
Java™ Servlet Specification

Version 2.3

Please send technical comments to: servletapi-feedback@eng.sun.com
Please send business comments to: danny.coward@sun.com

Final Release 8/13/01
Danny Coward (danny.coward@sun.com)

ii

ed by
he fol-
t the
the
f this

view-
d, and

it out
pecifi-
ava
tation
ifica-
the
any
bset-

ents,
s to the
satis-
 the
ereto;
e any
. The
th the
you
u

licen-
p logo,

es.

-

Java(TM) Servlet API Specification ("Specification")
Version: 2.3
Status: Final Release
Release: September 17, 2001

Copyright 2001 Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE
The Specification is protected by copyright and the information described therein may be protect
one or more U.S. patents, foreign patents, or pending applications. Except as provided under t
lowing license, no part of the Specification may be reproduced in any form by any means withou
prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of
Specification and the information described therein will be governed by the terms and conditions o
license and the Export Control Guidelines as set forth in the Terms of Use on Sun’s website. By
ing, downloading or otherwise copying the Specification, you agree that you have read, understoo
will comply with all of the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (w
the right to sublicense), under Sun’s intellectual property rights that are essential to practice the S
cation, to internally practice the Specification for the purpose of designing and developing your J
applets and applications intended to run on the Java platform or creating a clean room implemen
of the Specification that: (i) includes a complete implementation of the current version of the Spec
tion, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of
Specification without subsetting or supersetting; (iii) includes a complete implementation of
optional components (as defined by the Specification) which you choose to implement, without su
ting or supersetting; (iv) implements all of the interfaces and functionality of such optional compon
without subsetting or supersetting; (v) does not add any additional packages, classes or interface
"java.*" or "javax.*" packages or subpackages or other packages defined by the Specification; (vi)
fies all testing requirements available from Sun relating to the most recently published version of
Specification six (6) months prior to any release of the clean room implementation or upgrade th
(vii) does not derive from any Sun source code or binary code materials; and (viii) does not includ
Sun source code or binary code materials without an appropriate and separate license from Sun
Specification contains the proprietary information of Sun and may only be used in accordance wi
license terms set forth herein. This license will terminate immediately without notice from Sun if
fail to comply with any provision of this license. Upon termination or expiration of this license, yo
must cease use of or destroy the Specification.

TRADEMARKS
No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s
sors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cu
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countri

DISCLAIMER OF WARRANTIES
THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR
RANTIES, EITHER EXPRESS OR IMPLIED,

iv

-

mple-

n
tion.

-

lting
lean
ed to

U.S.
re and

.F.R.
1 and

with
, you
nd (ii)
subl
Feed-
suites
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICA
TION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE
SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or i
ment any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION,
IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes i
the Specification will be governed by the then-current license for the applicable version of the Specifica

LIMITATION OF LIABILITY
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS
OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAM-
AGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT
OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSI
BILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resu
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or c
room implementation; and/or (iii) any claims that later versions or releases of any Specification furnish
you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND
U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Softwa
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.10
12.212 (for non-DoD acquisitions).

REPORT
You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection
your use of the Specification ("Feedback"). To the extent that you provide Sun with any Feedback
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, a
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
back for any purpose related to the Specification and future versions, implementations, and test
thereof.

(LFI#95810/Form ID#011801)

.i

xiii
xiii
xiv
xiv
xiv
 . xv
xvi
xvi

17
. 17
. 17
18
18
19

1
. 21
21
22
22
. 22
23
Contents

Java™ Servlet Specification Version 2.3

Preface .
Additional Sources .
Who Should Read This Specification .
API Reference .
Other Java™ Platform Specifications .
Other Important References .
Providing Feedback .
Acknowledgements .

SRV.1 Overview .
SRV.1.1 What is a Servlet? .
SRV.1.2 What is a Servlet Container? .
SRV.1.3 An Example .
SRV.1.4 Comparing Servlets with Other Technologies
SRV.1.5 Relationship to Java 2, Platform Enterprise Edition

SRV.2 The Servlet Interface . 2
SRV.2.1 Request Handling Methods .

SRV.2.1.1 HTTP Specific Request Handling Methods
SRV.2.1.2 Additional Methods .
SRV.2.1.3 Conditional GET Support

SRV.2.2 Number of Instances .
SRV.2.2.1 Note About The Single Thread Model
v

CONTENTS vi

23
23
4
24
26

27
27
. 27
28
28
8

 . 29
29
. 29
0

31
. 31
32
32

 . 33
 . 33
. 35
. 35
36
36
 . 37
37

. 39
39

 . 40
. 41
42
. 42
SRV.2.3 Servlet Life Cycle .
SRV.2.3.1 Loading and Instantiation
SRV.2.3.2 Initialization . 2
SRV.2.3.3 Request Handling .
SRV.2.3.4 End of Service .

SRV.3 Servlet Context .
SRV.3.1 Introduction to the ServletContext Interface
SRV.3.2 Scope of a ServletContext Interface
SRV.3.3 Initialization Parameters .
SRV.3.4 Context Attributes .

SRV.3.4.1 Context Attributes in a Distributed Container . . 2
SRV.3.5 Resources .
SRV.3.6 Multiple Hosts and Servlet Contexts
SRV.3.7 Reloading Considerations .

SRV.3.7.1 Temporary Working Directories 3

SRV.4 The Request .
SRV.4.1 HTTP Protocol Parameters .

SRV.4.1.1 When Parameters Are Available
SRV.4.2 Attributes .
SRV.4.3 Headers .
SRV.4.4 Request Path Elements .
SRV.4.5 Path Translation Methods .
SRV.4.6 Cookies .
SRV.4.7 SSL Attributes .
SRV.4.8 Internationalization .
SRV.4.9 Request data encoding .
SRV.4.10 Lifetime of the Request Object .

SRV.5 The Response .
SRV.5.1 Buffering .
SRV.5.2 Headers .
SRV.5.3 Convenience Methods .
SRV.5.4 Internationalization .
SRV.5.5 Closure of Response Object .

CONTENTS vii

42

43
43

44
. 44
4

 . 46
46
7

 . 49
. 49
49
. 49
0
50
 . 50
 . 50
51
. 51
. 52
. 52
. 52
52
53

55
. 55
56
. 56
57
. 57
57
58
58

9

SRV.5.6 Lifetime of the Response Object

SRV.6 Filtering. .
SRV.6.1 What is a filter? .

SRV.6.1.1 Examples of Filtering Components
SRV.6.2 Main Concepts .

SRV.6.2.1 Filter Lifecycle . 4
SRV.6.2.2 Wrapping Requests and Responses
SRV.6.2.3 Filter Environment .
SRV.6.2.4 Configuration of Filters in a Web Application . . 4

SRV.7 Sessions .
SRV.7.1 Session Tracking Mechanisms

SRV.7.1.1 Cookies .
SRV.7.1.2 SSL Sessions .
SRV.7.1.3 URL Rewriting . 5
SRV.7.1.4 Session Integrity .

SRV.7.2 Creating a Session .
SRV.7.3 Session Scope .
SRV.7.4 Binding Attributes into a Session
SRV.7.5 Session Timeouts .
SRV.7.6 Last Accessed Times .
SRV.7.7 Important Session Semantics .

J2EE.7.7.1 Threading Issues .
SRV.7.7.2 Distributed Environments
SRV.7.7.3 Client Semantics .

SRV.8 Dispatching Requests. .
SRV.8.1 Obtaining a RequestDispatcher

SRV.8.1.1 Query Strings in Request Dispatcher Paths
SRV.8.2 Using a Request Dispatcher .
SRV.8.3 The Include Method .

SRV.8.3.1 Included Request Parameters
SRV.8.4 The Forward Method .

SRV.8.4.1 Query String .
SRV.8.5 Error Handling .

SRV.9 Web Applications. 5

CONTENTS viii

59
59
60
60
60
1
2
2
62

63
63
63
63
64
65

67

9
69
69
69

70
71
71
71
71
1
71

. 72
72

. 73

75
75
76
SRV.9.1 Web Applications Within Web Servers
SRV.9.2 Relationship to ServletContext
SRV.9.3 Elements of a Web Application
SRV.9.4 Deployment Hierarchies .
SRV.9.5 Directory Structure .

SRV.9.5.1 Example of Application Directory Structure . . . 6
SRV.9.6 Web Application Archive File . 6
SRV.9.7 Web Application Deployment Descriptor 6

SRV.9.7.1 Dependencies On Extensions
SRV.9.7.2 Web Application Classloader

SRV.9.8 Replacing a Web Application .
SRV.9.9 Error Handling .

SRV.9.9.1 Request Attributes .
SRV.9.9.2 Error Pages .

SRV.9.10 Welcome Files .
SRV.9.11 Web Application Environment

SRV.10 Application Lifecycle Events . 6
SRV.10.1 Introduction .
SRV.10.2 Event Listeners .

SRV.10.2.1 Event Types and Listener Interfaces
SRV.10.2.2 An Example of Listener Use

SRV.10.3 Listener Class Configuration .
SRV.10.3.1 Provision of Listener Classes
SRV.10.3.2 Deployment Declarations
SRV.10.3.3 Listener Registration .
SRV.10.3.4 Notifications At Shutdown 7

SRV.10.4 Deployment Descriptor Example
SRV.10.5 Listener Instances and Threading
SRV.10.6 Distributed Containers .
SRV.10.7 Session Events .

SRV.11 Mapping Requests to Servlets .
SRV.11.1 Use of URL Paths .
SRV.11.2 Specification of Mappings .

CONTENTS ix

76
77

79
79
80
80

. 82
82

82
83
83
5
5

85
86
87

9
89
90
1
91

116
16
17

19
119
119
21
23
24
25

129
31
33
35
SRV.11.2.1 Implicit Mappings .
SRV.11.2.2 Example Mapping Set .

SRV.12 Security. .
SRV.12.1 Introduction .
SRV.12.2 Declarative Security .
SRV.12.3 Programmatic Security .
SRV.12.4 Roles .
SRV.12.5 Authentication .

SRV.12.5.1 HTTP Basic Authentication
SRV.12.5.2 HTTP Digest Authentication
SRV.12.5.3 Form Based Authentication
SRV.12.5.4 HTTPS Client Authentication 8

SRV.12.6 Server Tracking of Authentication Information 8
SRV.12.7 Propagation of Security Identity in EJBTM Calls
SRV.12.8 Specifying Security Constraints
SRV.12.9 Default Policies .

SRV.13 Deployment Descriptor . 8
SRV.13.1 Deployment Descriptor Elements
SRV.13.2 Rules for Processing the Deployment Descriptor

SRV.13.2.1 Deployment Descriptor DOCTYPE 9
SRV.13.3 DTD .
SRV.13.4 Examples .

SRV.13.4.1 A Basic Example . 1
SRV.13.4.2 An Example of Security 1

SRV.14 javax.servlet . 1
SRV.14.1 Generic Servlet Interfaces and Classes
SRV.14.2 The javax.servlet package .

SRV.14.2.1 Filter . 1
SRV.14.2.2 FilterChain . 1
SRV.14.2.3 FilterConfig . 1
SRV.14.2.4 GenericServlet . 1
SRV.14.2.5 RequestDispatcher .
SRV.14.2.6 Servlet . 1
SRV.14.2.7 ServletConfig . 1
SRV.14.2.8 ServletContext . 1

CONTENTS x

43
44
45
46
46
48
49

153
160
166
170
74
74

77
77
79
84
92
00

205
16
20

25
26
26
28
29
29
30

31

xiii
xiii
xiii
xvii
xvii
SRV.14.2.9 ServletContextAttributeEvent 1
SRV.14.2.10 ServletContextAttributeListener 1
SRV.14.2.11 ServletContextEvent . 1
SRV.14.2.12 ServletContextListener 1
SRV.14.2.13 ServletException . 1
SRV.14.2.14 ServletInputStream . 1
SRV.14.2.15 ServletOutputStream . 1
SRV.14.2.16 ServletRequest .
SRV.14.2.17 ServletRequestWrapper
SRV.14.2.18 ServletResponse .
SRV.14.2.19 ServletResponseWrapper
SRV.14.2.20 SingleThreadModel . 1
SRV.14.2.21 UnavailableException 1

SRV.15 javax.servlet.http . 1
SRV.15.1 Servlets Using HTTP Protocol 1

SRV.15.1.1 Cookie . 1
SRV.15.1.2 HttpServlet . 1
SRV.15.1.3 HttpServletRequest . 1
SRV.15.1.4 HttpServletRequestWrapper 2
SRV.15.1.5 HttpServletResponse .
SRV.15.1.6 HttpServletResponseWrapper 2
SRV.15.1.7 HttpSession . 2
SRV.15.1.8 HttpSessionActivationListener 2
SRV.15.1.9 HttpSessionAttributeListener 2
SRV.15.1.10 HttpSessionBindingEvent 2
SRV.15.1.11 HttpSessionBindingListener 2
SRV.15.1.12 HttpSessionContext . 2
SRV.15.1.13 HttpSessionEvent . 2
SRV.15.1.14 HttpSessionListener . 2
SRV.15.1.15 HttpUtils . 2

Changes since version 2.2 .ccxx
Changes in this document since version 2.2 ccxx
Changes since Public Draft .ccxx
Changes since Proposed Final Draft 1 ccxx
Changes since Proposed Final Draft 2 ccxx

SRV.A Deployment Descriptor Version 2.2 239

CONTENTS xi

9
39

53
SRV.A.1 Deployment Descriptor DOCTYPE 23
SRV.A.2 DTD . 2

SRV.B Glossary . 2

CONTENTS xii

Java

serv-

be-
im-
s
 in-

 im-
I

bout

PI
biter

ture
Preface

This document is the Java™ Servlet Specification, v2.3. The standard for the
servlet API is described here.

SRV.P.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java
lets, but if questions remain the following may be consulted:

• A reference implementation (RI) has been made available which provides a
havioral benchmark for this specification. Where the specification leaves
plementation of a particular feature open to interpretation, implementator
may use the reference implementation as a model of how to carry out the
tention of the specification.

• A compatibility test suite (CTS) has been provided for assessing whether
plementations meet the compatibility requirements of the Java Servlet AP
standard. The test results have normative value for resolving questions a
whether an implementation is standard.

• If further clarification is required, the working group for the Java servlet A
under the Java Community Process should be consulted, and is the final ar
of such issues.

Comments and feedback are welcomed, and will be used to improve fu
versions.
xiii

PREFACE

Fin

xiv

ines

rm

ha-

lop-
se are

es,

ca-

ition
SRV.P.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:

• Web server and application server vendors that want to provide servlet eng
that conform to this standard.

• Authoring tool developers that want to support web applications that confo
to this specification

• Experienced servlet authors who want to understand the underlying mec
nisms of servlet technology.

We emphasize that this specification is not a user’s guide for servlet deve
ers and is not intended to be used as such. References useful for this purpo
available from http://java.sun.com/products/servlet.

SRV.P.3 API Reference

Chapter 14, "API Details" includes the full specifications of classes, interfac
and method signatures, and their accompanying javadocTM, that define the servlet
API.

SRV.P.4 Other Java™ Platform Specifications

The following Java API specifications are referenced throughout this specifi
tion:

• Java 2 Platform, Enterprise Edition, v1.3 (J2EETM)

• JavaServer Pages™, v1.1 (JSPTM)

• Java Naming and Directory InterfaceTM (JNDI)

These specifications may be found at the Java 2 Platform,Enterprise Ed
website:http://java.sun.com/j2ee/.
al Version

Other Important References xv

op-

text

en-

he
for-
SRV.P.5 Other Important References

The following Internet specifications provide information relevant to the devel
ment and implementation of the Servlet API and standard servlet engines:

• RFC 1630 Uniform Resource Identifiers (URI)

• RFC 1738 Uniform Resource Locators (URL)

• RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax

• RFC 1808 Relative Uniform Resource Locators

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

• RFC 2045 MIME Part One: Format of Internet Message Bodies

• RFC 2046 MIME Part Two: Media Types

• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII

• RFC 2048 MIME Part Four: Registration Procedures

• RFC 2049 MIME Part Five: Conformance Criteria and Examples

• RFC 2109 HTTP State Management Mechanism

• RFC 2145 Use and Interpretation of HTTP Version Numbers

• RFC 2324 Hypertext Coffee Pot Control Protocol (HTCPCP/1.0)1

• RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

• RFC 2617 HTTP Authentication: Basic and Digest Authentication

Online versions of these RFCs are athttp://www.rfc-editor.org/.

The World Wide Web Consortium (http://www.w3.org/) is a definitive
source of HTTP related information affecting this specification and its implem
tations.

The Extensible Markup Language (XML) is used for the specification of t
Deployment Descriptors described in Chapter 13 of this specification. More in
mation about XML can be found at the following websites:

1. This reference is mostly tongue-in-cheek although most of the concepts
described in the HTCPCP RFC are relevant to all well designed web
servers.

PREFACE

Fin

xvi

your

not
nt is

53
http://java.sun.com/xml

http://www.xml.org/

SRV.P.6 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail
comments toservletapi-feedback@eng.sun.com.

Please note that due to the volume of feedback that we receive, you will
normally receive a reply from an engineer. However, each and every comme
read, evaluated, and archived by the specification team.

SRV.P.7 Acknowledgements

The formulation of this public draft is the result of the teamwork of the JSR0
expert group.
al Version

C H A P T E RSRV.1
r, that
atform
an be
ome-
ction-
igm

s the
based
s and

add-
con-
tion

and
(HTTP
cifi-
that

t in
Overview

SRV.1.1 What is a Servlet?

A servlet is a Java technology based web component, managed by a containe
generates dynamic content. Like other Java-based components, servlets are pl
independent Java classes that are compiled to platform neutral bytecode that c
loaded dynamically into and run by a Java enabled web server. Containers, s
times called servlet engines, are web server extensions that provide servlet fun
ality. Servlets interact with web clients via a request/response parad
implemented by the servlet container.

SRV.1.2 What is a Servlet Container?

The servlet container is a part of a web server or application server that provide
network services over which requests and responses are sent, decodes MIME
requests, and formats MIME based responses. A servlet container also contain
manages servlets through their lifecycle.

A servlet container can be built into a host web server, or installed as an
on component to a Web Server via that server’s native extension API. Servlet
tainers can also be built into or possibly installed into web-enabled applica
servers.

All servlet containers must support HTTP as a protocol for requests
responses, but additional request/response based protocols such as HTTPS
over SSL) may be supported. The minimum required version of the HTTP spe
cation that a container must implement is HTTP/1.0. It is strongly suggested
containers implement the HTTP/1.1 specification as well.

A Servlet Container may place security restrictions on the environmen
which a servlet executes. In a JavaTM 2 Platform, Standard Edition 1.2 (J2SETM) or
17

OVERVIEW

Fin

18

ons
form.

ively

ich

P re-

tain-
t web
the

nfig-
d re-

what
other
ith,
client

er en-
host

GI)
r API

cha-
JavaTM 2 Platform, Enterprise Edition 1.3 (J2EE) environment, these restricti
should be placed using the permission architecture defined by the Java 2 plat
For example, high-end application servers may limit the creation of aThread

object, to insure that other components of the container are not negat
impacted.

J2SE 1.2 is the minimum version of the underlying Java platform with wh
servlet containers must be built.

SRV.1.3 An Example

The following is a typical sequence of events:

1. A client (e.g., a web browser) accesses a web server and makes an HTT
quest.

2. The request is received by the web server and handed off to the servlet con
er. The servlet container can be running in the same process as the hos
server, in a different process on the same host, or on a different host from
web server for which it processes requests.

3. The servlet container determines which servlet to invoke based on the co
uration of its servlets, and calls it with objects representing the request an
sponse.

4. The servlet uses the request object to find out who the remote user is,
HTTP POST parameters may have been sent as part of this request, and
relevant data. The servlet performs whatever logic it was programmed w
and generates data to send back to the client. It sends this data back to the
via the response object.

5. Once the servlet has finished processing the request, the servlet contain
sures that the response is properly flushed, and returns control back to the
web server.

SRV.1.4 Comparing Servlets with Other Technologies

In functionality, servlets lie somewhere between Common Gateway Interface (C
programs and proprietary server extensions such as the Netscape Serve
(NSAPI) or Apache Modules.

Servlets have the following advantages over other server extension me
nisms:
al Version

Relationship to Java 2, Platform Enterprise Edition 19

ess

ng

ional
iron-
• They are generally much faster than CGI scripts because a different proc
model is used.

• They use a standard API that is supported by many web servers.

• They have all the advantages of the Java programming language, includi
ease of development and platform independence.

• They can access the large set of APIs available for the Java platform.

SRV.1.5 Relationship to Java 2, Platform Enterprise Edition

The Servlet API v2.3 is a required API of the JavaTM 2 Platform, Enterprise Edition,
v1.31. Servlet containers and servlets deployed into them must meet addit
requirements, described in the J2EE specification, for executing in a J2EE env
ment.

1. Please see the JavaTM 2 Platform, Enterprise Edition specification avail-
able athttp://java.sun.com/j2ee/

OVERVIEW

Fin

20
al Version

C H A P T E RSRV.2
ts
lass
t the

.
tance

ires
uting

ervlet

asic

are:
The Servlet Interface

The Servlet interface is the central abstraction of the servlet API. All servle
implement this interface either directly, or more commonly, by extending a c
that implements the interface. The two classes in the servlet API that implemen
Servlet interface areGenericServlet andHttpServlet. For most purposes, devel-
opers will extendHttpServlet to implement their servlets.

SRV.2.1 Request Handling Methods

The basicServlet interface defines aservice method for handling client requests
This method is called for each request that the servlet container routes to an ins
of a servlet.

The handling of concurrent requests to a web application generally requ
the web developer design servlets that can deal with multiple threads exec
within theservice method at a particular time.

Generally the web container handles concurrent requests to the same s
by concurrent execution of theservice method on different threads.

SRV.2.1.1 HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods beyond the b
Servlet interface which are automatically called by theservice method in the
HttpServlet class to aid in processing HTTP based requests. These methods

• doGet for handling HTTPGET requests

• doPost for handling HTTPPOST requests

• doPut for handling HTTPPUT requests
21

THE SERVLET INTERFACE

Fin

22

will
e
ro-

/

by
s
ng

if
nta-

pli-
ent

t.
rvlet
serv-
y

• doDelete for handling HTTPDELETE requests

• doHead for handling HTTPHEAD requests

• doOptions for handling HTTPOPTIONS requests

• doTrace for handlingHTTP TRACE requests

Typically when developing HTTP based servlets, a Servlet Developer
only concern himself with thedoGet anddoPost methods. The other methods ar
considered to be methods for use by programmers very familiar with HTTP p
gramming.

SRV.2.1.2 Additional Methods

ThedoPut anddoDelete methods allow Servlet Developers to support HTTP
1.1 clients that employ these features. ThedoHead method inHttpServlet is a
specialized form of thedoGet method that returns only the headers produced
the doGet method. ThedoOptions method responds with which HTTP method
are supported by the servlet. ThedoTrace method generates a response containi
all instances of the headers sent in theTRACE request.

In containers that support only HTTP/1.0, only thedoGet, doHead anddoPost
methods are supported, as HTTP/1.0 does not define thePUT, DELETE, OPTIONS, and
TRACE methods.

SRV.2.1.3 Conditional GET Support

TheHttpServlet interface defines thegetLastModified method to support condi-
tionalGET operations. A conditionalGET operation requests a resource be sent only
it has been modified since a specified time. In appropriate situations, impleme
tion of this method may aid efficient utilization of network resources.

SRV.2.2 Number of Instances

The servlet declaration which is part of the deployment descriptor of the web ap
cation containing the servlet, as described in Chapter SRV.13, “Deploym
Descriptor”, controls how the servlet container provides instances of the servle

For a servlet not hosted in a distributed environment (the default), the se
container must use only one instance per servlet declaration. However, for a
let implementing theSingleThreadModel interface, the servlet container ma
al Version

Servlet Life Cycle 23

uests

ed in
tance
is-

.

t a

tainer
serv-

nt

ed,
ut of

t

load-
il the

ted by
rmal
ote
instantiate multiple instances to handle a heavy request load and serialize req
to a particular instance.

In the case where a servlet was deployed as part of an application mark
the deployment descriptor as distributable, a container may have only one ins
per servlet declaration per virtual machine (VM). However, if the servlet in a d
tributable application implements theSingleThreadModel interface, the container
may instantiate multiple instances of that servlet in each VM of the container

SRV.2.2.1 Note About The Single Thread Model

The use of theSingleThreadModel interface guarantees that only one thread a
time will execute in a given servlet instance’sservice method. It is important to
note that this guarantee only applies to each servlet instance, since the con
may choose to pool such objects. Objects that are accessible to more than one
let instance at a time, such as instances ofHttpSession, may be available at any par-
ticular time to multiple servlets, including those that impleme
SingleThreadModel.

SRV.2.3 Servlet Life Cycle

A servlet is managed through a well defined life cycle that defines how it is load
instantiated and initialized, handles requests from clients, and how it is taken o
service. This life cycle is expressed in the API by theinit, service, anddestroy
methods of thejavax.servlet.Servlet interface that all servlets must implemen
directly, or indirectly through theGenericServlet or HttpServlet abstract classes.

SRV.2.3.1 Loading and Instantiation

The servlet container is responsible for loading and instantiating servlets. The
ing and instantiation can occur when the container is started, or delayed unt
container determines the servlet is needed to service a request.

When the servlet engine is started, needed servlet classes must be loca
the servlet container. The servlet container loads the servlet class using no
Java class loading facilities. The loading may be from a local file system, a rem
file system, or other network services.

After loading the Servlet class, the container instantiates it for use.

THE SERVLET INTERFACE

Fin

24

fore
can
API

lizes

tion
tion

RV.3,

ice

r a

the

ts a
op-

to
n only

ient

type
SRV.2.3.2 Initialization

After the servlet object is instantiated, the container must initialize the servlet be
it can handle requests from clients. Initialization is provided so that a servlet
read persistent configuration data, initialize costly resources (such as JDBC™
based connections), and perform other one-time activities. The container initia
the servlet instance by calling theinit method of theServlet interface with a
unique (per servlet declaration) object implementing theServletConfig interface.
This configuration object allows the servlet to access name-value initializa
parameters from the web application’s configuration information. The configura
object also gives the servlet access to an object (implementing theServletContext

interface) that describes the servlet’s runtime environment. See Chapter S
“Servlet Context” for more information about theServletContext interface.

SRV.2.3.2.1 Error Conditions on Initialization

During initialization, the servlet instance can throw anUnavailableException or a
ServletException. In this case the servlet must not be placed into active serv
and must be released by the servlet container. Thedestroy method is not called as it
is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container afte
failed initialization. The exception to this rule is when anUnavailableException

indicates a minimum time of unavailability, and the container must wait for
period to pass before creating and initializing a new servlet instance.

SRV.2.3.2.2 Tool Considerations

The triggering of static initialization methods when a tool loads and introspec
web application is to be distinguished from the calling of the init method. Devel
ers should not assume a servlet is in an active container runtime until theinit

method of theServlet interface is called. For example, a servlet should not try
establish connections to databases or Enterprise JavaBeans™ containers whe
static (class) initialization methods have been invoked.

SRV.2.3.3 Request Handling

After a servlet is properly initialized, the servlet container may use it to handle cl
requests. Requests are represented by request objects of typeServletRequest. The
servlet fills out respones to requests by calling methods of a provided object of
ServletResponse. These objects are passed as parameters to theservice method of
theServlet interface.
al Version

Servlet Life Cycle 25

re of

han-

quate

uest
s
erv-
s dis-
that

e
ool
that

priate

sts

g the
iner
In the case of an HTTP request, the objects provided by the container a
typesHttpServletRequest andHttpServletResponse.

Note that a servlet instance placed into service by a servlet container may
dle no requests during its lifetime.

SRV.2.3.3.1 Multithreading Issues

A servlet container may send concurrent requests through theservice method of
the servlet. To handle the requests the developer of the servlet must make ade
provisions for concurrent processing with multiple threads in theservice method.

An alternative for the developer is to implement theSingleThreadModel
interface which requires the container to guarantee that there is only one req
thread at a time in theservice method. A servlet container may satisfy thi
requirement by serializing requests on a servlet, or by maintaining a pool of s
let instances. If the servlet is part of a web application that has been marked a
tributable, the container may maintain a pool of servlet instances in each VM
the application is distributed across.

For servlets not implementing theSingleThreadModel interface, if the
service method (or methods such asdoGet or doPost which are dispatched to the
service method of theHttpServlet abstract class) has been defined with th
synchronized keyword, the servlet container cannot use the instance p
approach, but must serialize requests through it. It is strongly recommended
developers not synchronize theservice method (or methods dispatched to it) in
these circumstances because of detrimental effects on performance.

SRV.2.3.3.2 Exceptions During Request Handling

A servlet may throw either aServletException or anUnavailableException dur-
ing the service of a request. AServletException signals that some error occurred
during the processing of the request and that the container should take appro
measures to clean up the request.

An UnavailableException signals that the servlet is unable to handle reque
either temporarily or permanently.

If a permanent unavailability is indicated by theUnavailableException, the
servlet container must remove the servlet from service, call itsdestroy method,
and release the servlet instance.

If temporary unavailability is indicated by theUnavailableException, then
the container may choose to not route any requests through the servlet durin
time period of the temporary unavailability. Any requests refused by the conta
during this period must be returned with aSERVICE_UNAVAILABLE (503) response

THE SERVLET INTERFACE

Fin

26

l

t and

thread
t han-

bjects
.

ular
or a

a

from

le, the
en it

ay
ds to
ss.
the
status along with aRetry-After header indicating when the unavailability wil
terminate.

