLocale()

public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapped
response object.

Specified By: ServletResponse.getlLocale() in interface
ServletResponse

getOutputStream()

pubTlic ServletOutputStream getOutputStream()
throws IOException

172 JAVAX.SERVLET

The default behavior of this method is to return getOutputStream() on the
wrapped response object.

Specified By: ServletResponse.getOutputStream() in interface
ServletResponse

Throws:
IOException

getResponse()

pubTlic ServletResponse getResponse()

Return the wrapped ServletResponse object.

getWriter()

public java.io.PrintWriter getWriter()
throws IOException

The default behavior of this method is to return getWriter() on the wrapped
response object.

Specified By: ServietResponse.getWriter() in interface
ServletResponse

Throws:
IOException

isCommitted()
pubTlic boolean +isCommitted()

The default behavior of this method is to return isCommitted() on the
wrapped response object.

Specified By: ServletResponse.isCommitted() in interface
ServletResponse

reset()

pubTlic void reset()

The default behavior of this method is to call reset() on the wrapped response
object.

Specified By: ServietResponse.reset() in interfaceServletResponse

resetBuffer()
pubTlic void resetBuffer()

The default behavior of this method is to call resetBuffer() on the wrapped
response object.

Final Version

The javax.servlet package 173

Specified By: ServletResponse. resetBuffer() in interface
ServletResponse

setBufferSize(int)

public void setBufferSize(int size)

The default behavior of this method is to call setBufferSize(int size) on the
wrapped response object.

Specified By: ServletResponse.setBufferSize(int) in interface
ServletResponse

setContentLength(int)
public void setContentLength(int len)

The default behavior of this method is to call setContentLength(int len) on
the wrapped response object.

Specified By: ServletResponse.setContentlLength(int) in interface
ServletResponse

setContentType(String)
public void setContentType(java.lang.String type)

The default behavior of this method is to call setContentType(String type) on
the wrapped response object.

Specified By: ServletResponse.setContentType(String) in interface
ServletResponse

setLocale(Locale)

public void setLocale(java.util.Locale loc)

The default behavior of this method is to call setLocale(Locale loc) on the
wrapped response object.

Specified By: ServletResponse.setlocale(Locale) in interface
ServletResponse

setResponse(ServletResponse)

public void setResponse(ServietResponse response)

Sets the response being wrapped.

Throws:
java.lang.I1legalArgumentException - if the response is null.

174 JAVAX.SERVLET

SRV.14.2.20 SingleThreadModel

pubTic interface SingleThreadModel

Ensures that servlets handle only one request at a time. This interface has no
methods.

If a servlet implements this interface, you ggaranteedhat no two threads will
execute concurrently in the servlegsrvice method. The servlet container can
make this guarantee by synchronizing access to a single instance of the servlet, or
by maintaining a pool of servlet instances and dispatching each new request to a
free servlet.

This interface does not prevent synchronization problems that result from servlets
accessing shared resources such as static class variables or classes outside the
scope of the servlet.

SRV.14.2.21 UnavailableException

pubTlic class UnavailableException extends
javax.servlet.ServletException

All Implemented Interfaces: java.io.Serializable

Defines an exception that a servlet or filter throws to indicate that it is perma-
nently or temporarily unavailable.

When a servlet or filter is permanently unavailable, something is wrong with the
it, and it cannot handle requests until some action is taken. For example, a servlet
might be configured incorrectly, or a filter's state may be corrupted. The compo-
nent should log both the error and the corrective action that is needed.

A servlet or filter is temporarily unavailable if it cannot handle requests momen-
tarily due to some system-wide problem. For example, a third-tier server might
not be accessible, or there may be insufficient memory or disk storage to handle
requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in the
same way. However, treating temporary unavailability effectively makes the serv-
let container more robust. Specifically, the servlet container might block requests
to the servlet or filter for a period of time suggested by the exception, rather than
rejecting them until the servlet container restarts.

SRV.14.2.21.1 Constructors

UnavailableException(int, Servlet, String)

public UnavailableException(int seconds, Servlet servilet,
java.lang.String msg)

Final Version

The javax.servlet package 175

Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String, int) instead.

Parameters:

seconds - an integer specifying the number of seconds the servlet expects to
be unavailable; if zero or negative, indicates that the servlet can’'t make an
estimate

servlet - theServiet that is unavailable

msg - aString specifying the descriptive message, which can be written to a
log file or displayed for the user.

UnavailableException(Servlet, String)

public UnavailableException(Servlet servlet, java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String) instead.

Parameters:
servlet - theServiet instance that is unavailable

msg - aString specifying the descriptive message

UnavailableException(String)

public UnavailableException(java.lang.String msg)

Constructs a new exception with a descriptive message indicating that the
servlet is permanently unavailable.

Parameters:
msg - aString specifying the descriptive message

UnavailableException(String, int)

public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that the
servlet is temporarily unavailable and giving an estimate of how long it will
be unavailable.

In some cases, the servlet cannot make an estimate. For example, the servlet
might know that a server it needs is not running, but not be able to report how
long it will take to be restored to functionality. This can be indicated with a
negative or zero value for tBeconds argument.

Parameters:
msg - aString specifying the descriptive message, which can be written to a
log file or displayed for the user.

176 JAVAX.SERVLET

seconds - an integer specifying the number of seconds the servlet expects to
be unavailable; if zero or negative, indicates that the servlet can't make an
estimate

SRV.14.2.21.2 Methods

getServlet()
pubTlic Servlet getServlet()

Deprecated. As of Java Servlet API 2.2, with no replacement. Returns the
servlet that is reporting its unavailability.

Returns: theServiet object that is throwing thignavailableException

getUnavailableSeconds()
pubTlic int getUnavailableSeconds ()

Returns the number of seconds the servlet expects to be temporarily unavail-
able.

If this method returns a negative number, the servlet is permanently unavail-
able or cannot provide an estimate of how long it will be unavailable. No
effort is made to correct for the time elapsed since the exception was first
reported.

Returns: an integer specifying the number of seconds the servlet will be
temporarily unavailable, or a negative number if the servlet is permanently
unavailable or cannot make an estimate

isPermanent()

public boolean 1isPermanent()

Returns @oolean indicating whether the servlet is permanently unavailable.
If so, something is wrong with the servlet, and the system administrator must
take some corrective action.

Returns: true if the servlet is permanently unavailabfe]se if the servlet
is available or temporarily unavailable

Final Version

cneren DRV 1O

javax.servlet.http

This chapter describes the javax.servlet.http package. The chapter includes content
that is generated automatically from the javadoc embedded in the actual Java classes
and interfaces. This allows the creation of a single, authoritative, specification docu-
ment.

SRV.15.1 Servlets Using HTTP Protocol

The javax.servlet.http packageontains a number of classes and interfaces that
describe and define the contracts between a servlet class running under the HTTP
protocol and the runtime environment provided for an instance of such a class by a
conforming servlet container.

The classHttpServlet implements the Servlet interface and provides a base
developers will extend o implement servlets for implementing web applications
employing the HTTP protocol. In addition to generic Servlet interface methods,
the classHttpServletimplements interfaces providing HTTP functionality.

The basicServletinterface defines @ervicemethod for handling client
requests. This method is called for each request that the servlet container routes to
an instance of a servlet.

Class Summary

Interfaces

HttpServletRequest Extends the javax.servlet.ServletRequest
interface to provide request information for
HTTP servlets.

177

178

JAVAX.SERVLET.HTTP

Class Summary

HttpServletResponse

HttpSession

HttpSessionActivation-
Listener

HttpSessionAt-
tributelistener

HttpSessionBindinglLis-
tener

HttpSessionContext

HttpSessionlListener

Classes

Cookie

HttpServlet

HttpServletRequestWrap-

per

HttpServletResponse-
Wrapper

Extends the javax.servlet.ServletResponse
interface to provide HTTP-specific functionality
in sending a response.

Provides a way to identify a user across more
than one page request or visit to a Web site and
to store information about that user.

Obijects that are bound to a session may listen
to container events notifying them that sessions
will be passivated and that session will be
activated.

This listener interface can be implemented in
order to get notifications of changes to the
attribute lists of sessions within this web
application.

Causes an object to be notified when it is bound
to or unbound from a session.

Implementations of this interface may are noti-
fied of changes to the list of active sessions in a
web application.

Creates a cookie, a small amount of information
sent by a servlet to a Web browser, saved by the
browser, and later sent back to the server.

Provides an abstract class to be subclassed to
create an HTTP servlet suitable for a Web site.

Provides a convenient implementation of the
HttpServiletRequest interface that can be
subclassed by developers wishing to adapt the
request to a Servlet.

Provides a convenient implementation of the
HttpServietResponse interface that can be
subclassed by developers wishing to adapt the
response from a Servlet.

Final Version

Servlets Using HTTP Protocol 179

Class Summary

HttpSessionBindingEvent Events of this type are either sent to an object
that implements HttpSessionBindinglListener
when it is bound or unbound from a session, or
to a HttpSessionAttributelistener that has
been configured in the deployment descriptor
when any attribute is bound, unbound or
replaced in a session.

HttpSessionEvent This is the class representing event notifications
for changes to sessions within a web
application.

HttpUtils

SRV.15.1.1 Cookie

public class Cookie implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable

Creates a cookie, a small amount of information sent by a servlet to a Web
browser, saved by the browser, and later sent back to the server. A cookie’s value
can uniquely identify a client, so cookies are commonly used for session manage-
ment.

A cookie has a name, a single value, and optional attributes such as a comment,
path and domain qualifiers, a maximum age, and a version number. Some Web
browsers have bugs in how they handle the optional attributes, so use them spar-
ingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using the
HttpServletResponse.addCookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time. The
browser is expected to support 20 cookies for each Web server, 300 cookies total,
and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request head-
ers. Cookies can be retrieved from a request by wusing the
HttpServletRequest.getCookies() method. Several cookies might have the
same name but different path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 does not
cache pages that use cookies created with this class. This class does not support
the cache control defined with HTTP 1.1.

180 JAVAX.SERVLET.HTTP

This class supports both the Version 0 (by Netscape) and Version 1 (by RFC
2109) cookie specifications. By default, cookies are created using Version 0 to
ensure the best interoperability.

SRV.15.1.1.1 Constructors

Cookie(String, String)

public Cookie(java.lang.String name, java.lang.String value)
Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only ASCII
alphanumeric characters and cannot contain commas, semicolons, or white
space or begin with a $ character. The cookie’s name cannot be changed after
creation.

The value can be anything the server chooses to send. Its value is probably of
interest only to the server. The cookie’s value can be changed after creation
with thesetvalue method.

By default, cookies are created according to the Netscape cookie specifica-
tion. The version can be changed with ¢eeversion method.

Parameters:
name - aString specifying the name of the cookie

value - aString specifying the value of the cookie

Throws:

I1legalArgumentException - if the cookie name contains illegal characters
(for example, a comma, space, or semicolon) or it is one of the tokens
reserved for use by the cookie protocol

See Also: setValue(String), setVersion(int)

SRV.15.1.1.2 Methods

clone()
public java.lang.Object clone()

Overrides the standandva.lang.0Object.clone method to return a copy of
this cookie.

Overrides: java.lang.Object.clone() in class java.lang.Object

getComment()
public java.lang.String getComment()

Final Version

Servlets Using HTTP Protocol 181

Returns the comment describing the purpose of this cookia] vif the
cookie has no comment.

Returns: aString containing the comment, ea11 if none

See Also: setComment (String)

getDomain()
public java.lang.String getDomain()

Returns the domain name set for this cookie. The form of the domain name is
set by RFC 2109.

Returns: aString containing the domain name

See Also: setDomain(String)

getMaxAge()
public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By default,
indicating the cookie will persist until browser shutdown.

Returns: an integer specifying the maximum age of the cookie in seconds; if
negative, means the cookie persists until browser shutdown

See Also: setMaxAge (int)

getName()
public java.lang.String getName()

Returns the name of the cookie. The name cannot be changed after creation.

Returns: asString specifying the cookie’s name

getPath()
public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie. The
cookie is visible to all subpaths on the server.

Returns: aString specifying a path that contains a servlet name, for
example/catalog

See Also: setPath(String)

getSecure()
public boolean getSecure()

Returnstrue if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

182 JAVAX.SERVLET.HTTP

Returns: true if the browser uses a secure protocol; otherwisg

See Also: setSecure(boolean)

getValue()
pubTlic java.lang.String getValue()

Returns the value of the cookie.
Returns: aString containing the cookie’s present value

See Also: setValue(String), Cookie

getVersion()
public int getVersion()
Returns the version of the protocol this cookie complies with. Version 1 com-
plies with RFC 2109, and version 0 complies with the original cookie specifi-

cation drafted by Netscape. Cookies provided by a browser use and identify
the browser’s cookie version.