The container may choose to ignore the distinction between a permanen
temporary unavailability and treat allUnavailableExceptions as permanent,
thereby removing a servlet that throws anyUnavailableException from service.

SRV.2.3.3.3 Thread Safety

Implementations of the request and response objects are not guaranteed to be
safe. This means that they should only be used within the scope of the reques
dling thread.

References to the request and response objects must not be given to o
executing in other threads as the resulting behavior may be nondeterministic

SRV.2.3.4 End of Service

The servlet container is not required to keep a servlet loaded for any partic
period of time. A servlet instance may be kept active in a servlet container f
period of milliseconds, for the lifetime of the servlet container (which could be
number of days, months, or years), or any amount of time in between.

When the servlet container determines that a servlet should be removed
service, it calls thedestroy method of theServlet interface to allow the servlet to
release any resources it is using and save any persistent state. For examp
container may do this when it wants to conserve memory resources, or wh
itself is being shut down.

Before the servlet container calls thedestroy method, it must allow any
threads that are currently running in theservice method of the servlet to complete
execution, or exceed a server defined time limit.

Once thedestroy method is called on a servlet instance, the container m
not route other requests to that instance of the servlet. If the container nee
enable the servlet again, it must do so with a new instance of the servlet’s cla

After the destroy method completes, the servlet container must release
servlet instance so that it is eligible for garbage collection.
al Version

C H A P T E RSRV.3
n
an

cess.
le

 of

are
Servlet Context

SRV.3.1 Introduction to the ServletContext Interface

TheServletContext interface defines a servlet’s view of the web application withi
which the servlet is running. The Container Provider is responsible for providing
implementation of theServletContext interface in the servlet container. Using the
ServletContext object, a servlet can log events, obtain URL references to
resources, and set and store attributes that other servlets in the context can ac

A ServletContext is rooted at a known path within a web server. For examp
a servlet context could be located athttp://www.mycorp.com/catalog. All
requests that begin with the/catalog request path, known as thecontext path, are
routed to the web application associated with theServletContext.

SRV.3.2 Scope of a ServletContext Interface

There is one instance object of theServletContext interface associated with each
web application deployed into a container. In cases where the container is
distributed over many virtual machines, a web application will have an instance
theServletContext for each VM.

Servlets in a container that were not deployed as part of a web application
implicitly part of a “default” web application and have a defaultServletContext.
In a distributed container, the defaultServletContext is non-distributable and
must only exist in one VM.
27

SERVLET CONTEXT

Fin

28

 by

tup
of a

nd

s

SRV.3.3 Initialization Parameters

The following methods of theServletContext interface allow the servlet access to
context initialization parameters associated with a web application as specified
the Application Developer in the deployment descriptor:

• getInitParameter

• getInitParameterNames

Initialization parameters are used by an application developer to convey se
information. Typical examples are a webmaster’s e-mail address, or the name
system that holds critical data.

SRV.3.4 Context Attributes

A servlet can bind an object attribute into the context by name. Any attribute bou
into a context is available to any other servlet that is part of the same web
application. The following methods ofServletContext interface allow access to
this functionality:

• setAttribute

• getAttribute

• getAttributeNames

• removeAttribute

SRV.3.4.1 Context Attributes in a Distributed Container

Context attributes are local to the VM in which they were created. This prevent
ServletContext attributes from being a shared memory store in a distributed
container. When information needs to be shared between servlets running in a
distributed environment, the information should be placed into a session (See
Chapter SRV.7, “Sessions”), stored in a database, or set in an Enterprise
JavaBeansTM component.
al Version

Resources 29

nd

t of
in a

a

e

sing
f

erver.

t

ase

e as
SRV.3.5 Resources

TheServletContext interface provides direct access to the hierarchy of static
content documents that are part of the web application, including HTML, GIF, a
JPEG files, via the following methods of theServletContext interface:

• getResource

• getResourceAsStream

ThegetResource andgetResourceAsStream methods take aString with a
leading “/” as argument which gives the path of the resource relative to the roo
the context. This hierarchy of documents may exist in the server’s file system,
web application archive file, on a remote server, or at some other location.

These methods are not used to obtain dynamic content. For example, in
container supporting the JavaServer PagesTM specification1, a method call of the
form getResource("/index.jsp") would return the JSP source code and not th
processed output. See Chapter SRV.8, “Dispatching Requests” for more
information about accessing dynamic content.

The full listing of the resources in the web application can be accessed u
thegetResourcePaths(String path) method. The full details on the semantics o
this method may be found in the API documentation in this specification.

SRV.3.6 Multiple Hosts and Servlet Contexts

Web servers may support multiple logical hosts sharing one IP address on a s
This capability is sometimes referred to as "virtual hosting". In this case, each
logical host must have its own servlet context or set of servlet contexts. Servle
contexts can not be shared across virtual hosts.

SRV.3.7 Reloading Considerations

Although a Container Provider implementation of a class reloading scheme for e
of development is not required, any such implementation must ensure that all
servlets, and classes that they may use2, are loaded in the scope of a single class
loader. This requirement is needed to guarantee that the application will behav

1. The JavaServer PagesTM specification can be found athttp://
java.sun.com/products/jsp

SERVLET CONTEXT

Fin

30

tion
e

rvlet,
rvlet
t
ent is
ers.

ake

rvlet
ts of

ot
t

s

expected by the Developer. As a development aid, the full semantics of notifica
to session binding listeners should be be supported by containers for use in th
monitoring of session termination upon class reloading.

Previous generations of containers created new class loaders to load a se
distinct from class loaders used to load other servlets or classes used in the se
context. This could cause object references within a servlet context to point a
unexpected classes or objects, and cause unexpected behavior. The requirem
needed to prevent problems caused by demand generation of new class load

SRV.3.7.1 Temporary Working Directories

A temporary storage directory is required for each servlet context. Servlet
containers must provide a private temporary directory per servlet context, and m
it available via thejavax.servlet.context.tempdir context attribute. The objects
associated with the attribute must be of typejava.io.File.

The requirement recognizes a common convenience provided in many se
engine implementations. The container is not required to maintain the conten
the temporary directory when the servlet container restarts, but is required to
ensure that the contents of the temporary directory of one servlet context is n
visible to the servlet contexts of other web applications running on the servle
container.

2. An exception is system classes that the servlet may use in a different clas
loader.
al Version

CHAPTERSRV.4

t

TTP
P

t

from

ter

value

uest
mple,
The Reques

The request object encapsulates all information from the client request. In the H
protocol, this information is transmitted from the client to the server in the HTT
headers and the message body of the request.

SRV.4.1 HTTP Protocol Parameters

Request parameters for the servlet are the strings sent by the client to a servle
container as part of its request. When the request is aHttpServletRequest object,
and conditions set out below are met, the container populates the parameters
the URI query string and POST-ed data.

The parameters are stored as a set of name-value pairs. Multiple parame
values can exist for any given parameter name. The following methods of the
ServletRequest interface are available to access parameters:

• getParameter

• getParameterNames

• getParameterValues

ThegetParameterValues method returns an array ofString objects
containing all the parameter values associated with a parameter name. The
returned from thegetParameter method must be the first value in the array of
String objects returned bygetParameterValues.

Data from the query string and the post body are aggregated into the req
parameter set. Query string data is presented before post body data. For exa
if a request is made with a query string ofa=hello and a post body of
a=goodbye&a=world, the resulting parameter set would be ordereda=(hello,

goodbye, world).
31

THE REQUEST

Fin

32

e not

ill

est
be

 API,
he

g

e

Path parameters that are part of a GET request (as defined by HTTP 1.1) ar
exposed by these APIs. They must be parsed from theString values returned by the
getRequestURI method or thegetPathInfo method.

SRV.4.1.1 When Parameters Are Available

The following are the conditions that must be met before post form data w
be populated to the parameter set:

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST

3. The content type isapplication/x-www-form-urlencoded

4. The servlet has made an initial call of any of thegetParameter family of meth-
ods on the request object.

If the conditions are not met and the post form data is not included in the
parameter set, the post data must still be available to the servlet via the requ
object’s input stream. If the conditions are met, post form data will no longer
available for reading directly from the request object’s input stream.

SRV.4.2 Attributes

Attributes are objects associated with a request. Attributes may be set by the
container to express information that otherwise could not be expressed via the
or may be set by a servlet to communicate information to another servlet (via t
RequestDispatcher). Attributes are accessed with the following methods of the
ServletRequest interface:

• getAttribute

• getAttributeNames

• setAttribute

Only one attribute value may be associated with an attribute name.
Attribute names beginning with the prefixes of “java.” and “javax.” are

reserved for definition by this specification. Similarly attribute names beginnin
with the prefixes of “sun.”, and “com.sun.” are reserved for definition by Sun
Microsystems. It is suggested that all attributes placed into the attribute set b
al Version

Headers 33

y the

hods

can

ny
path
named in accordance with the reverse domain name convention suggested b
Java Programming Language Specification1 for package naming.

SRV.4.3 Headers

A servlet can access the headers of an HTTP request through the following met
of theHttpServletRequest interface:

• getHeader

• getHeaders

• getHeaderNames

ThegetHeader method returns a header given the name of the header. There
be multiple headers with the same name, e.g.Cache-Control headers, in an HTTP
request. If there are multiple headers with the same name, thegetHeader method
returns the first head in the request. ThegetHeaders method allows access to all the
header values associated with a particular header name, returning anEnumeration

of String objects.
Headers may containString representations ofint or Date data. The

following convenience methods of theHttpServletRequest interface provide
access to header data in a one of these formats:

• getIntHeader

• getDateHeader

If the getIntHeader method cannot translate the header value to anint, a
NumberFormatException is thrown. If thegetDateHeader method cannot translate
the header to aDate object, anIllegalArgumentException is thrown.

SRV.4.4 Request Path Elements

The request path that leads to a servlet servicing a request is composed of ma
important sections. The following elements are obtained from the request URI
and exposed via the request object:

1. The Java Programming Language Specification is available athttp://

java.sun.com/docs/books/jls

THE REQUEST

Fin

34

of
ise,
tarts

the

 or
 a

 the

:

• Context Path: The path prefix associated with theServletContext that this
servlet is a part of. If this context is the “default” context rooted at the base
the web server’s URL namespace, this path will be an empty string. Otherw
if the context is not rooted at the root of the server’s namespace, the path s
with a’/’ character but does not end with a’/’ character.

• Servlet Path: The path section that directly corresponds to the mapping
which activated this request. This path starts with a’/’ character except in the
case where the request is matched with the ‘/*’ pattern, in which case it is
empty string.

• PathInfo: The part of the request path that is not part of the Context Path
the Servlet Path. It is either null if there is no extra path, or is a string with
leading ‘/’.

The following methods exist in theHttpServletRequest interface to access
this information:

• getContextPath

• getServletPath

• getPathInfo

It is important to note that, except for URL encoding differences between
request URI and the path parts, the following equation is always true:

requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following

Table 1: Example Context Set Up

Context Path /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet
al Version

Path Translation Methods 35

The

for
, on a
ust

m the

d the
 the
The following behavior is observed:

SRV.4.5 Path Translation Methods

There are two convenience methods in theAPI which allow the Developer to obtain
the file system path equivalent to a particular path. These methods are:

• ServletContext.getRealPath

• HttpServletRequest.getPathTranslated

ThegetRealPath method takes aString argument and returns aString
representation of a file on the local file system to which a path corresponds.
getPathTranslated method computes the real path of thepathInfo of the request.

In situations where the servlet container cannot determine a valid file path
these methods, such as when the web application is executed from an archive
remote file system not accessible locally, or in a database, these methods m
return null.

SRV.4.6 Cookies

TheHttpServletRequest interface provides thegetCookies method to obtain an
array of cookies that are present in the request. These cookies are data sent fro
client to the server on every request that the client makes. Typically, the only
information that the client sends back as part of a cookie is the cookie name an
cookie value. Other cookie attributes that can be set when the cookie is sent to
browser, such as comments, are not typically returned.

Table 2: Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null

THE REQUEST

Fin

36

t

d by

first

the
ing
P/

tion
SRV.4.7 SSL Attributes

If a request has been transmitted over a secure protocol, such as HTTPS, this
information must be exposed via theisSecure method of theServletRequest
interface. The web container must expose the following attributes to the servle
programmer:

If there is an SSL certificate associated with the request, it must be expose
the servlet container to the servlet programmer as an array of objects of type
java.security.cert.X509Certificate and accessible via aServletRequest
attribute ofjavax.servlet.request.X509Certificate.

The order of this array is defined as being in ascending order of trust. The
certificate in the chain is the one set by the client, the next is the one used to
authenticate the first, and so on.

SRV.4.8 Internationalization

Clients may optionally indicate to a web server what language they would prefer
response be given in. This information can be communicated from the client us
theAccept-Language header along with other mechanisms described in the HTT
1.1 specification. The following methods are provided in theServletRequest

interface to determine the preferred locale of the sender:

• getLocale

• getLocales

ThegetLocale method will return the preferred locale that the client will
accept content in. See section 14.4 of RFC 2616 (HTTP/1.1) for more informa
about how theAccept-Language header must interpreted to determine the
preferred language of the client.

Table 3: Protocol Attributes

Attribute Attribute Name Java Type

cipher suite javax.servlet.request.cipher_suite String

bit size of the algo-
rithm

javax.servlet.request.key_size Integer
al Version

Request data encoding 37

hat

ing
 the

this
s null

with
r. To

be
ling

bjects
ThegetLocales method will return anEnumeration of Locale objects
indicating, in decreasing order starting with the preferred locale, the locales t
are acceptable to the client.

If no preferred locale is specified by the client, the locale returned by the
getLocale method must be the default locale for the servlet container and the
getLocales method must contain an enumeration of a singleLocale element of
the default locale.

SRV.4.9 Request data encoding

Currently, many browsers do not send a char encoding qualifier with theContent-

Type header, leaving open the determination of the character encoding for read
HTTP requests. The default encoding of a request the container uses to create
request reader and parse POST data must be “ISO-8859-1”, if none has been
specified by the client request. However, in order to indicate to the developer in
case the failure of the client to send a character encoding, the container return
from thegetCharacterEncoding method.

If the client hasn’t set character encoding and the request data is encoded
a different encoding than the default as described above, breakage can occu
remedy this situation, a new methodsetCharacterEncoding(String enc) has
been added to theServletRequest interface. Developers can override the
character encoding supplied by the container by calling this method. It must
called prior to parsing any post data or reading any input from the request. Cal
this method once data has been read will not affect the encoding.

SRV.4.10 Lifetime of the Request Object

Each request object is valid only within the scpoe of a servlet’sservice method, or
within the scope of a filter’sdoFilter method. Containers commonly recycle
request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining references to request o
outside the scope described above may lead to non-deterministic behavior.

THE REQUEST

Fin

38
al Version

C H A P T E R SRV.5
r to
to

ent
ut
The Response

The response object encapsulates all information to be returned from the serve
the client. In the HTTP protocol, this information is transmitted from the server
the client either by HTTP headers or the message body of the request.

SRV.5.1 Buffering

A servlet container is allowed, but not required, to buffer output going to the cli
for efficiency purposes. Typically servers that do buffering make it the default, b
allow servlets to specify buffering parameters.

The following methods in theServletResponse interface allow a servlet to
access and set buffering information:

• getBufferSize

• setBufferSize

• isCommitted

• reset

• resetBuffer

• flushBuffer

These methods are provided on theServletResponse interface to allow
buffering operations to be performed whether the servlet is using a
ServletOutputStream or aWriter.

ThegetBufferSize method returns the size of the underlying buffer being
used. If no buffering is being used, this method must return theint value of0
(zero).
39

THE RESPONSE

Fin

40

rvlet,
 to

must

f a
is

e

us
r the

If
.

pe:
The servlet can request a preferred buffer size by using thesetBufferSize

method. The buffer assigned is not required to be the size requested by the se
but must be at least as large as the size requested. This allows the container
reuse a set of fixed size buffers, providing a larger buffer than requested if
appropriate. The method must be called before any content is written using a
ServletOutputStream or Writer. If any content has been written, this method
must throw anIllegalStateException.

TheisCommitted method returns a boolean value indicating whether any
response bytes have been returned to the client. TheflushBuffer method forces
content in the buffer to be written to the client.

Thereset method clears data in the buffer when the response is not
committed. Headers and status codes set by the servlet prior to the reset call
be cleared as well. TheresetBuffer method clears content in the buffer if the
response is not committed without clearing the headers and status code.

If the response is committed and thereset or resetBuffer method is called,
anIllegalStateException must be thrown. The response and its associated
buffer will be unchanged.

When using a buffer, the container must immediately flush the contents o
filled buffer to the client. If this is the first data is sent to the client, the response
considered to be committed.

SRV.5.2 Headers

A servlet can set headers of an HTTP response via the following methods of th
HttpServletResponse interface:

• setHeader

• addHeader

ThesetHeader method sets a header with a given name and value. A previo
header is replaced by the new header. Where a set of header values exist fo
name, the values are cleared and replaced with the new value.

TheaddHeader method adds a header value to the set with a given name.
there are no headers already associated with the name, a new set is created

Headers may contain data that represents anint or aDate object. The
following convenience methods of theHttpServletResponse interface allow a
servlet to set a header using the correct formatting for the appropriate data ty
al Version

Convenience Methods 41

fore
be

is
set in
n the

dy

e
L
this

for

e

as
t
n to

nt
• setIntHeader

• setDateHeader

• addIntHeader

• addDateHeader

To be successfully transmitted back to the client, headers must be set be
the response is committed. Headers set after the response is committed will
ignored by the servlet container.

Servlet programmers are responsible for ensuring that theContent-Type

header is appropriately set in the response object for the content the servlet
generating. The HTTP 1.1 specification does not require that this header be
an HTTP response. Servlet containers must not set a default content type whe
servlet programmer does not set the type.

SRV.5.3 Convenience Methods

The following convenience methods exist in theHttpServletResponse interface:

• sendRedirect

• sendError

ThesendRedirect method will set the appropriate headers and content bo
to redirect the client to a different URL. It is legal to call this method with a
relative URL path, however the underlying container must translate the relativ
path to a fully qualified URL for transmission back to the client. If a partial UR
is given and, for whatever reason, cannot be converted into a valid URL, then
method must throw anIllegalArgumentException.

ThesendError method will set the appropriate headers and content body
an error message to return to the client. An optionalString argument can be
provided to thesendError method which can be used in the content body of th
error.

These methods will have the side effect of committing the response, if it h
not already been committed, and terminating it. No further output to the clien
should be made by the servlet after these methods are called. If data is writte
the response after these methods are called, the data is ignored.

If data has been written to the response buffer, but not returned to the clie
(i.e. the response is not committed), the data in the response buffer must be
cleared and replaced with the data set by these methods. If the response is
committed, these methods must throw anIllegalStateException.

THE RESPONSE

Fin

42

ctly

he

nce
that

above
SRV.5.4 Internationalization

A servlet will set the language attributes of a response with thesetLocale method
of theServletResponse interface when the client has requested a document in a
particular language, or has set a language preference. This method must corre
set theContent-Language header (along with other mechanisms described in the
HTTP/1.1 specification), to accurately communicate theLocale to the client.

For maximum benefit, thesetLocale method should be called by the
Developer before thegetWriter method of theServletResponse interface is
called. This ensures that the returnedPrintWriter is configured appropriately for
the target Locale.

Note that a call to thesetContentType method with acharset component for
a particular content type, will override the value set via a prior call tosetLocale.

The default encoding of a response is “ISO-8859-1” if none has been
specified by the servlet programmer.

SRV.5.5 Closure of Response Object

When a response is closed, the container must immediately flush all remaining
content in the response buffer to the client. The following events indicate that t
servlet has satisfied the request and that the response object is to be closed:

• The termination of theservice method of the servlet.

• The amount of content specified in thesetContentLength method of the re-
sponse has been written to the response.

• ThesendError method is called.

ThesendRedirect method is called.

SRV.5.6 Lifetime of the Response Object

Each response object is valid only within the scpoe of a servlet’sservice

method, or within the scope of a filter’sdoFilter method. Containers
commonly recycle response objects in order to avoid the performa
overhead of response object creation. The developer must be aware
maintaining references to response objects outside the scope described
may lead to non-deterministic behavior.
al Version

C H A P T E RSRV.6
the

ide a

heir

ese

sts,
 or
or a

ter,

 cus-
Filtering

Filters are a new feature of the Java servlet API in version 2.3. Filters allow on
fly transformations of payload and header information in both the request into a
resource and the response from a resource.

This chapter describes the new servlet API classes and methods that prov
lightweight framework for filtering active and static content. It describes how
filters are configured in a web application, and conventions and semantics for t
implementation.

API documentation for servlet filters is provided in the API definitions
chapters of this document. The configuration syntax for filters is given by the
document type definition (DTD) in Chapter SRV.13. The reader should use th
sources as references when reading this chapter.

SRV.6.1 What is a filter?

A filter is a reusable piece of code that can transform the content of HTTP reque
responses, and header information. Filters do not generally create a response
respond to a request as servlets do, rather they modify or adapt the requests f
resource, and modify or adapt responses from a resource.

Filters can act on dynamic or static content. For the purposes of this chap
dynamic and static contents are referred to as web resources.

Among the types of functionality available to the filter author are

• The accessing of a resource before a request to it is invoked.

• The processing of the request for a resource before it is invoked.

• The modification of request headers and data by wrapping the request in
tomized versions of the request object.
43

FILTERING

Fin

44

tom-

ore

tent

e

by
nt

ainer
be
at it
• The modification of response headers and response data by providing cus
ized versions of the response object.

• The interception of an invocation of a resource after its call.

• Actions on a servlet, on groups of servlets or static content by zero, one or m
filters in a specifiable order.

SRV.6.1.1 Examples of Filtering Components

• Authentication filters

• Logging and auditing filters

• Image conversion filters

• Data compression filters

• Encryption filters

• Tokenizing filters

• Filters that trigger resource access events

• XSL/T filters that transform XML content

• MIME-type chain filters

• Caching filters

SRV.6.2 Main Concepts

The main concepts in this filtering model are described in this section.
The application developer creates a filter by implementing the

javax.servlet.Filter interface and providing a public constructor taking no
arguments. The class is packaged in the Web Archive along with the static con
and servlets that make up the web application. A filter is declared using the
filter element in the deployment descriptor. A filter or collection of filters can b
configured for invocation by definingfilter-mapping elements in the
deployment descriptor. This is done by mapping filters to a particular servlet
the servlet’s logical name, or mapping to a group of servlets and static conte
resources by mapping a filter to a URL pattern.

SRV.6.2.1 Filter Lifecycle

After deployment of the web application, and before a request causes the cont
to access a web resource, the container must locate the list of filters that must
applied to the web resource as described below. The container must ensure th
al Version

Main Concepts 45

d its

 the
the
s.

n

t
ty
y

ve

ts.

to
se
has instantiated a filter of the appropriate class for each filter in the list, and calle
init(FilterConfig config) method. The filter may throw an exception to indicate
that it cannot function properly. If the exception is of typeUnavailableException,
the container may examine theisPermanent attribute of the exception and may
choose to retry the filter at some later time.

Only one instance perfilter declaration in the deployment descriptor is
instantiated per Java virtual machine of the container. The container provides
filter config as declared in the filter’s deployment descriptor, the reference to
ServletContext for the web application, and the set of initialization parameter

When the container receives an incoming request, it takes the first filter
instance in the list and calls itsdoFilter method, passing in theServletRequest
andServletResponse, and a reference to theFilterChain object it will use.

ThedoFilter method of a Filter will typically be implemented following this
or some subset of the following pattern

Step 1: The method examines the request’s headers.

Step 2: It may wrap the request object with a customized implementatio
of ServletRequest or HttpServletRequest in order to modify request
headers or data.

Step 3: It may wrap the response object passed in to itsdoFilter method
with a customized implementation ofServletResponse or
HttpServletResponse to modify response headers or data.

Step 4: The filter may invoke the next entity in the filter chain. The next
entity may be another filter, or if the filter making the invokation is the las
filter configured in the deployment descriptor for this chain, the next enti
is the target web resource.The invocation of the next entity is effected b
calling thedoFilter method on theFilterChain object, passing in the
request and response it was called with, or wrapped versions it may ha
created.

The filter chain’s implementation of thedoFilter method, provided by the
container, must locate the next entity in the filter chain and invoke its
doFilter method, passing in the appropriate request and response objec

Alternatively, the filter chain can block the request by not making the call
invoke the next entity leaving the filter responsible for filling out the respon
object.

Step 5: After invocation of the next filter in the chain, the filter may
examine response headers.

FILTERING

Fin

46

at

d is

con-

se in

nd

h to
m or
.
g

se

sed

the
tcher;
same
Step 6: Alternatively, the filter may have thrown an exception to indicate
an error in processing. If the filter throws anUnavailableException during
its doFilter processing, the container must not attempt continued
processing down the filter chain. It may choose to retry the whole chain
a later time if the exception is not marked permanent.

When the last filter in the chain has been invoked, the next entity accesse
the target servlet or resource at the end of the chain.

Before a filter instance can be removed from service by the container, the
tainer must first call thedestroy method on the filter to enable the filter to
release any resources and perform other cleanup operations.

SRV.6.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or respon
order that it can override behavior to perform a filtering task. In this model, the
developer not only has the ability to override existing methods on the request a
response objects, but to provide new API suited to a particular filtering task to a
filter or target web resource down the chain. For example, the developer may wis
extend the response object with higher level output objects that the output strea
the writer, such as API that allows DOM objects to be written back to the client

In order to support this style of filter the container must support the followin
requirement. When a filter invokes thedoFilter method on the container’s filter
chain implementation, the container must ensure that the request and respon
object that it passes to the next entity in the filter chain, or to the target web
resource if the filter was the last in the chain, is the same object that was pas
into thedoFilter method by the calling filter.

The same requirement of wrapper object identity applies to the case where
developer passes a wrapped request or response object into the request dispa
the request and response objects passed into the servlet invoked must be the
objects as were passed in.

SRV.6.2.3 Filter Environment

A set of initialization parameters can be associated with a filter using the init-

params element in the deployment descriptor. The names and values of these
parameters are available to the filter at runtime via thegetInitParameter and
getInitParameterNames methods on the filter’sFilterConfig object. Additionally,
theFilterConfig affords access to theServletContext of the web application for
al Version

Main Concepts 47

ool
lass

per

ler

ith

 the
the loading of resources, for logging functionality, and for storage of state in the
ServletContext’s attribute list.

SRV.6.2.4 Configuration of Filters in a Web Application

A filter is defined in the deployment descriptor using thefilter element. In this
element, the programmer declares the

• filter-name: used to map the filter to a servlet or URL

• filter-class: used by the container to identify the filter type

• init-params; initialization parameters for a filter

and optionally can specify icons, a textual description and a display name for t
manipulation. The container must instantiate exactly one instance of the Java c
defining the filter per filter declaration in the deployment descripor. Hence, two
instances of the same filter class will be instantiated by the container if the develo
makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

<filter>

<filter-name>Image Filter</filter-name>

<filter-class>com.acme.ImageServlet</filter-class>

</filter>

Once a filter has been declared in the deployment descriptor, the assemb
uses thefilter-mapping element to define servlets and static resources in the
web application to which the Filter is to be applied. Filters can be associated w
a servlet by using theservlet-name element. For example, the following maps
the Image Filter filter to the ImageServlet servlet:

<filter-mapping>

<filter-name>Image Filter</filter-name>

<servlet-name>ImageServlet</servlet-name>

</filter-mapping>

Filters can be associated with groups of servlets and static content using
url-pattern style of filter mapping:

<filter-mapping>

<filter-name>Logging Filter</filter-name>

FILTERING

Fin

48

ges

r a

-

le-

-
s to

the
e-

n

so
 <url-pattern>/*</url-pattern>

</filter-mapping>

Here the Logging Filter is applied to all the servlets and static content pa
in the web application, because every request URI matches the ‘/*’ URL pattern.

When processing afilter-mapping element using theurl-pattern style, the
container must determine whether theurl-pattern matches the request URI
using the path mapping rules defined in Chapter SRV.11, “CHAPTER.

The order the container uses in building the chain of filters to be applied fo
particular request URI is

1. Theurl-pattern matching filter-mappings in the same order that these ele
ments appear in the deployment descriptor, and then

2. Theservlet-name matching filter-mappings in the same order that these e
ments appear in the deployment descriptor.

This requirement means that the container, when receiving an incoming
request:

• Identifies the target web resource according to the rules of SRV.11.2.

• If there are filters matched by servlet name and the web resource has aserv-

let-name, the container builds the chain of filters matching in the order de
clared in the deployment descriptor. The last filter in this chain correspond
the lastservlet-name matching filter and is the filter that invokes the target
web resource.

• If there are filters usingurl-pattern matching and theurl-pattern matches
the request URI according to the rules of SRV.11.2, the container builds
chain ofurl-pattern matched filters in the same order as declared in the d
ployment descriptor. The last filter in this chain is the lasturl-pattern match-
ing filter in the deployment descriptor for this request URI. The last filter i
this chain is the filter that invokes the first filter in theservlet-name macthing
chain, or invokes the target web resource if there are none.

It is expected that high performance web containers will cache filter chains
that they do not need to compute them on a per request basis.
al Version

C H A P T E RSRV.7
uild
be
over

 the

as a

sily
Sessions

The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To b
effective web applications, it is imperative that requests from a particular client
associated with each other. Many strategies for session tracking have evolved
time, but all are difficult or troublesome for the programmer to use directly.

This specification defines a simpleHttpSession interface that allows a servlet
container to use any of several approaches to track a user’s session without
involving the Application Developer in the nuances of any one approach.

SRV.7.1 Session Tracking Mechanisms

The following sections describe approaches to tracking a user’s sessions

SRV.7.1.1 Cookies

Session tracking through HTTP cookies is the most used session tracking
mechanism and is required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the
cookie on each subsequent request to the server, unambiguously associating
request with a session. The name of the session tracking cookie must be
JSESSIONID.

SRV.7.1.2 SSL Sessions

Secure Sockets Layer, the encryption technology used in the HTTPS protocol, h
mechanism built into it allowing multiple requests from a client to be
unambiguously identified as being part of a session. A servlet container can ea
use this data to define a session.
49

SESSIONS

Fin

50

asis
RL
.
he

P

.

been
ession
ion
as
 next

re a

l.
can be
SRV.7.1.3 URL Rewriting

URL rewriting is the lowest common denominator of session tracking. When a
client will not accept a cookie, URL rewriting may be used by the server as the b
for session tracking. URL rewriting involves adding data, a session id, to the U
path that is interpreted by the container to associate the request with a session

The session id must be encoded as a path parameter in the URL string. T
name of the parameter must bejsessionid. Here is an example of a URL
containing encoded path information:

http://www.myserver.com/catalog/index.html;jsessionid=1234

SRV.7.1.4 Session Integrity

Web containers must be able to support the HTTP session while servicing HTT
requests from clients that do not support the use of cookies. To fulfil this
requirement, web containers commonly support the URL rewriting mechanism

SRV.7.2 Creating a Session

A session is considered “new” when it is only a prospective session and has not
established. Because HTTP is a request-response based protocol, an HTTP s
is considered to be new until a client “joins” it. A client joins a session when sess
tracking information has been returned to the server indicating that a session h
been established. Until the client joins a session, it cannot be assumed that the
request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session
The client does not yet know about the session• The client chooses not to join a session.

These conditions define the situation where the servlet container has no
mechanism by which to associate a request with a previous request.

A Servlet Developer must design his application to handle a situation whe
client has not, can not, or will not join a session.

SRV.7.3 Session Scope

HttpSession objects must be scoped at the application (or servlet context) leve
The underlying mechanism, such as the cookie used to establish the session,
al Version

Binding Attributes into a Session 51

es in

le to

 the
me

ved
ent

via

when

and

eout
the same for different contexts, but the object referenced, including the attribut
that object, must never be shared between contexts by the container.

To illustrate this requirement with an example: if a servlet uses the
RequestDispatcher to call a servlet in another web application, any sessions
created for and visible to the callee servlet must be different from those visib
the calling servlet.

SRV.7.4 Binding Attributes into a Session

A servlet can bind an object attribute into anHttpSession implementation by name.
Any object bound into a session is available to any other servlet that belongs to
sameServletContext and handles a request identified as being a part of the sa
session.

Some objects may require notification when they are placed into, or remo
from a session. This information can be obtained by having the object implem
theHttpSessionBindingListener interface. This interface defines the following
methods that will signal an object being bound into, or being unbound from, a
session.

• valueBound

• valueUnbound

ThevalueBound method must be called before the object is made available
thegetAttribute method of theHttpSession interface. ThevalueUnbound
method must be called after the object is no longer available via thegetAttribute

method of theHttpSession interface.

SRV.7.5 Session Timeouts

In the HTTP protocol, there is no explicit termination signal when a client is no
longer active. This means that the only mechanism that can be used to indicate
a client is no longer active is a timeout period.

The default timeout period for sessions is defined by the servlet container
can be obtained via thegetMaxInactiveInterval method of theHttpSession
interface. This timeout can be changed by the Developer using the
setMaxInactiveInterval method of theHttpSession interface. The timeout
periods used by these methods are defined in seconds. By definition, if the tim
period for a session is set to-1, the session will never expire.

SESSIONS

Fin

52

he
is first

sion
ndle

t

 in
and
SRV.7.6 Last Accessed Times

ThegetLastAccessedTime method of theHttpSession interface allows a servlet to
determine the last time the session was accessed before the current request. T
session is considered to be accessed when a request that is part of the session
handled by the servlet container.

SRV.7.7 Important Session Semantics

J2EE.7.7.1 Threading Issues

Multiple servlets executing request threads may have active access to a single
session object at the same time. The Developer has the responsibility for
synchronizing access to session resources as appropriate.

SRV.7.7.2 Distributed Environments

Within an application marked as distributable, all requests that are part of a ses
must handled by one virtual machine at a time. The container must be able to ha
all objects placed into instances of theHttpSession class using thesetAttribute or
putValue methods appropriately. The following restrictions are imposed to mee
these conditions:

• The container must accept objects that implement theSerializable interface

• The container may choose to support storage of other designated objects
theHttpSession, such as references to Enterprise JavaBean components
transactions.

• Migration of sessions will be handled by container-specific facilities.

The servlet container may throw anIllegalArgumentException if an object is
placed into the session that is notSerializable or for which specific support has
not been made available. TheIllegalArgumentException must be thrown for
objects where the container cannot support the mechanism necessary for
migration of a session storing them.

These restrictions mean that the Developer is ensured that there are no
additional concurrency issues beyond those encountered in a non-distributed
container.
al Version

Important Session Semantics 53

res
t,
ode

er

at
loper
ld

eb
ser,
art
ume
The Container Provider can ensure scalability and quality of service featu
like load-balancing and failover by having the ability to move a session objec
and its contents, from any active node of the distributed system to a different n
of the system.

If distributed containers persist or migrate sessions to provide quality of
service features, they are not restricted to using the native JVM Serialization
mechanism for serializingHttpSessions and their attributes. Developers are not
guaranteed that containers will callreadObject andwriteObject methods on
session attributes if they implement them, but are guaranteed that the
Serializable closure of their attributes will be preserved.

Containers must notify any session attributes implementing the
HttpSessionActivationListener during migration of a session. They must notify
listeners of passivation prior to serialization of a session, and of activation aft
deserialization of a session.

Application Developers writing distributed applications should be aware th
since the container may run in more than one Java virtual machine, the deve
cannot depend on static variables for storing an application state. They shou
store such states using an enterprise bean or a database.

SRV.7.7.3 Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the w
browser process and are not associated with any particular window of the brow
requests from all windows of a client application to a servlet container might be p
of the same session. For maximum portability, the Developer should always ass
that all windows of a client are participating in the same session.

SESSIONS

Fin

54
al Version

C H A P T E RSRV.8

s

nse.

a

t

Dispatching Request

When building a web application, it is often useful to forward processing of a
request to another servlet, or to include the output of another servlet in the respo
TheRequestDispatcher interface provides a mechanism to accomplish this.

SRV.8.1 Obtaining a RequestDispatcher

An object implementing theRequestDispatcher interface may be obtained from
theServletContext via the following methods:

• getRequestDispatcher

• getNamedDispatcher

ThegetRequestDispatcher method takes aString argument describing a
path within the scope of theServletContext. This path must be relative to the root
of theServletContext and begin with a ‘/’. The method uses the path to look up
servlet, wraps it with aRequestDispatcher object, and returns the resulting
object. If no servlet can be resolved based on the given path, aRequestDispatcher

is provided that returns the content for that path.
ThegetNamedDispatcher method takes aString argument indicating the

name of a servlet known to theServletContext. If a servlet is found, it is wrapped
with aRequestDispatcher object and the object returned. If no servlet is
associated with the given name, the method must returnnull.

To allowRequestDispatcher objects to be obtained using relative paths tha
are relative to the path of the current request (not relative to the root of the
ServletContext), the following method is provided in theServletRequest
interface:
55

DISPATCHING REQUESTS

Fin

56

 the
o
xt

luded

n

r

rget
• getRequestDispatcher

The behavior of this method is similar to the method of the same name in
ServletContext. The servlet container uses information in the request object t
transform the given relative path to a complete path. For example, in a conte
rooted at’/’ and a request to/garden/tools.html, a request dispatcher obtained
via ServletRequest.getRequestDispatcher("header.html") will behave exactly
like a call toServletContext.getRequestDispatcher("/garden/header.html").

SRV.8.1.1 Query Strings in Request Dispatcher Paths

TheServletContext andServletRequest methods that createRequestDispatcher
objets using path information allow the optional attachment of query string
information to the path. For example, a Developer may obtain aRequestDispatcher

by using the following code:

String path = “/raisons.jsp?orderno=5”;

RequestDispatcher rd = context.getRequestDispatcher(path);

rd.include(request, response);

Parameters specified in the query string used to create theRequestDispatcher

take precedence over other parameters of the same name passed to the inc
servlet. The parameters associated with aRequestDispatcher are scoped to apply
only for the duration of theinclude or forward call.

SRV.8.2 Using a Request Dispatcher

To use a request dispatcher, a servlet calls either theinclude method orforward
method of theRequestDispatcher interface. The parameters to these methods ca
be either the request and response arguments that were passed in via theservice

method of theServlet interface, or instances of subclasses of the request and
response wrapper classes that have been introduced for version 2.3 of the
specification. In the latter case, the wrapper instances must wrap the request o
response objects that the container passed into theservice method.

The Container Provider must ensure that the dispatch of the request to a ta
servlet occurs in the same thread of the same VM as the original request.
al Version

The Include Method 57

t

e

ts

d.

data

n

st

ect
SRV.8.3 The Include Method

Theinclude method of theRequestDispatcher interface may be called at any time.
The target servlet of theinclude method has access to all aspects of the reques
object, but its use of the response object is more limited:

It can only write information to theServletOutputStream or Writer of the
response object and commit a response by writing content past the end of th
response buffer, or by explicitly calling theflushBuffer method of the
ServletResponse interface. It cannot set headers or call any method that affec
the headers of the response. Any attempt to do so must be ignored.

SRV.8.3.1 Included Request Parameters

Except for servlets obtained by using thegetNamedDispatcher method, a servlet
being used from within aninclude has access to the path by which it was invoke
The following request attributes are set:

javax.servlet.include.request_uri

javax.servlet.include.context_path

javax.servlet.include.servlet_path

javax.servlet.include.path_info

javax.servlet.include.query_string

These attributes are accessible from the included servlet via thegetAttribute

method on the request object.
If the included servlet was obtained by using thegetNamedDispatcher

method these attributes are not set.

SRV.8.4 The Forward Method

Theforward method of theRequestDispatcher interface may be called by the
calling servlet only when no output has been committed to the client. If output
exists in the response buffer that has not been committed, the content must be
cleared before the target servlet’sservice method is called. If the response has bee
committed, anIllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet mu
reflect the path used to obtain theRequestDispatcher.

The only exception to this is if theRequestDispatcher was obtained via the
getNamedDispatcher method. In this case, the path elements of the request obj
must reflect those of the original request.

DISPATCHING REQUESTS

Fin

58

tainer.

g

or a

ion
Before theforward method of theRequestDispatcher interface returns, the
response content must be sent and committed, and closed by the servlet con

SRV.8.4.1 Query String

The request dispatching mechanism is responsible for aggregating query strin
parameters when forwarding or including requests.

SRV.8.5 Error Handling

If the servlet that is the target of a request dispatcher throws a runtime exception
checked exception of typeServletException or IOException, it should be
propagated to the calling servlet. All other exceptions should be wrapped as
ServletExceptions and the root cause of the exception set to the original except
before being propagated.
al Version

C H A P T E RSRV.9
ation

ne

mal

eb
Web Applications

A web application is a collection of servlets, html pages, classes, and other
resources that make up a complete application on a web server. The web applic
can be bundled and run on multiple containers from multiple vendors.

SRV.9.1 Web Applications Within Web Servers

A web application is rooted at a specific path within a web server. For
example, a catalog application could be located athttp://www.mycorp.com/

catalog. All requests that start with this prefix will be routed to the
ServletContext which represents the catalog application.

A servlet container can establish rules for automatic generation of web
applications. For example a~user/ mapping could be used to map to a web
application based at/home/user/public_html/.

By default, an instance of a web application must run on one VM at any o
time. This behavior can be overridden if the application is marked as
“distributable” via its deployment descriptor. An application marked as
distributable must obey a more restrictive set of rules than is required of a nor
web application. These rules are set out throughout this specification.

SRV.9.2 Relationship to ServletContext

The servlet container must enforce a one to one correspondence between a w
application and aServletContext. A ServletContext object provides a servlet
with its view of the application.
59

WEB APPLICATIONS

Fin

60

r.

in

is
For

o

tion

two
ests

ict
SRV.9.3 Elements of a Web Application

A web application may consist of the following items:

• Servlets

• JSPTM Pages1

• Utility Classes

• Static documents (html, images, sounds, etc.)

• Client side Java applets, beans, and classes

• Descriptive meta information which ties all of the above elements togethe

SRV.9.4 Deployment Hierarchies

This specification defines a hierarchical structure used for deployment and
packaging purposes that can exist in an open file system, in an archive file, or
some other form. It is recommended, but not required, that servlet containers
support this structure as a runtime representation.

SRV.9.5 Directory Structure

A web application exists as a structured hierarchy of directories. The root of th
hierarchy serves as the document root for files that are part of the application.
example, for a web application with the context path/catalog in a web container,
theindex.html file at the base of the web application hierarchy can be served t
satisfy a request from/catalog/index.html. The rules for matching URLs to
context path are laid out in Chapter SRV.11. Since the context path of an applica
determines the URL namespace of the contents of the web application, web
containers must reject web applications defining a context path could cause
potential conflicts in this URL namespace. This may occur, for example, by
attempting to deploy a second web application with the same context path, or
web applications where one context path is a substring of the other. Since requ
are matched to resources case sensitively, this determination of potential confl
must be performed case sensitively as well.

1. See the JavaServer Pages specification available fromhttp://

java.sun.com/products/jsp.
al Version

Directory Structure 61

c
, he

er

s

web
hive
A special directory exists within the application hierarchy named “WEB-INF”.
This directory contains all things related to the application that aren’t in the
document root of the application. TheWEB-INF node is not part of the public
document tree of the application. No file contained in theWEB-INF directory may
be served directly to a client by the container. However, the contents of theWEB-

INF directory are visible to servlet code using thegetResource and
getResourceAsStream method calls on theServletContext. Hence, if the
Application Developer needs access, from servlet code, to application specifi
configuration information that he does not wish to be exposed to the web client
may place it under this directory. Since requests are matched to resource
mappings case-sensitively, client requests for ‘/WEB-INF/foo’, ‘ /WEb-iNf/foo’,
for example, should not result in contents of the web application located und/

WEB-INF being returned, nor any form of directory listing thereof.
The contents of theWEB-INF directory are:

• The /WEB-INF/web.xml deployment descriptor.

• The /WEB-INF/classes/ directory for servlet and utility classes. The classe
in this directory must be available to the application class loader.

• The /WEB-INF/lib/*.jar area for Java ARchive files. These files contain
servlets, beans, and other utility classes useful to the web application. The
application class loader must be able to load classes from any of these arc
files.

The web application classloader must load classes from theWEB-INF/ classes
directory first, and then from library JARs in theWEB-INF/lib directory.

SRV.9.5.1 Example of Application Directory Structure

The following is a listing of all the files in a sample web application:

/index.html

/howto.jsp

/feedback.jsp

/images/banner.gif

/images/jumping.gif

/WEB-INF/web.xml

/WEB-INF/lib/jspbean.jar

/WEB-INF/classes/com/mycorp/servlets/MyServlet.class

/WEB-INF/classes/com/mycorp/util/MyUtils.class

WEB APPLICATIONS

Fin

62

) file
king

est,

or”):

 will
on
d

the

eb

able,
SRV.9.6 Web Application Archive File

Web applications can be packaged and signed into a Web ARchive format (war
using the standard Java Archive tools. For example, an application for issue trac
might be distributed in an archive file calledissuetrack.war.

When packaged into such a form, aMETA-INF directory will be present which
contains information useful to Java Archive tools. This directory must not be
directly served as content by the container in response to a web client’s requ
though its contents are visible to servlet code via thegetResource and
getResourceAsStream calls on theServletContext.

SRV.9.7 Web Application Deployment Descriptor

The following are types of configuration and deployment information in the web
application deployment descriptor (see Chapter SRV.13, “Deployment Descript

• ServletContext Init Parameters

• Session Configuration

• Servlet / JSP Definitions

• Servlet / JSP Mappings

• MIME Type Mappings

• Welcome File list

• Error Pages

• Security

SRV.9.7.1 Dependencies On Extensions

When a number of applications make use of the same code or resources, they
typically be installed as library files in the container. These files are often comm
or standard APIs that can be used without portability being sacrificed. Files use
only by one, or a few, applications will be made available for access as part of
web application.

Application developers need to know what extensions are installed on a w
container, and containers need to know what dependencies on such libraries
servlets in a WAR may have, in order to preserve portability.

Web containers are recommended to have a mechanism by which web
applications can learn what JAR files containing resources and code are avail
al Version

Replacing a Web Application 63

.
. In

 at

essed

his

e

ader
sses.
 so
e to

s in
and for making them available to the application. Containers should provide a
convenient procedure for editing and configuring library files or extensions.

It is recommended that Application developers provide aMETA-INF/

MANIFEST.MF entry in the WAR file listing extensions, if any, needed by the WAR
The format of the manifest entry should follow standard JAR manifest format
expressing dependencies on extensions installed on the web container, the
manifest entry should follow the specification for standard extensions defined
http://java.sun.com/j2se/1.3/docs/guide/extensions/versioning.html.

Web Containers should be able to recognize declared dependencies expr
in the manifest entry of any of the library JARs under theWEB-INF/lib entry in a
WAR. If a web container is not able to satisfy the dependencies declared in t
manner, it should reject the application with an informative error message.

SRV.9.7.2 Web Application Classloader

The classloader that a container uses to load a servlet in a WAR must allow th
developer to load any resources contained in library JARs within the WAR
following normal J2SE semantics usinggetResource. It must not allow the WAR to
override J2SE or Java servlet API classes. It is further recommended that the lo
not allow servlets in the WAR access to the web container’s implementation cla

It is recommended also that the application class loader be implemented
that classes and resources packaged within the WAR are loaded in preferenc
classes and resources residing in container-wide library JARs.

SRV.9.8 Replacing a Web Application

A server should be able to replace an application with a new version without
restarting the container. When an application is replaced, the container should
provide a robust method for preserving session data within that application.

SRV.9.9 Error Handling

SRV.9.9.1 Request Attributes

A web application must be able to specify that when errors occur other resource
the application are used. The specification of these resources is done in the
deployment descriptor.

WEB APPLICATIONS

Fin

64

ing
ect
error

n

of

lient
rror
ned
n the
e

e
turns

est:
If the location of the error handler is a servlet or a JSP page, the request
attributes in Table SRV.9-1 must be set.

These attributes allow the servlet to generate specialized content depend
on the status code, the exception type, the error message, the exception obj
propagated, and the URI of the request processed by the servlet in which the
occurred (as determined by thegetRequestURI call), and the logical name of the
servlet in which the error occurred.

With the introduction of the exception object to the attributes list for versio
2.3 of this specification, the exception type and error message attributes are
redundant. They are retained for backwards compatibility with earlier versions
the API.

SRV.9.9.2 Error Pages

To allow developers to customize the appearance of content returned to a web c
when a servlet generates an error, the deployment descriptor defines a list of e
page descriptions. The syntax allows the configuration of resources to be retur
by the container either when a servlet sets a status code to indicate an error o
reponse, or if the servlet generates an exception or error that propogates to th
container.

If a status code indicating an error is set on the response, the container
consults the list of error page declarations for the web application that use th
status-code syntax and attempts a match. If there is a match, the container re
the resource as indicated by the location entry.

A servlet may throw the following exceptions during processing of a requ

Table SRV.9-1Request Attributes and their types

Request Attributes Type

javax.servlet.error.status_code java.lang.Integer

javax.servlet.error.exception_type java.lang.Class

javax.servlet.error.message java.lang.String

javax.servlet.error.exception java.lang.Throwable

javax.servlet.error.request_uri java.lang.String

javax.servlet.error.servlet_name java.lang.String
al Version

Welcome Files 65

 the

d in

y the
r
tions,

rly,

cur in

nism
e is set

ered
is a
d to

A

• runtime exceptions or errors

• ServletExceptions or subclasses thereof

• IOExceptions or subclasses thereof

The web application may have declared error pages using theexception-type

element. In this case the container matches the exception type by comparing
exception thrown with the list of error-page definitions that use theexception-

type element. A match results in the container returning the resource indicate
the location entry. The closest match in the class heirarchy wins.

If no error-page declaration containing anexception-type fits using the
class-heirarchy match, and the exception thrown is aServletException or
subclass thereof, the container extracts the wrapped exception, as defined b
ServletException.getRootCause method. A second pass is made over the erro
page declarations, again attempting the match against the error page declara
but using the wrapped exception instead.

Error-page declarations using theexception-type element in the deployment
descriptor must be unique up to the class name of the exception-type. Simila
error-page declarations using thestatus-code element must be unique in the
deployment descriptor up to the status code.

The error page mechanism described does not intervene when errors oc
servlets invoked using theRequestDispatcher. In this way, a servlet using the
RequestDispatcher to call another servlet has the opportunity to handle errors
generated in the servlet it calls.

If a servlet generates an error that is not handled by the error page mecha
as described above, the container must ensure the status code of the respons
to status code 500.

SRV.9.10 Welcome Files

Web Application developers can define an ordered list of partial URIs called
welcome files in the web application deployment descriptor. The deployment
descriptor syntax for the list is described in the web application deployment
descriptor DTD.

The purpose of this mechanism is to allow the deployer to specify an ord
list of partial URIs for the container to use for appending to URIs when there
request for a URI that corresponds to a directory entry in the WAR not mappe
a web component. This kind of request is known as a valid partial request.

The use for this facility is made clear by the following common example:
welcome file of ‘index.html’ can be defined so that a request to a URL like

WEB APPLICATIONS

Fin

66

t
ome

nt

 first

er
this
er

e

host:port/webapp/directory where ‘directory’ is an entry in the WAR that is
not mapped to a servlet or JSP page is returned to the client as ‘host:port/

webapp/directory/index.html’.
If a web container receives a valid partial request, the web container mus

examine the welcome file list defined in the deployment descriptor. The welc
file list is an ordered list of partial URLs with no trailing or leading /. The web
server must append each welcome file in the order specified in the deployme
descriptor to the partial request and check whether a resource in the WAR is
mapped to that request URI. The web container must send the request to the
resource in the WAR that matches.

If no matching welcome file is found in the manner described, the contain
may handle the request in a manner it finds suitable. For some configurations
may mean invoking a default file servlet, or returning a directory listing. For oth
configurations it may return a 404 response.

Consider a web application where

• The deployment descriptor listsindex.html, anddefault.jsp as its welcome
files.

• Servlet A is an exact mapping to/foo/bar

The static content in the WAR is as follows

/foo/index.html

/foo/default.html

/foo/orderform.html

/foo/home.gif

/catalog/default.jsp

/catalog/products/shop.jsp

/catalog/products/register.jsp

• A request URI of/foo or /foo/ will be returned as/foo/index.html

• A request URI of/catalog/ will be returned as/catalog/default.jsp

• A request URI of/catalog/index.html will cause a 404 not found

• A request URI of/catalog/products/ may cause a 404 not found, may caus
a directory listing ofshop.jsp and/orregister.jsp, or other behavior suitable
for the container.
al Version

Web Application Environment 67

ws
it

has

e

eb
iner

r

ade
er.

h a
are
SRV.9.11 Web Application Environment

The JavaTM 2 Platform, Enterprise Edition defines a naming environment that allo
applications to easily access resources and external information without explic
knowledge of how the external information is named or organized.

As servlets are an integral component type of J2EE technology, provision
been made in the web application deployment descriptor for specifying
information allowing a servlet to obtain references to resources and enterpris
beans. The deployment elements that contain this information are:

• env-entry

• ejb-ref

• ejb-local-ref

• resource-ref

• resource-env-ref

These developer uses these elements describe certain objects that the w
application requires to be registered in the JNDI namespace in the web conta
at runtime.

The requirements of the J2EE environment with regards to setting up the
environment are described in Chapter J2EE.5 of the JavaTM 2 Platform, Enterprise
Edition v 1.3 specification2. Servlet containers that are not part of a J2EE
technology compliant implementation are encouraged, but not required, to
implement the application environment functionality described in the J2EE
specification. If they do not implement the facilities required to support this
environment, upon deploying an application that relies on them, the containe
should provide a warning.

Servlet containers that are part of a J2EE technology compliant
implementation are required to support this syntax and should consult the JavaTM 2
Platform, Enterprise Edition v 1.3 specification for more details.

Such servlet containers must support lookups of such objects and calls m
to those objects when performed on a thread managed by the servlet contain

Such servlet containers should support this behavior when performed on
threads created by the developer, but are not currently required to do so. Suc
requirement will be added in the next version of this specification. Developers

2. The J2EE specification is available athttp://java.sun.com/j2ee

WEB APPLICATIONS

Fin

68

 non-
cautioned that depending on this capability for application-created threads is
portable.
al Version

C H A P T E RSRV.10
he
ver

 web

et
er at

ion
quests

he
ans
Application Lifecycle Events

SRV.10.1 Introduction

Support for application level events is new in version 2.3 of this specification. T
application events facility gives the web application developer greater control o
interactions with theServletContext andHttpSession objects, allows for better
code factorization, and increases efficiency in managing the resources that the
application uses.

SRV.10.2 Event Listeners

Application event listeners are classes that implement one or more of the servl
event listener interfaces. They are instantiated and registered in the web contain
the time of the deployment of the web application. They are provided by the
developer in the WAR.

Servlet event listeners support event notifications for state changes in the
ServletContext andHttpSession objects. Servlet context listeners are used to
manage resources or state held at a VM level for the application. HTTP sess
listeners are used to manage state or resources associated with a series of re
made into a web application from the same client or user.

There may be multiple listener classes listening to each event type, and t
developer may specify the order in which the container invokes the listener be
for each event type.

SRV.10.2.1 Event Types and Listener Interfaces

Events types and the listener interfaces used to monitor them are shown inTable
SRV.10-1.
69

APPLICATION LIFECYCLE EVENTS

Fin

70

ining
 a

ion

ity in

eb
d.
For details of the API, refer to the API reference in Chapter SRV.14 and
Chapter SRV.15.

SRV.10.2.2 An Example of Listener Use

To illustrate a use of the event scheme, consider a simple web application conta
a number of servlets that make use of a database. The developer has provided
servlet context listener class for management of the database connection.

1. When the application starts up, the listener class is notified. The applicat
logs on to the database, and stores the connection in the servlet context.

2. Servlets in the application access the connection as needed during activ
the web application.

3. When the web server is shut down, or the application is removed from the w
server, the listener class is notified and the database connection is close

Table SRV.10-1 Events and Listener Interfaces

Event Type Description Listener Interface

Servlet Context
Events

Lifecycle The servlet context has
just been created and is
available to service its
first request, or the serv-
let context is about to be
shut down

javax.servlet.ServletContextL
istener

Changes to attributes Attributes on the servlet
context have been added,
removed, or replaced.

javax.servlet.ServletContextA
ttributesListener

Http Session Events

Lifecycle An HttpSession has been
created, invalidated, or
timed out

javax.servlet.http.HttpSessio
nListener

Changes to attributes Attributes have been
added, removed, or
replaced on an HttpSes-
sion

javax.servlet.HttpSessionAttr
ibutesListener
al Version

Listener Class Configuration 71

e or
ve a
 the

g the
be

event
eb
ment

tions
rs.
ers
SRV.10.3 Listener Class Configuration

SRV.10.3.1 Provision of Listener Classes

The developer of the web application provides listener classes implementing on
more of the four listener classes in the servlet API. Each listener class must ha
public constructor taking no arguments. The listener classes are packaged into
WAR, either under theWEB-INF/classes archive entry, or inside a JAR in theWEB-
INF/lib directory.

SRV.10.3.2 Deployment Declarations

Listener classes are declared in the web application deployment descriptor usin
listener element. They are listed by class name in the order in which they are to
invoked.

SRV.10.3.3 Listener Registration

The web container creates an instance of each listener class and registers it for
notifications prior to the processing of the first request by the application. The w
container registers the listener instances according to the interfaces they imple
and the order in which they appear in the deployment descriptor. During web
application execution listeners are invoked in the order of their registration.

SRV.10.3.4 Notifications At Shutdown

On application shutdown, listeners are notified in reverse order to their declara
with notifications to session listeners preceeding notifications to context listene
Session listeners must be notified of session invalidations prior to context listen
being notified of application shutdown.

SRV.10.4 Deployment Descriptor Example

The following example is the deployment grammar for registering two servlet
context lifecycle listeners and anHttpSession listener.

Suppose thatcom.acme.MyConnectionManager andcom.acme.
MyLoggingModule both implementjavax.servlet.ServletContextListener, and
thatcom.acme.MyLoggingModule additionally implements
javax.servlet.HttpSessionListener. Also the developer wants

APPLICATION LIFECYCLE EVENTS

Fin

72

eb
he

est is

are
.

vlet

.

com.acme.MyConnectionManager to be notified of servlet context lifecycle events
beforecom.acme.MyLoggingModule. Here is the deployment descriptor for this
application:

<web-app>
<display-name>MyListeningApplication</display-name>

 <listener>

<listener-class>com.acme.MyConnectionManager</listener-

class>

 </listener>

<listener>

 <listener-class>com.acme.MyLoggingModule</listener-class>

 </listener>

 <servlet>

<display-name>RegistrationServlet</display-name>

...etc

</servlet>

</web-app>

SRV.10.5 Listener Instances and Threading

The container is required to complete instantiation of the listener classes in a w
application prior to the start of execution of the first request into the application. T
container must maintain a reference to each listener instance until the last requ
serviced for the web application.