Returns: 0 if the cookie complies with the original Netscape specification; 1
if the cookie complies with RFC 2109

See Also: setVersion(int)

setComment(String)

public void setComment(java.lang.String purpose)

Specifies a comment that describes a cookie’s purpose. The comment is use-
ful if the browser presents the cookie to the user. Comments are not sup-
ported by Netscape Version 0 cookies.

Parameters:
purpose - aString specifying the comment to display to the user

See Also: getComment ()

setDomain(String)
public void setDomain(java.lang.String pattern)
Specifies the domain within which this cookie should be presented.

The form of the domain name is specified by RFC 2109. A domain name
begins with a dot (foo. com) and means that the cookie is visible to servers in
a specified Domain Name System (DNS) zone (for example foo. com,

but nota.b. foo.com). By default, cookies are only returned to the server that
sent them.

Parameters:

Final Version

Servlets Using HTTP Protocol 183

pattern - aString containing the domain name within which this cookie is
visible; form is according to RFC 2109

See Also: getDomain()

setMaxAge(int)
public void setMaxAge(int expiry)
Sets the maximum age of the cookie in seconds.

A positive value indicates that the cookie will expire after that many seconds
have passed. Note that the value isntaximumage when the cookie will
expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and will be
deleted when the Web browser exits. A zero value causes the cookie to be
deleted.

Parameters:
expiry - an integer specifying the maximum age of the cookie in seconds; if
negative, means the cookie is not stored; if zero, deletes the cookie

See Also: getMaxAge)

setPath(String)
public void setPath(java.lang.String uri)

Specifies a path for the cookie to which the client should return the cookie.

The cookie is visible to all the pages in the directory you specify, and all the
pages in that directory’s subdirectories. A cookie’s path must include the
servlet that set the cookie, for exampleatalog which makes the cookie vis-
ible to all directories on the server undeatalog

Consult RFC 2109 (available on the Internet) for more information on setting
path names for cookies.

Parameters:
uri - aString specifying a path

See Also:getPath()

setSecure(boolean)

public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a
secure protocol, such as HTTPS or SSL.

The default value i€alse.

Parameters:

184 JAVAX.SERVLET.HTTP

flag - if true, sends the cookie from the browser to the server using only
when using a secure protocolfiflse, sent on any protocol

See Also: getSecure()

setValue(String)

public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookie is created. If you use a
binary value, you may want to use BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets,
parentheses, equals signs, commas, double quotes, slashes, question marks, at
signs, colons, and semicolons. Empty values may not behave the same way
on all browsers.

Parameters:
newValue - aString specifying the new value

See Also: getValue(), Cookie

setVersion(int)

public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version 0
complies with the original Netscape cookie specification. Version 1 complies
with RFC 2109.

Since RFC 2109 is still somewhat new, consider version 1 as experimental;
do not use it yet on production sites.

Parameters:
v - 0 if the cookie should comply with the original Netscape specification; 1 if
the cookie should comply with RFC 2109

See Also: getVersion()

SRV.15.1.2 HttpServlet

pubTlic abstract class HttpServlet extends
javax.servlet.GenericServlet implements java.io.Serializable

All Implemented Interfaces: java.io.Serializable, javax.servlet.Serv-
let, javax.servlet.ServletConfig

Provides an abstract class to be subclassed to create an HTTP servlet suitable for
a Web site. A subclass @ttpServlet must override at least one method, usually
one of these:

*doGet, if the servlet supports HTTP GET requests

edoPost, for HTTP POST requests

Final Version

Servlets Using HTTP Protocol 185

edoPut, for HTTP PUT requests

edoDelete, for HTTP DELETE requests

*init anddestroy, to manage resources that are held for the life of the serv-
let

egetServletInfo, which the servlet uses to provide information about itself

There’s almost no reason to override #wevice method.service handles stan-
dard HTTP requests by dispatching them to the handler methods for each HTTP
request type (theoXXX methods listed above).

Likewise, there's almost no reason to override ¢h@ptions anddoTrace meth-
ods.

Servlets typically run on multithreaded servers, so be aware that a servlet must
handle concurrent requests and be careful to synchronize access to shared
resources. Shared resources include in-memory data such as instance or class
variables and external objects such as files, database connections, and network
connections. See the Java Tutorial on Multithreaded Programming (http://
java.sun.com/Series/Tutorial/java/threads/multithreaded.html) for more informa-
tion on handling multiple threads in a Java program.

SRV.15.1.2.1 Constructors

HttpServlet()
public HttpServlet()

Does nothing, because this is an abstract class.

SRV.15.1.2.2 Methods

doDelete(HttpServletRequest, HttpServietResponse)

protected void doDelete(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Called by the server (via thervice method) to allow a servlet to handle a
DELETE request. The DELETE operation allows a client to remove a docu-
ment or Web page from the server.

This method does not need to be either safe or idempotent. Operations
requested through DELETE can have side effects for which users can be held
accountable. When using this method, it may be useful to save a copy of the
affected URL in temporary storage.

If the HTTP DELETE request is incorrectly formatteédelete returns an
HTTP “Bad Request” message.

186 JAVAX.SERVLET.HTTP

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServletResponse oObject that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the DELETE request

javax.servlet.ServletException - if the request for the DELETE cannot
be handled

doGet(HttpServletRequest, HttpServietResponse)

protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via thervice method) to allow a servlet to handle a
GET request.

Overriding this method to support a GET request also automatically supports
an HTTP HEAD request. A HEAD request is a GET request that returns no
body in the response, only the request header fields.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It's best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing thePrintwWriter object.

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

The GET method should be safe, that is, without any side effects for which
users are held responsible. For example, most form queries have no side
effects. If a client request is intended to change stored data, the request
should use some other HTTP method.

The GET method should also be idempotent, meaning that it can be safely
repeated. Sometimes making a method safe also makes it idempotent. For

Final Version

Servlets Using HTTP Protocol 187

example, repeating queries is both safe and idempotent, but buying a product
online or modifying data is neither safe nor idempotent.

If the request is incorrectly formattedhGet returns an HTTP “Bad Request”
message.

Parameters:
req - anHttpServletRequest Object that contains the request the client has
made of the servlet

resp - anHttpServletResponse Object that contains the response the servlet
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handles
the GET request

javax.servlet.ServletException - if the request for the GET could not be
handled

See Also: javax.serviet.ServletResponse.setContentType(String)

doHead(HttpServletRequest, HttpServletResponse)

protected void doHead(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Receives an HTTP HEAD request from the proteetedice method and
handles the request. The client sends a HEAD request when it wants to see
only the headers of a response, such as Content-Type or Content-Length. The
HTTP HEAD method counts the output bytes in the response to set the Con-
tent-Length header accurately.

If you override this method, you can avoid computing the response body and
just set the response headers directly to improve performance. Make sure that
thedoHead method you write is both safe and idempotent (that is, protects
itself from being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formattethHead returns an HTTP
“Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to the
clien

Throws:
IOException - if an input or output error occurs

188 JAVAX.SERVLET.HTTP

javax.servlet.ServletException - if the request for the HEAD could not
be handled

doOptions(HttpServletRequest, HttpServletResponse)

protected void doOptions(HttpServietRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via thlservice method) to allow a servlet to handle a
OPTIONS request. The OPTIONS request determines which HTTP methods
the server supports and returns an appropriate header. For example, if a serv-
let overridesioGet, this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There’s no need to override this method unless the servlet implements new
HTTP methods, beyond those implemented by HTTP 1.1.

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServietResponse Object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the OPTIONS request

javax.servlet.ServletException - if the request for the OPTIONS cannot
be handled

doPost(HttpServletRequest, HttpServietResponse)

protected void doPost(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Called by the server (via thervice method) to allow a servlet to handle a
POST request. The HTTP POST method allows the client to send data of
unlimited length to the Web server a single time and is useful when posting
information such as credit card numbers.

When overriding this method, read the request data, write the response head-
ers, get the response’s writer or output stream object, and finally, write the
response data. It's best to include content type and encoding. When using a
PrintWriter object to return the response, set the content type before access-
ing thePrintWriter object.

Final Version

Servlets Using HTTP Protocol 189

The servlet container must write the headers before committing the response,
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentlength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is auto-
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response has
a Transfer-Encoding header), do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations
requested through POST can have side effects for which the user can be held
accountable, for example, updating stored data or buying items online.

If the HTTP POST request is incorrectly formattédPost returns an HTTP
“Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client has
made of the servlet

resp - anHttpServletResponse oObject that contains the response the servlet
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handles
the request

javax.servlet.ServletException - if the request for the POST could not
be handled

See Also: javax.servlet.ServletOutputStream,
javax.servlet.ServletResponse.setContentType(String)

doPut(HttpServletRequest, HttpServietResponse)

protected void doPut(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via thervice method) to allow a servlet to handle a
PUT request. The PUT operation allows a client to place a file on the server
and is similar to sending a file by FTP.

When overriding this method, leave intact any content headers sent with the
request (including Content-Length, Content-Type, Content-Transfer-Encod-
ing, Content-Encoding, Content-Base, Content-Language, Content-Location,
Content-MD5, and Content-Range). If your method cannot handle a content
header, it must issue an error message (HTTP 501 - Not Implemented) and

190

JAVAX.SERVLET.HTTP

discard the request. For more information on HTTP 1.1, see RFC 2068
(http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2068.txt).

This method does not need to be either safe or idempotent. Operations that
doPut performs can have side effects for which the user can be held account-
able. When using this method, it may be useful to save a copy of the affected
URL in temporary storage.

If the HTTP PUT request is incorrectly formattedput returns an HTTP
“Bad Request” message.

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServletResponse oObject that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the PUT request

javax.servlet.ServletException - if the request for the PUT cannot be
handled

doTrace(HttpServietRequest, HttpServletResponse)
protected void doTrace(HttpServietRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via thervice method) to allow a servlet to handle a
TRACE request. A TRACE returns the headers sent with the TRACE request
to the client, so that they can be used in debugging. There’s no need to over-
ride this method.

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
I0Exception - if an input or output error occurs while the servlet is handling
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

getLastModified(HttpServletRequest)

Final Version

Servlets Using HTTP Protocol 191

protected long getLastModified(HttpServletRequest req)

Returns the time thiectpServietRequest object was last modified, in milli-
seconds since midnight January 1, 1970 GMT. If the time is unknown, this
method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine their
last modification time should override this method. This makes browser and
proxy caches work more effectively, reducing the load on server and network
resources.

Parameters:
req - theHttpServletRequest object that is sent to the servlet

Returns: along integer specifying the time thetpServietRequest object
was last modified, in milliseconds since midnight, January 1, 1970 GMT, or -
1 if the time is not known

service(HttpServletRequest, HttpServietResponse)

protected void service(HttpServletRequest req,
HttpServietResponse resp)
throws ServletException, IOException

Receives standard HTTP requests from the puyblieice method and dis-
patches them to thinXXX methods defined in this class. This method is an
HTTP-specific version of thgavax.serviet.Serviet.service(Servle-
tRequest, ServletResponse) method. There’s no need to override this
method.

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServletResponse Object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handling
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

See Also: javax.serviet.Servlet.service(ServletRequest,
ServletResponse)

service(ServletRequest, ServletResponse)

public void service(javax.servlet.ServletRequest req,
javax.servlet.ServletResponse res)
throws ServletException, IOException

192

JAVAX.SERVLET.HTTP

Dispatches client requests to the protestedice method. There’s no need
to override this method.

Specified By: javax.servlet.Servlet.service(ServletRequest,
ServletResponse) in interfacejavax.servlet.Servlet

Overrides: javax.servlet.GenericServlet.service(ServletRequest,
ServletResponse) in classjavax.serviet.GenericServlet

Parameters:
req - theHttpServletRequest Object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
I0Exception - if an input or output error occurs while the servlet is handling
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

See Also: javax.servlet.Serviet.service(ServletRequest,
ServletResponse)

SRV.15.1.3 HttpServletRequest

pubTic interface HttpServietRequest extends
javax.servlet.ServletRequest

All Superinterfaces: javax.servlet.ServletRequest

All Known Implementing Classes: HttpServletRequestWrapper

Extends thejavax.servlet.ServletRequest interface to provide request infor-
mation for HTTP servlets.

The servlet container creates xxpServletRequest object and passes it as an
argument to the servlet’s service methati&4t, doPost, etc).

SRV.15.1.3.1 Fields

BASIC_AUTH
public static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH
pubTlic static final java.lang.String CLIENT_CERT_AUTH

Final Version

Servlets Using HTTP Protocol 193

String identifier for Basic authentication. Value “CLIENT_CERT”

DIGEST_AUTH
public static final java.lang.String DIGEST_AUTH

String identifier for Basic authentication. Value “DIGEST”

FORM_AUTH
public static final java.lang.String FORM_AUTH

String identifier for Basic authentication. Value “FORM”

SRV.15.1.3.2 Methods

getAuthType()
public java.lang.String getAuthType()
Returns the name of the authentication scheme used to protect the servlet. All
servlet containers support basic, form and client certificate authentication,

and may additionally support digest authentication. If the servlet is not
authenticatedu1 is returned.