Attribute changes toServletContext andHttpSession objects may occur
concurrently. The container is not required to synchronize the resulting
notifications to attribute listener classes. Listener classes that maintain state
responsible for the integrity of the data and should handle this case explicitly

SRV.10.6 Distributed Containers

In distributed web containers,HttpSession instances are scoped to the particluar
VM servicing session requests, and theServletContext object is scoped to the web
container’s VM. Distributed containers are not required to propogate either ser
context events orHttpSession events to other VMs. Listener class instances are
scoped to one per deployment descriptor declaration per Java virtual machine
al Version

Session Events 73

web
ame
nent
SRV.10.7 Session Events

Listener classes provide the developer with a way of tracking sessions within a
application. It is often useful in tracking sessions to know whether a session bec
invalid because the container timed out the session, or because a web compo
within the application called theinvalidate method. The destinction may be
determined indirectly using listeners and theHTTPSession API methods.

APPLICATION LIFECYCLE EVENTS

Fin

74
al Version

C H A P T E RSRV.11

ts

ers

tion

URL

g the

est
in

the

ne

-
s
-

Mapping Requests to Servle

The mapping techniques described in this chapter are required for web contain
mapping client requests to servlets.1

SRV.11.1 Use of URL Paths

Upon receipt of a client request, the web container determines the web applica
to which to forward it. The web application selected must have the the longest
context path that matches the start of the request URL. The matched part of the
is the context path when mapping to servlets.

The web container next must locate the servlet to process the request usin
path mapping procedure described below:

The path used for mapping to a servlet is the request URL from the requ
object minus the context path. The URL path mapping rules below are used
order. The first successful match is used with no further matches attempted:

1. The container will try to find an exact match of the path of the request to
path of the servlet. A successful match selects the servlet.

2. The container will recursively try to match the longest path-prefix: This is do
by stepping down the path tree a directory at a time, using the’/’ character as
a path separator. The longest match determines the servlet selected.

1. Previous versions of this specification made use of these mapping tech
niques a suggestion rather than a requirement, allowing servlet container
to each have their different schemes for mapping client requests to serv
lets.
75

MAPPING REQUESTS TO SERVLETS

Fin

76

ion.

will
ault"

fine

e
text

plicit
es
3. If the last segment in the URL path contains an extension (e.g..jsp), the serv-
let container will try to match a servlet that handles requests for the extens
An extension is defined as the part of the last segment after the last’.’ char-
acter.

4. If neither of the previous three rules result in a servlet match, the container
attempt to serve content appropriate for the resource requested. If a "def
servlet is defined for the application, it will be used.

The container must use case-sensitive string comparisons for matching.

SRV.11.2 Specification of Mappings

In the web application deployment descriptor, the following syntax is used to de
mappings:

• A string beginning with a‘ /’ character and ending with a‘ /*’ postfix is used
for path mapping.

• A string beginning with a‘ *.’ prefix is used as an extension mapping.

• A string containing only the’ /’ character indicates the "default" servlet of th
application. In this case the servlet path is the request URI minus the con
path and the path info is null.

• All other strings are used for exact matches only.

SRV.11.2.1 Implicit Mappings

If the container has an internal JSP container, the*.jsp extension is mapped to it,
allowing JSP pages to be executed on demand. This mapping is termed an im
mapping. If a*.jsp mapping is defined by the web application, its mapping tak
precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as
explicit mappings take precedence. For example, an implicit mapping of
*.shtml could be mapped to include functionality on the server.
al Version

Specification of Mappings 77
SRV.11.2.2 Example Mapping Set

Consider the following set of mappings:

The following behavior would result:

Note that in the case of/catalog/index.html and/catalog/racecar.bop, the
servlet mapped to “/catalog” is not used because the match is not exact.

Table SRV.11-1Example Set of Maps

path pattern servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

Table SRV.11-2Incoming Paths applied to Example Maps

incoming path servlet handling request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html “default” servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

MAPPING REQUESTS TO SERVLETS

Fin

78
al Version

C H A P T E RSRV.12
ise
t.

be
f the

ents.
s

e as

ese
ch an

vlet
nts
Security

Web applications are created by Application Developers who give, sell, or otherw
transfer the application to a Deployer for installation into a runtime environmen
Application Developers need to communicate to Deployers how the security is to
set up for the deployed application. This is accomplished declaratively by use o
deployment descriptors mechanism.

This chapter describes deployment representations for security requirem
Similarly to web application directory layouts and deployment descriptors, thi
section does not describe requirements for runtime representations. It is
recommended, however, that containers implement the elements set out her
part of their runtime representations.

SRV.12.1 Introduction

A web application contains resources that can be accessed by many users. Th
resources often traverse unprotected, open networks such as the Internet. In su
environment, a substantial number of web applications will have security
requirements.

Although the quality assurances and implementation details may vary, ser
containers have mechanisms and infrastructure for meeting these requireme
that share some of the following characteristics:
79

SECURITY

Fin

80

n-
for

-
ing

od-

n

form
r

. At
ce

n
urity
• Authentication: The means by which communicating entities prove to one a
other that they are acting on behalf of specific identities that are authorized
access.

• Access control for resources:The means by which interactions with resourc
es are limited to collections of users or programs for the purpose of enforc
integrity, confidentiality, or availability constraints.

• Data Integrity: The means used to prove that information has not been m
ified by a third party while in transit.

• Confidentiality or Data Privacy: The means used to ensure that informatio
is made available only to users who are authorized to access it.

SRV.12.2 Declarative Security

Declarative security refers to the means of expressing an application’s security
structure, including roles, access control, and authentication requirements in a
external to the application. The deployment descriptor is the primary vehicle fo
declarative security in web applications.

The Deployer maps the application’s logical security requirements to a
representation of the security policy that is specific to the runtime environment
runtime, the servlet container uses the security policy representation to enfor
authentication and authorization.

The security model applies to the static content part of the web applicatio
and to servlets within the application that are requested by the client. The sec
model does not apply when a servlet uses theRequestDispatcher to invoke a
static resource or servlet using aforward or an include.

SRV.12.3 Programmatic Security

Programmatic security is used by security aware applications when declarative
security alone is not sufficient to express the security model of the application.
Programmatic security consists of the following methods of the
HttpServletRequest interface:
al Version

Programmatic Security 81

n

. The

e

rity

fault
• getRemoteUser

• isUserInRole

• getUserPrincipal

ThegetRemoteUser method returns the user name the client used for
authentication. TheisUserInRole method determines if a remote user is in a
specified security role. ThegetUserPrincipal method determines the principal
name of the current user and returns ajava.security.Principal object. These
APIs allow servlets to make business logic decisions based on the informatio
obtained.

If no user has been authenticated, thegetRemoteUser method returnsnull, the
isUserInRole method always returnsfalse, and thegetUserPrincipal method
returnsnull.

TheisUserInRole method expects aString user role-name parameter. A
security-role-ref element should be declared in the deployment descriptor
with arole-name sub-element containing the rolename to be passed to the
method. Asecurity-role element should contain a role-link sub-element
whose value is the name of the security role that the user may be mapped into
container uses the mapping ofsecurity-role-ref to security-role when
determining the return value of the call.

For example, to map the security role reference "FOO" to the security rol
with role-name "manager" the syntax would be:

<security-role-ref>

<role-name>FOO</role-name>

<role-link>manager</manager>

</security-role-ref>

In this case if the servlet called by a user belonging to the "manager" secu
role made the API callisUserInRole("FOO") the result would be true.

If no security-role-ref element matching asecurity-role element has
been declared, the container must default to checking therole-name element

argument against the list ofsecurity-role elements for the web application. The
isUserInRole method references the list to determine whether the caller is
mapped to a security role. The developer must be aware that the use of this de
meachism may limit the flexibility in changing rolenames in the application
wihout having to recompile the servlet making the call.

SECURITY

Fin

82

er
er to

s of

nvi-
d
n-
been

licy
d
n-
s

he

server
ng
SRV.12.4 Roles

A security role is a logical grouping of users defined by the Application Develop
or Assembler. When the application is deployed, roles are mapped by a Deploy
principals or groups in the runtime environment.

A servlet container enforces declarative or programmatic security for the
principal associated with an incoming request based on the security attribute
the principal. This may happen in either of the following ways:

1. A deployer has mapped a security role to a user group in the operational e
ronment. The user group to which the calling principal belongs is retrieve
from its security attributes. The principal is in the security role only if the pri
cipal’s user group matches the user group to which the security role has
mapped by the deployer.

2. A deployer has mapped a security role to a principal name in a security po
domain. In this case, the principal name of the calling principal is retrieve
from its security attributes. The principal is in the security role only if the pri
cipal name is the same as a principal name to which the security role wa
mapped.

SRV.12.5 Authentication

A web client can authenticate a user to a web server using one of the following
mechanisms:

• HTTP Basic Authentication

• HTTP Digest Authentication

• HTTPS Client Authentication

• Form Based Authentication

SRV.12.5.1 HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is t
authentication mechanism defined in the HTTP/1.0 specification. A web server
requests a web client to authenticate the user. As part of the request, the web
passes therealm(a string) in which the user is to be authenticated. The realm stri
of Basic Authentication does not have to reflect any particular security policy
al Version

Authentication 83

r. The

rds
d.
rt
ocol

ser
ed by

the

vlet

r’s
m
and

rm
nd a

hecks
y to
to it is

nd

rd

the
domain (confusingly also referred to as a realm). The web client obtains the
username and the password from the user and transmits them to the web serve
web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwo
are sent in simple base64 encoding, and the target server is not authenticate
Additional protection can alleviate some of these concerns: a secure transpo
mechanism (HTTPS), or security at the network level (such as the IPSEC prot
or VPN strategies) is applied in some deployment scenarios.

SRV.12.5.2 HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a u
based on a username and a password. However the authentication is perform
transmitting the password in an encrypted form which is much more secure than
simple base64 encoding used by Basic Authentication, e.g. HTTPS Client
Authentication. As Digest Authentication is not currently in widespread use, ser
containers are encouraged but not required to support it.

SRV.12.5.3 Form Based Authentication

The look and feel of the “login screen” cannot be varied using the web browse
built-in authentication mechanisms. This specification introduces a required for
based authentication mechanism which allows a Developer to control the look
feel of the login screens.

The web application deployment descriptor contains entries for a login fo
and error page. The login form must contain fields for entering a username a
password. These fields must be namedj_username andj_password, respectively.

When a user attempts to access a protected web resource, the container c
the user’s authentication. If the user is authenticated and possesses authorit
access the resource, the requested web resource is activated and a reference
returned. If the user is not authenticated, all of the following steps occur:

1. The login form associated with the security constraint is sent to the client a
the URL path triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and passwo
fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from

SECURITY

Fin

84

re-

see

ored

on

rget
ese

level
nt

ent.

gin

er

L

al
sful

ion,
the
form.

5. If authentication fails, the error page is returned using either a forward or a
direct, and the status code of the response is set to 401.

6. If authentication succeeds, the authenticated user’s principal is checked to
if it is in an authorized role for accessing the resource.

7. If the user is authorized, the client is redirected to the resource using the st
URL path.

The error page sent to a user that is not authenticated contains informati
about the failure.

Form Based Authentication has the same lack of security as Basic
Authentication since the user password is transmitted as plain text and the ta
server is not authenticated. Again additional protection can alleviate some of th
concerns: a secure transport mechanism (HTTPS), or security at the network
(such as the IPSEC protocol or VPN strategies) is applied in some deployme
scenarios.

J2EE.12.5.3.1 Login Form Notes

Form based login and URL based session tracking can be problematic to implem
Form based login should be used only when sessions are being maintained by
cookies or by SSL session information.

In order for the authentication to proceed appropriately, the action of the lo
form must always bej_security_check. This restriction is made so that the login
form will work no matter which resource it is for, and to avoid requiring the serv
to specify the action field of the outbound form.

Here is an example showing how the form should be coded into the HTM
page:

<form method=”POST” action=”j_security_check”>

<input type=”text” name=”j_username”>

<input type=”password” name=”j_password”>

</form>

If the form based login is invoked because of an HTTP request, the origin
request parameters must be preserved by the container for use if, on succes
authentication, it redirects the call to the requested resource.

If the user is authenticated using form login and has created an HTTP sess
the timeout or invalidation of that session leads to the user being logged out in
al Version

Server Tracking of Authentication Information 85

 The
the

ions

tion
cate
gle-
y

 are
tion

eb

al to

nd-

ion
ers
 the

tions
sense that subsequent requests must cause the user to be re-authenticated.
scope of the logout is that same as that of the authentication: for example, if
container supports single signon, such as J2EE technology compliant web
containers, the user would need to reauthenticate with any of the web applicat
hosted on the web container.

SRV.12.5.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentica
mechanism. This mechanism requires the user to possess a Public Key Certifi
(PKC). Currently, PKCs are useful in e-commerce applications and also for a sin
signon from within the browser. Servlet containers that are not J2EE technolog
compliant are not required to support the HTTPS protocol.

SRV.12.6 Server Tracking of Authentication Information

As the underlying security identities (such as users and groups) to which roles
mapped in a runtime environment are environment specific rather than applica
specific, it is desirable to:

1. Make login mechanisms and policies a property of the environment the w
application is deployed in.

2. Be able to use the same authentication information to represent a princip
all applications deployed in the same container, and

3. Require re-authentication of users only when a security policy domain bou
ary has been crossed.

Therefore, a servlet container is required to track authentication informat
at the container level (rather than at the web application level). This allows us
authenticated for one web application to access other resources managed by
container permitted to the same security identity.

SRV.12.7 Propagation of Security Identity in EJBTM Calls

A security identity, or principal, must always be provided for use in a call to an
enterprise bean. The default mode in calls to enterprise beans from web applica
is for the security identity of a web user to be propagated to the EJBTM container.

SECURITY

Fin

86

e not

that
ode

 of

 a
ity
in

es

e

 of

at
t path
ct to

aints

ers
n. If

is
In other scenarios, web containers are required to allow web users that ar
known to the web container or to the EJBTM container to make calls:

• Web containers are required to support access to web resources by clients
have not authenticated themselves to the container. This is the common m
of access to web resources on the Internet.

• Application code may be the sole processor of signon and customization
data based on caller identity.

In these scenarios, a web application deployment descriptor may specify
run-as element. When it is specified, the container must propagate the secur
identity of the caller to the EJB layer in terms of the security role name defined
therun-as element. The security role name must one of the security role nam
defined for the web application.

For web containers running as part of a J2EE platform, the use of run-as
elements must be supported both for calls to EJB components within the sam
J2EE application, and for calls to EJB components deployed in other J2EE
applications.

SRV.12.8 Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection
web content. A constraint consists of the following elements:

• web resource collection

• authorization constraint

• user data constraint

A web resource collection is a set of URL patterns and HTTP methods th
describe a set of resources to be protected. All requests that contain a reques
that matches a URL pattern described in the web resource collection is subje
the constraint. The container matches URL patterns defined in security constr
using the same algorithm described in this specification for matching client
requests to servlets and static resources as described in SRV.11.1.

An authorization constraint is a set of security roles at least one of which us
must belong for access to resources described by the web resource collectio
the user is not part of an allowed role, the user must be denied access to the
resource requiring it. If the authorization constraint defines no roles, no user
al Version

Default Policies 87

e

allowed access to the portion of the web application defined by the security
constraint.

A user data constraint describes requirements for the transport layer of th
client server. The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing
reading while in transit). The container must at least use SSL to respond to
requests to resources markedintegral or confidential. If the original request
was over HTTP, the container must redirect the client to the HTTPS port.

SRV.12.9 Default Policies

By default, authentication is not needed to access resources. Authentication is
needed for requests for a web resource collection only when specified by the
deployment descriptor.

SECURITY

Fin

88
al Version

C H A P T E RSRV.13

r

ys

e
ent

be
rs:
Deployment Descripto

This chapter specifies the JavaTM Servlet Specification, v 2.3 requirements for web
container support of deployment descriptors. The deployment descriptor conve
the elements and configuration information of a web application between
Application Developers, Application Assemblers, and Deployers.

For backwards compatibility of applications written to the 2.2 version of th
API, web containers are also required to support the 2.2 version of the deploym
descriptor. The 2.2 version is described in Appendix SRV.A.

SRV.13.1 Deployment Descriptor Elements

The following types of configuration and deployment information are required to
supported in the web application deployment descriptor for all servlet containe

• ServletContext Init Parameters

• Session Configuration

• Servlet Declaration

• Servlet Mappings

• Application Lifecyle Listener classes

• Filter Definitions and Filter Mappings

• MIME Type Mappings

• Welcome File list

• Error Pages
89

DEPLOYMENT DESCRIPTOR

Fin

90

 is

t
abled

y

nt

pers

first
 last
de-

nge
va-
d,
rip-

ck-
con-
the

ould
tion
the
Security information which may also appear in the deployment descriptor
not required to be supported unless the servlet container is part of an
implementation of the J2EE specification.

The following additional elements exist in the web application deploymen
descriptor to meet the requirements of web containers that are JSP pages en
or part of a J2EE application server. They are not required to be supported b
containers wishing to support only the servlet specification:

• taglib

• syntax for looking up JNDI objects (env-entry, ejb-ref, ejb-local-ref,
resource-ref, resource-env-ref)

The DTD comments may be consulted for further description of deployme
descriptor elements.

SRV.13.2 Rules for Processing the Deployment Descriptor

In this section is a listing of some general rules that web containers and develo
must note concerning the processing of the deployment descriptor for a web
application

• Web containers should ignore all leading whitespace characters before the
non-whitespace character, and all trailing whitespace characters after the
non-whitespace character for PCDATA within text nodes of a deployment
scriptor.

• Web containers and tools that manipulate web applications have a wide ra
of options for checking the validity of a WAR. This includes checking the
lidity of the deployment descriptor document held within. It is recommende
but not required, that web containers and tools validate deployment desc
tors against the DTD document for structural correctness.

Additionally, it is recommended that they provide a level of semantic che
ing. For example, it should be checked that a role referenced in a security
straint has the same name as one of the security roles defined in
deployment descriptor.
In cases of non-conformant web applications, tools and containers sh
inform the developer with descriptive error messages. High end applica
server vendors are encouraged to supply this kind of validity checking in
form of a tool separate from the container.
al Version

DTD 91

RL-

tor.

e

h
ld

itive.

nt
• URI paths specified in the deployment descriptor are assumed to be in U
decoded form.

• Containers must attempt to canonicalize paths in the deployment descrip
For example, paths of the form ‘/a/../b’ must be interpreted as ‘/b’. Paths
beginning or resolving to paths that begin with ‘..’ are not valid paths in th
deployment descriptor.

• URI paths referring to a resource relative to the root of the WAR, or a pat
mapping relative to the root of the WAR, unless otherwise specified, shou
begin with a leading ‘/’.

• In elements whose value is an "enumerated type", the value is case sens

SRV.13.2.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors for version 2.3 of this
specification must contain the followingDOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

SRV.13.3 DTD

The DTD that follows defines the XML grammar for a web application deployme
descriptor.

<!--

The web-app element is the root of the deployment descriptor for

a web application.

-->

<!ELEMENT web-app (icon?, display-name?, description?,

distributable?, context-param*, filter*, filter-mapping*,

listener*, servlet*, servlet-mapping*, session-config?, mime-

mapping*, welcome-file-list?, error-page*, taglib*, resource-

env-ref*, resource-ref*, security-constraint*, login-config?,

security-role*, env-entry*, ejb-ref*, ejb-local-ref*)>

<!--

The auth-constraint element indicates the user roles that should

be permitted access to this resource collection. The role-name

DEPLOYMENT DESCRIPTOR

Fin

92
used here must either correspond to the role-name of one of the

security-role elements defined for this web application, or be

the specially reserved role-name "*" that is a compact syntax for

indicating all roles in the web application. If both "*" and

rolenames appear, the container interprets this as all roles.

If no roles are defined, no user is allowed access to the portion of

the web application described by the containing security-constraint.

The container matches role names case sensitively when determining

access.

Used in: security-constraint

-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--

The auth-method element is used to configure the authentication

mechanism for the web application. As a prerequisite to gaining

access to any web resources which are protected by an authorization

constraint, a user must have authenticated using the configured

mechanism. Legal values for this element are "BASIC", "DIGEST",

"FORM", or "CLIENT-CERT".

Used in: login-config

-->

<!ELEMENT auth-method (#PCDATA)>

<!--

The context-param element contains the declaration of a web

application’s servlet context initialization parameters.

Used in: web-app

-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The description element is used to provide text describing the parent

element. The description element should include any information that

the web application war file producer wants to provide to the

consumer of the web application war file (i.e., to the Deployer).

Typically, the tools used by the web application war file consumer

will display the description when processing the parent element that

contains the description.
al Version

DTD 93
Used in: auth-constraint, context-param, ejb-local-ref, ejb-ref,

env-entry, filter, init-param, resource-env-ref, resource-ref, run-

as, security-role, security-role-ref, servlet, user-data-

constraint, web-app, web-resource-collection

-->

<!ELEMENT description (#PCDATA)>

<!--

The display-name element contains a short name that is intended to be

displayed by tools. The display name need not be unique.

Used in: filter, security-constraint, servlet, web-app

Example:

<display-name>Employee Self Service</display-name>

-->

<!ELEMENT display-name (#PCDATA)>

<!--

The distributable element, by its presence in a web application

deployment descriptor, indicates that this web application is

programmed appropriately to be deployed into a distributed servlet

container

Used in: web-app

-->

<!ELEMENT distributable EMPTY>

<!--

The ejb-link element is used in the ejb-ref or ejb-local-ref

elements to specify that an EJB reference is linked to an

enterprise bean.

The name in the ejb-link element is composed of a

path name specifying the ejb-jar containing the referenced

enterprise bean with the ejb-name of the target bean appended and

separated from the path name by "#". The path name is relative to

the war file containing the web application that is referencing the

enterprise bean.

This allows multiple enterprise beans with the same ejb-name to be

DEPLOYMENT DESCRIPTOR

Fin

94
uniquely identified.

Used in: ejb-local-ref, ejb-ref

Examples:

<ejb-link>EmployeeRecord</ejb-link>

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ejb-local-ref element is used for the declaration of a reference

to an enterprise bean’s local home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of the web application

 that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected local home and local interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced

 enterprise bean

Used in: web-app

-->

<!ELEMENT ejb-local-ref (description?, ejb-ref-name, ejb-ref-type,

local-home, local, ejb-link?)>

<!--

The ejb-ref element is used for the declaration of a reference to

an enterprise bean’s home. The declaration consists of:

- an optional description

- the EJB reference name used in the code of

 the web application that’s referencing the enterprise bean

- the expected type of the referenced enterprise bean

- the expected home and remote interfaces of the referenced

 enterprise bean

- optional ejb-link information, used to specify the referenced
al Version

DTD 95
 enterprise bean

Used in: web-app

-->

<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB reference. The

EJB reference is an entry in the web application’s environment and is

relative to the java:comp/env context. The name must be unique

within the web application.

It is recommended that name is prefixed with "ejb/".

Used in: ejb-local-ref, ejb-ref

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected type of the

referenced enterprise bean.

The ejb-ref-type element must be one of the following:

<ejb-ref-type>Entity</ejb-ref-type>

<ejb-ref-type>Session</ejb-ref-type>

Used in: ejb-local-ref, ejb-ref

-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The env-entry element contains the declaration of a web application’s

environment entry. The declaration consists of an optional

description, the name of the environment entry, and an optional

value. If a value is not specified, one must be supplied

during deployment.

DEPLOYMENT DESCRIPTOR

Fin

96
-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-

value?, env-entry-type)>

<!--

The env-entry-name element contains the name of a web applications’s

environment entry. The name is a JNDI name relative to the

java:comp/env context. The name must be unique within a web

application.

Example:

<env-entry-name>minAmount</env-entry-name>

Used in: env-entry

-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-type element contains the fully-qualified Java type of

the environment entry value that is expected by the web application’s

code.

The following are the legal values of env-entry-type:

java.lang.Boolean

java.lang.Byte

java.lang.Character

java.lang.String

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

Used in: env-entry

-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The env-entry-value element contains the value of a web application’s

environment entry. The value must be a String that is valid for the
al Version

DTD 97
constructor of the specified type that takes a single String

parameter, or for java.lang.Character, a single character.

Example:

<env-entry-value>100.00</env-entry-value>

Used in: env-entry

-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The error-code contains an HTTP error code, ex: 404

Used in: error-page

-->

<!ELEMENT error-code (#PCDATA)>

<!--

The error-page element contains a mapping between an error code

or exception type to the path of a resource in the web application

Used in: web-app

-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--

The exception type contains a fully qualified class name of a

Java exception type.

Used in: error-page

-->

<!ELEMENT exception-type (#PCDATA)>

<!--

The extension element contains a string describing an

extension. example: "txt"

Used in: mime-mapping

-->

DEPLOYMENT DESCRIPTOR

Fin

98
<!ELEMENT extension (#PCDATA)>

<!--

Declares a filter in the web application. The filter is mapped to

either a servlet or a URL pattern in the filter-mapping element,

using the filter-name value to reference. Filters can access the

initialization parameters declared in the deployment descriptor at

runtime via the FilterConfig interface.

Used in: web-app

-->

<!ELEMENT filter (icon?, filter-name, display-name?, description?,

filter-class, init-param*)>

<!--

The fully qualified classname of the filter.

Used in: filter

-->

<!ELEMENT filter-class (#PCDATA)>

<!--

Declaration of the filter mappings in this web application. The

container uses the filter-mapping declarations to decide which

filters to apply to a request, and in what order. The container

matches the request URI to a Servlet in the normal way. To determine

which filters to apply it matches filter-mapping declarations either

on servlet-name, or on url-pattern for each filter-mapping element,

depending on which style is used. The order in which filters are

invoked is the order in which filter-mapping declarations that match

a request URI for a servlet appear in the list of filter-mapping

elements.The filter-name value must be the value of the <filter-name>

sub-elements of one of the <filter> declarations in the deployment

descriptor.

Used in: web-app

-->

<!ELEMENT filter-mapping (filter-name, (url-pattern | servlet-

name))>

<!--

The logical name of the filter. This name is used to map the filter.
al Version

DTD 99
Each filter name is unique within the web application.

Used in: filter, filter-mapping

-->

<!ELEMENT filter-name (#PCDATA)>

<!--

The form-error-page element defines the location in the web app

where the error page that is displayed when login is not successful

can be found. The path begins with a leading / and is interpreted

relative to the root of the WAR.

Used in: form-login-config

-->

<!ELEMENT form-error-page (#PCDATA)>

<!--

The form-login-config element specifies the login and error pages

that should be used in form based login. If form based authentication

is not used, these elements are ignored.

Used in: login-config

-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

<!--

The form-login-page element defines the location in the web app

where the page that can be used for login can be found. The path

begins with a leading / and is interpreted relative to the root of

the WAR.

Used in: form-login-config

-->

<!ELEMENT form-login-page (#PCDATA)>

<!--

The home element contains the fully-qualified name of the enterprise

bean’s home interface.

Used in: ejb-ref

DEPLOYMENT DESCRIPTOR

Fin

100
Example:

<home>com.aardvark.payroll.PayrollHome</home>

-->

<!ELEMENT home (#PCDATA)>

<!--

The http-method contains an HTTP method (GET | POST |...).

Used in: web-resource-collection

-->

<!ELEMENT http-method (#PCDATA)>

<!--

The icon element contains small-icon and large-icon elements that

specify the file names for small and a large GIF or JPEG icon images

used to represent the parent element in a GUI tool.

Used in: filter, servlet, web-app

-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The init-param element contains a name/value pair as an

initialization param of the servlet

Used in: filter, servlet

-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--

The jsp-file element contains the full path to a JSP file within

the web application beginning with a ‘/’.

Used in: servlet

-->

<!ELEMENT jsp-file (#PCDATA)>

<!--

The large-icon element contains the name of a file
al Version

DTD 101
containing a large (32 x 32) icon image. The file

name is a relative path within the web application’s

war file.

The image may be either in the JPEG or GIF format.

The icon can be used by tools.

Used in: icon

Example:

<large-icon>employee-service-icon32x32.jpg</large-icon>

-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The listener element indicates the deployment properties for a web

application listener bean.

Used in: web-app

-->

<!ELEMENT listener (listener-class)>

<!--

The listener-class element declares a class in the application must

be registered as a web application listener bean. The value is the

fully qualified classname of the listener class.

Used in: listener

-->

<!ELEMENT listener-class (#PCDATA)>

<!--

The load-on-startup element indicates that this servlet should be

loaded (instantiated and have its init() called) on the startup

of the web application. The optional contents of

these element must be an integer indicating the order in which

the servlet should be loaded. If the value is a negative integer,

or the element is not present, the container is free to load the

servlet whenever it chooses. If the value is a positive integer

or 0, the container must load and initialize the servlet as the

application is deployed. The container must guarantee that

DEPLOYMENT DESCRIPTOR

Fin

102
servlets marked with lower integers are loaded before servlets

marked with higher integers. The container may choose the order

of loading of servlets with the same load-on-start-up value.

Used in: servlet

-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--

The local element contains the fully-qualified name of the

enterprise bean’s local interface.

Used in: ejb-local-ref

-->

<!ELEMENT local (#PCDATA)>

<!--

The local-home element contains the fully-qualified name of the

enterprise bean’s local home interface.

Used in: ejb-local-ref

-->

<!ELEMENT local-home (#PCDATA)>

<!--

The location element contains the location of the resource in the web

application relative to the root of the web application. The value of

the location must have a leading ‘/’.

Used in: error-page

-->

<!ELEMENT location (#PCDATA)>

<!--

The login-config element is used to configure the authentication

method that should be used, the realm name that should be used for

this application, and the attributes that are needed by the form

login mechanism.

Used in: web-app
al Version

DTD 103
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-

config?)>

<!--

The mime-mapping element defines a mapping between an extension

and a mime type.

Used in: web-app

-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--

The mime-type element contains a defined mime type. example:

"text/plain"

Used in: mime-mapping

-->

<!ELEMENT mime-type (#PCDATA)>

<!--

The param-name element contains the name of a parameter. Each

parameter name must be unique in the web application.

Used in: context-param, init-param

-->

<!ELEMENT param-name (#PCDATA)>

<!--

The param-value element contains the value of a parameter.

Used in: context-param, init-param

-->

<!ELEMENT param-value (#PCDATA)>

<!--

The realm name element specifies the realm name to use in HTTP

Basic authorization.

DEPLOYMENT DESCRIPTOR

Fin

104
Used in: login-config

-->

<!ELEMENT realm-name (#PCDATA)>

<!--

The remote element contains the fully-qualified name of the

enterprise bean’s remote interface.

Used in: ejb-ref

Example:

<remote>com.wombat.empl.EmployeeService</remote>

-->

<!ELEMENT remote (#PCDATA)>

<!--

The res-auth element specifies whether the web application code signs

on programmatically to the resource manager, or whether the Container

will sign on to the resource manager on behalf of the web

application. In the latter case, the Container uses information that

is supplied by the Deployer.

The value of this element must be one of the two following:

<res-auth>Application</res-auth>

<res-auth>Container</res-auth>

Used in: resource-ref

-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The res-ref-name element specifies the name of a resource manager

connection factory reference. The name is a JNDI name relative to

the

java:comp/env context. The name must be unique within a web

application.

Used in: resource-ref

-->

<!ELEMENT res-ref-name (#PCDATA)>
al Version

DTD 105
<!--

The res-sharing-scope element specifies whether connections obtained

through the given resource manager connection factory reference can

be

shared. The value of this element, if specified, must be one of the

two following:

<res-sharing-scope>Shareable</res-sharing-scope>

<res-sharing-scope>Unshareable</res-sharing-scope>

The default value is Shareable.

Used in: resource-ref

-->

<!ELEMENT res-sharing-scope (#PCDATA)>

<!--

The res-type element specifies the type of the data source. The type

is specified by the fully qualified Java language class or interface

expected to be implemented by the data source.

Used in: resource-ref

-->

<!ELEMENT res-type (#PCDATA)>

<!--

The resource-env-ref element contains a declaration of a web

application’s reference to an administered object associated with a

resource in the web application’s environment. It consists of an

optional description, the resource environment reference name, and

an indication of the resource environment reference type expected by

the web application code.

Used in: web-app

Example:

<resource-env-ref>

 <resource-env-ref-name>jms/StockQueue</resource-env-ref-name>

 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>

-->

DEPLOYMENT DESCRIPTOR

Fin

106
<!ELEMENT resource-env-ref (description?, resource-env-ref-name,

resource-env-ref-type)>

<!--

The resource-env-ref-name element specifies the name of a resource

environment reference; its value is the environment entry name used

in the web application code. The name is a JNDI name relative to the

java:comp/env context and must be unique within a web application.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--

The resource-env-ref-type element specifies the type of a resource

environment reference. It is the fully qualified name of a Java

language class or interface.

Used in: resource-env-ref

-->

<!ELEMENT resource-env-ref-type (#PCDATA)>

<!--

The resource-ref element contains a declaration of a web

application’s reference to an external resource. It consists of an

optional description, the resource manager connection factory

reference name, the indication of the resource manager connection

factory type expected by the web application code, the type of

authentication (Application or Container), and an optional

specification of the shareability of connections obtained from the

resource (Shareable or Unshareable).

Used in: web-app

Example:

 <resource-ref>

<res-ref-name>jdbc/EmployeeAppDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

 </resource-ref>
al Version

DTD 107
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth, res-sharing-scope?)>

<!--

The role-link element is a reference to a defined security role. The

role-link element must contain the name of one of the security roles

defined in the security-role elements.

Used in: security-role-ref

-->

<!ELEMENT role-link (#PCDATA)>

<!--

The role-name element contains the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

Used in: auth-constraint, run-as, security-role, security-role-ref

-->

<!ELEMENT role-name (#PCDATA)>

<!--

The run-as element specifies the run-as identity to be used for the

execution of the web application. It contains an optional

description, and

the name of a security role.

Used in: servlet

-->

<!ELEMENT run-as (description?, role-name)>

<!--

The security-constraint element is used to associate security

constraints with one or more web resource collections

Used in: web-app

-->

<!ELEMENT security-constraint (display-name?, web-resource-

collection+, auth-constraint?, user-data-constraint?)>

DEPLOYMENT DESCRIPTOR

Fin

108
<!--

The security-role element contains the definition of a security

role. The definition consists of an optional description of the

security role, and the security role name.

Used in: web-app

Example:

 <security-role>

<description>

 This role includes all employees who are authorized

 to access the employee service application.

</description>

<role-name>employee</role-name>

 </security-role>

-->

<!ELEMENT security-role (description?, role-name)>

<!--

The security-role-ref element contains the declaration of a security

role reference in the web application’s code. The declaration

consists

of an optional description, the security role name used in the code,

and an optional link to a security role. If the security role is not

specified, the Deployer must choose an appropriate security role.

The value of the role-name element must be the String used as the

parameter to the EJBContext.isCallerInRole(String roleName) method

or the HttpServletRequest.isUserInRole(String role) method.

Used in: servlet

-->

<!ELEMENT security-role-ref (description?, role-name, role-link?)>

<!--

The servlet element contains the declarative data of a

servlet. If a jsp-file is specified and the load-on-startup element

is present, then the JSP should be precompiled and loaded.

Used in: web-app
al Version

DTD 109
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,

(servlet-class|jsp-file), init-param*, load-on-startup?, run-

as?, security-role-ref*)>

<!--

The servlet-class element contains the fully qualified class name

of the servlet.

Used in: servlet

-->

<!ELEMENT servlet-class (#PCDATA)>

<!--

The servlet-mapping element defines a mapping between a servlet

and a url pattern

Used in: web-app

-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The servlet-name element contains the canonical name of the

servlet. Each servlet name is unique within the web application.

Used in: filter-mapping, servlet, servlet-mapping

-->

<!ELEMENT servlet-name (#PCDATA)>

<!--

The session-config element defines the session parameters for

this web application.

Used in: web-app

-->

<!ELEMENT session-config (session-timeout?)>

<!--

The session-timeout element defines the default session timeout

interval for all sessions created in this web application. The

DEPLOYMENT DESCRIPTOR

Fin

110
specified timeout must be expressed in a whole number of minutes.

If the timeout is 0 or less, the container ensures the default

behaviour of sessions is never to time out.

Used in: session-config

-->

<!ELEMENT session-timeout (#PCDATA)>

<!--

The small-icon element contains the name of a file

containing a small (16 x 16) icon image. The file

name is a relative path within the web application’s

war file.

The image may be either in the JPEG or GIF format.

The icon can be used by tools.

Used in: icon

Example:

<small-icon>employee-service-icon16x16.jpg</small-icon>

-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The taglib element is used to describe a JSP tag library.

Used in: web-app

-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--

the taglib-location element contains the location (as a resource

relative to the root of the web application) where to find the Tag

Libary Description file for the tag library.

Used in: taglib

-->

<!ELEMENT taglib-location (#PCDATA)>
al Version

DTD 111
<!--

The taglib-uri element describes a URI, relative to the location

of the web.xml document, identifying a Tag Library used in the Web

Application.

Used in: taglib

-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--

The transport-guarantee element specifies that the communication

between client and server should be NONE, INTEGRAL, or

CONFIDENTIAL. NONE means that the application does not require any

transport guarantees. A value of INTEGRAL means that the application

requires that the data sent between the client and server be sent in

such a way that it can’t be changed in transit. CONFIDENTIAL means

that the application requires that the data be transmitted in a

fashion that prevents other entities from observing the contents of

the transmission. In most cases, the presence of the INTEGRAL or

CONFIDENTIAL flag will indicate that the use of SSL is required.

Used in: user-data-constraint

-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--

The url-pattern element contains the url pattern of the mapping. Must

follow the rules specified in Section 11.2 of the Servlet API

Specification.

Used in: filter-mapping, servlet-mapping, web-resource-collection

-->

<!ELEMENT url-pattern (#PCDATA)>

<!--

The user-data-constraint element is used to indicate how data

communicated between the client and container should be protected.

Used in: security-constraint

-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

DEPLOYMENT DESCRIPTOR

Fin

112
<!--

The web-resource-collection element is used to identify a subset

of the resources and HTTP methods on those resources within a web

application to which a security constraint applies. If no HTTP

methods are specified, then the security constraint applies to all

HTTP methods.

Used in: security-constraint

-->

<!ELEMENT web-resource-collection (web-resource-name, description?,

url-pattern*, http-method*)>

<!--

The web-resource-name contains the name of this web resource

collection.

Used in: web-resource-collection

-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--

The welcome-file element contains file name to use as a default

welcome file, such as index.html

Used in: welcome-file-list

-->

<!ELEMENT welcome-file (#PCDATA)>

<!--

The welcome-file-list contains an ordered list of welcome files

elements.

Used in: web-app

-->

<!ELEMENT welcome-file-list (welcome-file+)>

<!--

The ID mechanism is to allow tools that produce additional deployment

information (i.e., information beyond the standard deployment
al Version

DTD 113
descriptor information) to store the non-standard information in a

separate file, and easily refer from these tool-specific files to the

information in the standard deployment descriptor.

Tools are not allowed to add the non-standard information into the

standard deployment descriptor.

-->

<!ATTLIST auth-constraint id ID #IMPLIED>

<!ATTLIST auth-method id ID #IMPLIED>

<!ATTLIST context-param id ID #IMPLIED>

<!ATTLIST description id ID #IMPLIED>

<!ATTLIST display-name id ID #IMPLIED>

<!ATTLIST distributable id ID #IMPLIED>

<!ATTLIST ejb-link id ID #IMPLIED>

<!ATTLIST ejb-local-ref id ID #IMPLIED>

<!ATTLIST ejb-ref id ID #IMPLIED>

<!ATTLIST ejb-ref-name id ID #IMPLIED>

<!ATTLIST ejb-ref-type id ID #IMPLIED>

<!ATTLIST env-entry id ID #IMPLIED>

<!ATTLIST env-entry-name id ID #IMPLIED>

<!ATTLIST env-entry-type id ID #IMPLIED>

<!ATTLIST env-entry-value id ID #IMPLIED>

<!ATTLIST error-code id ID #IMPLIED>

<!ATTLIST error-page id ID #IMPLIED>

<!ATTLIST exception-type id ID #IMPLIED>

DEPLOYMENT DESCRIPTOR

Fin

114
<!ATTLIST extension id ID #IMPLIED>

<!ATTLIST filter id ID #IMPLIED>

<!ATTLIST filter-class id ID #IMPLIED>

<!ATTLIST filter-mapping id ID #IMPLIED>

<!ATTLIST filter-name id ID #IMPLIED>

<!ATTLIST form-error-page id ID #IMPLIED>

<!ATTLIST form-login-config id ID #IMPLIED>

<!ATTLIST form-login-page id ID #IMPLIED>

<!ATTLIST home id ID #IMPLIED>

<!ATTLIST http-method id ID #IMPLIED>

<!ATTLIST icon id ID #IMPLIED>

<!ATTLIST init-param id ID #IMPLIED>

<!ATTLIST jsp-file id ID #IMPLIED>

<!ATTLIST large-icon id ID #IMPLIED>

<!ATTLIST listener id ID #IMPLIED>

<!ATTLIST listener-class id ID #IMPLIED>

<!ATTLIST load-on-startup id ID #IMPLIED>

<!ATTLIST local id ID #IMPLIED>

<!ATTLIST local-home id ID #IMPLIED>

<!ATTLIST location id ID #IMPLIED>

<!ATTLIST login-config id ID #IMPLIED>

<!ATTLIST mime-mapping id ID #IMPLIED>

<!ATTLIST mime-type id ID #IMPLIED>
al Version

DTD 115
<!ATTLIST param-name id ID #IMPLIED>

<!ATTLIST param-value id ID #IMPLIED>

<!ATTLIST realm-name id ID #IMPLIED>

<!ATTLIST remote id ID #IMPLIED>

<!ATTLIST res-auth id ID #IMPLIED>

<!ATTLIST res-ref-name id ID #IMPLIED>

<!ATTLIST res-sharing-scope id ID #IMPLIED>

<!ATTLIST res-type id ID #IMPLIED>

<!ATTLIST resource-env-ref id ID #IMPLIED>

<!ATTLIST resource-env-ref-name id ID #IMPLIED>

<!ATTLIST resource-env-ref-type id ID #IMPLIED>

<!ATTLIST resource-ref id ID #IMPLIED>

<!ATTLIST role-link id ID #IMPLIED>

<!ATTLIST role-name id ID #IMPLIED>

<!ATTLIST run-as id ID #IMPLIED>

<!ATTLIST security-constraint id ID #IMPLIED>

<!ATTLIST security-role id ID #IMPLIED>

<!ATTLIST security-role-ref id ID #IMPLIED>

<!ATTLIST servlet id ID #IMPLIED>

<!ATTLIST servlet-class id ID #IMPLIED>

<!ATTLIST servlet-mapping id ID #IMPLIED>

<!ATTLIST servlet-name id ID #IMPLIED>

<!ATTLIST session-config id ID #IMPLIED>

DEPLOYMENT DESCRIPTOR

Fin

116

.

<!ATTLIST session-timeout id ID #IMPLIED>

<!ATTLIST small-icon id ID #IMPLIED>

<!ATTLIST taglib id ID #IMPLIED>

<!ATTLIST taglib-location id ID #IMPLIED>

<!ATTLIST taglib-uri id ID #IMPLIED>

<!ATTLIST transport-guarantee id ID #IMPLIED>

<!ATTLIST url-pattern id ID #IMPLIED>

<!ATTLIST user-data-constraint id ID #IMPLIED>

<!ATTLIST web-app id ID #IMPLIED>

<!ATTLIST web-resource-collection id ID #IMPLIED>

<!ATTLIST web-resource-name id ID #IMPLIED>

<!ATTLIST welcome-file id ID #IMPLIED>

<!ATTLIST welcome-file-list id ID #IMPLIED>

SRV.13.4 Examples

The following examples illustrate the usage of the definitions listed above DTD

SRV.13.4.1 A Basic Example

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation 2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app>

<display-name>A Simple Application</display-name>

<context-param>

<param-name>Webmaster</param-name>

<param-value>webmaster@mycorp.com</param-value>

</context-param>

<servlet>

<servlet-name>catalog</servlet-name>
al Version

Examples 117
<servlet-class>com.mycorp.CatalogServlet

</servlet-class>

<init-param>

<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>30</session-timeout>

</session-config>

<mime-mapping>

<extension>pdf</extension>

<mime-type>application/pdf</mime-type>

</mime-mapping>

<welcome-file-list>

<welcome-file>index.jsp</welcome-file>

<welcome-file>index.html</welcome-file>

<welcome-file>index.htm</welcome-file>

</welcome-file-list>

<error-page>

<error-code>404</error-code>

<location>/404.html</location>

</error-page>

</web-app>

SRV.13.4.2 An Example of Security

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<display-name>A Secure Application</display-name>

<security-role>

<role-name>manager</role-name>

</security-role>

<servlet>

<servlet-name>catalog</servlet-name>

<servlet-class>com.mycorp.CatalogServlet

</servlet-class>

<init-param>

DEPLOYMENT DESCRIPTOR

Fin

118
<param-name>catalog</param-name>

<param-value>Spring</param-value>

</init-param>

<security-role-ref>

<role-name>MGR</role-name>

<!-- role name used in code -->

<role-link>manager</role-link>

</security-role-ref>

</servlet>

<servlet-mapping>

<servlet-name>catalog</servlet-name>

<url-pattern>/catalog/*</url-pattern>

</servlet-mapping>

<security-constraint>

<web-resource-collection>

<web-resource-name>SalesInfo

</web-resource-name>

<url-pattern>/salesinfo/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>manager</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL

</transport-guarantee>

</user-data-constraint>

</security-constraint>

</web-app>
al Version

C H A P T E RSRV.14
t that
and
-

ibe
pro-

ts
ss
ent

tes to
javax.servlet

This chapter describes the javax.servlet package. The chapter includes conten
is generated automatically from javadoc embedded in the actual Java classes
interfaces. This allows the creation of a single, authoritative, specification docu
ment.

SRV.14.1 Generic Servlet Interfaces and Classes

The javax.servlet packagecontains a number of classes and interfaces that descr
and define the contracts between a servlet class and the runtime environment
vided for an instance of such a class by a conforming servlet container.

The Servletinterface is the central abstraction of the servlet API. All servle
implement this interface either directly, or more commonly, by extending a cla
that implements the interface. The two classes in the servlet API that implem
the Servlet interface are GenericServlet and HttpServlet . For most purposes,
developers will extend HttpServlet to implement their servlets while
implementing web applications employing the HTTP protocol..

The basic Servlet interface defines a service method for handling client
requests. This method is called for each request that the servlet container rou
an instance of a servlet.

SRV.14.2 The javax.servlet package

The following section summarizes the javax.servlet package:
119

JAVAX.SERVLET

Fin

120
Class Summary

Interfaces

Filter A filter is an object than perform filtering tasks

on either the request to a resource (a servlet or

static content), or on the response from a

resource, or both.

Filters perform filtering in the doFilter
method.

FilterChain A FilterChain is an object provided by the

servlet container to the developer giving a view

into the invocation chain of a filtered request

for a resource.

FilterConfig A filter configuration object used by a servlet

container used to pass information to a filter

during initialization.

RequestDispatcher Defines an object that receives requests from

the client and sends them to any resource (such

as a servlet, HTML file, or JSP file) on the

server.

Servlet Defines methods that all servlets must

implement.

ServletConfig A servlet configuration object used by a servlet

container used to pass information to a servlet

during initialization.

ServletContext Defines a set of methods that a servlet uses to

communicate with its servlet container, for

example, to get the MIME type of a file,

dispatch requests, or write to a log file.

ServletContextAt-
tributeListener

Implementations of this interface recieve

notifications of changes to the attribute list on

the servlet context of a web application.

ServletContextListener Implementations of this interface recieve

notifications about changes to the servlet

context of the web application they are part of.

ServletRequest Defines an object to provide client request

information to a servlet.

ServletResponse Defines an object to assist a servlet in sending a

response to the client.
al Version

The javax.servlet package 121

urce
SRV.14.2.1 Filter

public interface Filter

A filter is an object than perform filtering tasks on either the request to a reso
(a servlet or static content), or on the response from a resource, or both.

SingleThreadModel Ensures that servlets handle only one request at a

time.

Classes

GenericServlet Defines a generic, protocol-independent servlet.

ServletContextAttribu-
teEvent

This is the event class for notifications about

changes to the attributes of the servlet context

of a web application.

ServletContextEvent This is the event class for notifications about

changes to the servlet context of a web

application.

ServletInputStream Provides an input stream for reading binary

data from a client request, including an efficient

readLine method for reading data one line at a

time.

ServletOutputStream Provides an output stream for sending binary

data to the client.

ServletRequestWrapper Provides a convenient implementation of the

ServletRequest interface that can be subclassed

by developers wishing to adapt the request to a

Servlet.

ServletResponseWrapper Provides a convenient implementation of the

ServletResponse interface that can be subclassed

by developers wishing to adapt the response

from a Servlet.

Exceptions

ServletException Defines a general exception a servlet can throw

when it encounters difficulty.

UnavailableException Defines an exception that a servlet or filter

throws to indicate that it is permanently or tem-

porarily unavailable.

Class Summary

JAVAX.SERVLET

Fin

122

a
er-
rces

t of
er
on-

are
hat
ory.

for a
d
 the
Filters perform filtering in thedoFilter method. Every Filter has access to
FilterConfig object from which it can obtain its initialization parameters, a ref
ence to the ServletContext which it can use, for example, to load resou
needed for filtering tasks.

Filters are configured in the deployment descriptor of a web application

Examples that have been identified for this design are
 1) Authentication Filters
 2) Logging and Auditing Filters
 3) Image conversion Filters
 4) Data compression Filters
 5) Encryption Filters
 6) Tokenizing Filters
 7) Filters that trigger resource access events
 8) XSL/T filters
 9) Mime-type chain Filter

Since: Servlet 2.3

SRV.14.2.1.1 Methods

destroy()
public void destroy()

Called by the web container to indicate to a filter that it is being taken ou
service. This method is only called once all threads within the filter’s doFilt
method have exited or after a timeout period has passed. After the web c
tainer calls this method, it will not call the doFilter method again on this
instance of the filter.

This method gives the filter an opportunity to clean up any resources that
being held (for example, memory, file handles, threads) and make sure t
any persistent state is synchronized with the filter’s current state in mem

doFilter(ServletRequest, ServletResponse, FilterChain)
public void doFilter(ServletRequest request,

ServletResponse response, FilterChain chain)
throws IOException, ServletException

ThedoFilter method of the Filter is called by the container each time a
request/response pair is passed through the chain due to a client request
resource at the end of the chain. The FilterChain passed in to this metho
allows the Filter to pass on the request and response to the next entity in
chain.
al Version

The javax.servlet package 123

-

er

 fil-

t

er

y in

to
nti-

r is

her

giv-
use
e

A typical implementation of this method would follow the following pattern:
 1. Examine the request
2. Optionally wrap the request object with a custom implementation to filt
content or headers for input filtering
 3. Optionally wrap the response object with a custom implementation to
ter content or headers for output filtering
 4. a)Either invoke the next entity in the chain using the FilterChain objec
(chain.doFilter()),
 4. b)or not pass on the request/response pair to the next entity in the filt
chain to block the request processing
 5. Directly set headers on the response after invokation of the next entit
ther filter chain.

Throws:
ServletException, IOException

init(FilterConfig)
public void init(FilterConfig filterConfig)

throws ServletException

Called by the web container to indicate to a filter that it is being placed in
service. The servlet container calls the init method exactly once after insta
ating the filter. The init method must complete successfully before the filte
asked to do any filtering work.

The web container cannot place the filter into service if the init method eit
 1.Throws a ServletException
 2.Does not return within a time period defined by the web container

Throws:
ServletException

SRV.14.2.2 FilterChain

public interface FilterChain

A FilterChain is an object provided by the servlet container to the developer
ing a view into the invocation chain of a filtered request for a resource. Filters
the FilterChain to invoke the next filter in the chain, or if the calling filter is th
last filter in the chain, to invoke the rosource at the end of the chain.

Since: Servlet 2.3

See Also: Filter

JAVAX.SERVLET

Fin

124

e

tion

tor.

r,
SRV.14.2.2.1 Methods

doFilter(ServletRequest, ServletResponse)
public void doFilter(ServletRequest request,

ServletResponse response)
throws IOException, ServletException

Causes the next filter in the chain to be invoked, or if the calling filter is th
last filter in the chain, causes the resource at the end of the chain to be
invoked.

Parameters:
request - the request to pass along the chain.

response - the response to pass along the chain.

Throws:
ServletException, IOException

Since: 2.3

SRV.14.2.3 FilterConfig

public interface FilterConfig

A filter configuration object used by a servlet container used to pass informa
to a filter during initialization.

Since: Servlet 2.3

See Also: Filter

SRV.14.2.3.1 Methods

getFilterName()
public java.lang.String getFilterName()

Returns the filter-name of this filter as defined in the deployment descrip

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization paramete
or null if the parameter does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter
al Version

The javax.servlet package 125

use

m-

he
getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an emptyEnumeration if the servlet has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
servlet’s initialization parameters

getServletContext()
public ServletContext getServletContext()

Returns a reference to theServletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its
servlet container

See Also:ServletContext

SRV.14.2.4 GenericServlet

public abstract class GenericServlet implements
javax.servlet.Servlet, javax.servlet.ServletConfig,
java.io.Serializable

All Implemented Interfaces: java.io.Serializable, Servlet, ServletCon-
fig

Direct Known Subclasses:javax.servlet.http.HttpServlet

Defines a generic, protocol-independent servlet. To write an HTTP servlet for
on the Web, extendjavax.servlet.http.HttpServlet instead.

GenericServlet implements the Servlet and ServletConfig interfaces.
GenericServlet may be directly extended by a servlet, although it’s more co
mon to extend a protocol-specific subclass such asHttpServlet.

GenericServlet makes writing servlets easier. It provides simple versions of t
lifecycle methodsinit anddestroy and of the methods in theServletConfig
interface.GenericServlet also implements thelog method, declared in the
ServletContext interface.

To write a generic servlet, you need only override the abstractservice method.

SRV.14.2.4.1 Constructors

GenericServlet()
public GenericServlet()

JAVAX.SERVLET

Fin

126

ing

r,

r

m

Does nothing. All of the servlet initialization is done by one of theinit

methods.

SRV.14.2.4.2 Methods

destroy()
public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is be
taken out of service. SeeServlet.destroy() .

Specified By: Servlet.destroy() in interfaceServlet

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization paramete
or null if the parameter does not exist. See
ServletConfig.getInitParameter(String) .

This method is supplied for convenience. It gets the value of the named
parameter from the servlet’sServletConfig object.

Specified By: ServletConfig.getInitParameter(String) in interface
ServletConfig

Parameters:
name - aString specifying the name of the initialization parameter

Returns: String aString containing the value of the initalization paramete

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an emptyEnumeration if the servlet has
no initialization parameters. See
ServletConfig.getInitParameterNames() .

This method is supplied for convenience. It gets the parameter names fro
the servlet’sServletConfig object.

Specified By: ServletConfig.getInitParameterNames() in interface
ServletConfig

Returns: Enumeration an enumeration ofString objects containing the
names of the servlet’s initialization parameters

getServletConfig()
al Version

The javax.servlet package 127

et’s

ght.
ve
public ServletConfig getServletConfig()

Returns this servlet’sServletConfig object.

Specified By: Servlet.getServletConfig() in interfaceServlet

Returns: ServletConfig theServletConfig object that initialized this
servlet

getServletContext()
public ServletContext getServletContext()

Returns a reference to theServletContext in which this servlet is running.
SeeServletConfig.getServletContext() .

This method is supplied for convenience. It gets the context from the servl
ServletConfig object.

Specified By: ServletConfig.getServletContext() in interface
ServletConfig

Returns: ServletContext theServletContext object passed to this servlet
by theinit method

getServletInfo()
public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyri
By default, this method returns an empty string. Override this method to ha
it return a meaningful value. SeeServlet.getServletInfo() .

Specified By: Servlet.getServletInfo() in interfaceServlet

Returns: String information about this servlet, by default an empty string

getServletName()
public java.lang.String getServletName()

Returns the name of this servlet instance. See
ServletConfig.getServletName() .

Specified By: ServletConfig.getServletName() in interface
ServletConfig

Returns: the name of this servlet instance

init()
public void init()

throws ServletException

JAVAX.SERVLET

Fin

128

call

ing

call

let’s
A convenience method which can be overridden so that there’s no need to
super.init(config).

Instead of overridinginit(ServletConfig) , simply override this method
and it will be called byGenericServlet.init(ServletConfig config).
TheServletConfig object can still be retrieved viagetServletConfig() .

Throws:
ServletException - if an exception occurs that interrupts the servlet’s
normal operation

init(ServletConfig)
public void init(ServletConfig config)

throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is be
placed into service. SeeServlet.init(ServletConfig) .

This implementation stores theServletConfig object it receives from the
servlet container for later use. When overriding this form of the method,
super.init(config).

Specified By: Servlet.init(ServletConfig) in interfaceServlet

Parameters:
config - theServletConfig object that contains configutation information
for this servlet

Throws:
ServletException - if an exception occurs that interrupts the servlet’s
normal operation

See Also:UnavailableException

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, prepended by the serv
name. SeeServletContext.log(String) .

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)
public void log(java.lang.String message, java.lang.Throwable t)

Writes an explanatory message and a stack trace for a givenThrowable

exception to the servlet log file, prepended by the servlet’s name. SeeServ-

letContext.log(String, Throwable) .
al Version

The javax.servlet package 129

st.

s

any
con-
a

eate
Parameters:
message - aString that describes the error or exception

t - thejava.lang.Throwable error or exception

service(ServletRequest, ServletResponse)
public abstract void service(ServletRequest req,

ServletResponse res)
throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a reque
SeeServlet.service(ServletRequest, ServletResponse) .

This method is declared abstract so subclasses, such asHttpServlet, must
override it.

Specified By: Servlet.service(ServletRequest, ServletResponse) in
interfaceServlet

Parameters:
req - theServletRequest object that contains the client’s request

res - theServletResponse object that will contain the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the servlet’
normal operation occurred

IOException - if an input or output exception occurs

SRV.14.2.5 RequestDispatcher

public interface RequestDispatcher

Defines an object that receives requests from the client and sends them to
resource (such as a servlet, HTML file, or JSP file) on the server. The servlet
tainer creates theRequestDispatcher object, which is used as a wrapper around
server resource located at a particular path or given by a particular name.

This interface is intended to wrap servlets, but a servlet container can cr
RequestDispatcher objects to wrap any type of resource.