Same as the value of the CGl variable AUTH_TYPE.

Returns: one of the static members BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH, DIGEST_AUTH (suitable for == comparison)
indicating the authentication schemenot1 if the request was not
authenticated.

getContextPath()
public java.lang.String getContextPath()
Returns the portion of the request URI that indicates the context of the
request. The context path always comes first in a request URI. The path starts
with a “/” character but does not end with a “/” character. For servlets in the
default (root) context, this method returns “". The container does not decode
this string.

Returns: asString specifying the portion of the request URI that indicates
the context of the request

getCookies()
public Cookie[] getCookies()

Returns an array containing all of tlieokie objects the client sent with this
request. This method returngl1 if no cookies were sent.

194 JAVAX.SERVLET.HTTP

Returns: an array of all th€ookies included with this request, au11 if
the request has no cookies

getDateHeader(String)
pubTlic Tong getDateHeader(java.lang.String name)
Returns the value of the specified request headetas aalue that repre-

sents @ate object. Use this method with headers that contain dates, such as
If-Modified-Since.

The date is returned as the number of milliseconds since January 1, 1970
GMT. The header name is case insensitive.

If the request did not have a header of the specified name, this method returns
-1. If the header can’t be converted to a date, the method thrai3eyal-
ArgumentException.

Parameters:
name - aString specifying the name of the header

Returns: along value representing the date specified in the header
expressed as the number of milliseconds since January 1, 1970 GMT, or -1 if
the named header was not included with the regest

Throws:
IT11egalArgumentException - If the header value can’t be converted to a date

getHeader(String)

public java.lang.String getHeader(java.lang.String name)

Returns the value of the specified request heades@as ag. If the request

did not include a header of the specified name, this method reiutisThe
header name is case insensitive. You can use this method with any request
header.

Parameters:
name - aString specifying the header name

Returns: aString containing the value of the requested headetyDr if
the request does not have a header of that name

getHeaderNames()

public java.util.Enumeration getHeaderNames ()

Returns an enumeration of all the header names this request contains. If the
request has no headers, this method returns an empty enumeration.

Some servlet containers do not allow do not allow servlets to access headers
using this method, in which case this method retntin3

Final Version

Servlets Using HTTP Protocol 195

Returns: an enumeration of all the header names sent with this request; if
the request has no headers, an empty enumeration; if the servlet container
does not allow servlets to use this methad;

getHeaders(String)
public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header Eagnaration of
String objects.

Some headers, such/&sept-Language can be sent by clients as several
headers each with a different value rather than sending the header as a
comma separated list.

If the request did not include any headers of the specified name, this method
returns an emptgnumeration. The header name is case insensitive. You can
use this method with any request header.

Parameters:
name - aString specifying the header name

Returns: anEnumeration containing the values of the requested header. If
the request does not have any headers of that name return an empty
enumeration. If the container does not allow access to header information,
return null

getintHeader(String)
public int getIntHeader(java.lang.String name)

Returns the value of the specified request headerasalf the request

does not have a header of the specified hame, this method returns -1. If the
header cannot be converted to an integer, this method thnawbear -
FormatException.

The header name is case insensitive.

Parameters:
name - aString specifying the name of a request header

Returns: an integer expressing the value of the request header or -1 if the
request doesn’t have a header of this name

Throws:
NumberFormatException - If the header value can’t be converted td @n

getMethod()
public java.lang.String getMethod()

196

JAVAX.SERVLET.HTTP

Returns the name of the HTTP method with which this request was made, for
example, GET, POST, or PUT. Same as the value of the CGI variable
REQUEST_METHOD.

Returns: aString specifying the name of the method with which this
request was made

getPathinfo()
public java.lang.String getPathInfo()

Returns any extra path information associated with the URL the client sent
when it made this request. The extra path information follows the servlet path
but precedes the query string. This method retutns if there was no extra
path information.

Same as the value of the CGl variable PATH_INFO.

Returns: astring, decoded by the web container, specifying extra path
information that comes after the servlet path but before the query string in the
request URL; onu11 if the URL does not have any extra path information

getPathTranslated()
public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the
guery string, and translates it to a real path. Same as the value of the CGI
variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method returns
null. The web container does not decode thins string.

Returns: asString specifying the real path, au11 if the URL does not
have any extra path information

getQueryString()
public java.lang.String getQueryString()

Returns the query string that is contained in the request URL after the path.
This method returnsu11 if the URL does not have a query string. Same as
the value of the CGl variable QUERY_STRING.

Returns: aString containing the query string eu11 if the URL contains
no query string. The value is not decoded by the container.

getRemoteUser()
public java.lang.String getRemoteUser()

Final Version

Servlets Using HTTP Protocol 197

Returns the login of the user making this request, if the user has been authen-
ticated, omu11 if the user has not been authenticated. Whether the user name
is sent with each subsequent request depends on the browser and type of
authentication. Same as the value of the CGl variable REMOTE_USER.

Returns: asString specifying the login of the user making this request, or
null</code if the user login is not known

getRequestedSessionld()
public java.lang.String getRequestedSessionId()

Returns the session ID specified by the client. This may not be the same as
the ID of the actual session in use. For example, if the request specified an old
(expired) session ID and the server has started a new session, this method
gets a new session with a new ID. If the request did not specify a session ID,
this method returnsu11.

Returns: aString specifying the session ID, au11 if the request did not
specify a session ID

See Also: isRequestedSessionIdvalid()

getRequestURI()
public java.lang.String getRequestURI()
Returns the part of this request’s URL from the protocol name up to the query

string in the first line of the HTTP request. The web container does not
decode this String. For example:

First line of HTTP request Returned Value

POST /some/path.html HTTP/1.1 /some/path.html
GET http://foo.bar/a.html HTTP/1.0 /a.html

HEAD /xyz?a=b HTTP/1.1 /xyz

To reconstruct an URL with a scheme and host, use
HttpUtils.getRequestURL(HttpServletRequest) .

Returns: a String containing the part of the URL from the protocol
name up to the query string

See Also:HttpUtils.getRequestURL (HttpServletRequest)

getRequestURL()
public java.lang.StringBuffer getRequestURL()

198 JAVAX.SERVLET.HTTP

Reconstructs the URL the client used to make the request. The returned URL
contains a protocol, server name, port number, and server path, but it does not
include query string parameters.

Because this method returns a StringBuffer, not a string, you can modify the
URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Returns: a StringBuffer object containing the reconstructed URL

getServletPath()
public java.lang.String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either
the servlet name or a path to the servlet, but does not include any extra path
information or a query string. Same as the value of the CGI variable
SCRIPT_NAME.

Returns: a String containing the name or path of the servlet being
called, as specified in the request URL, decoded.

getSession()
pubTlic HttpSession getSession()

Returns the current session associated with this request, or if the request does
not have a session, creates one.

Returns: the HttpSession associated with this request

See Also: getSession(boolean)

getSession(boolean)
public HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request or, if if there is no
current session and create is true, returns a new session.

If create is false and the request has no valid HttpSession, this method
returns null.

To make sure the session is properly maintained, you must call this method
before the response is committed. If the container is using cookies to maintain
session integrity and is asked to create a new session when the response is
committed, an lllegalStateException is thrown.

Parameters:
<code>true</code> - to create a new session for this request if necessary; false
to return nul1 if there’s no current session

Returns: the HttpSession associated with this request or nul11 if create
is false and the request has no valid session

See Also: getSession()

Final Version

Servlets Using HTTP Protocol

getUserPrincipal()

public java.security.Principal getUserPrincipal()

Returns a java.security.Principal object containing the name of the current
authenticated user. If the user has not been authenticated, the method returns
null.

Returns: a java.security.Principal containing the name of the user
making this request; nu11 if the user has not been authenticated

isRequestedSessionldFromCookie()

public boolean 1isRequestedSessionIdFromCookie()
Checks whether the requested session ID came in as a cookie.
Returns: true if the session ID came in as a cookie; otherwise, false

See Also: getSession(boolean)

isRequestedSessionldFromUrl()

public boolean isRequestedSessionIdFromUrl()

Deprecated. As of Version 2.1 of the Java Servlet API, use
isRequestedSessionIdFromURL() instead.

isRequestedSessionldFromURLY()
public boolean 1isRequestedSessionIdFromURL()

Checks whether the requested session ID came in as part of the request URL.

Returns: true if the session ID came in as part of a URL; otherwise,
false

See Also: getSession(boolean)

isRequestedSessionldValid()
public boolean 1isRequestedSessionIdvalid()
Checks whether the requested session ID is still valid.

Returns: true if this request has an id for a valid session in the current
session context; false otherwise

See Also: getRequestedSessionId(), getSession(boolean),
HttpSessionContext

isUserInRole(String)

pubTlic boolean -disUserInRole(java.lang.String role)

199

200

JAVAX.SERVLET.HTTP

Returns a boolean indicating whether the authenticated user is included in the
specified logical “role”. Roles and role membership can be defined using
deployment descriptors. If the user has not been authenticated, the method
returns false.

Parameters:
role - a String specifying the name of the role

Returns: a boolean indicating whether the user making this request
belongs to a given role; false if the user has not been authenticated

SRV.15.1.4 HttpServletRequestWrapper

pubTlic class HttpServietRequestWrapper extends
javax.servlet.ServletRequestWrapper implements
javax.servlet.http.HttpServletRequest

All Implemented Interfaces: HttpServletRequest, javax.servlet.Servie-
tRequest

Provides a convenient implementation of the HttpServletRequest interface that
can be subclassed by developers wishing to adapt the request to a Servlet. This
class implements the Wrapper or Decorator pattern. Methods default to calling

through to the wrapped request object.
Since: v 2.3

See Also: HttpServletRequest

SRV.15.1.4.1 Constructors

HttpServletRequestWrapper(HttpServietRequest)
pubTic HttpServletRequestWrapper (HttpServietRequest request)

Constructs a request object wrapping the given request.

Throws:
java.lang.I1legalArgumentException - if the request is null

SRV.15.1.4.2 Methods

getAuthType()
public java.lang.String getAuthType()

The default behavior of this method is to return getAuthType() on the
wrapped request object.

Specified By: HttpServletRequest.getAuthType() in interface
HttpServletRequest

Final Version

Servlets Using HTTP Protocol 201

getContextPath()
public java.lang.String getContextPath()

The default behavior of this method is to return getContextPath() on the
wrapped request object.

Specified By: HttpServletRequest.getContextPath() in interface
HttpServletRequest

getCookies()
public Cookie[] getCookies()

The default behavior of this method is to return getCookies() on the wrapped
request object.

Specified By: HttpServletRequest.getCookies() in interface
HttpServletRequest

getDateHeader(String)

public Tong getDateHeader(java.lang.String name)

The default behavior of this method is to return getDateHeader(String name)
on the wrapped request object.

Specified By: HttpServletRequest.getDateHeader (String) in interface
HttpServletRequest

getHeader(String)

public java.lang.String getHeader(java.lang.String name)

The default behavior of this method is to return getHeader(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeader (String) in interface
HttpServletRequest

getHeaderNames()

public java.util.Enumeration getHeaderNames()

The default behavior of this method is to return getHeaderNames() on the
wrapped request object.

Specified By: HttpServletRequest.getHeaderNames () in interface
HttpServletRequest

getHeaders(String)

public java.util.Enumeration getHeaders(java.lang.String name)

202

JAVAX.SERVLET.HTTP

The default behavior of this method is to return getHeaders(String name) on
the wrapped request object.

Specified By: HttpServletRequest.getHeaders (String) in interface
HttpServletRequest

getintHeader(String)
pubTlic int getIntHeader(java.lang.String name)

The default behavior of this method is to return getintHeader(String name)
on the wrapped request object.

Specified By: HttpServletRequest.getIntHeader(String) in interface
HttpServletRequest

getMethod()
public java.lang.String getMethod()

The default behavior of this method is to return getMethod() on the wrapped
request object.

Specified By: HttpServletRequest.getMethod() in interface
HttpServietRequest

getPathinfo()
public java.lang.String getPathInfo()

The default behavior of this method is to return getPathinfo() on the wrapped
request object.

Specified By: HttpServletRequest.getPathInfo() in interface
HttpServletRequest

getPathTranslated()
public java.lang.String getPathTranslated()

The default behavior of this method is to return getPathTranslated() on the
wrapped request object.

Specified By: HttpServletRequest.getPathTranslated() in interface
HttpServletRequest

getQueryString()
public java.lang.String getQueryString()

The default behavior of this method is to return getQueryString() on the
wrapped request object.

Final Version

Servlets Using HTTP Protocol 203

Specified By: HttpServletRequest.getQueryString() in interface
HttpServletRequest

getRemoteUser()
public java.lang.String getRemoteUser()

The default behavior of this method is to return getRemoteUser() on the
wrapped request object.

Specified By: HttpServletRequest.getRemoteUser() in interface
HttpServletRequest

getRequestedSessionld()
public java.lang.String getRequestedSessionId()

The default behavior of this method is to return getRequestedSessionld() on
the wrapped request object.