See Also: ServletContext.getRequestDispatcher(String), ServletCon-
text.getNamedDispatcher(String), ServletRequest.getRe-
questDispatcher(String)

SRV.14.2.5.1 Methods

forward(ServletRequest, ServletResponse)

JAVAX.SERVLET

Fin

130

or
y

 cli-
ady

e

s were

udes.

in
onse

s were
public void forward(ServletRequest request,
ServletResponse response)
throws ServletException, IOException

Forwards a request from a servlet to another resource (servlet, JSP file,
HTML file) on the server. This method allows one servlet to do preliminar
processing of a request and another resource to generate the response.

For aRequestDispatcher obtained viagetRequestDispatcher(), the
ServletRequest object has its path elements and parameters adjusted to
match the path of the target resource.

forward should be called before the response has been committed to the
ent (before response body output has been flushed). If the response alre
has been committed, this method throws anIllegalStateException.
Uncommitted output in the response buffer is automatically cleared befor
the forward.

The request and response parameters must be either the same objects a
passed to the calling servlet’s service method or be subclasses of the
ServletRequestWrapper or ServletResponseWrapper classes that wrap
them.

Parameters:
request - aServletRequest object that represents the request the client
makes of the servlet

response - aServletResponse object that represents the response the
servlet returns to the client

Throws:
ServletException - if the target resource throws this exception

IOException - if the target resource throws this exception

IllegalStateException - if the response was already committed

include(ServletRequest, ServletResponse)
public void include(ServletRequest request,

ServletResponse response)
throws ServletException, IOException

Includes the content of a resource (servlet, JSP page, HTML file) in the
response. In essence, this method enables programmatic server-side incl

TheServletResponse object has its path elements and parameters rema
unchanged from the caller’s. The included servlet cannot change the resp
status code or set headers; any attempt to make a change is ignored.

The request and response parameters must be either the same objects a
passed to the calling servlet’s service method or be subclasses of the
al Version

The javax.servlet package 131

eive
Text

nds

d to
d are

the
n

ServletRequestWrapper or ServletResponseWrapper classes that wrap
them.

Parameters:
request - aServletRequest object that contains the client’s request

response - aServletResponse object that contains the servlet’s response

Throws:
ServletException - if the included resource throws this exception

IOException - if the included resource throws this exception

SRV.14.2.6 Servlet

public interface Servlet

All Known Implementing Classes: GenericServlet

Defines methods that all servlets must implement.

A servlet is a small Java program that runs within a Web server. Servlets rec
and respond to requests from Web clients, usually across HTTP, the Hyper
Transfer Protocol.

To implement this interface, you can write a generic servlet that exte
javax.servlet.GenericServlet or an HTTP servlet that extends
javax.servlet.http.HttpServlet.

This interface defines methods to initialize a servlet, to service requests, an
remove a servlet from the server. These are known as life-cycle methods an
called in the following sequence:

1.The servlet is constructed, then initialized with theinit method.

2.Any calls from clients to theservice method are handled.

3.The servlet is taken out of service, then destroyed with thedestroy method,
then garbage collected and finalized.

In addition to the life-cycle methods, this interface provides thegetServlet-

Config method, which the servlet can use to get any startup information, and
getServletInfo method, which allows the servlet to return basic informatio
about itself, such as author, version, and copyright.

See Also: GenericServlet, javax.servlet.http.HttpServlet

SRV.14.2.6.1 Methods

destroy()

JAVAX.SERVLET

Fin

132

ing
e
.

hat
re

ght.

any

ing

t

public void destroy()

Called by the servlet container to indicate to a servlet that the servlet is be
taken out of service. This method is only called once all threads within th
servlet’sservice method have exited or after a timeout period has passed
After the servlet container calls this method, it will not call theservice

method again on this servlet.

This method gives the servlet an opportunity to clean up any resources t
are being held (for example, memory, file handles, threads) and make su
that any persistent state is synchronized with the servlet’s current state in
memory.

getServletConfig()
public ServletConfig getServletConfig()

Returns aServletConfig object, which contains initialization and startup
parameters for this servlet. TheServletConfig object returned is the one
passed to theinit method.

Implementations of this interface are responsible for storing theServlet-

Config object so that this method can return it. TheGenericServlet class,
which implements this interface, already does this.

Returns: theServletConfig object that initializes this servlet

See Also:init(ServletConfig)

getServletInfo()
public java.lang.String getServletInfo()

Returns information about the servlet, such as author, version, and copyri

The string that this method returns should be plain text and not markup of
kind (such as HTML, XML, etc.).

Returns: aString containing servlet information

init(ServletConfig)
public void init(ServletConfig config)

throws ServletException

Called by the servlet container to indicate to a servlet that the servlet is be
placed into service.

The servlet container calls theinit method exactly once after instantiating
the servlet. Theinit method must complete successfully before the servle
can receive any requests.

The servlet container cannot place the servlet into service if theinit method
al Version

The javax.servlet package 133

st.

rows

dle
e
s well

ul-

s

1. Throws aServletException

2. Does not return within a time period defined by the Web server

Parameters:
config - aServletConfig object containing the servlet’s configuration and
initialization parameters

Throws:
ServletException - if an exception has occurred that interferes with the
servlet’s normal operation

See Also:UnavailableException, getServletConfig()

service(ServletRequest, ServletResponse)
public void service(ServletRequest req, ServletResponse res)

throws ServletException, IOException

Called by the servlet container to allow the servlet to respond to a reque

This method is only called after the servlet’sinit() method has completed
successfully.

The status code of the response always should be set for a servlet that th
or sends an error.

Servlets typically run inside multithreaded servlet containers that can han
multiple requests concurrently. Developers must be aware to synchroniz
access to any shared resources such as files, network connections, and a
as the servlet’s class and instance variables. More information on multi-
threaded programming in Java is available in the Java tutorial on multi-
threaded programming (http://java.sun.com/Series/Tutorial/java/threads/m
tithreaded.html).

Parameters:
req - theServletRequest object that contains the client’s request

res - theServletResponse object that contains the servlet’s response

Throws:
ServletException - if an exception occurs that interferes with the servlet’
normal operation

IOException - if an input or output exception occurs

SRV.14.2.7 ServletConfig

public interface ServletConfig

All Known Implementing Classes: GenericServlet

JAVAX.SERVLET

Fin

134

rma-

r,

a
tor,

serv-
A servlet configuration object used by a servlet container used to pass info
tion to a servlet during initialization.

SRV.14.2.7.1 Methods

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named initialization paramete
or null if the parameter does not exist.

Parameters:
name - aString specifying the name of the initialization parameter

Returns: aString containing the value of the initialization parameter

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the servlet’s initialization parameters as an
Enumeration of String objects, or an emptyEnumeration if the servlet has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
servlet’s initialization parameters

getServletContext()
public ServletContext getServletContext()

Returns a reference to theServletContext in which the caller is executing.

Returns: aServletContext object, used by the caller to interact with its
servlet container

See Also:ServletContext

getServletName()
public java.lang.String getServletName()

Returns the name of this servlet instance. The name may be provided vi
server administration, assigned in the web application deployment descrip
or for an unregistered (and thus unnamed) servlet instance it will be the
let’s class name.

Returns: the name of the servlet instance
al Version

The javax.servlet package 135

con-
o a

eb
ub-

rip-
ion,
e the
ase

he

p-

 Serv-
SRV.14.2.8 ServletContext

public interface ServletContext

Defines a set of methods that a servlet uses to communicate with its servlet
tainer, for example, to get the MIME type of a file, dispatch requests, or write t
log file.

There is one context per “web application” per Java Virtual Machine. (A “w
application” is a collection of servlets and content installed under a specific s
set of the server’s URL namespace such as/catalog and possibly installed via a
.war file.)

In the case of a web application marked “distributed” in its deployment desc
tor, there will be one context instance for each virtual machine. In this situat
the context cannot be used as a location to share global information (becaus
information won’t be truly global). Use an external resource like a datab
instead.

The ServletContext object is contained within theServletConfig object,
which the Web server provides the servlet when the servlet is initialized.

See Also: Servlet.getServletConfig(), ServletConfig.getServletCon-
text()

SRV.14.2.8.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the servlet container attribute with the given name, ornull if there is
no attribute by that name. An attribute allows a servlet container to give t
servlet additional information not already provided by this interface. See
your server documentation for information about its attributes. A list of su
ported attributes can be retrieved usinggetAttributeNames.

The attribute is returned as ajava.lang.Object or some subclass. Attribute
names should follow the same convention as package names. The Java
let API specification reserves names matchingjava.*, javax.*, andsun.*.

Parameters:
name - aString specifying the name of the attribute

Returns: anObject containing the value of the attribute, ornull if no
attribute exists matching the given name

See Also:getAttributeNames()

getAttributeNames()

JAVAX.SERVLET

Fin

136

s

e

ts of

web

n

r

-

tire
ss

on
public java.util.Enumeration getAttributeNames()

Returns anEnumeration containing the attribute names available within thi
servlet context. Use thegetAttribute(String) method with an attribute
name to get the value of an attribute.

Returns: anEnumeration of attribute names

See Also:getAttribute(String)

getContext(String)
public ServletContext getContext(java.lang.String uripath)

Returns aServletContext object that corresponds to a specified URL on th
server.

This method allows servlets to gain access to the context for various par
the server, and as needed obtainRequestDispatcher objects from the con-
text. The given path must be begin with “/”, is interpreted relative to the
server’s document root and is matched against the context roots of other
applications hosted on this container.

In a security conscious environment, the servlet container may returnnull

for a given URL.

Parameters:
uripath - aString specifying the context path of another web application i
the container.

Returns: theServletContext object that corresponds to the named URL, o
null if either none exists or the container wishes to restrict this access.

See Also:RequestDispatcher

getInitParameter(String)
public java.lang.String getInitParameter(java.lang.String name)

Returns aString containing the value of the named context-wide initializa
tion parameter, ornull if the parameter does not exist.

This method can make available configuration information useful to an en
“web application”. For example, it can provide a webmaster’s email addre
or the name of a system that holds critical data.

Parameters:
name - aString containing the name of the parameter whose value is
requested

Returns: aString containing at least the servlet container name and versi
number
al Version

The javax.servlet package 137

ner
s

tor.

up-
See Also:ServletConfig.getInitParameter(String)

getInitParameterNames()
public java.util.Enumeration getInitParameterNames()

Returns the names of the context’s initialization parameters as an
Enumeration of String objects, or an emptyEnumeration if the context has
no initialization parameters.

Returns: anEnumeration of String objects containing the names of the
context’s initialization parameters

See Also:ServletConfig.getInitParameter(String)

getMajorVersion()
public int getMajorVersion()

Returns the major version of the Java Servlet API that this servlet contai
supports. All implementations that comply with Version 2.3 must have thi
method return the integer 2.

Returns: 2

getMimeType(String)
public java.lang.String getMimeType(java.lang.String file)

Returns the MIME type of the specified file, ornull if the MIME type is not
known. The MIME type is determined by the configuration of the servlet
container, and may be specified in a web application deployment descrip
Common MIME types are“text/html” and“image/gif”.

Parameters:
file - aString specifying the name of a file

Returns: aString specifying the file’s MIME type

getMinorVersion()
public int getMinorVersion()

Returns the minor version of the Servlet API that this servlet container s
ports. All implementations that comply with Version 2.3 must have this
method return the integer 3.

Returns: 3

getNamedDispatcher(String)
public RequestDispatcher getNamedDispatcher(java.lang.String name)

JAVAX.SERVLET

Fin

138

ation
ter-

d

-
e-
l”,

per-
er

 con-

t

e

The
Returns aRequestDispatcher object that acts as a wrapper for the named
servlet.

Servlets (and JSP pages also) may be given names via server administr
or via a web application deployment descriptor. A servlet instance can de
mine its name usingServletConfig.getServletName() .

This method returnsnull if theServletContext cannot return aRequest-
Dispatcher for any reason.

Parameters:
name - aString specifying the name of a servlet to wrap

Returns: aRequestDispatcher object that acts as a wrapper for the name
servlet

See Also:RequestDispatcher, getContext(String),
ServletConfig.getServletName()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Returns aString containing the real path for a given virtual path. For exam
ple, the path “/index.html” returns the absolute file path on the server’s fil
system would be served by a request for “http://host/contextPath/index.htm
where contextPath is the context path of this ServletContext..

The real path returned will be in a form appropriate to the computer and o
ating system on which the servlet container is running, including the prop
path separators. This method returnsnull if the servlet container cannot
translate the virtual path to a real path for any reason (such as when the
tent is being made available from a.war archive).

Parameters:
path - aString specifying a virtual path

Returns: aString specifying the real path, or null if the translation canno
be performed

getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

Returns aRequestDispatcher object that acts as a wrapper for the resourc
located at the given path. ARequestDispatcher object can be used to for-
ward a request to the resource or to include the resource in a response.
resource can be dynamic or static.
al Version

The javax.servlet package 139

ur-

ath
ot.

erv-
 sys-

ng

t use
The pathname must begin with a “/” and is interpreted as relative to the c
rent context root. UsegetContext to obtain aRequestDispatcher for
resources in foreign contexts. This method returnsnull if theServlet-

Context cannot return aRequestDispatcher.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the
resource at the specified path

See Also:RequestDispatcher, getContext(String)

getResource(String)
public java.net.URL getResource(java.lang.String path)

throws MalformedURLException

Returns a URL to the resource that is mapped to a specified path. The p
must begin with a “/” and is interpreted as relative to the current context ro

This method allows the servlet container to make a resource available to s
lets from any source. Resources can be located on a local or remote file
tem, in a database, or in a.war file.

The servlet container must implement the URL handlers andURLConnection

objects that are necessary to access the resource.

This method returnsnull if no resource is mapped to the pathname.

Some containers may allow writing to the URL returned by this method usi
the methods of the URL class.

The resource content is returned directly, so be aware that requesting a.jsp

page returns the JSP source code. Use aRequestDispatcher instead to
include results of an execution.

This method has a different purpose thanjava.lang.Class.getResource,
which looks up resources based on a class loader. This method does no
class loaders.

Parameters:
path - aString specifying the path to the resource

Returns: the resource located at the named path, ornull if there is no
resource at that path

Throws:
MalformedURLException - if the pathname is not given in the correct form

getResourceAsStream(String)

JAVAX.SERVLET

Fin

140

e

via

e a
der.

t.
 all
le,

,

public java.io.InputStream getResourceAsStream(java.lang.String
path)

Returns the resource located at the named path as anInputStream object.

The data in theInputStream can be of any type or length. The path must b
specified according to the rules given ingetResource. This method returns
null if no resource exists at the specified path.

Meta-information such as content length and content type that is available
getResource method is lost when using this method.

The servlet container must implement the URL handlers andURLConnection

objects necessary to access the resource.

This method is different fromjava.lang.Class.getResourceAsStream,
which uses a class loader. This method allows servlet containers to mak
resource available to a servlet from any location, without using a class loa

Parameters:
name - aString specifying the path to the resource

Returns: theInputStream returned to the servlet, ornull if no resource
exists at the specified path

getResourcePaths(String)
public java.util.Set getResourcePaths(java.lang.String path)

Returns a directory-like listing of all the paths to resources within the web
application whose longest sub-path matches the supplied path argumen
Paths indicating subdirectory paths end with a ’/’. The returned paths are
relative to the root of the web application and have a leading ’/’. For examp
for a web application containing

 /welcome.html
 /catalog/index.html
 /catalog/products.html
 /catalog/offers/books.html
 /catalog/offers/music.html
 /customer/login.jsp
 /WEB-INF/web.xml
 /WEB-INF/classes/com.acme.OrderServlet.class,

 getResourcePaths(“/”) returns {“/welcome.html”, “/catalog/”, “/customer/”
“/WEB-INF/”}
 getResourcePaths(“/catalog/”) returns {“/catalog/index.html”, “/catalog/
products.html”, “/catalog/offers/”}.
al Version

The javax.servlet package 141

th.

let is

ry

on

text
dis-
Parameters:
the - partial path used to match the resources, which must start with a /

Returns: a Set containing the directory listing, or null if there are no
resources in the web application whose path begins with the supplied pa

Since: Servlet 2.3

getServerInfo()
public java.lang.String getServerInfo()

Returns the name and version of the servlet container on which the serv
running.

The form of the returned string isservername/versionnumber. For example,
the JavaServer Web Development Kit may return the stringJavaServer Web

Dev Kit/1.0.

The servlet container may return other optional information after the prima
string in parentheses, for example,JavaServer Web Dev Kit/1.0 (JDK

1.1.6; Windows NT 4.0 x86).

Returns: aString containing at least the servlet container name and versi
number

getServlet(String)
public Servlet getServlet(java.lang.String name)

throws ServletException

Deprecated. As of Java Servlet API 2.1, with no direct replacement.

This method was originally defined to retrieve a servlet from a
ServletContext. In this version, this method always returnsnull and
remains only to preserve binary compatibility. This method will be
permanently removed in a future version of the Java Servlet API.

In lieu of this method, servlets can share information using the
ServletContext class and can perform shared business logic by invoking
methods on common non-servlet classes.

Throws:
ServletException

getServletContextName()
public java.lang.String getServletContextName()

Returns the name of this web application correponding to this ServletCon
as specified in the deployment descriptor for this web application by the
play-name element.

JAVAX.SERVLET

Fin

142

n

n

an

he
Returns: The name of the web application or null if no name has been
declared in the deployment descriptor.

Since: Servlet 2.3

getServletNames()
public java.util.Enumeration getServletNames()

Deprecated. As of Java Servlet API 2.1, with no replacement.

This method was originally defined to return anEnumeration of all the
servlet names known to this context. In this version, this method always
returns an emptyEnumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future versio
of the Java Servlet API.

getServlets()
public java.util.Enumeration getServlets()

Deprecated. As of Java Servlet API 2.0, with no replacement.

This method was originally defined to return anEnumeration of all the
servlets known to this servlet context. In this version, this method always
returns an empty enumeration and remains only to preserve binary
compatibility. This method will be permanently removed in a future versio
of the Java Servlet API.

log(Exception, String)
public void log(java.lang.Exception exception,

java.lang.String msg)

Deprecated. As of Java Servlet API 2.1, uselog(String, Throwable)
instead.

This method was originally defined to write an exception’s stack trace and
explanatory error message to the servlet log file.

log(String)
public void log(java.lang.String msg)

Writes the specified message to a servlet log file, usually an event log. T
name and type of the servlet log file is specific to the servlet container.

Parameters:
msg - aString specifying the message to be written to the log file

log(String, Throwable)
al Version

The javax.servlet package 143

 is

r

me
ute

he
public void log(java.lang.String message,
java.lang.Throwable throwable)

Writes an explanatory message and a stack trace for a givenThrowable

exception to the servlet log file. The name and type of the servlet log file
specific to the servlet container, usually an event log.

Parameters:
message - aString that describes the error or exception

throwable - theThrowable error or exception

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes the attribute with the given name from the servlet context. Afte
removal, subsequent calls togetAttribute(String) to retrieve the
attribute’s value will returnnull.

If listeners are configured on theServletContext the container notifies them
accordingly.

Parameters:
name - aString specifying the name of the attribute to be removed

setAttribute(String, Object)
public void setAttribute(java.lang.String name,

java.lang.Object object)

Binds an object to a given attribute name in this servlet context. If the na
specified is already used for an attribute, this method will replace the attrib
with the new to the new attribute.

If listeners are configured on theServletContext the container notifies them
accordingly.

If a null value is passed, the effect is the same as callingremoveAttribute().

Attribute names should follow the same convention as package names. T
Java Servlet API specification reserves names matchingjava.*, javax.*,
andsun.*.

Parameters:
name - aString specifying the name of the attribute

object - anObject representing the attribute to be bound

SRV.14.2.9 ServletContextAttributeEvent

public class ServletContextAttributeEvent extends
javax.servlet.ServletContextEvent

JAVAX.SERVLET

Fin

144

serv-

d. If
as

ute
the
the
All Implemented Interfaces: java.io.Serializable

This is the event class for notifications about changes to the attributes of the
let context of a web application.

Since: v 2.3

See Also: ServletContextAttributeListener

SRV.14.2.9.1 Constructors

ServletContextAttributeEvent(ServletContext, String, Object)
public ServletContextAttributeEvent(ServletContext source,

java.lang.String name, java.lang.Object value)

Construct a ServletContextAttributeEvent from the given context for the
given attribute name and attribute value.

SRV.14.2.9.2 Methods

getName()
public java.lang.String getName()

Return the name of the attribute that changed on the ServletContext.

getValue()
public java.lang.Object getValue()

Returns the value of the attribute that has been added removed or replace
the attribute was added, this is the value of the attribute. If the attrubute w
removed, this is the value of the removed attribute. If the attribute was
replaced, this is the old value of the attribute.

SRV.14.2.10 ServletContextAttributeListener

public interface ServletContextAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface recieve notifications of changes to the attrib
list on the servlet context of a web application. To recieve notification events,
implementation class must be configured in the deployment descriptor for
web application.

Since: v 2.3

See Also: ServletContextAttributeEvent
al Version

The javax.servlet package 145

fter

n-

lled

of a
SRV.14.2.10.1 Methods

attributeAdded(ServletContextAttributeEvent)
public void attributeAdded(ServletContextAttributeEvent scab)

Notification that a new attribute was added to the servlet context. Called a
the attribute is added.

attributeRemoved(ServletContextAttributeEvent)
public void attributeRemoved(ServletContextAttributeEvent scab)

Notification that an existing attribute has been remved from the servlet co
text. Called after the attribute is removed.

attributeReplaced(ServletContextAttributeEvent)
public void attributeReplaced(ServletContextAttributeEvent scab)

Notification that an attribute on the servlet context has been replaced. Ca
after the attribute is replaced.

SRV.14.2.11 ServletContextEvent

public class ServletContextEvent extends java.util.EventObject

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses:ServletContextAttributeEvent

This is the event class for notifications about changes to the servlet context
web application.

Since: v 2.3

See Also: ServletContextListener

SRV.14.2.11.1 Constructors

ServletContextEvent(ServletContext)
public ServletContextEvent(ServletContext source)

Construct a ServletContextEvent from the given context.

Parameters:
source - - the ServletContext that is sending the event.

SRV.14.2.11.2 Methods

getServletContext()

JAVAX.SERVLET

Fin

146

erv-
nts,
r the

.

public ServletContext getServletContext()

Return the ServletContext that changed.

Returns: the ServletContext that sent the event.

SRV.14.2.12 ServletContextListener

public interface ServletContextListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface recieve notifications about changes to the s
let context of the web application they are part of. To recieve notification eve
the implementation class must be configured in the deployment descriptor fo
web application.

Since: v 2.3

See Also: ServletContextEvent

SRV.14.2.12.1 Methods

contextDestroyed(ServletContextEvent)
public void contextDestroyed(ServletContextEvent sce)

Notification that the servlet context is about to be shut down.

contextInitialized(ServletContextEvent)
public void contextInitialized(ServletContextEvent sce)

Notification that the web application is ready to process requests.

SRV.14.2.13 ServletException

public class ServletException extends java.lang.Exception

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses:UnavailableException

Defines a general exception a servlet can throw when it encounters difficulty

SRV.14.2.13.1 Constructors

ServletException()
public ServletException()

Constructs a new servlet exception.
al Version

The javax.servlet package 147

sage

cep-
red

cep-
red
lized

e

ServletException(String)
public ServletException(java.lang.String message)

Constructs a new servlet exception with the specified message. The mes
can be written to the server log and/or displayed for the user.

Parameters:
message - aString specifying the text of the exception message

ServletException(String, Throwable)
public ServletException(java.lang.String message,

java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an ex
tion and include a message about the “root cause” exception that interfe
with its normal operation, including a description message.

Parameters:
message - aString containing the text of the exception message

rootCause - theThrowable exception that interfered with the servlet’s
normal operation, making this servlet exception necessary

ServletException(Throwable)
public ServletException(java.lang.Throwable rootCause)

Constructs a new servlet exception when the servlet needs to throw an ex
tion and include a message about the “root cause” exception that interfe
with its normal operation. The exception’s message is based on the loca
message of the underlying exception.

This method calls thegetLocalizedMessage method on theThrowable
exception to get a localized exception message. When subclassingServlet-

Exception, this method can be overridden to create an exception messag
designed for a specific locale.

Parameters:
rootCause - theThrowable exception that interfered with the servlet’s
normal operation, making the servlet exception necessary

SRV.14.2.13.2 Methods

getRootCause()
public java.lang.Throwable getRootCause()

Returns the exception that caused this servlet exception.

Returns: theThrowable that caused this servlet exception

JAVAX.SERVLET

Fin

148

ing
o-

f this

tes
e

ing

ding

e

SRV.14.2.14 ServletInputStream

public abstract class ServletInputStream extends java.io.InputStream

Provides an input stream for reading binary data from a client request, includ
an efficientreadLine method for reading data one line at a time. With some pr
tocols, such as HTTP POST and PUT, aServletInputStream object can be used
to read data sent from the client.

A ServletInputStream object is normally retrieved via the
ServletRequest.getInputStream() method.

This is an abstract class that a servlet container implements. Subclasses o
class must implement thejava.io.InputStream.read() method.

See Also: ServletRequest

SRV.14.2.14.1 Constructors

ServletInputStream()
protected ServletInputStream()

Does nothing, because this is an abstract class.

SRV.14.2.14.2 Methods

readLine(byte[], int, int)
public int readLine(byte[] b, int off, int len)

throws IOException

Reads the input stream, one line at a time. Starting at an offset, reads by
into an array, until it reads a certain number of bytes or reaches a newlin
character, which it reads into the array as well.

This method returns -1 if it reaches the end of the input stream before read
the maximum number of bytes.

Parameters:
b - an array of bytes into which data is read

off - an integer specifying the character at which this method begins rea

len - an integer specifying the maximum number of bytes to read

Returns: an integer specifying the actual number of bytes read, or -1 if th
end of the stream is reached

Throws:
IOException - if an input or output exception has occurred
al Version

The javax.servlet package 149

f this

at
SRV.14.2.15 ServletOutputStream

public abstract class ServletOutputStream extends
java.io.OutputStream

Provides an output stream for sending binary data to the client. AServlet-

OutputStream object is normally retrieved via the
ServletResponse.getOutputStream() method.

This is an abstract class that the servlet container implements. Subclasses o
class must implement thejava.io.OutputStream.write(int) method.

See Also: ServletResponse

SRV.14.2.15.1 Constructors

ServletOutputStream()
protected ServletOutputStream()

Does nothing, because this is an abstract class.

SRV.14.2.15.2 Methods

print(boolean)
public void print(boolean b)

throws IOException

Writes aboolean value to the client, with no carriage return-line feed
(CRLF) character at the end.

Parameters:
b - theboolean value to send to the client

Throws:
IOException - if an input or output exception occurred

print(char)
public void print(char c)

throws IOException

Writes a character to the client, with no carriage return-line feed (CRLF)
the end.

Parameters:
c - the character to send to the client

Throws:
IOException - if an input or output exception occurred

JAVAX.SERVLET

Fin

150

)

)

t

print(double)
public void print(double d)

throws IOException

Writes adouble value to the client, with no carriage return-line feed (CRLF
at the end.

Parameters:
d - thedouble value to send to the client

Throws:
IOException - if an input or output exception occurred

print(float)
public void print(float f)

throws IOException

Writes afloat value to the client, with no carriage return-line feed (CRLF
at the end.

Parameters:
f - thefloat value to send to the client

Throws:
IOException - if an input or output exception occurred

print(int)
public void print(int i)

throws IOException

Writes an int to the client, with no carriage return-line feed (CRLF) at the
end.

Parameters:
i - the int to send to the client

Throws:
IOException - if an input or output exception occurred

print(long)
public void print(long l)

throws IOException

Writes along value to the client, with no carriage return-line feed (CRLF) a
the end.

Parameters:
l - thelong value to send to the client

Throws:
al Version

The javax.servlet package 151
IOException - if an input or output exception occurred

print(String)
public void print(java.lang.String s)

throws IOException

Writes aString to the client, without a carriage return-line feed (CRLF)
character at the end.

Parameters:
s - theString</code to send to the client

Throws:
IOException - if an input or output exception occurred

println()
public void println()

throws IOException

Writes a carriage return-line feed (CRLF) to the client.

Throws:
IOException - if an input or output exception occurred

println(boolean)
public void println(boolean b)

throws IOException

Writes aboolean value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
b - theboolean value to write to the client

Throws:
IOException - if an input or output exception occurred

println(char)
public void println(char c)

throws IOException

Writes a character to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
c - the character to write to the client

Throws:
IOException - if an input or output exception occurred

JAVAX.SERVLET

Fin

152
println(double)
public void println(double d)

throws IOException

Writes adouble value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
d - thedouble value to write to the client

Throws:
IOException - if an input or output exception occurred

println(float)
public void println(float f)

throws IOException

Writes afloat value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
f - thefloat value to write to the client

Throws:
IOException - if an input or output exception occurred

println(int)
public void println(int i)

throws IOException

Writes an int to the client, followed by a carriage return-line feed (CRLF)
character.

Parameters:
i - the int to write to the client

Throws:
IOException - if an input or output exception occurred

println(long)
public void println(long l)

throws IOException

Writes along value to the client, followed by a carriage return-line feed
(CRLF).

Parameters:
l - thelong value to write to the client

Throws:
al Version

The javax.servlet package 153

).

vlet
he

es,

by

to
ests

lly
IOException - if an input or output exception occurred

println(String)
public void println(java.lang.String s)

throws IOException

Writes aString to the client, followed by a carriage return-line feed (CRLF

Parameters:
s - the String to write to the client

Throws:
IOException - if an input or output exception occurred

SRV.14.2.16 ServletRequest

public interface ServletRequest

All Known Subinterfaces: javax.servlet.http.HttpServletRequest

All Known Implementing Classes: ServletRequestWrapper

Defines an object to provide client request information to a servlet. The ser
container creates aServletRequest object and passes it as an argument to t
servlet’sservice method.