Specified By: HttpServletRequest.getRequestedSessionId() in
interfaceHttpServiletRequest

getRequestURI()
public java.lang.String getRequestURI()

The default behavior of this method is to return getRequestURI() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURI() in interface
HttpServletRequest

getRequestURL()
public java.lang.StringBuffer getRequestURL()

The default behavior of this method is to return getRequestURL() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURL() in interface
HttpServletRequest

getServletPath()
public java.lang.String getServletPath()

The default behavior of this method is to return getServletPath() on the
wrapped request object.

Specified By: HttpServletRequest.getServletPath() in interface
HttpServletRequest

204

JAVAX.SERVLET.HTTP

getSession()
pubTlic HttpSession getSession()

The default behavior of this method is to return getSession() on the wrapped
request object.

Specified By: HttpServletRequest.getSession() in interface
HttpServletRequest

getSession(boolean)
pubTic HttpSession getSession(boolean create)

The default behavior of this method is to return getSession(boolean create)
on the wrapped request object.

Specified By: HttpServiletRequest.getSession(boolean) in interface
HttpServletRequest

getUserPrincipal()

public java.security.Principal getUserPrincipal()

The default behavior of this method is to return getUserPrincipal() on the
wrapped request object.

Specified By: HttpServletRequest.getUserPrincipal () in interface
HttpServletRequest

isRequestedSessionldFromCookie()

public boolean 1isRequestedSessionIdFromCookie()

The default behavior of this method is to return isRequestedSessionldFrom-
Cookie() on the wrapped request object.

Specified By:
HttpServletRequest.isRequestedSessionIdFromCookie() in interface
HttpServletRequest

isRequestedSessionldFromuUrl()

public boolean 1isRequestedSessionIdFromUrl()

The default behavior of this method is to return isRequestedSessionldFrom-
Url() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromUr1() in
interfaceHttpServletRequest

isRequestedSessionldFromURL()
pubTlic boolean isRequestedSessionIdFromURL()

Final Version

Servlets Using HTTP Protocol 205

The default behavior of this method is to return isRequestedSessionldFrom-
URL() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromURL() in
interfaceHttpServletRequest

iIsRequestedSessionldValid()

pubTlic boolean +isRequestedSessionIdvalid()

The default behavior of this method is to return isRequestedSessionldValid()
on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdvalid() in
interfacedttpServletRequest

isUserlnRole(String)

pubTlic boolean -disUserInRole(java.lang.String role)

The default behavior of this method is to return isUserIinRole(String role) on
the wrapped request object.

Specified By: HttpServietRequest.isUserInRole(String) in interface
HttpServletRequest

SRV.15.1.5 HttpServletResponse

pubTlic interface HttpServietResponse extends
javax.servlet.ServletResponse

All Superinterfaces: javax.servlet.ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Extends thejavax.serviet.ServietResponse interface to provide HTTP-spe-
cific functionality in sending a response. For example, it has methods to access
HTTP headers and cookies.

The servlet container creates BxpServletRequest object and passes it as an
argument to the servlet’s service methatiét, doPost, etc).

See Also: javax.servlet.ServletResponse

SRV.15.1.5.1 Fields

SC_ACCEPTED
public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing, but
was not completed.

206

JAVAX.SERVLET.HTTP

SC_BAD_GATEWAY
pubTlic static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid
response from a server it consulted when acting as a proxy or gateway.

SC_BAD_REQUEST
pubTlic static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactically
incorrect.

SC_CONFLICT
pubTlic static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due to a
conflict with the current state of the resource.

SC_CONTINUE
public static final int SC_CONTINUE

Status code (100) indicating the client can continue.

SC_CREATED
pubTlic static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new
resource on the server.

SC_EXPECTATION_FAILED
pubTlic static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectation
given in the Expect request header.

SC_FORBIDDEN
public static final int SC_FORBIDDEN

Status code (403) indicating the server understood the request but refused to
fulfill it.

SC_GATEWAY_TIMEOUT
public static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive a timely response
from the upstream server while acting as a gateway or proxy.

Final Version

Servlets Using HTTP Protocol 207

SC_GONE
public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at the
server and no forwarding address is known. This condBi©ULDbe con-
sidered permanent.

SC_HTTP_VERSION_NOT_SUPPORTED
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refuses to sup-
port the HTTP protocol version that was used in the request message.

SC_INTERNAL_SERVER_ERROR
public static final int SC_INTERNAL_SERVER_ERROR

Status code (500) indicating an error inside the HTTP server which prevented
it from fulfilling the request.

SC_LENGTH_REQUIRED
pubTlic static final int SC_LENGTH_REQUIRED

Status code (411) indicating that the request cannot be handled without a
definedContent-Length.

SC_METHOD_NOT_ALLOWED
public static final int SC_METHOD_NOT_ALLOWED

Status code (405) indicating that the method specified iRéhgest-Line is
not allowed for the resource identified by #equest-URI.

SC_MOVED_PERMANENTLY
public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to a
new location, and that future references should use a new URI with their
requests.

SC_MOVED_ TEMPORARILY
public static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to
another location, but that future references should still use the original URI to
access the resource.

SC_MULTIPLE_CHOICES

208

JAVAX.SERVLET.HTTP

public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to any
one of a set of representations, each with its own specific location.

SC_NO_CONTENT
public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there was no
new information to return.

SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NON_AUTHORITATIVE_INFORMATION

Status code (203) indicating that the meta information presented by the client
did not originate from the server.

SC_NOT_ACCEPTABLE
pubTlic static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request is only
capable of generating response entities which have content characteristics not
acceptable according to the accept headerssent in the request.

SC_NOT_FOUND
pubTlic static final int SC_NOT_FOUND

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED
public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functional-
ity needed to fulfill the request.

SC_NOT_MODIFIED
public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that the
resource was available and not modified.

SC_OK
public static final int SC_OK

Status code (200) indicating the request succeeded normally.

SC_PARTIAL_CONTENT

Final Version

Servlets Using HTTP Protocol 209

public static final int SC_PARTIAL_CONTENT

Status code (206) indicating that the server has fulfilled the partial GET
request for the resource.

SC_PAYMENT_REQUIRED
public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.

SC_PRECONDITION_FAILED
public static final int SC_PRECONDITION_FAILED

Status code (412) indicating that the precondition given in one or more of the
request-header fields evaluated to false when it was tested on the server.

SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_PROXY_AUTHENTICATION_REQUIRED

Status code (407) indicating that the clidi STfirst authenticate itself with
the proxy.

SC_REQUEST _ENTITY_TOO_LARGE
pubTlic static final int SC_REQUEST_ENTITY_TOO_LARGE

Status code (413) indicating that the server is refusing to process the request
because the request entity is larger than the server is willing or able to pro-
cess.

SC_REQUEST_TIMEOUT
public static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a requestwithin
the time that the server was prepared to wait.

SC_REQUEST URI_TOO LONG
public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the request
because threquest-URI is longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE
pubTlic static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested byte
range.

210

JAVAX.SERVLET.HTTP

SC_RESET_CONTENT
pubTlic static final int SC_RESET_CONTENT

Status code (205) indicating that the ag8ROULDreset the document view
which caused the request to be sent.

SC_SEE OTHER
pubTlic static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be found
under a different URI.

SC_SERVICE_UNAVAILABLE
public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overloaded,
and unable to handle the request.

SC_SWITCHING_PROTOCOLS
public static final int SC_SWITCHING_PROTOCOLS

Status code (101) indicating the server is switching protocols according to
Upgrade header.

SC_TEMPORARY_REDIRECT
public static final int SC_TEMPORARY_REDIRECT

Status code (307) indicating that the requested resource resides temporarily
under a different URI. The temporary URHOULDDbe given by the
Location field in the response.

SC_UNAUTHORIZED
public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authentication.

SC_UNSUPPORTED_MEDIA TYPE
pubTlic static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the request
because the entity of the request is in a format not supported by the requested
resource for the requested method.

SC_USE_PROXY
public static final int SC_USE_PROXY

Final Version

Servlets Using HTTP Protocol 211

Status code (305) indicating that the requested resMII&T be accessed
through the proxy given by thecation field.

SRV.15.1.5.2 Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

Adds the specified cookie to the response. This method can be called multiple
times to set more than one cookie.

Parameters:
cookie - the Cookie to return to the client

addDateHeader(String, long)

public void addDateHeader(java.lang.String name, long date)

Adds a response header with the given name and date-value. The date is spec-
ified in terms of milliseconds since the epoch. This method allows response
headers to have multiple values.

Parameters:
name - the name of the header to set

value - the additional date value

See Also: setDateHeader(String, long)

addHeader(String, String)

public void addHeader(java.lang.String name,
java.lang.String value)

Adds a response header with the given name and value. This method allows
response headers to have multiple values.

Parameters:
name - the name of the header

value - the additional header value

See Also: setHeader(String, String)

addIntHeader(String, int)

public void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This method
allows response headers to have multiple values.

Parameters:
name - the name of the header

212

JAVAX.SERVLET.HTTP

value - the assigned integer value

See Also: setIntHeader(String, int)

containsHeader(String)

pubTlic boolean containsHeader(java.lang.String name)

Returns a boolean indicating whether the named response header has already
been set.

Parameters:
name - the header name

Returns: true if the named response header has already beeffatst;
otherwise

encodeRedirectUrl(String)

pubTlic java.lang.String encodeRedirectUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeRedirectURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeRedirectURL(String)
pubTlic java.lang.String encodeRedirectURL(java.lang.String url)

Encodes the specified URL for use in thedRedirect method or, if encod-

ing is not needed, returns the URL unchanged. The implementation of this
method includes the logic to determine whether the session ID needs to be
encoded in the URL. Because the rules for making this determination can dif-
fer from those used to decide whether to encode a normal link, this method is
seperate from thencodeURL method.

All URLSs sent to theittpServletResponse.sendRedirect method should
be run through this method. Otherwise, URL rewriting cannot be used with
browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

See Also: sendRedirect(String), encodeUrl(String)

encodeUrl(String)

Final Version

Servlets Using HTTP Protocol 213

public java.lang.String encodeUrl(java.lang.String url)
Deprecated. As of version 2.1, use encodeURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeURL(String)
public java.lang.String encodeURL(java.lang.String url)

Encodes the specified URL by including the session ID init, or, if encoding is
not needed, returns the URL unchanged. The implementation of this method
includes the logic to determine whether the session ID needs to be encoded in
the URL. For example, if the browser supports cookies, or session tracking is
turned off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run
through this method. Otherwise, URL rewriting cannot be used with brows-
ers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

sendError(int)

public void sendError(int sc)
throws IOException

Sends an error response to the client using the specified status code and clear-
ing the buffer.

If the response has already been committed, this method throws an lllegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

Throws:
IOException - If an input or output exception occurs

I1legalStateException - If the response was committed before this method
call

sendError(int, String)

214 JAVAX.SERVLET.HTTP

pubTlic void sendError(int sc, java.lang.String msg)
throws IOException

Sends an error response to the client using the specified status clearing the
buffer. The server defaults to creating the response to look like an HTML-for-
matted server error page containing the specified message, setting the content
type to “text/html”, leaving cookies and other headers unmodified. If an
error-page declaration has been made for the web application corresponding
to the status code passed in, it will be served back in preference to the sug-
gested msg parameter.

If the response has already been committed, this method throws an lllegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message

Throws:
IOException - If an input or output exception occurs

I1legalStateException - If the response was committed

sendRedirect(String)

pubTlic void sendRedirect(java.lang.String Tocation)
throws IOException

Sends a temporary redirect response to the client using the specified redirect
location URL. This method can accept relative URLS; the servlet container
must convert the relative URL to an absolute URL before sending the
response to the client. If the location is relative without a leading '/’ the con-
tainer interprets it as relative to the current request URI. If the location is rel-
ative with a leading '/’ the container interprets it as relative to the servlet
container root.

If the response has already been committed, this method throws an lllegal-
StateException. After using this method, the response should be considered
to be committed and should not be written to.

Parameters:
Tocation - the redirect location URL

Throws:
IOException - If an input or output exception occurs

I1legalStateException - If the response was committed
setDateHeader(String, long)

Final Version

Servlets Using HTTP Protocol 215

public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is speci-
fied in terms of milliseconds since the epoch. If the header had already been
set, the new value overwrites the previous one. ddi&ainsHeader method

can be used to test for the presence of a header before setting its value.

Parameters:
name - the name of the header to set

value - the assigned date value

See Also: containsHeader(String), addDateHeader(String, long)

setHeader(String, String)

public void setHeader(java.lang.String name,
java.lang.String value)

Sets a response header with the given name and value. If the header had
already been set, the new value overwrites the previous oneort ns-

Header method can be used to test for the presence of a header before setting
its value.

Parameters:
name - the name of the header

value - the header value

See Also: containsHeader(String), addHeader(String, String)

setintHeader(String, int)

public void setIntHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the header
had already been set, the new value overwrites the previous one. The
containsHeader method can be used to test for the presence of a header
before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See Also: containsHeader (String), addIntHeader(String, int)

setStatus(int)
public void setStatus(int sc)
Sets the status code for this response. This method is used to set the return

status code when there is no error (for example, for the status codes SC_OK
or SC_MOVED_TEMPORARILY). If there is an error, and the caller wishes

216

JAVAX.SERVLET.HTTP

to invoke an defined in the web applicaion, ¢bedError method should be
used instead.

The container clears the buffer and sets the Location header, preserving cook-
ies and other headers.

Parameters:
sc - the status code

See Also:sendError(int, String)

setStatus(int, String)

public void setStatus(int sc, java.lang.String sm)

Deprecated. As of version 2.1, due to ambiguous meaning of the message
parameter. To set a status code ¢sStatus(int), to send an error with a
description usgendError(int, String). Sets the status code and message
for this response.

Parameters:
sc - the status code

sm - the status message

SRV.15.1.6 HttpServletResponseWrapper

public class HitpServletResponseWrapper extends
javax.servlet.ServletResponseWrapper implements
javax.servlet.http.HttpServletResponse

All Implemented Interfaces: HttpServletResponse, javax.servlet.Servie-
tResponse

Provides a convenient implementation of the HttpServietResponse interface that
can be subclassed by developers wishing to adapt the response from a Servlet.
This class implements the Wrapper or Decorator pattern. Methods default to call-
ing through to the wrapped response object.

Since: v 2.3

See Also: HttpServletResponse

SRV.15.1.6.1 Constructors

HttpServietResponseWrapper(HttpServietResponse)

pubTic HttpServletResponseWrapper (HttpServietResponse response)

Constructs a response adaptor wrapping the given response.

Throws:
java.lang.I1legalArgumentException - if the response is null

Final Version

Servlets Using HTTP Protocol 217

SRV.15.1.6.2 Methods

addCookie(Cookie)

public void addCookie(Cookie cookie)

The default behavior of this method is to call addCookie(Cookie cookie) on
the wrapped response object.

Specified By: HttpServletResponse.addCookie(Cookie) in interface
HttpServletResponse

addDateHeader(String, long)

public void addDateHeader(java.lang.String name, long date)

The default behavior of this method is to call addDateHeader(String name,
long date) on the wrapped response object.

Specified By: HttpServletResponse.addDateHeader (String, long) in
interfaceHttpServietResponse

addHeader(String, String)

public void addHeader(java.lang.String name,
java.lang.String value)

The default behavior of this method is to return addHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.addHeader(String, String) in
interfaceHttpServietResponse

addIntHeader(String, int)

public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addintHeader(String name, int
value) on the wrapped response object.

Specified By: HttpServletResponse.addIntHeader(String, int) in
interfaceHttpServietResponse

containsHeader(String)

public boolean containsHeader(java.lang.String name)

The default behavior of this method is to call containsHeader(String name)
on the wrapped response object.

Specified By: HttpServletResponse.containsHeader(String) in
interfaceHttpServietResponse

218

JAVAX.SERVLET.HTTP

encodeRedirectUrl(String)

public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl(String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectUr](String) in
interfaceHttpServletResponse

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL(String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectURL(String) in
interfaceHttpServletResponse

encodeUrl(String)

public java.lang.String encodeUr1(java.lang.String url)

The default behavior of this method is to call encodeUrl(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeUr1(String) in interface
HttpServletResponse

encodeURL(String)
public java.lang.String encodeURL(java.lang.String url)

The default behavior of this method is to call encodeURL(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeURL(String) in interface
HttpServletResponse

sendError(int)

public void sendError(int sc)

throws IOException

The default behavior of this method is to call sendError(int sc) on the
wrapped response object.

Specified By: HttpServletResponse.sendError(int) in interface
HttpServletResponse

Throws:
IOException

Final Version

Servlets Using HTTP Protocol 219

sendError(int, String)

public void sendError(int sc, java.lang.String msg)
throws IOException

The default behavior of this method is to call sendError(int sc, String msg) on
the wrapped response object.

Specified By: HttpServletResponse.sendError(int, String) in
interfaceHttpServletResponse

Throws:
IOException

sendRedirect(String)

public void sendRedirect(java.lang.String location)
throws IOException

The default behavior of this method is to return sendRedirect(String location)
on the wrapped response object.

Specified By: HttpServletResponse.sendRedirect(String) in interface
HttpServletResponse

Throws:
IOException

setDateHeader(String, long)

public void setDateHeader(java.lang.String name, long date)

The default behavior of this method is to call setDateHeader(String name,
long date) on the wrapped response object.

Specified By: HttpServletResponse.setDateHeader(String, long) in
interfaceHttpServietResponse

setHeader(String, String)

public void setHeader(java.lang.String name,
java.lang.String value)

The default behavior of this method is to return setHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.setHeader(String, String) in
interfacedttpServletResponse

setintHeader(String, int)

public void setIntHeader(java.lang.String name, int value)

The default behavior of this method is to call setintHeader(String name, int
value) on the wrapped response object.

220 JAVAX.SERVLET.HTTP

Specified By: HttpServletResponse.setIntHeader(String, int) in
interfaceHttpServletResponse

setStatus(int)
public void setStatus(int sc)

The default behavior of this method is to call setStatus(int sc) on the wrapped
response object.

Specified By: HttpServletResponse.setStatus(int) in interface
HttpServletResponse

setStatus(int, String)

public void setStatus(int sc, java.lang.String sm)

The default behavior of this method is to call setStatus(int sc, String sm) on
the wrapped response object.

Specified By: HttpServletResponse.setStatus(int, String) in
interfaceHttpServletResponse

SRV.15.1.7 HttpSession

pubTlic interface HttpSession

Provides a way to identify a user across more than one page request or visit to a
Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP cli-
ent and an HTTP server. The session persists for a specified time period, across
more than one connection or page request from the user. A session usually corre-
sponds to one user, who may visit a site many times. The server can maintain a
session in many ways such as using cookies or rewriting URLSs.

This interface allows servlets to
*View and manipulate information about a session, such as the session identi-
fier, creation time, and last accessed time
*Bind objects to sessions, allowing user information to persist across multiple
user connections

When an application stores an object in or removes an object from a session, the
session checks whether the object implementgSessionBindinglListener.

If it does, the servlet notifies the object that it has been bound to or unbound from
the session. Notifications are sent after the binding methods complete. For session
that are invalidated or expire, notifications are sent after the session has been
invalidatd or expired.

Final Version

Servlets Using HTTP Protocol 221

When container migrates a session between VMs in a distributed container set-
ting, all session atributes implementing thetpSessionActivationListener
interface are notified.

A servlet should be able to handle cases in which the client does not choose to
join a session, such as when cookies are intentionally turned off. Until the client
joins the sessionisNew returnstrue. If the client chooses not to join the session,
getSession will return a different session on each request, asnkw will always
returntrue.

Session information is scoped only to the current web application
(ServletContext), SO information stored in one context will not be directly visi-
ble in another.

See Also: HttpSessionBindinglListener, HttpSessionContext

SRV.15.1.7.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this sessian,1af
no object is bound under the name.

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
I1legalStateException - if this method is called on an invalidated session

getAttributeNames()

public java.util.Enumeration getAttributeNames()

Returns arknumeration of String objects containing the names of all the
objects bound to this session.

Returns: anEnumeration Of String objects specifying the names of all the
objects bound to this session

Throws:
I1legalStateException - if this method is called on an invalidated session

getCreationTime()
public Tong getCreationTime()

Returns the time when this session was created, measured in milliseconds
since midnight January 1, 1970 GMT.

222

getld()

JAVAX.SERVLET.HTTP

Returns: along specifying when this session was created, expressed in
milliseconds since 1/1/1970 GMT

Throws:
I1legalStateException - if this method is called on an invalidated session

pubTlic java.lang.String getId()

Returns a string containing the unique identifier assigned to this session. The
identifier is assigned by the servlet container and is implementation depen-
dent.

Returns: a string specifying the identifier assigned to this session

getLastAccessedTime()
pubTlic Tong getLastAccessedTime()

Returns the last time the client sent a request associated with this session, as
the number of milliseconds since midnight January 1, 1970 GMT, and
marked by the time the container recieved the request.

Actions that your application takes, such as getting or setting a value associ-
ated with the session, do not affect the access time.

Returns: along representing the last time the client sent a request
associated with this session, expressed in milliseconds since 1/1/1970 GMT

getMaxInactivelnterval()

public int getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the servlet container will
keep this session open between client accesses. After this interval, the servlet
container will invalidate the session. The maximum time interval can be set
with thesetMaxInactiveInterval method. A negative time indicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session remains
open between client requests

See Also: setMaxInactiveInterval(int)

getServletContext()

public javax.servlet.ServletContext getServletContext()

Returns the ServletContext to which this session belongs.
Returns: The ServletContext object for the web application
Since: 2.3

Final Version

Servlets Using HTTP Protocol 223

getSessionContext()
public HttpSessionContext getSessionContext()

Deprecated. As of Version 2.1, this method is deprecated and has no
replacement. It will be removed in a future version of the Java Servlet API.

getValue(String)
public java.lang.Object getValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
getAttribute(String) .

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
I1legalStateException - if this method is called on an invalidated session

getValueNames()
public java.lang.String[] getValueNames()

Deprecated. As of Version 2.2, this method is replaced by
getAttributeNames ()

Returns: an array oftring objects specifying the names of all the objects
bound to this session

Throws:
I1legalStateException - if this method is called on an invalidated session

invalidate()

public void dinvalidate()
Invalidates this session then unbinds any objects bound to it.

Throws:
ITlegalStateException - if this method is called on an already invalidated

session

isNew()
public boolean isNew()
Returnstrue if the client does not yet know about the session or if the client
chooses not to join the session. For example, if the server used only cookie-
based sessions, and the client had disabled the use of cookies, then a session
would be new on each request.

224

JAVAX.SERVLET.HTTP

Returns: true if the server has created a session, but the client has not yet
joined
Throws:

I1legalStateException - if this method is called on an already invalidated
session

putValue(String, Object)

public void putValue(java.lang.String name, java.lang.Object value)

Deprecated. As of Version 2.2, this method is replaced by
setAttribute(String, Object)

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws:
I1legalStateException - if this method is called on an invalidated session

removeAttribute(String)

public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If the
session does not have an object bound with the specified name, this method
does nothing.

After this method executes, and if the object implemietigSession-
BindinglListener, the container callsttpSessionBinding-
Listener.valueUnbound. The container then notifies any
HttpSessionAttributelListeners in the web application.

Parameters:
name - the name of the object to remove from this session

Throws:
I1legalStateException - if this method is called on an invalidated session

removeValue(String)

pubTlic void removeValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
removeAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws:
ITlegalStateException - if this method is called on an invalidated session

Final Version

Servlets Using HTTP Protocol 225

setAttribute(String, Object)

public void setAttribute(java.lang.String name,
java.lang.Object value)

Binds an object to this session, using the name specified. If an object of the
same name is already bound to the session, the object is replaced.

After this method executes, and if the new object implemansSession-
BindinglListener, the container callsttpSessionBinding-
Listener.valueBound. The container then notifies any
HttpSessionAttributelListeners in the web application.

If an object was already bound to this session of this name that implements
HttpSessionBindingListener, itSHttpSessionBindinglListener.value-
Unbound method is called.

If the value passed in is null, this has the same effect as cadlinge-
Attribute().

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound

Throws:
I1legalStateException - if this method is called on an invalidated session

setMaxInactivelnterval(int)
public void setMaxInactiveInterval(int interval)
Specifies the time, in seconds, between client requests before the servlet con-

tainer will invalidate this session. A negative time indicates the session
should never timeout.

Parameters:
interval - An integer specifying the number of seconds

SRV.15.1.8 HttpSessionActivationListener

public interface HttpSessionActivationListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Objects that are bound to a session may listen to container events notifying them
that sessions will be passivated and that session will be activated. A container that
migrates session between VMs or persists sessions is required to notify all
attributes bound to sessions implementing HttpSessionActivationListener.

Since: 2.3

226 JAVAX.SERVLET.HTTP

SRV.15.1.8.1 Methods

sessionDidActivate(HttpSessionEvent)

public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)

public void sessionWillPassivate(HttpSessionEvent se)

Notification that the session is about to be passivated.

SRV.15.1.9 HttpSessionAttributeListener

pubTic interface HttpSessionAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

This listener interface can be implemented in order to get notifications of
changes to the attribute lists of sessions within this web application.

Since: v2.3

SRV.15.1.9.1 Methods

attributeAdded(HttpSessionBindingEvent)
pubTlic void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session. Called after the
attribute is added.

attributeRemoved(HttpSessionBindingEvent)

public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session. Called after
the attribute is removed.

attributeReplaced(HttpSessionBindingEvent)
pubTlic void attributeReplaced(HttpSessionBindingEvent se)

Notification that an attribute has been replaced in a session. Called after the
attribute is replaced.