A ServletRequest object provides data including parameter name and valu
attributes, and an input stream. Interfaces that extendServletRequest can pro-
vide additional protocol-specific data (for example, HTTP data is provided
javax.servlet.http.HttpServletRequest .

See Also: javax.servlet.http.HttpServletRequest

SRV.14.2.16.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the value of the named attribute as anObject, ornull if no attribute
of the given name exists.

Attributes can be set two ways. The servlet container may set attributes
make available custom information about a request. For example, for requ
made using HTTPS, the attribute
javax.servlet.request.X509Certificate can be used to retrieve informa-
tion on the certificate of the client. Attributes can also be set programatica
usingsetAttribute(String, Object) . This allows information to be
embedded into a request before aRequestDispatcher call.

JAVAX.SERVLET

Fin

154

This

uest.
ng

the
the

r

Attribute names should follow the same conventions as package names.
specification reserves names matchingjava.*, javax.*, andsun.*.

Parameters:
name - aString specifying the name of the attribute

Returns: anObject containing the value of the attribute, ornull if the
attribute does not exist

getAttributeNames()
public java.util.Enumeration getAttributeNames()

Returns anEnumeration containing the names of the attributes available to
this request. This method returns an emptyEnumeration if the request has no
attributes available to it.

Returns: anEnumeration of strings containing the names of the request’s
attributes

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the character encoding used in the body of this req
This method returnsnull if the request does not specify a character encodi

Returns: aString containing the name of the chararacter encoding, ornull

if the request does not specify a character encoding

getContentLength()
public int getContentLength()

Returns the length, in bytes, of the request body and made available by
input stream, or -1 if the length is not known. For HTTP servlets, same as
value of the CGI variable CONTENT_LENGTH.

Returns: an integer containing the length of the request body or -1 if the
length is not known

getContentType()
public java.lang.String getContentType()

Returns the MIME type of the body of the request, ornull if the type is not
known. For HTTP servlets, same as the value of the CGI variable
CONTENT_TYPE.

Returns: aString containing the name of the MIME type of the request, o
null if the type is not known
al Version

The javax.servlet package 155

t

ept-

lient
e an

 or

nly
getInputStream()
public ServletInputStream getInputStream()

throws IOException

Retrieves the body of the request as binary data using a
ServletInputStream . Either this method orgetReader() may be called to
read the body, not both.

Returns: aServletInputStream object containing the body of the reques

Throws:
IllegalStateException - if thegetReader() method has already been
called for this request

IOException - if an input or output exception occurred

getLocale()
public java.util.Locale getLocale()

Returns the preferredLocale that the client will accept content in, based on
the Accept-Language header. If the client request doesn’t provide an Acc
Language header, this method returns the default locale for the server.

Returns: the preferredLocale for the client

getLocales()
public java.util.Enumeration getLocales()

Returns anEnumeration of Locale objects indicating, in decreasing order
starting with the preferred locale, the locales that are acceptable to the c
based on the Accept-Language header. If the client request doesn’t provid
Accept-Language header, this method returns anEnumeration containing
oneLocale, the default locale for the server.

Returns: anEnumeration of preferredLocale objects for the client

getParameter(String)
public java.lang.String getParameter(java.lang.String name)

Returns the value of a request parameter as aString, ornull if the parameter
does not exist. Request parameters are extra information sent with the
request. For HTTP servlets, parameters are contained in the query string
posted form data.

You should only use this method when you are sure the parameter has o
one value. If the parameter might have more than one value, use
getParameterValues(String) .

JAVAX.SERVLET

Fin

156

s

an

eters
rs

s
e of

he
If you use this method with a multivalued parameter, the value returned i
equal to the first value in the array returned bygetParameterValues.

If the parameter data was sent in the request body, such as occurs with
HTTP POST request, then reading the body directly viagetInputStream()

or getReader() can interfere with the execution of this method.

Parameters:
name - aString specifying the name of the parameter

Returns: aString representing the single value of the parameter

See Also:getParameterValues(String)

getParameterMap()
public java.util.Map getParameterMap()

Returns a java.util.Map of the parameters of this request. Request param
are extra information sent with the request. For HTTP servlets, paramete
are contained in the query string or posted form data.

Returns: an immutable java.util.Map containing parameter names as key
and parameter values as map values. The keys in the parameter map ar
type String. The values in the parameter map are of type String array.

getParameterNames()
public java.util.Enumeration getParameterNames()

Returns anEnumeration of String objects containing the names of the
parameters contained in this request. If the request has no parameters, t
method returns an emptyEnumeration.

Returns: anEnumeration of String objects, eachString containing the
name of a request parameter; or an emptyEnumeration if the request has no
parameters

getParameterValues(String)
public java.lang.String[] getParameterValues(java.lang.String name)

Returns an array ofString objects containing all of the values the given
request parameter has, ornull if the parameter does not exist.

If the parameter has a single value, the array has a length of 1.

Parameters:
name - aString containing the name of the parameter whose value is
requested

Returns: an array ofString objects containing the parameter’s values
al Version

The javax.servlet package 157

m

ding

est.
See Also:getParameter(String)

getProtocol()
public java.lang.String getProtocol()

Returns the name and version of the protocol the request uses in the for
protocol/majorVersion.minorVersion, for example, HTTP/1.1. For HTTP
servlets, the value returned is the same as the value of the CGI variable
SERVER_PROTOCOL.

Returns: aString containing the protocol name and version number

getReader()
public java.io.BufferedReader getReader()

throws IOException

Retrieves the body of the request as character data using aBufferedReader.
The reader translates the character data according to the character enco
used on the body. Either this method orgetInputStream() may be called to
read the body, not both.

Returns: aBufferedReader containing the body of the request

Throws:
UnsupportedEncodingException - if the character set encoding used is not
supported and the text cannot be decoded

IllegalStateException - if getInputStream() method has been called on
this request

IOException - if an input or output exception occurred

See Also:getInputStream()

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

Deprecated. As of Version 2.1 of the Java Servlet API, use
ServletContext.getRealPath(String) instead.

getRemoteAddr()
public java.lang.String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client that sent the requ
For HTTP servlets, same as the value of the CGI variableREMOTE_ADDR.

Returns: aString containing the IP address of the client that sent the
request

JAVAX.SERVLET

Fin

158

r-
r

e

The

the
ve

s,
getRemoteHost()
public java.lang.String getRemoteHost()

Returns the fully qualified name of the client that sent the request. If the
engine cannot or chooses not to resolve the hostname (to improve perfo
mance), this method returns the dotted-string form of the IP address. Fo
HTTP servlets, same as the value of the CGI variableREMOTE_HOST.

Returns: aString containing the fully qualified name of the client

getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

Returns aRequestDispatcher object that acts as a wrapper for the resourc
located at the given path. ARequestDispatcher object can be used to for-
ward a request to the resource or to include the resource in a response.
resource can be dynamic or static.

The pathname specified may be relative, although it cannot extend outside
current servlet context. If the path begins with a “/” it is interpreted as relati
to the current context root. This method returnsnull if the servlet container
cannot return aRequestDispatcher.

The difference between this method and
ServletContext.getRequestDispatcher(String) is that this method can
take a relative path.

Parameters:
path - aString specifying the pathname to the resource

Returns: aRequestDispatcher object that acts as a wrapper for the
resource at the specified path

See Also:RequestDispatcher,
ServletContext.getRequestDispatcher(String)

getScheme()
public java.lang.String getScheme()

Returns the name of the scheme used to make this request, for example,http,
https, or ftp. Different schemes have different rules for constructing URL
as noted in RFC 1738.

Returns: aString containing the name of the scheme used to make this
request

getServerName()
al Version

The javax.servlet package 159

serv-

t

serv-

ure

ded

. This
public java.lang.String getServerName()

Returns the host name of the server that received the request. For HTTP
lets, same as the value of the CGI variableSERVER_NAME.

Returns: aString containing the name of the server to which the reques
was sent

getServerPort()
public int getServerPort()

Returns the port number on which this request was received. For HTTP
lets, same as the value of the CGI variableSERVER_PORT.

Returns: an integer specifying the port number

isSecure()
public boolean isSecure()

Returns a boolean indicating whether this request was made using a sec
channel, such as HTTPS.

Returns: a boolean indicating if the request was made using a secure
channel

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes an attribute from this request. This method is not generally nee
as attributes only persist as long as the request is being handled.

Attribute names should follow the same conventions as package names.
Names beginning withjava.*, javax.*, andcom.sun.*, are reserved for use
by Sun Microsystems.

Parameters:
name - aString specifying the name of the attribute to remove

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object o)

Stores an attribute in this request. Attributes are reset between requests
method is most often used in conjunction withRequestDispatcher .

Attribute names should follow the same conventions as package names.
Names beginning withjava.*, javax.*, andcom.sun.*, are reserved for use
by Sun Microsystems.
 If the value passed in is null, the effect is the same as calling
removeAttribute(String) .

JAVAX.SERVLET

Fin

160

 or

n be
class
ugh
Parameters:
name - aString specifying the name of the attribute

o - theObject to be stored

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String env)

throws UnsupportedEncodingException

Overrides the name of the character encoding used in the body of this
request. This method must be called prior to reading request parameters
reading input using getReader().

Parameters:
a - String containing the name of the chararacter encoding.

Throws:
java.io.UnsupportedEncodingException - if this is not a valid encoding

SRV.14.2.17 ServletRequestWrapper

public class ServletRequestWrapper implements
javax.servlet.ServletRequest

All Implemented Interfaces: ServletRequest

Direct Known Subclasses:javax.servlet.http.HttpServletRequestWrapper

Provides a convenient implementation of the ServletRequest interface that ca
subclassed by developers wishing to adapt the request to a Servlet. This
implements the Wrapper or Decorator pattern. Methods default to calling thro
to the wrapped request object.

Since: v 2.3

See Also: ServletRequest

SRV.14.2.17.1 Constructors

ServletRequestWrapper(ServletRequest)
public ServletRequestWrapper(ServletRequest request)

Creates a ServletRequest adaptor wrapping the given request object.

Throws:
java.lang.IllegalArgumentException - if the request is null

SRV.14.2.17.2 Methods

getAttribute(String)
al Version

The javax.servlet package 161

n

he

on

e

public java.lang.Object getAttribute(java.lang.String name)

The default behavior of this method is to call getAttribute(String name) o
the wrapped request object.

Specified By: ServletRequest.getAttribute(String) in interface
ServletRequest

getAttributeNames()
public java.util.Enumeration getAttributeNames()

The default behavior of this method is to return getAttributeNames() on t
wrapped request object.

Specified By: ServletRequest.getAttributeNames() in interface
ServletRequest

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding()
the wrapped request object.

Specified By: ServletRequest.getCharacterEncoding() in interface
ServletRequest

getContentLength()
public int getContentLength()

The default behavior of this method is to return getContentLength() on th
wrapped request object.

Specified By: ServletRequest.getContentLength() in interface
ServletRequest

getContentType()
public java.lang.String getContentType()

The default behavior of this method is to return getContentType() on the
wrapped request object.

Specified By: ServletRequest.getContentType() in interface
ServletRequest

getInputStream()
public ServletInputStream getInputStream()

throws IOException

JAVAX.SERVLET

Fin

162

ed

ped

e)

e

 the
The default behavior of this method is to return getInputStream() on the
wrapped request object.

Specified By: ServletRequest.getInputStream() in interface
ServletRequest

Throws:
IOException

getLocale()
public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapp
request object.

Specified By: ServletRequest.getLocale() in interfaceServletRequest

getLocales()
public java.util.Enumeration getLocales()

The default behavior of this method is to return getLocales() on the wrap
request object.

Specified By: ServletRequest.getLocales() in interface
ServletRequest

getParameter(String)
public java.lang.String getParameter(java.lang.String name)

The default behavior of this method is to return getParameter(String nam
on the wrapped request object.

Specified By: ServletRequest.getParameter(String) in interface
ServletRequest

getParameterMap()
public java.util.Map getParameterMap()

The default behavior of this method is to return getParameterMap() on th
wrapped request object.

Specified By: ServletRequest.getParameterMap() in interface
ServletRequest

getParameterNames()
public java.util.Enumeration getParameterNames()

The default behavior of this method is to return getParameterNames() on
wrapped request object.
al Version

The javax.servlet package 163

g

ed

ped

 on
Specified By: ServletRequest.getParameterNames() in interface
ServletRequest

getParameterValues(String)
public java.lang.String[] getParameterValues(java.lang.String name)

The default behavior of this method is to return getParameterValues(Strin
name) on the wrapped request object.

Specified By: ServletRequest.getParameterValues(String) in interface
ServletRequest

getProtocol()
public java.lang.String getProtocol()

The default behavior of this method is to return getProtocol() on the wrapp
request object.

Specified By: ServletRequest.getProtocol() in interface
ServletRequest

getReader()
public java.io.BufferedReader getReader()

throws IOException

The default behavior of this method is to return getReader() on the wrap
request object.

Specified By: ServletRequest.getReader() in interfaceServletRequest

Throws:
IOException

getRealPath(String)
public java.lang.String getRealPath(java.lang.String path)

The default behavior of this method is to return getRealPath(String path)
the wrapped request object.

Specified By: ServletRequest.getRealPath(String) in interface
ServletRequest

getRemoteAddr()
public java.lang.String getRemoteAddr()

The default behavior of this method is to return getRemoteAddr() on the
wrapped request object.

JAVAX.SERVLET

Fin

164

ing

ped
Specified By: ServletRequest.getRemoteAddr() in interface
ServletRequest

getRemoteHost()
public java.lang.String getRemoteHost()

The default behavior of this method is to return getRemoteHost() on the
wrapped request object.

Specified By: ServletRequest.getRemoteHost() in interface
ServletRequest

getRequest()
public ServletRequest getRequest()

Return the wrapped request object.

getRequestDispatcher(String)
public RequestDispatcher getRequestDispatcher(java.lang.String

path)

The default behavior of this method is to return getRequestDispatcher(Str
path) on the wrapped request object.

Specified By: ServletRequest.getRequestDispatcher(String) in
interfaceServletRequest

getScheme()
public java.lang.String getScheme()

The default behavior of this method is to return getScheme() on the wrap
request object.

Specified By: ServletRequest.getScheme() in interfaceServletRequest

getServerName()
public java.lang.String getServerName()

The default behavior of this method is to return getServerName() on the
wrapped request object.

Specified By: ServletRequest.getServerName() in interface
ServletRequest

getServerPort()
public int getServerPort()
al Version

The javax.servlet package 165

d

e)

he
The default behavior of this method is to return getServerPort() on the
wrapped request object.

Specified By: ServletRequest.getServerPort() in interface
ServletRequest

isSecure()
public boolean isSecure()

The default behavior of this method is to return isSecure() on the wrappe
request object.

Specified By: ServletRequest.isSecure() in interfaceServletRequest

removeAttribute(String)
public void removeAttribute(java.lang.String name)

The default behavior of this method is to call removeAttribute(String nam
on the wrapped request object.

Specified By: ServletRequest.removeAttribute(String) in interface
ServletRequest

setAttribute(String, Object)
public void setAttribute(java.lang.String name, java.lang.Object o)

The default behavior of this method is to return setAttribute(String name,
Object o) on the wrapped request object.

Specified By: ServletRequest.setAttribute(String, Object) in
interfaceServletRequest

setCharacterEncoding(String)
public void setCharacterEncoding(java.lang.String enc)

throws UnsupportedEncodingException

The default behavior of this method is to set the character encoding on t
wrapped request object.

Specified By: ServletRequest.setCharacterEncoding(String) in
interfaceServletRequest

Throws:
UnsupportedEncodingException

setRequest(ServletRequest)
public void setRequest(ServletRequest request)

Sets the request object being wrapped.

JAVAX.SERVLET

Fin

166

ervlet
he

-

ith

r.

/rfc/
nd

nd
Throws:
java.lang.IllegalArgumentException - if the request is null.

SRV.14.2.18 ServletResponse

public interface ServletResponse

All Known Subinterfaces: javax.servlet.http.HttpServletResponse

All Known Implementing Classes: ServletResponseWrapper

Defines an object to assist a servlet in sending a response to the client. The s
container creates aServletResponse object and passes it as an argument to t
servlet’sservice method.

To send binary data in a MIME body response, use theServletOutputStream

returned bygetOutputStream() . To send character data, use thePrintWriter

object returned bygetWriter() . To mix binary and text data, for example, to
create a multipart response, use aServletOutputStream and manage the charac
ter sections manually.

The charset for the MIME body response can be specified w
setContentType(String) . For example, “text/html; charset=Shift_JIS”. The
charset can alternately be set usingsetLocale(Locale) . If no charset is speci-
fied, ISO-8859-1 will be used. ThesetContentType or setLocale method must
be called beforegetWriter for the charset to affect the construction of the write

See the Internet RFCs such as RFC 2045 (http://info.internet.isi.edu/in-notes
files/rfc2045.txt) for more information on MIME. Protocols such as SMTP a
HTTP define profiles of MIME, and those standards are still evolving.

See Also: ServletOutputStream

SRV.14.2.18.1 Methods

flushBuffer()
public void flushBuffer()

throws IOException

Forces any content in the buffer to be written to the client. A call to this
method automatically commits the response, meaning the status code a
headers will be written.

Throws:
IOException

See Also:setBufferSize(int), getBufferSize(), isCommitted(),
reset()
al Version

The javax.servlet package 167

ed,

this
getBufferSize()
public int getBufferSize()

Returns the actual buffer size used for the response. If no buffering is us
this method returns 0.

Returns: the actual buffer size used

See Also:setBufferSize(int), flushBuffer(), isCommitted(), reset()

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

Returns the name of the charset used for the MIME body sent in this
response.

If no charset has been assigned, it is implicitly set toISO-8859-1 (Latin-1).

See RFC 2047 (http://ds.internic.net/rfc/rfc2045.txt) for more information
about character encoding and MIME.

Returns: aString specifying the name of the charset, for example,ISO-

8859-1

getLocale()
public java.util.Locale getLocale()

Returns the locale assigned to the response.

See Also:setLocale(Locale)

getOutputStream()
public ServletOutputStream getOutputStream()

throws IOException

Returns aServletOutputStream suitable for writing binary data in the
response. The servlet container does not encode the binary data.

Calling flush() on the ServletOutputStream commits the response. Either
method orgetWriter() may be called to write the body, not both.

Returns: aServletOutputStream for writing binary data

Throws:
IllegalStateException - if thegetWriter method has been called on this
response

IOException - if an input or output exception occurred

See Also:getWriter()

getWriter()

JAVAX.SERVLET

Fin

168

e

rac-

-

ders.
public java.io.PrintWriter getWriter()
throws IOException

Returns aPrintWriter object that can send character text to the client. Th
character encoding used is the one specified in thecharset= property of the
setContentType(String) method, which must be calledbeforecalling this
method for the charset to take effect.

If necessary, the MIME type of the response is modified to reflect the cha
ter encoding used.

Calling flush() on the PrintWriter commits the response.

Either this method orgetOutputStream() may be called to write the body,
not both.

Returns: aPrintWriter object that can return character data to the client

Throws:
UnsupportedEncodingException - if the charset specified in
setContentType cannot be used

IllegalStateException - if thegetOutputStream method has already been
called for this response object

IOException - if an input or output exception occurred

See Also:getOutputStream(), setContentType(String)

isCommitted()
public boolean isCommitted()

Returns a boolean indicating if the response has been committed. A com
mited response has already had its status code and headers written.

Returns: a boolean indicating if the response has been committed

See Also:setBufferSize(int), getBufferSize(), flushBuffer(),
reset()

reset()
public void reset()

Clears any data that exists in the buffer as well as the status code and hea
If the response has been committed, this method throws anIllegalState-

Exception.

Throws:
IllegalStateException - if the response has already been committed

See Also:setBufferSize(int), getBufferSize(), flushBuffer(),
isCommitted()
al Version

The javax.servlet package 169

ng
d

on-
uffer

lly
des
 the

; if

s

resetBuffer()
public void resetBuffer()

Clears the content of the underlying buffer in the response without cleari
headers or status code. If the response has been committed, this metho
throws anIllegalStateException.

Since: 2.3

See Also:setBufferSize(int), getBufferSize(), isCommitted(),
reset()

setBufferSize(int)
public void setBufferSize(int size)

Sets the preferred buffer size for the body of the response. The servlet c
tainer will use a buffer at least as large as the size requested. The actual b
size used can be found usinggetBufferSize.

A larger buffer allows more content to be written before anything is actua
sent, thus providing the servlet with more time to set appropriate status co
and headers. A smaller buffer decreases server memory load and allows
client to start receiving data more quickly.

This method must be called before any response body content is written
content has been written, this method throws anIllegalStateException.

Parameters:
size - the preferred buffer size

Throws:
IllegalStateException - if this method is called after content has been
written

See Also:getBufferSize(), flushBuffer(), isCommitted(), reset()

setContentLength(int)
public void setContentLength(int len)

Sets the length of the content body in the response In HTTP servlets, thi
method sets the HTTP Content-Length header.

Parameters:
len - an integer specifying the length of the content being returned to the
client; sets the Content-Length header

setContentType(String)
public void setContentType(java.lang.String type)

JAVAX.SERVLET

Fin

170

type

nt-
ll to

t can
. This
lling

.

Sets the content type of the response being sent to the client. The content
may include the type of character encoding used, for example,text/html;

charset=ISO-8859-4.

If obtaining aPrintWriter, this method should be called first.

Parameters:
type - aString specifying the MIME type of the content

See Also:getOutputStream(), getWriter()

setLocale(Locale)
public void setLocale(java.util.Locale loc)

Sets the locale of the response, setting the headers (including the Conte
Type’s charset) as appropriate. This method should be called before a ca
getWriter() . By default, the response locale is the default locale for the
server.

Parameters:
loc - the locale of the response

See Also:getLocale()

SRV.14.2.19 ServletResponseWrapper

public class ServletResponseWrapper implements
javax.servlet.ServletResponse

All Implemented Interfaces: ServletResponse

Direct Known Subclasses:javax.servlet.http.HttpServletResponseWrap-
per

Provides a convenient implementation of the ServletResponse interface tha
be subclassed by developers wishing to adapt the response from a Servlet
class implements the Wrapper or Decorator pattern. Methods default to ca
through to the wrapped response object.

Since: v 2.3

See Also: ServletResponse

SRV.14.2.19.1 Constructors

ServletResponseWrapper(ServletResponse)
public ServletResponseWrapper(ServletResponse response)

Creates a ServletResponse adaptor wrapping the given response object

Throws:
al Version

The javax.servlet package 171

d

on

ed
java.lang.IllegalArgumentException - if the response is null.

SRV.14.2.19.2 Methods

flushBuffer()
public void flushBuffer()

throws IOException

The default behavior of this method is to call flushBuffer() on the wrappe
response object.

Specified By: ServletResponse.flushBuffer() in interface
ServletResponse

Throws:
IOException

getBufferSize()
public int getBufferSize()

The default behavior of this method is to return getBufferSize() on the
wrapped response object.

Specified By: ServletResponse.getBufferSize() in interface
ServletResponse

getCharacterEncoding()
public java.lang.String getCharacterEncoding()

The default behavior of this method is to return getCharacterEncoding()
the wrapped response object.

Specified By: ServletResponse.getCharacterEncoding() in interface
ServletResponse

getLocale()
public java.util.Locale getLocale()

The default behavior of this method is to return getLocale() on the wrapp
response object.

Specified By: ServletResponse.getLocale() in interface
ServletResponse

getOutputStream()
public ServletOutputStream getOutputStream()

throws IOException

JAVAX.SERVLET

Fin

172

d

nse

d

The default behavior of this method is to return getOutputStream() on the
wrapped response object.

Specified By: ServletResponse.getOutputStream() in interface
ServletResponse

Throws:
IOException

getResponse()
public ServletResponse getResponse()

Return the wrapped ServletResponse object.

getWriter()
public java.io.PrintWriter getWriter()

throws IOException

The default behavior of this method is to return getWriter() on the wrappe
response object.

Specified By: ServletResponse.getWriter() in interface
ServletResponse

Throws:
IOException

isCommitted()
public boolean isCommitted()

The default behavior of this method is to return isCommitted() on the
wrapped response object.

Specified By: ServletResponse.isCommitted() in interface
ServletResponse

reset()
public void reset()

The default behavior of this method is to call reset() on the wrapped respo
object.

Specified By: ServletResponse.reset() in interfaceServletResponse

resetBuffer()
public void resetBuffer()

The default behavior of this method is to call resetBuffer() on the wrappe
response object.
al Version

The javax.servlet package 173

e

n

on

e

Specified By: ServletResponse.resetBuffer() in interface
ServletResponse

setBufferSize(int)
public void setBufferSize(int size)

The default behavior of this method is to call setBufferSize(int size) on th
wrapped response object.

Specified By: ServletResponse.setBufferSize(int) in interface
ServletResponse

setContentLength(int)
public void setContentLength(int len)

The default behavior of this method is to call setContentLength(int len) o
the wrapped response object.

Specified By: ServletResponse.setContentLength(int) in interface
ServletResponse

setContentType(String)
public void setContentType(java.lang.String type)

The default behavior of this method is to call setContentType(String type)
the wrapped response object.

Specified By: ServletResponse.setContentType(String) in interface
ServletResponse

setLocale(Locale)
public void setLocale(java.util.Locale loc)

The default behavior of this method is to call setLocale(Locale loc) on th
wrapped response object.

Specified By: ServletResponse.setLocale(Locale) in interface
ServletResponse

setResponse(ServletResponse)
public void setResponse(ServletResponse response)

Sets the response being wrapped.

Throws:
java.lang.IllegalArgumentException - if the response is null.

JAVAX.SERVLET

Fin

174

s no

let, or
t to a

vlets
ide the

a-

the
rvlet
po-

en-
ight
ndle

the
erv-
ests
han
SRV.14.2.20 SingleThreadModel

public interface SingleThreadModel

Ensures that servlets handle only one request at a time. This interface ha
methods.

If a servlet implements this interface, you areguaranteedthat no two threads will
execute concurrently in the servlet’sservice method. The servlet container can
make this guarantee by synchronizing access to a single instance of the serv
by maintaining a pool of servlet instances and dispatching each new reques
free servlet.

This interface does not prevent synchronization problems that result from ser
accessing shared resources such as static class variables or classes outs
scope of the servlet.

SRV.14.2.21 UnavailableException

public class UnavailableException extends
javax.servlet.ServletException

All Implemented Interfaces: java.io.Serializable

Defines an exception that a servlet or filter throws to indicate that it is perm
nently or temporarily unavailable.

When a servlet or filter is permanently unavailable, something is wrong with
it, and it cannot handle requests until some action is taken. For example, a se
might be configured incorrectly, or a filter’s state may be corrupted. The com
nent should log both the error and the corrective action that is needed.

A servlet or filter is temporarily unavailable if it cannot handle requests mom
tarily due to some system-wide problem. For example, a third-tier server m
not be accessible, or there may be insufficient memory or disk storage to ha
requests. A system administrator may need to take corrective action.

Servlet containers can safely treat both types of unavailable exceptions in
same way. However, treating temporary unavailability effectively makes the s
let container more robust. Specifically, the servlet container might block requ
to the servlet or filter for a period of time suggested by the exception, rather t
rejecting them until the servlet container restarts.

SRV.14.2.21.1 Constructors

UnavailableException(int, Servlet, String)
public UnavailableException(int seconds, Servlet servlet,

java.lang.String msg)
al Version

The javax.servlet package 175

s to
n

 a

e

e
ill

ervlet
ow
a

 a
Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String, int) instead.

Parameters:
seconds - an integer specifying the number of seconds the servlet expect
be unavailable; if zero or negative, indicates that the servlet can’t make a
estimate

servlet - theServlet that is unavailable

msg - aString specifying the descriptive message, which can be written to
log file or displayed for the user.

UnavailableException(Servlet, String)
public UnavailableException(Servlet servlet, java.lang.String msg)

Deprecated. As of Java Servlet API 2.2, use
UnavailableException(String) instead.

Parameters:
servlet - theServlet instance that is unavailable

msg - aString specifying the descriptive message

UnavailableException(String)
public UnavailableException(java.lang.String msg)

Constructs a new exception with a descriptive message indicating that th
servlet is permanently unavailable.

Parameters:
msg - aString specifying the descriptive message

UnavailableException(String, int)
public UnavailableException(java.lang.String msg, int seconds)

Constructs a new exception with a descriptive message indicating that th
servlet is temporarily unavailable and giving an estimate of how long it w
be unavailable.

In some cases, the servlet cannot make an estimate. For example, the s
might know that a server it needs is not running, but not be able to report h
long it will take to be restored to functionality. This can be indicated with
negative or zero value for theseconds argument.

Parameters:
msg - aString specifying the descriptive message, which can be written to
log file or displayed for the user.

JAVAX.SERVLET

Fin

176

s to
n

e

vail-

ail-

t

ly

e.
ust
seconds - an integer specifying the number of seconds the servlet expect
be unavailable; if zero or negative, indicates that the servlet can’t make a
estimate

SRV.14.2.21.2 Methods

getServlet()
public Servlet getServlet()

Deprecated. As of Java Servlet API 2.2, with no replacement. Returns th
servlet that is reporting its unavailability.

Returns: theServlet object that is throwing theUnavailableException

getUnavailableSeconds()
public int getUnavailableSeconds()

Returns the number of seconds the servlet expects to be temporarily una
able.

If this method returns a negative number, the servlet is permanently unav
able or cannot provide an estimate of how long it will be unavailable. No
effort is made to correct for the time elapsed since the exception was firs
reported.