SRV.15.1.10 HttpSessionBindingEvent

public class HittpSessionBindingEvent extends

Final Version

Servlets Using HTTP Protocol 227

javax.servlet.http.HttpSessionEvent

All Implemented Interfaces: java.io.Serializable

Events of this type are either sent to an object that implements
HttpSessionBindinglListener when it is bound or unbound from a session, or
to aHttpSessionAttributelistener that has been configured in the deploy-
ment descriptor when any attribute is bound, unbound or replaced in a session.

The session binds the object by a callitapSession.setAttribute and unbinds
the object by a call tBttpSession. removeAttribute.

See Also: HttpSession, HttpSessionBindinglListener, HttpSessionAt-
tributelistener

SRV.15.1.10.1 Constructors

HttpSessionBindingEvent(HttpSession, String)
pubTlic HttpSessionBindingEvent(HttpSession session,
java.lang.String name)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindinglListener.

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName(), getSession()

HttpSessionBindingEvent(HttpSession, String, Object)
pubTic HttpSessionBindingEvent(HttpSession session,
java.lang.String name, java.lang.Object value)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implement
HttpSessionBindinglListener.

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also: getName(), getSession()

SRV.15.1.10.2 Methods

getName()

228 JAVAX.SERVLET.HTTP

pubTlic java.lang.String getName()

Returns the name with which the attribute is bound to or unbound from the
session.

Returns: a string specifying the name with which the object is bound to or
unbound from the session

getSession()
pubTlic HttpSession getSession()

Return the session that changed.

Overrides: HttpSessionEvent.getSession() in classHttpSessionEvent

getValue()
public java.lang.Object getValue()
Returns the value of the attribute that has been added, removed or replaced. If
the attribute was added (or bound), this is the value of the attribute. If the

attrubute was removed (or unbound), this is the value of the removed
attribute. If the attribute was replaced, this is the old value of the attribute.

Since: 2.3

SRV.15.1.11 HttpSessionBindingListener

public interface HttpSessionBindingListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Causes an object to be notified when it is bound to or unbound from a session.
The object is notified by anttpSessionBindingEvent object. This may be as a
result of a servlet programmer explicitly unbinding an attribute from a session,
due to a session being invalidated, or due to a session timing out.

See Also: HttpSession, HttpSessionBindingEvent

SRV.15.1.11.1 Methods

valueBound(HttpSessionBindingEvent)

public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the ses-
sion.

Parameters:
event - the event that identifies the session

Final Version

Servlets Using HTTP Protocol 229

See Also: valueUnbound (HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)
public void valueUnbound(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from a session and identifies the
session.

Parameters:
event - the event that identifies the session

See Also:valueBound (HttpSessionBindingEvent)

SRV.15.1.12 HttpSessionContext

pubTlic interface HttpSessionContext

Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replace-

ment. This interface will be removed in a future version of this API.

See Also: HttpSession, HttpSessionBindingEvent, HttpSessionBind-
inglistener

SRV.15.1.12.1 Methods

getlds()

public java.util.Enumeration getIds()

Deprecated. As of Java Servlet APl 2.1 with no replacement. This method
must return an empthumeration and will be removed in a future version of
this API.

getSession(String)
public HttpSession getSession(java.lang.String sessionId)

Deprecated. As of Java Servlet API 2.1 with no replacement. This method
must return null and will be removed in a future version of this API.

SRV.15.1.13 HttpSessionEvent
public class HttpSessionEvent extends java.util.EventObject
All Implemented Interfaces: java.io.Serializable
Direct Known Subclasses:HttpSessionBindingEvent

This is the class representing event notifications for changes to sessions within a
web application.

230 JAVAX.SERVLET.HTTP

Since: v2.3

SRV.15.1.13.1 Constructors

HttpSessionEvent(HttpSession)
pubTlic HttpSessionEvent(HttpSession source)

Construct a session event from the given source.

SRV.15.1.13.2 Methods

getSession()
pubTlic HttpSession getSession()

Return the session that changed.

SRV.15.1.14 HttpSessionListener

pubTic interface HttpSessionListener extends java.util. EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface may are notified of changes to the list of active
sessions in a web application. To recieve natification events, the implementation
class must be configured in the deployment descriptor for the web application.

Since: v2.3

See Also: HttpSessionEvent

SRV.15.1.14.1 Methods

sessionCreated(HttpSessionEvent)

pubTlic void sessionCreated(HttpSessionEvent se)

Notification that a session was created.
Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)

public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

Parameters:
se - the notification event

Final Version

Servlets Using HTTP Protocol 231

SRV.15.1.15 HttpUtils

public class HttpUtils

Deprecated. As of Java(tm) Servlet API 2.3. These methods were only useful
with the default encoding and have been moved to the request interfaces.

SRV.15.1.15.1 Constructors

HttpUtils()
pubTic HttpUtils()

Constructs an emptttpUtils object.

SRV.15.1.15.2 Methods

getRequestURL(HttpServietRequest)

public static java.lang.StringBuffer
getRequestURL(HttpServiletRequest req)

Reconstructs the URL the client used to make the request, using information
in theHttpServietRequest object. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query
string parameters.

Because this method returnstaingBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Parameters:
req - aHttpServletRequest object containing the client’s request

Returns: aStringBuffer object containing the reconstructed URL

parsePostData(int, ServletinputStream)

public static java.util.Hashtable parsePostData(int len,
javax.servlet.ServletInputStream 1in)

Parses data from an HTML form that the client sends to the server using the
HTTP POST method and tlapplication/x-www-form-urlencodedIME

type.

The data sent by the POST method contains key-value pairs. A key can
appear more than once in the POST data with different values. However, the
key appears only once in the hashtable, with its value being an array of
strings containing the multiple values sent by the POST method.

232

JAVAX.SERVLET.HTTP

The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xX are converted to ASCII characters.

Parameters:
len - an integer specifying the length, in characters, of the
ServiletInputStream oObject that is also passed to this method

in - theServletInputStream object that contains the data sent from the
client

Returns: aHashTable object built from the parsed key-value pairs

Throws:
I1legalArgumentException - if the data sent by the POST method is invalid

parseQueryString(String)
public static java.util.Hashtable parseQueryString(java.lang.String

s)

Parses a query string passed from the client to the server and buitds a
Table object with key-value pairs. The query string should be in the form of a
string packaged by the GET or POST method, that is, it should have key-
value pairs in the forrkey=value with each pair separated from the next by a
& character.

A key can appear more than once in the query string with different values.
However, the key appears only once in the hashtable, with its value being an
array of strings containing the multiple values sent by the query string.

The keys and values in the hashtable are stored in their decoded form, so any
+ characters are converted to spaces, and characters sent in hexadecimal nota-
tion (like %xX) are converted to ASCII characters.

Parameters:
s - a string containing the query to be parsed

Returns: aHashTable object built from the parsed key-value pairs

Throws:
I1legalArgumentException - if the query string is invalid

Final Version

Changes since versié
2.2

This document is the Proposed Final Draft version of the Java Servlet 2.3 Specifica-
tion developed under the Java Commuity ProteScP). |

SRV.S.16 Changes in this document since version 2.2

The Java Servlet 2.2 Specification was the last released version of the servlet specifi-
cation. The following changes have been made since version 2.2:

« Incorporation of Javadd¥ API definitions into the specification document |

» Application Events

 Servlet Filtering

* Requirement of J2SE 1.2 or newer as the underlying platform for web con{
tainers

» Dependencies on installed extensions
* Internationalization fixes

* Incorporation of Servlet 2.2 errata and numerous other clarifications

SRV.S.17 Changes since Public Draft

Responding to a large amount of feedback to the public draft, the following changes
were made:

CCXXXi-

CCXXXiV CHANGES SINCE VERSION 2.2

SRV.S.17.1 Specification document changes

» Added 2.2 deployment descriptor as appendix
» Added the API documentation as part of the specfication

» Many editorial changes

» Added change list

SRV.S.17.2 Servlets - Chapter 2

» AddeddoHead() method back t@ttpServiet (see API)

SRV.S.17.3 ServletContexts - Chapter 3

» addedgetServletContextName() (see API)

» addedgetResourcePaths() (see API)

SRV.S.17.4 Request - Chapter 4

» Add attributes for error processing

» AddedunsupportedCharacterEncoding to throws clause of
setCharacterEncoding() (see API)

* getQueryString() - specify value is not decoded (see API)
* getParameterMap() - return value is immutable (see API)

» clarify getAuthType) API documentation, added statics for authentication |
types (see API)

« clarify default character encoding
+ clarify behavior ofgetRealPath() (see API)

» clarification ofHttpServletRequest.getHeaders () When name not found (see
API)

Final Version |

Changes since Public Draft CCXXXV

SRV.S.17.5 Response - Chapter 5

« clarify status code on response when errors occur (see API)
» addedresetBuffer() method tGservietResponse (see API)

* sendError clarifications (see API))

« disallow container defaulting the content type of a response

* clarify behavior offlush() onPrintWriter and ServletOutputStream (See
API)

« clarify default character encoding of response
+ clarify what container does with headerssegstatus() (see API)
* sendRedirect() clarification for non-absolute URLs (API doc)

* sendError() clarifications (API doc)

SRV.S.17.6 Filters - Chapter 6

Scoping of filter instances

Clarification of filters acting on static resources

AddedFilterchain interface and minor refactoring

Removedionfig interface

Addedset{Response,Request} methods to filter wrapper classes

SRV.S.17.7 Sessions - Chapter 7
» Addition of HttpSessionActivationListener interface used in distributed
containers (also see API)

« Clarification of semantics for persisting & migrating sessions in distributed
containers

« many clarifications of session expiry and notification, order of notification (see
API)

CCXXX-

CHANGES SINCE VERSION 2.2

SRV.S.17.8 Application Event Listeners - Chapter 10

Clarifying notifications on shutdown and ordering thereof

SRV.S.17.9 RequestMappings - Chapter 11

clarified servlet mapped ttfoo/* is called by a request f@gfoo

Request matching is done by case-sensitive string match

SRV.S.17.10 Security - Chapter 12

Specify a default behavior fasUserInRole() in absernce ofole-refs
Clarify interaction betweeRequestDispatcher and security model
Clarify policy for processing multiple security constraints

Added security attributes for SSL algorithm

Specify status code for failed form login

Specify allowed methods of return for form login error page

SRV.S.17.11 Deployment Descriptor - Chapter 13

corrected bad comment fefb-ref-type
clarifying web container policy for whitespace in the deployment descriptor
clarifying paths in deployment descriptor are assumed decoded

recommend validation of deployment descriptor documents and some seman-
tic checking by web containers as aid to developers

policy for paths refering to resources in #a&: must start with/’

clarify policy for relativizing paths ineb.xm1

added display name to security-constraint for tool manipulation

fixed security example

Use of *" to mean 'all roles’ in the security-constraint element

syntax for specifying sharing scope for connection factory connections

syntax for declaring dependencies on administered objects in J2EE

Final Version |

Changes since Proposed Final Draft 1 CCXXX-

clarify <error-page> path usage

clarify <jsp-file> path usage

snyc with EJB and EE specs on allowed stringz#auth element

clarify 2.2 dtd must be supported for backwards compatibility

SRV.S.18 Changes since Proposed Final Draft 1

* Minor changes to Filter API

* Renaming listener classes

» added getServletContext() to HttpSession

» added ServletContext.getResourcePaths() directory argument
» expanded section on error pages

« many typos and clarification of text

* many javadoc and DTD clarifications

» many small clarifications of behaviors in the document text

SRV.S.19 Changes since Proposed Final Draft 2

« editorial changes
» added trademarks

» added clarification that containers can recycle container objects SRV.4.10 gnd
SRV.5.6

« clarification of wrapper behavior SRV.6.2.2

» clarification of number of instances of filters SRV.6.2.3

» clarification of filter mappings SRV.6.2.4

» removed requirement of ordering of JARs within a WAR SRV.9.5

« clarified requirements around JNDI/lookups & object invokations on applic-
tion threads SRV.9.11 r

CCXXX- CHANGES SINCE VERSION 2.2

* clarified function of session invalidation on form login SRV.12.5.3

» added status code 307 (temporary redirect) to HttpServietResponse

Final Version |

cerenn ORVL.A

Deployment Descriptbr
Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web containers
are required to support web applications using the 2.2 deployment descriptor.

SRV.A.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following
DOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-
cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

SRV.A.2 DTD

The DTD that follows defines the XML grammar for a web application deployment
descriptor.

<!--

The web-app element is the root of the deployment descriptor for a
web application

-—>

239

240

<!ELEMENT web-app (icon?, display-name?, description?,
distributable?, context-param®, servlet*, servlet-mapping*,
session-config?, mime-mapping*, welcome-file-1ist?, error-page*,
taglib*, resource-ref*, security-constraint®, login-config?,
security-role*, env-entry*, ejb-ref+*)>

<l--

The +icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small and
Tlarge image used to represent the web application in a GUI tool. At a
minimum, tools must accept GIF and JPEG format images.

-—>

<!ELEMENT 1icon (small-icon?, large-icon?)>

<!l--

The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-——>

<!ELEMENT small-icon (#PCDATA)>

<l--

The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-—>

<!ELEMENT Targe-icon (#PCDATA)>

<!--

The display-name element contains a short name that 1is intended
to be displayed by GUI tools

-—>

<!ELEMENT display-name (#PCDATA)>

<l--

The description element is used to provide descriptive text about
the parent element.

-—>

<!ELEMENT description (#PCDATA)>

<l--
The distributable element, by +its presence in a web application
deployment descriptor, indicates that this web application is

Final Version |

programmed appropriately to be deployed into a distributed servlet
container
-—>

<!ELEMENT distributable EMPTY>

<l--

The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-—>

<!ELEMENT context-param (param-name, param-value, description?)>

<!l--

The param-name element contains the name of a parameter.
-——>

<!ELEMENT param-name (#PCDATA)>

<!l--

The param-value element contains the value of a parameter.
-—>

<!ELEMENT param-value (#PCDATA)>

<!l--

The servlet element contains the declarative data of a
servlet.

If a jsp-file is specified and the load-on-startup element is
present, then the ISP should be precompiled and Tloaded.

-—>

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,
(servlet-class|jsp-file), init-param*, load-on-startup?,
security-role-ref+*)>

<l--

The servlet-name element contains the canonical name of the
servlet.

-—>

<!ELEMENT servlet-name (#PCDATA)>

<l--
The servlet-class element contains the fully qualified class name

241

242

of the servlet.
-—>

<!ELEMENT servlet-class (#PCDATA)>

<!--

The jsp-file element contains the full path to a ISP file within
the web application.

-=>

<!ELEMENT jsp-file (#PCDATA)>

<!l--

The 1init-param element contains a name/value pair as an
initialization param of the servlet

-=>

<!ELEMENT 1init-param (param-name, param-value, description?)>

<!l--

The load-on-startup element indicates that this servlet should be
lToaded on the startup of the web application.

The optional contents of these element must be a positive integer
indicating the order in which the servlet should be loaded.

Lower integers are loaded before higher integers.

If no value is specified, or if the value specified is not a positive
integer, the container is free to load it at any time in the startup
sequence.

-=>

<!ELEMENT Toad-on-startup (#PCDATA)>

<!--

The servlet-mapping element defines a mapping between a servlet and
a url pattern

-——>

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The url-pattern element contains the url pattern of the

mapping. Must follow the rules specified in Section 10 of the Servlet
API Specification.

-=>

<!ELEMENT url-pattern (#PCDATA)>

Final Version |

<l--

The session-config element defines the session parameters for this
web application.

-—>

<!ELEMENT session-config (session-timeout?)>

<!l--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application.

The specified timeout must be expressed in a whole number of minutes.
-=>

<!ELEMENT session-timeout (#PCDATA)>

<!l--

The mime-mapping element defines a mapping between an extension and
a mime type.
-—>

<!ELEMENT mime-mapping (extension, mime-type)>

<!l--

The extension element contains a string describing an
extension. example: "txt"
-——>

<!ELEMENT extension (#PCDATA)>

<!--

The mime-type element contains a defined mime type. example: "text/
plain”

-——>

<!ELEMENT mime-type (#PCDATA)>

<!l--

The welcome-file-1ist contains an ordered 1ist of welcome files
elements.

-—>

<!ELEMENT welcome-file-Tist (welcome-file+)>

243

244

<!--

The welcome-file element contains file name to use as a default
welcome file, such as index.html

-=>

<!ELEMENT welcome-file (#PCDATA)>

<!--

The taglib element 1is used to describe a JSP tag library.
-=>

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!l--

The taglib-uri element describes a URI, relative to the location of
the web.xml document, identifying a Tag Library used in the Web
Application.

-—>

<!ELEMENT taglib-uri (#PCDATA)>

<!l--

the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.

-——>

<!ELEMENT taglib-location (#PCDATA)>

<!l--

The error-page element contains a mapping between an error code or
exception type to the path of a resource in the web application
-—>

<!ELEMENT error-page ((error-code | exception-type), location)>

<!l--
The error-code contains an HTTP error code, ex: 404
-—>

<!ELEMENT error-code (#PCDATA)>

<l--

The exception type contains a fully qualified class name of a Java
exception type.

-—>

Final Version |

<!ELEMENT exception-type (#PCDATA)>

<!l--

The Tocation element contains the location of the resource in the
web application
-—>

<!ELEMENT Tocation (#PCDATA)>

<!l--

The resource-ref element contains a declaration of a Web
Application’s reference to an external resource.
-—>

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-
auth)>

<!l--

The res-ref-name element specifies the name of the resource factory
reference name.

-——>

<!ELEMENT res-ref-name (#PCDATA)>

<!l--

The res-type element specifies the (Java class) type of the data
source.

-—>

<!ELEMENT res-type (#PCDATA)>

<l--

The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer.

Must be CONTAINER or SERVLET

-—>
<!ELEMENT res-auth (#PCDATA)>

<!l--

The security-constraint element is used to associate security
constraints with one or more web resource collections

-——>

245

246

<!ELEMENT security-constraint (web-resource-collection+, auth-
constraint?, user-data-constraint?)>

<!l--

The web-resource-collection element is used to identify a subset of
the resources and HTTP methods on those resources within a web
application to which a security constraint applies.

If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

-—>

<!ELEMENT web-resource-collection (web-resource-name, description?,
url-pattern®, http-method*)>

<!--

The web-resource-name contains the name of this web resource
collection

-=>

<!ELEMENT web-resource-name (#PCDATA)>

<!l--

The http-method contains an HTTP method (GET | POST |...)
-=>

<!ELEMENT http-method (#PCDATA)>

<!l--

The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-—>

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<l--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the application does not require any transport
guarantees.

A value of INTEGRAL means that the application requires that the data
sent between the client and server be sent in such a way that it
can’t be changed 1in transit.

CONFIDENTIAL means that the application requires that the data be
transmitted in a fashion that prevents other entities from observing
the contents of the transmission.

Final Version |

In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag will
indicate that the use of SSL 1is required.
-—>

<!ELEMENT transport-guarantee (#PCDATA)>

<l--

The auth-constraint element indicates the user roles that should be
permitted access to this resource collection.

The role used here must appear in a security-role-ref element.

-=>

<!ELEMENT auth-constraint (description?, role-name*)>

<l--

The role-name element contains the name of a security role.
-—>

<!ELEMENT role-name (#PCDATA)>

<!l--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login mechanism.

-=>

<!ELEMENT Togin-config (auth-method?, realm-name?, form-login-
config?)>

<!l--

The realm name element specifies the realm name to use in HTTP Basic
authorization
-—>

<!ELEMENT realm-name (#PCDATA)>

<!l--

The form-login-config element specifies the login and error pages
that should be used in form based login.

If form based authentication is not used, these elements are ignored.

-—>

<!ELEMENT form-login-config (form-login-page, form-error-page)>

247

248

<!--

The form-login-page element defines the Tocation in the web app where
the page that can be used for login can be found

-—>

<!ELEMENT form-login-page (#PCDATA)>

<!--

The form-error-page element defines the Tocation in the web app where
the error page that is displayed when 1ogin is not successful can be
found

-——>

<!ELEMENT form-error-page (#PCDATA)>

<!--

The auth-method element 1is used to configure the authentication
mechanism for the web application.

As a prerequisite to gaining access to any web resources which are
protected by an authorization constraint, a user must have
mechanism.

Legal values for this element are "BASIC", "DIGEST", "FORM", or
"CLIENT-CERT".

-=>

<!ELEMENT auth-method (#PCDATA)>

<!--

The security-role element contains the declaration of a security role
which is used in the security-constraints placed on the web
application.

-=>

<!ELEMENT security-role (description?, role-name)>

<l--

The role-name element contains the name of a role. This element must
contain a non-empty string.

-—>

<!ELEMENT security-role-ref (description?, role-name, role-1ink)>
<!--

The role-1ink element 1is used to 1ink a security role reference to
a defined security role.

Final Version |

The role-1ink element must contain the name of one of the security
roles defined in the security-role elements.
-—>

<!ELEMENT role-T1ink (#PCDATA)>

<l--

The env-entry element contains the declaration of an application’s
environment entry.

This element 1is required to be honored on in J2EE compliant servlet
containers.

-=>

<!ELEMENT env-entry (description?, env-entry-name, env-entry-
value?, env-entry-type)>

<l--

The env-entry-name contains the name of an application’s environment
entry

-—>

<!ELEMENT env-entry-name (#PCDATA)>

<!l--

The env-entry-value element contains the value of an application’s
environment entry

-=>

<!ELEMENT env-entry-value (#PCDATA)>

<!l--

The env-entry-type element contains the fully qualified Java type of
the environment entry value that is expected by the application
code.

The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.

-=>

<!ELEMENT env-entry-type (#PCDATA)>

<l--

The ejb-ref element is used to declare a reference to an enterprise
bean.

-=>

249

250

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,
remote, ejb-1ink?)>

<!l--

The ejb-ref-name element contains the name of an EJB

reference. This is the INDI name that the servlet code uses to get a
reference to the enterprise bean.

-=>

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected java class type of
the referenced EJB.

-=>

<!ELEMENT ejb-ref-type (#PCDATA)>

<!l--

The ejb-home element contains the fully qualified name of the EJB’s
home 1interface

-—>

<!ELEMENT home (#PCDATA)>

<!--

The ejb-remote element contains the fully qualified name of the EJB’s
remote interface

-—>

<!ELEMENT remote (#PCDATA)>

<l--

The ejb-1ink element is used in the ejb-ref element to specify that
an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package.

The value of the ejb-T1ink element must be the ejb-name of and EJB 1in
the J2EE application package.

-—>

<!ELEMENT ejb-Tink (#PCDATA)>
<!l--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.

Final Version |

This allows tools that produce additional deployment information
(i.e information beyond the standard deployment descriptor
information) to store the non-standard information in a separate

file, and

easily refer from these tools-specific files to the

information in the standard web-app deployment descriptor.

-=>

<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

web-app id ID #IMPLIED>

icon id ID #IMPLIED>

small-icon id ID #IMPLIED>
large-icon id ID #IMPLIED>
display-name id ID #IMPLIED>
description id ID #IMPLIED>
distributable id ID #IMPLIED>
context-param id ID #IMPLIED>
param-name id ID #IMPLIED>
param-value +id ID #IMPLIED>
servlet id ID #IMPLIED>
servlet-name id ID #IMPLIED>
servlet-class id ID #IMPLIED>
jsp-file id ID #IMPLIED>
init-param id ID #IMPLIED>
load-on-startup id ID #IMPLIED>
servlet-mapping id ID #IMPLIED>
url-pattern id ID #IMPLIED>
session-config id ID #IMPLIED>
session-timeout id ID #IMPLIED>
mime-mapping id ID #IMPLIED>
extension id ID #IMPLIED>
mime-type id ID #IMPLIED>
welcome-file-Tist id ID #IMPLIED>
welcome-file id ID #IMPLIED>
taglib id ID #IMPLIED>

taglib-uri id ID #IMPLIED>
taglib-Tlocation id ID #IMPLIED>
error-page id ID #IMPLIED>
error-code id ID #IMPLIED>
exception-type id ID #IMPLIED>
location id ID #IMPLIED>
resource-ref id ID #IMPLIED>
res-ref-name id ID #IMPLIED>
res-type id ID #IMPLIED>

res-auth id ID #IMPLIED>
security-constraint id ID #IMPLIED>
web-resource-collection id ID #IMPLIED>
web-resource-name id ID #IMPLIED>
http-method id ID #IMPLIED>
user-data-constraint id ID #IMPLIED>

251

252

<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method +id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-1link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home +id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST ejb-1ink id ID #IMPLIED>

Final Version |

e ORV. B

Glossar'y

Application Developer The producer of a web application. The output of an

Application Developer is a set of servlet classes, JSP pages, HTML pages,
and supporting libraries and files (such as images, compressed archive files,
etc.) for the web application. The Application Developer is typically an appli-
cation domain expert. The developer is required to be aware of the servlet
environment and its consequences when programming, including concurrency
considerations, and create the web application accordingly.

Application Assembler Takes the output of the Application Developer and

ensures that it is a deployable unit. Thus, the input of the Application Assem-
bler is the servlet classes, JSP pages, HTML pages, and other supporting
libraries and files for the web application. The output of the Application
Assembler is a web application archive or a web application in an open direc-
tory structure.

Deployer The Deployer takes one or more web application archive files or

other directory structures provided by an Application Developer and deploys
the application into a specific operational environment. The operational envi-
ronment includes a specific servlet container and web server. The Deployer
must resolve all the external dependencies declared by the developer. To per-
form his role, the deployer uses tools provided by the Servlet Container Pro-
vider.

The Deployer is an expert in a specific operational environment. For example,
the Deployer is responsible for mapping the security roles defined by the

Application Developer to the user groups and accounts that exist in the opera-
tional environment where the web application is deployed.

253

254

CHAPTER

principal A principal is an entity that can be authenticated by an authentication
protocol. A principal is identified by @rincipal nameand authenticated by
usingauthentication dataThe content and format of the principal name and
the authentication data depend on the authentication protocol.

role (development) The actions and responsibilities taken by various parties
during the development, deployment, and running of a web application. In
some scenarios, a single party may perform several roles; in others, each role
may be performed by a different party.

role (security) An abstract notion used by an Application Developer in an
application that can be mapped by the Deployer to a user, or group of users, in
a security policy domain.

security policy domain The scope over which security policies are defined
and enforced by a security administrator of the security service. A security
policy domain is also sometimes referred to e=aém

security technology domain The scope over which the same security mecha-
nism, such as Kerberos, is used to enforce a security policy. Multiple security
policy domains can exist within a single technology domain.

Servlet Container Provider A vendor that provides the runtime environment,
namely the servlet container and possibly the web server, in which a web
application runs as well as the tools necessary to deploy web applications.

The expertise of the Container Provider is in HTTP-level programming. Since
this specification does not specify the interface between the web server and
the servlet container, it is left to the Container Provider to split the implemen-
tation of the required functionality between the container and the server.

servlet definition A unique name associated with a fully qualified class name
of a class implementing tlterviet interface. A set of initialization parame-
ters can be associated with a servlet definition.

servlet mapping A servlet definition that is associated by a servlet container
with a URL path pattern. All requests to that path pattern are handled by the
servlet associated with the servlet definition.

System Administrator The person responsible for the configuration and
administration of the servlet container and web server. The administrator is

255

also responsible for overseeing the well-being of the deployed web applica-
tions at run time.

This specification does not define the contracts for system management and
administration. The administrator typically uses runtime monitoring and man-
agement tools provided by the Container Provider and server vendors to
accomplish these tasks.

uniform resource locator (URL) A compact string representation of
resources available via the network. Once the resource represented by a URL
has been accessed, various operations may be performed on that redource.
URL is a type of uniform resource identifier (URI). URLSs are typically of the
form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTT-
based URLs which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/serviet/index.html
https://javashop.sun.com/purchase

In HTTP-based URLs, th&/’ character is reserved to separate a hierarchical

path structure in the URL-path portion of the URL. The server is responsible
for determining the meaning of the hierarchical structure. There is no corre-
spondence between a URL-path and a given file system path.

web application A collection of servlets, JSP pages , HTML documents, and
other web resources which might include image files, compressed archives,
and other data. A web application may be packaged into an archive or exist in
an open directory structure.

All compatible servlet containers must accept a web application and perform
a deployment of its contents into their runtime. This may mean that a con-
tainer can run the application directly from a web application archive file or it

may mean that it will move the contents of a web application into the appro-
priate locations for that particular container.

! See RFC 1738

256 CHAPTER

web application archive A single file that contains all of the components of a
web application. This archive file is created by using standard JAR tools
which allow any or all of the web components to be signed.

Web application archive files are identified by ther extension. A new
extension is used instead ofar because that extension is reserved for files
which contain a set of class files and that can be placed in the classpath or
double clicked using a GUI to launch an application. As the contents of a web
application archive are not suitable for such use, a new extension was in order.

web application, distributable A web application that is written so that
it can be deployed in a web container distributed across multiple Java
virtual machines running on the same host or different hosts. The
deployment descriptor for such an application uses the distributable
element.

257

	Java™ Servlet Specification Version 2.3
	Preface
	SRV.P.1 Additional Sources
	SRV.P.2 Who Should Read This Specification
	SRV.P.3 API Reference
	SRV.P.4 Other Java™ Platform Specifications
	SRV.P.5 Other Important References
	SRV.P.6 Providing Feedback
	SRV.P.7 Acknowledgements

	Overview
	SRV.1.1 What is a Servlet?
	SRV.1.2 What is a Servlet Container?
	SRV.1.3 An Example
	SRV.1.4 Comparing Servlets with Other Technologies
	SRV.1.5 Relationship to Java 2, Platform Enterprise Edition

	The Servlet Interface
	SRV.2.1 Request Handling Methods
	SRV.2.1.1 HTTP Specific Request Handling Methods
	SRV.2.1.2 Additional Methods
	SRV.2.1.3 Conditional GET Support

	SRV.2.2 Number of Instances
	SRV.2.2.1 Note About The Single Thread Model

	SRV.2.3 Servlet Life Cycle
	SRV.2.3.1 Loading and Instantiation
	SRV.2.3.2 Initialization
	SRV.2.3.3 Request Handling
	SRV.2.3.4 End of Service

	Servlet Context
	SRV.3.1 Introduction to the ServletContext Interface
	SRV.3.2 Scope of a ServletContext Interface
	SRV.3.3 Initialization Parameters
	SRV.3.4 Context Attributes
	SRV.3.4.1 Context Attributes in a Distributed Container

	SRV.3.5 Resources
	SRV.3.6 Multiple Hosts and Servlet Contexts
	SRV.3.7 Reloading Considerations
	SRV.3.7.1 Temporary Working Directories

	The Request
	SRV.4.1 HTTP Protocol Parameters
	SRV.4.1.1 When Parameters Are Available

	SRV.4.2 Attributes
	SRV.4.3 Headers
	SRV.4.4 Request Path Elements
	SRV.4.5 Path Translation Methods
	SRV.4.6 Cookies
	SRV.4.7 SSL Attributes
	SRV.4.8 Internationalization
	SRV.4.9 Request data encoding
	SRV.4.10 Lifetime of the Request Object

	The Response
	SRV.5.1 Buffering
	SRV.5.2 Headers
	SRV.5.3 Convenience Methods
	SRV.5.4 Internationalization
	SRV.5.5 Closure of Response Object
	SRV.5.6 Lifetime of the Response Object

	Filtering
	SRV.6.1 What is a filter?
	SRV.6.1.1 Examples of Filtering Components

	SRV.6.2 Main Concepts
	SRV.6.2.1 Filter Lifecycle
	SRV.6.2.2 Wrapping Requests and Responses
	SRV.6.2.3 Filter Environment
	SRV.6.2.4 Configuration of Filters in a Web Application

	Sessions
	SRV.7.1 Session Tracking Mechanisms
	SRV.7.1.1 Cookies
	SRV.7.1.2 SSL Sessions
	SRV.7.1.3 URL Rewriting
	SRV.7.1.4 Session Integrity

	SRV.7.2 Creating a Session
	SRV.7.3 Session Scope
	SRV.7.4 Binding Attributes into a Session
	SRV.7.5 Session Timeouts
	SRV.7.6 Last Accessed Times
	SRV.7.7 Important Session Semantics
	J2EE.7.7.1 Threading Issues
	SRV.7.7.2 Distributed Environments
	SRV.7.7.3 Client Semantics

	Dispatching Requests
	SRV.8.1 Obtaining a RequestDispatcher
	SRV.8.1.1 Query Strings in Request Dispatcher Paths

	SRV.8.2 Using a Request Dispatcher
	SRV.8.3 The Include Method
	SRV.8.3.1 Included Request Parameters

	SRV.8.4 The Forward Method
	SRV.8.4.1 Query String

	SRV.8.5 Error Handling

	Web Applications
	SRV.9.1 Web Applications Within Web Servers
	SRV.9.2 Relationship to ServletContext
	SRV.9.3 Elements of a Web Application
	SRV.9.4 Deployment Hierarchies
	SRV.9.5 Directory Structure
	SRV.9.5.1 Example of Application Directory Structure

	SRV.9.6 Web Application Archive File
	SRV.9.7 Web Application Deployment Descriptor
	SRV.9.7.1 Dependencies On Extensions
	SRV.9.7.2 Web Application Classloader

	SRV.9.8 Replacing a Web Application
	SRV.9.9 Error Handling
	SRV.9.9.1 Request Attributes
	SRV.9.9.2 Error Pages

	SRV.9.10 Welcome Files
	SRV.9.11 Web Application Environment

	Application Lifecycle Events
	SRV.10.1 Introduction
	SRV.10.2 Event Listeners
	SRV.10.2.1 Event Types and Listener Interfaces
	SRV.10.2.2 An Example of Listener Use

	SRV.10.3 Listener Class Configuration
	SRV.10.3.1 Provision of Listener Classes
	SRV.10.3.2 Deployment Declarations
	SRV.10.3.3 Listener Registration
	SRV.10.3.4 Notifications At Shutdown

	SRV.10.4 Deployment Descriptor Example
	SRV.10.5 Listener Instances and Threading
	SRV.10.6 Distributed Containers
	SRV.10.7 Session Events

	Mapping Requests to Servlets
	SRV.11.1 Use of URL Paths
	SRV.11.2 Specification of Mappings
	SRV.11.2.1 Implicit Mappings
	SRV.11.2.2 Example Mapping Set

	Security
	SRV.12.1 Introduction
	SRV.12.2 Declarative Security
	SRV.12.3 Programmatic Security
	SRV.12.4 Roles
	SRV.12.5 Authentication
	SRV.12.5.1 HTTP Basic Authentication
	SRV.12.5.2 HTTP Digest Authentication
	SRV.12.5.3 Form Based Authentication
	SRV.12.5.4 HTTPS Client Authentication

	SRV.12.6 Server Tracking of Authentication Information
	SRV.12.7 Propagation of Security Identity in EJBTM Calls
	SRV.12.8 Specifying Security Constraints
	SRV.12.9 Default Policies

	Deployment Descriptor
	SRV.13.1 Deployment Descriptor Elements
	SRV.13.2 Rules for Processing the Deployment Descriptor
	SRV.13.2.1 Deployment Descriptor DOCTYPE

	SRV.13.3 DTD
	SRV.13.4 Examples
	SRV.13.4.1 A Basic Example
	SRV.13.4.2 An Example of Security

	javax.servlet
	SRV.14.1 Generic Servlet Interfaces and Classes
	SRV.14.2 The javax.servlet package
	SRV.14.2.1 Filter
	SRV.14.2.2 FilterChain
	SRV.14.2.3 FilterConfig
	SRV.14.2.4 GenericServlet
	SRV.14.2.5 RequestDispatcher
	SRV.14.2.6 Servlet
	SRV.14.2.7 ServletConfig
	SRV.14.2.8 ServletContext
	SRV.14.2.9 ServletContextAttributeEvent
	SRV.14.2.10 ServletContextAttributeListener
	SRV.14.2.11 ServletContextEvent
	SRV.14.2.12 ServletContextListener
	SRV.14.2.13 ServletException
	SRV.14.2.14 ServletInputStream
	SRV.14.2.15 ServletOutputStream
	SRV.14.2.16 ServletRequest
	SRV.14.2.17 ServletRequestWrapper
	SRV.14.2.18 ServletResponse
	SRV.14.2.19 ServletResponseWrapper
	SRV.14.2.20 SingleThreadModel
	SRV.14.2.21 UnavailableException

	javax.servlet.http
	SRV.15.1 Servlets Using HTTP Protocol
	SRV.15.1.1 Cookie
	SRV.15.1.2 HttpServlet
	SRV.15.1.3 HttpServletRequest
	SRV.15.1.4 HttpServletRequestWrapper
	SRV.15.1.5 HttpServletResponse
	SRV.15.1.6 HttpServletResponseWrapper
	SRV.15.1.7 HttpSession
	SRV.15.1.8 HttpSessionActivationListener
	SRV.15.1.9 HttpSessionAttributeListener
	SRV.15.1.10 HttpSessionBindingEvent
	SRV.15.1.11 HttpSessionBindingListener
	SRV.15.1.12 HttpSessionContext
	SRV.15.1.13 HttpSessionEvent
	SRV.15.1.14 HttpSessionListener
	SRV.15.1.15 HttpUtils

	Changes since version 2.2
	SRV.S.16 Changes in this document since version 2.2
	SRV.S.17 Changes since Public Draft
	SRV.S.17.1 Specification document changes
	SRV.S.17.2 Servlets - Chapter 2
	SRV.S.17.3 ServletContexts - Chapter 3
	SRV.S.17.4 Request - Chapter 4
	SRV.S.17.5 Response - Chapter 5
	SRV.S.17.6 Filters - Chapter 6
	SRV.S.17.7 Sessions - Chapter 7
	SRV.S.17.8 Application Event Listeners - Chapter 10
	SRV.S.17.9 RequestMappings - Chapter 11
	SRV.S.17.10 Security - Chapter 12
	SRV.S.17.11 Deployment Descriptor - Chapter 13

	SRV.S.18 Changes since Proposed Final Draft 1
	SRV.S.19 Changes since Proposed Final Draft 2

	Deployment Descriptor Version 2.2
	SRV.A.1 Deployment Descriptor DOCTYPE
	SRV.A.2 DTD

	Glossary