Returns: an integer specifying the number of seconds the servlet will be
temporarily unavailable, or a negative number if the servlet is permanent
unavailable or cannot make an estimate

isPermanent()
public boolean isPermanent()

Returns aboolean indicating whether the servlet is permanently unavailabl
If so, something is wrong with the servlet, and the system administrator m
take some corrective action.

Returns: true if the servlet is permanently unavailable;false if the servlet
is available or temporarily unavailable
al Version

C H A P T E RSRV.15
ntent
asses
ocu-

TTP
by a

se
s
s,

tes to
javax.servlet.http

This chapter describes the javax.servlet.http package. The chapter includes co
that is generated automatically from the javadoc embedded in the actual Java cl
and interfaces. This allows the creation of a single, authoritative, specification d
ment.

SRV.15.1 Servlets Using HTTP Protocol

The javax.servlet.http package contains a number of classes and interfaces that
describe and define the contracts between a servlet class running under the H
protocol and the runtime environment provided for an instance of such a class
conforming servlet container.

The class HttpServlet implements the Servlet interface and provides a ba
developers will extendt o implement servlets for implementing web application
employing the HTTP protocol. In addition to generic Servlet interface method
the class HttpServlet implements interfaces providing HTTP functionality.

The basic Servlet interface defines a service method for handling client
requests. This method is called for each request that the servlet container rou
an instance of a servlet.

Class Summary

Interfaces

HttpServletRequest Extends the javax.servlet.ServletRequest
interface to provide request information for

HTTP servlets.
177

JAVAX.SERVLET.HTTP

Fin

178
HttpServletResponse Extends the javax.servlet.ServletResponse
interface to provide HTTP-specific functionality

in sending a response.

HttpSession Provides a way to identify a user across more

than one page request or visit to a Web site and

to store information about that user.

HttpSessionActivation-
Listener

Objects that are bound to a session may listen

to container events notifying them that sessions

will be passivated and that session will be

activated.

HttpSessionAt-
tributeListener

This listener interface can be implemented in

order to get notifications of changes to the

attribute lists of sessions within this web

application.

HttpSessionBindingLis-
tener

Causes an object to be notified when it is bound

to or unbound from a session.

HttpSessionContext

HttpSessionListener Implementations of this interface may are noti-

fied of changes to the list of active sessions in a

web application.

Classes

Cookie Creates a cookie, a small amount of information

sent by a servlet to a Web browser, saved by the

browser, and later sent back to the server.

HttpServlet Provides an abstract class to be subclassed to

create an HTTP servlet suitable for a Web site.

HttpServletRequestWrap-
per

Provides a convenient implementation of the

HttpServletRequest interface that can be

subclassed by developers wishing to adapt the

request to a Servlet.

HttpServletResponse-
Wrapper

Provides a convenient implementation of the

HttpServletResponse interface that can be

subclassed by developers wishing to adapt the

response from a Servlet.

Class Summary
al Version

Servlets Using HTTP Protocol 179

eb
alue
age-

ent,
Web
spar-

he

The
total,

ead-
the
e

s not
upport
SRV.15.1.1 Cookie

public class Cookie implements java.lang.Cloneable

All Implemented Interfaces: java.lang.Cloneable

Creates a cookie, a small amount of information sent by a servlet to a W
browser, saved by the browser, and later sent back to the server. A cookie’s v
can uniquely identify a client, so cookies are commonly used for session man
ment.

A cookie has a name, a single value, and optional attributes such as a comm
path and domain qualifiers, a maximum age, and a version number. Some
browsers have bugs in how they handle the optional attributes, so use them
ingly to improve the interoperability of your servlets.

The servlet sends cookies to the browser by using t
HttpServletResponse.addCookie(Cookie) method, which adds fields to
HTTP response headers to send cookies to the browser, one at a time.
browser is expected to support 20 cookies for each Web server, 300 cookies
and may limit cookie size to 4 KB each.

The browser returns cookies to the servlet by adding fields to HTTP request h
ers. Cookies can be retrieved from a request by using
HttpServletRequest.getCookies() method. Several cookies might have th
same name but different path attributes.

Cookies affect the caching of the Web pages that use them. HTTP 1.0 doe
cache pages that use cookies created with this class. This class does not s
the cache control defined with HTTP 1.1.

HttpSessionBindingEvent Events of this type are either sent to an object

that implements HttpSessionBindingListener
when it is bound or unbound from a session, or

to a HttpSessionAttributeListener that has

been configured in the deployment descriptor

when any attribute is bound, unbound or

replaced in a session.

HttpSessionEvent This is the class representing event notifications

for changes to sessions within a web

application.

HttpUtils

Class Summary

JAVAX.SERVLET.HTTP

Fin

180

FC
0 to

CII
ite

after

ly of
tion

ca-

s

This class supports both the Version 0 (by Netscape) and Version 1 (by R
2109) cookie specifications. By default, cookies are created using Version
ensure the best interoperability.

SRV.15.1.1.1 Constructors

Cookie(String, String)
public Cookie(java.lang.String name, java.lang.String value)

Constructs a cookie with a specified name and value.

The name must conform to RFC 2109. That means it can contain only AS
alphanumeric characters and cannot contain commas, semicolons, or wh
space or begin with a $ character. The cookie’s name cannot be changed
creation.

The value can be anything the server chooses to send. Its value is probab
interest only to the server. The cookie’s value can be changed after crea
with thesetValue method.

By default, cookies are created according to the Netscape cookie specifi
tion. The version can be changed with thesetVersion method.

Parameters:
name - aString specifying the name of the cookie

value - aString specifying the value of the cookie

Throws:
IllegalArgumentException - if the cookie name contains illegal character
(for example, a comma, space, or semicolon) or it is one of the tokens
reserved for use by the cookie protocol

See Also:setValue(String), setVersion(int)

SRV.15.1.1.2 Methods

clone()
public java.lang.Object clone()

Overrides the standardjava.lang.Object.clone method to return a copy of
this cookie.

Overrides: java.lang.Object.clone() in class java.lang.Object

getComment()
public java.lang.String getComment()
al Version

Servlets Using HTTP Protocol 181

e is

,

; if

tion.

The

or
Returns the comment describing the purpose of this cookie, ornull if the
cookie has no comment.

Returns: aString containing the comment, ornull if none

See Also:setComment(String)

getDomain()
public java.lang.String getDomain()

Returns the domain name set for this cookie. The form of the domain nam
set by RFC 2109.

Returns: aString containing the domain name

See Also:setDomain(String)

getMaxAge()
public int getMaxAge()

Returns the maximum age of the cookie, specified in seconds, By default-1

indicating the cookie will persist until browser shutdown.

Returns: an integer specifying the maximum age of the cookie in seconds
negative, means the cookie persists until browser shutdown

See Also:setMaxAge(int)

getName()
public java.lang.String getName()

Returns the name of the cookie. The name cannot be changed after crea

Returns: aString specifying the cookie’s name

getPath()
public java.lang.String getPath()

Returns the path on the server to which the browser returns this cookie.
cookie is visible to all subpaths on the server.

Returns: aString specifying a path that contains a servlet name, for
example,/catalog

See Also:setPath(String)

getSecure()
public boolean getSecure()

Returnstrue if the browser is sending cookies only over a secure protocol,
false if the browser can send cookies using any protocol.

JAVAX.SERVLET.HTTP

Fin

182

m-
ifi-
tify

1

s use-
-

in

at
Returns: true if the browser uses a secure protocol; otherwise,true

See Also:setSecure(boolean)

getValue()
public java.lang.String getValue()

Returns the value of the cookie.

Returns: aString containing the cookie’s present value

See Also:setValue(String), Cookie

getVersion()
public int getVersion()

Returns the version of the protocol this cookie complies with. Version 1 co
plies with RFC 2109, and version 0 complies with the original cookie spec
cation drafted by Netscape. Cookies provided by a browser use and iden
the browser’s cookie version.

Returns: 0 if the cookie complies with the original Netscape specification;
if the cookie complies with RFC 2109

See Also:setVersion(int)

setComment(String)
public void setComment(java.lang.String purpose)

Specifies a comment that describes a cookie’s purpose. The comment i
ful if the browser presents the cookie to the user. Comments are not sup
ported by Netscape Version 0 cookies.

Parameters:
purpose - aString specifying the comment to display to the user

See Also:getComment()

setDomain(String)
public void setDomain(java.lang.String pattern)

Specifies the domain within which this cookie should be presented.

The form of the domain name is specified by RFC 2109. A domain name
begins with a dot (.foo.com) and means that the cookie is visible to servers
a specified Domain Name System (DNS) zone (for example,www.foo.com,
but nota.b.foo.com). By default, cookies are only returned to the server th
sent them.

Parameters:
al Version

Servlets Using HTTP Protocol 183

s

ds

l be
be

; if

ie.

the

ng
pattern - aString containing the domain name within which this cookie i
visible; form is according to RFC 2109

See Also:getDomain()

setMaxAge(int)
public void setMaxAge(int expiry)

Sets the maximum age of the cookie in seconds.

A positive value indicates that the cookie will expire after that many secon
have passed. Note that the value is themaximum age when the cookie will
expire, not the cookie’s current age.

A negative value means that the cookie is not stored persistently and wil
deleted when the Web browser exits. A zero value causes the cookie to
deleted.

Parameters:
expiry - an integer specifying the maximum age of the cookie in seconds
negative, means the cookie is not stored; if zero, deletes the cookie

See Also:getMaxAge()

setPath(String)
public void setPath(java.lang.String uri)

Specifies a path for the cookie to which the client should return the cook

The cookie is visible to all the pages in the directory you specify, and all
pages in that directory’s subdirectories. A cookie’s path must include the
servlet that set the cookie, for example,/catalog, which makes the cookie vis-
ible to all directories on the server under/catalog.

Consult RFC 2109 (available on the Internet) for more information on setti
path names for cookies.

Parameters:
uri - aString specifying a path

See Also:getPath()

setSecure(boolean)
public void setSecure(boolean flag)

Indicates to the browser whether the cookie should only be sent using a
secure protocol, such as HTTPS or SSL.

The default value isfalse.

Parameters:

JAVAX.SERVLET.HTTP

Fin

184

rks, at
way

 0
ies

tal;

if

le for
ly
flag - if true, sends the cookie from the browser to the server using only
when using a secure protocol; iffalse, sent on any protocol

See Also:getSecure()

setValue(String)
public void setValue(java.lang.String newValue)

Assigns a new value to a cookie after the cookie is created. If you use a
binary value, you may want to use BASE64 encoding.

With Version 0 cookies, values should not contain white space, brackets,
parentheses, equals signs, commas, double quotes, slashes, question ma
signs, colons, and semicolons. Empty values may not behave the same
on all browsers.

Parameters:
newValue - aString specifying the new value

See Also:getValue(), Cookie

setVersion(int)
public void setVersion(int v)

Sets the version of the cookie protocol this cookie complies with. Version
complies with the original Netscape cookie specification. Version 1 compl
with RFC 2109.

Since RFC 2109 is still somewhat new, consider version 1 as experimen
do not use it yet on production sites.

Parameters:
v - 0 if the cookie should comply with the original Netscape specification; 1
the cookie should comply with RFC 2109

See Also:getVersion()

SRV.15.1.2 HttpServlet

public abstract class HttpServlet extends
javax.servlet.GenericServlet implements java.io.Serializable

All Implemented Interfaces: java.io.Serializable, javax.servlet.Serv-
let, javax.servlet.ServletConfig

Provides an abstract class to be subclassed to create an HTTP servlet suitab
a Web site. A subclass ofHttpServlet must override at least one method, usual
one of these:

•doGet, if the servlet supports HTTP GET requests
•doPost, for HTTP POST requests
al Version

Servlets Using HTTP Protocol 185

rv-

lf

TTP

must
hared
class

twork
tp://
ma-

cu-

held
 the
•doPut, for HTTP PUT requests
•doDelete, for HTTP DELETE requests
•init anddestroy, to manage resources that are held for the life of the se
let
•getServletInfo, which the servlet uses to provide information about itse

There’s almost no reason to override theservice method.service handles stan-
dard HTTP requests by dispatching them to the handler methods for each H
request type (thedoXXX methods listed above).

Likewise, there’s almost no reason to override thedoOptions anddoTrace meth-
ods.

Servlets typically run on multithreaded servers, so be aware that a servlet
handle concurrent requests and be careful to synchronize access to s
resources. Shared resources include in-memory data such as instance or
variables and external objects such as files, database connections, and ne
connections. See the Java Tutorial on Multithreaded Programming (ht
java.sun.com/Series/Tutorial/java/threads/multithreaded.html) for more infor
tion on handling multiple threads in a Java program.

SRV.15.1.2.1 Constructors

HttpServlet()
public HttpServlet()

Does nothing, because this is an abstract class.

SRV.15.1.2.2 Methods

doDelete(HttpServletRequest, HttpServletResponse)
protected void doDelete(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
DELETE request. The DELETE operation allows a client to remove a do
ment or Web page from the server.

This method does not need to be either safe or idempotent. Operations
requested through DELETE can have side effects for which users can be
accountable. When using this method, it may be useful to save a copy of
affected URL in temporary storage.

If the HTTP DELETE request is incorrectly formatted,doDelete returns an
HTTP “Bad Request” message.

JAVAX.SERVLET.HTTP

Fin

186

g

rts
no

head-
e
g a
ess-

nse,

o-

ch

ly
or
Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the DELETE request

javax.servlet.ServletException - if the request for the DELETE cannot
be handled

doGet(HttpServletRequest, HttpServletResponse)
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
GET request.

Overriding this method to support a GET request also automatically suppo
an HTTP HEAD request. A HEAD request is a GET request that returns
body in the response, only the request header fields.

When overriding this method, read the request data, write the response
ers, get the response’s writer or output stream object, and finally, write th
response data. It’s best to include content type and encoding. When usin
PrintWriter object to return the response, set the content type before acc
ing thePrintWriter object.

The servlet container must write the headers before committing the respo
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is aut
matically set if the entire response fits inside the response buffer.

The GET method should be safe, that is, without any side effects for whi
users are held responsible. For example, most form queries have no side
effects. If a client request is intended to change stored data, the request
should use some other HTTP method.

The GET method should also be idempotent, meaning that it can be safe
repeated. Sometimes making a method safe also makes it idempotent. F
al Version

Servlets Using HTTP Protocol 187

duct

s

et

es

see
. The

on-

nd
that

he
example, repeating queries is both safe and idempotent, but buying a pro
online or modifying data is neither safe nor idempotent.

If the request is incorrectly formatted,doGet returns an HTTP “Bad Request”
message.

Parameters:
req - anHttpServletRequest object that contains the request the client ha
made of the servlet

resp - anHttpServletResponse object that contains the response the servl
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handl
the GET request

javax.servlet.ServletException - if the request for the GET could not be
handled

See Also:javax.servlet.ServletResponse.setContentType(String)

doHead(HttpServletRequest, HttpServletResponse)
protected void doHead(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Receives an HTTP HEAD request from the protectedservice method and
handles the request. The client sends a HEAD request when it wants to
only the headers of a response, such as Content-Type or Content-Length
HTTP HEAD method counts the output bytes in the response to set the C
tent-Length header accurately.

If you override this method, you can avoid computing the response body a
just set the response headers directly to improve performance. Make sure
thedoHead method you write is both safe and idempotent (that is, protects
itself from being called multiple times for one HTTP HEAD request).

If the HTTP HEAD request is incorrectly formatted,doHead returns an HTTP
“Bad Request” message.

Parameters:
req - the request object that is passed to the servlet

resp - the response object that the servlet uses to return the headers to t
clien

Throws:
IOException - if an input or output error occurs

JAVAX.SERVLET.HTTP

Fin

188

ods
 serv-

ew

g

f
ng

head-
e
g a
ess-
javax.servlet.ServletException - if the request for the HEAD could not
be handled

doOptions(HttpServletRequest, HttpServletResponse)
protected void doOptions(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
OPTIONS request. The OPTIONS request determines which HTTP meth
the server supports and returns an appropriate header. For example, if a
let overridesdoGet, this method returns the following header:

Allow: GET, HEAD, TRACE, OPTIONS

There’s no need to override this method unless the servlet implements n
HTTP methods, beyond those implemented by HTTP 1.1.

Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the OPTIONS request

javax.servlet.ServletException - if the request for the OPTIONS cannot
be handled

doPost(HttpServletRequest, HttpServletResponse)
protected void doPost(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
POST request. The HTTP POST method allows the client to send data o
unlimited length to the Web server a single time and is useful when posti
information such as credit card numbers.

When overriding this method, read the request data, write the response
ers, get the response’s writer or output stream object, and finally, write th
response data. It’s best to include content type and encoding. When usin
PrintWriter object to return the response, set the content type before acc
ing thePrintWriter object.
al Version

Servlets Using HTTP Protocol 189

nse,

o-

has

held

s

et

es

ver

 the
d-

ion,
tent
nd
The servlet container must write the headers before committing the respo
because in HTTP the headers must be sent before the response body.

Where possible, set the Content-Length header (with the
javax.servlet.ServletResponse.setContentLength(int) method), to
allow the servlet container to use a persistent connection to return its
response to the client, improving performance. The content length is aut
matically set if the entire response fits inside the response buffer.

When using HTTP 1.1 chunked encoding (which means that the response
a Transfer-Encoding header), do not set the Content-Length header.

This method does not need to be either safe or idempotent. Operations
requested through POST can have side effects for which the user can be
accountable, for example, updating stored data or buying items online.

If the HTTP POST request is incorrectly formatted,doPost returns an HTTP
“Bad Request” message.

Parameters:
req - anHttpServletRequest object that contains the request the client ha
made of the servlet

resp - anHttpServletResponse object that contains the response the servl
sends to the client

Throws:
IOException - if an input or output error is detected when the servlet handl
the request

javax.servlet.ServletException - if the request for the POST could not
be handled

See Also:javax.servlet.ServletOutputStream,
javax.servlet.ServletResponse.setContentType(String)

doPut(HttpServletRequest, HttpServletResponse)
protected void doPut(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
PUT request. The PUT operation allows a client to place a file on the ser
and is similar to sending a file by FTP.

When overriding this method, leave intact any content headers sent with
request (including Content-Length, Content-Type, Content-Transfer-Enco
ing, Content-Encoding, Content-Base, Content-Language, Content-Locat
Content-MD5, and Content-Range). If your method cannot handle a con
header, it must issue an error message (HTTP 501 - Not Implemented) a

JAVAX.SERVLET.HTTP

Fin

190

hat
unt-
ted

g

est
ver-

g

discard the request. For more information on HTTP 1.1, see RFC 2068
(http://info.internet.isi.edu:80/in-notes/rfc/files/rfc2068.txt).

This method does not need to be either safe or idempotent. Operations t
doPut performs can have side effects for which the user can be held acco
able. When using this method, it may be useful to save a copy of the affec
URL in temporary storage.

If the HTTP PUT request is incorrectly formatted,doPut returns an HTTP
“Bad Request” message.

Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the PUT request

javax.servlet.ServletException - if the request for the PUT cannot be
handled

doTrace(HttpServletRequest, HttpServletResponse)
protected void doTrace(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Called by the server (via theservice method) to allow a servlet to handle a
TRACE request. A TRACE returns the headers sent with the TRACE requ
to the client, so that they can be used in debugging. There’s no need to o
ride this method.

Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

getLastModified(HttpServletRequest)
al Version

Servlets Using HTTP Protocol 191

is

ir
nd
ork

r -

n

g

protected long getLastModified(HttpServletRequest req)

Returns the time theHttpServletRequest object was last modified, in milli-
seconds since midnight January 1, 1970 GMT. If the time is unknown, th
method returns a negative number (the default).

Servlets that support HTTP GET requests and can quickly determine the
last modification time should override this method. This makes browser a
proxy caches work more effectively, reducing the load on server and netw
resources.

Parameters:
req - theHttpServletRequest object that is sent to the servlet

Returns: along integer specifying the time theHttpServletRequest object
was last modified, in milliseconds since midnight, January 1, 1970 GMT, o
1 if the time is not known

service(HttpServletRequest, HttpServletResponse)
protected void service(HttpServletRequest req,

HttpServletResponse resp)
throws ServletException, IOException

Receives standard HTTP requests from the publicservice method and dis-
patches them to thedoXXX methods defined in this class. This method is a
HTTP-specific version of thejavax.servlet.Servlet.service(Servle-
tRequest, ServletResponse) method. There’s no need to override this
method.

Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

See Also:javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

service(ServletRequest, ServletResponse)
public void service(javax.servlet.ServletRequest req,

javax.servlet.ServletResponse res)
throws ServletException, IOException

JAVAX.SERVLET.HTTP

Fin

192

g

Dispatches client requests to the protectedservice method. There’s no need
to override this method.

Specified By: javax.servlet.Servlet.service(ServletRequest,
ServletResponse) in interfacejavax.servlet.Servlet

Overrides: javax.servlet.GenericServlet.service(ServletRequest,

ServletResponse) in classjavax.servlet.GenericServlet

Parameters:
req - theHttpServletRequest object that contains the request the client
made of the servlet

resp - theHttpServletResponse object that contains the response the
servlet returns to the client

Throws:
IOException - if an input or output error occurs while the servlet is handlin
the TRACE request

javax.servlet.ServletException - if the request for the TRACE cannot
be handled

See Also:javax.servlet.Servlet.service(ServletRequest,
ServletResponse)

SRV.15.1.3 HttpServletRequest

public interface HttpServletRequest extends
javax.servlet.ServletRequest

All Superinterfaces: javax.servlet.ServletRequest

All Known Implementing Classes: HttpServletRequestWrapper

Extends thejavax.servlet.ServletRequest interface to provide request infor-
mation for HTTP servlets.

The servlet container creates anHttpServletRequest object and passes it as an
argument to the servlet’s service methods (doGet, doPost, etc).

SRV.15.1.3.1 Fields

BASIC_AUTH
public static final java.lang.String BASIC_AUTH

String identifier for Basic authentication. Value “BASIC”

CLIENT_CERT_AUTH
public static final java.lang.String CLIENT_CERT_AUTH
al Version

Servlets Using HTTP Protocol 193

t. All
,

tarts
he
ode
String identifier for Basic authentication. Value “CLIENT_CERT”

DIGEST_AUTH
public static final java.lang.String DIGEST_AUTH

String identifier for Basic authentication. Value “DIGEST”

FORM_AUTH
public static final java.lang.String FORM_AUTH

String identifier for Basic authentication. Value “FORM”

SRV.15.1.3.2 Methods

getAuthType()
public java.lang.String getAuthType()

Returns the name of the authentication scheme used to protect the servle
servlet containers support basic, form and client certificate authentication
and may additionally support digest authentication. If the servlet is not
authenticatednull is returned.

Same as the value of the CGI variable AUTH_TYPE.

Returns: one of the static members BASIC_AUTH, FORM_AUTH,
CLIENT_CERT_AUTH, DIGEST_AUTH (suitable for == comparison)
indicating the authentication scheme, ornull if the request was not
authenticated.

getContextPath()
public java.lang.String getContextPath()

Returns the portion of the request URI that indicates the context of the
request. The context path always comes first in a request URI. The path s
with a “/” character but does not end with a “/” character. For servlets in t
default (root) context, this method returns “”. The container does not dec
this string.

Returns: aString specifying the portion of the request URI that indicates
the context of the request

getCookies()
public Cookie[] getCookies()

Returns an array containing all of theCookie objects the client sent with this
request. This method returnsnull if no cookies were sent.

JAVAX.SERVLET.HTTP

Fin

194

h as

0

urns

-1 if

te

est

 the

ders
Returns: an array of all theCookies included with this request, ornull if
the request has no cookies

getDateHeader(String)
public long getDateHeader(java.lang.String name)

Returns the value of the specified request header as along value that repre-
sents aDate object. Use this method with headers that contain dates, suc
If-Modified-Since.

The date is returned as the number of milliseconds since January 1, 197
GMT. The header name is case insensitive.

If the request did not have a header of the specified name, this method ret
-1. If the header can’t be converted to a date, the method throws anIllegal-

ArgumentException.

Parameters:
name - aString specifying the name of the header

Returns: along value representing the date specified in the header
expressed as the number of milliseconds since January 1, 1970 GMT, or
the named header was not included with the reqest

Throws:
IllegalArgumentException - If the header value can’t be converted to a da

getHeader(String)
public java.lang.String getHeader(java.lang.String name)

Returns the value of the specified request header as aString. If the request
did not include a header of the specified name, this method returnsnull. The
header name is case insensitive. You can use this method with any requ
header.

Parameters:
name - aString specifying the header name

Returns: aString containing the value of the requested header, ornull if
the request does not have a header of that name

getHeaderNames()
public java.util.Enumeration getHeaderNames()

Returns an enumeration of all the header names this request contains. If
request has no headers, this method returns an empty enumeration.

Some servlet containers do not allow do not allow servlets to access hea
using this method, in which case this method returnsnull
al Version

Servlets Using HTTP Protocol 195

 if
er

thod
n

If

n,

the

e

Returns: an enumeration of all the header names sent with this request;
the request has no headers, an empty enumeration; if the servlet contain
does not allow servlets to use this method,null

getHeaders(String)
public java.util.Enumeration getHeaders(java.lang.String name)

Returns all the values of the specified request header as anEnumeration of
String objects.

Some headers, such asAccept-Language can be sent by clients as several
headers each with a different value rather than sending the header as a
comma separated list.

If the request did not include any headers of the specified name, this me
returns an emptyEnumeration. The header name is case insensitive. You ca
use this method with any request header.

Parameters:
name - aString specifying the header name

Returns: anEnumeration containing the values of the requested header.
the request does not have any headers of that name return an empty
enumeration. If the container does not allow access to header informatio
return null

getIntHeader(String)
public int getIntHeader(java.lang.String name)

Returns the value of the specified request header as anint. If the request
does not have a header of the specified name, this method returns -1. If
header cannot be converted to an integer, this method throws aNumber-

FormatException.

The header name is case insensitive.

Parameters:
name - aString specifying the name of a request header

Returns: an integer expressing the value of the request header or -1 if th
request doesn’t have a header of this name

Throws:
NumberFormatException - If the header value can’t be converted to anint

getMethod()
public java.lang.String getMethod()

JAVAX.SERVLET.HTTP

Fin

196

for

nt
ath

the

I

th.
s

Returns the name of the HTTP method with which this request was made,
example, GET, POST, or PUT. Same as the value of the CGI variable
REQUEST_METHOD.

Returns: aString specifying the name of the method with which this
request was made

getPathInfo()
public java.lang.String getPathInfo()

Returns any extra path information associated with the URL the client se
when it made this request. The extra path information follows the servlet p
but precedes the query string. This method returnsnull if there was no extra
path information.

Same as the value of the CGI variable PATH_INFO.

Returns: aString, decoded by the web container, specifying extra path
information that comes after the servlet path but before the query string in
request URL; ornull if the URL does not have any extra path information

getPathTranslated()
public java.lang.String getPathTranslated()

Returns any extra path information after the servlet name but before the
query string, and translates it to a real path. Same as the value of the CG
variable PATH_TRANSLATED.

If the URL does not have any extra path information, this method returns
null. The web container does not decode thins string.

Returns: aString specifying the real path, ornull if the URL does not
have any extra path information

getQueryString()
public java.lang.String getQueryString()

Returns the query string that is contained in the request URL after the pa
This method returnsnull if the URL does not have a query string. Same a
the value of the CGI variable QUERY_STRING.

Returns: aString containing the query string ornull if the URL contains
no query string. The value is not decoded by the container.

getRemoteUser()
public java.lang.String getRemoteUser()
al Version

Servlets Using HTTP Protocol 197

then-
me

of

 as
old

od
ID,

ery
Returns the login of the user making this request, if the user has been au
ticated, ornull if the user has not been authenticated. Whether the user na
is sent with each subsequent request depends on the browser and type
authentication. Same as the value of the CGI variable REMOTE_USER.

Returns: aString specifying the login of the user making this request, or
null</code if the user login is not known

getRequestedSessionId()
public java.lang.String getRequestedSessionId()

Returns the session ID specified by the client. This may not be the same
the ID of the actual session in use. For example, if the request specified an
(expired) session ID and the server has started a new session, this meth
gets a new session with a new ID. If the request did not specify a session
this method returnsnull.

Returns: aString specifying the session ID, ornull if the request did not
specify a session ID

See Also:isRequestedSessionIdValid()

getRequestURI()
public java.lang.String getRequestURI()

Returns the part of this request’s URL from the protocol name up to the qu
string in the first line of the HTTP request. The web container does not
decode this String. For example:

To reconstruct an URL with a scheme and host, use

HttpUtils.getRequestURL(HttpServletRequest) .

Returns: a String containing the part of the URL from the protocol

name up to the query string

See Also:HttpUtils.getRequestURL(HttpServletRequest)

getRequestURL()
public java.lang.StringBuffer getRequestURL()

First line of HTTP request Returned Value

POST /some/path.html HTTP/1.1 /some/path.html

GET http://foo.bar/a.html HTTP/1.0 /a.html

HEAD /xyz?a=b HTTP/1.1 /xyz

JAVAX.SERVLET.HTTP

Fin

198
Reconstructs the URL the client used to make the request. The returned URL

contains a protocol, server name, port number, and server path, but it does not

include query string parameters.

Because this method returns a StringBuffer, not a string, you can modify the

URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting errors.

Returns: a StringBuffer object containing the reconstructed URL

getServletPath()
public java.lang.String getServletPath()

Returns the part of this request’s URL that calls the servlet. This includes either

the servlet name or a path to the servlet, but does not include any extra path

information or a query string. Same as the value of the CGI variable

SCRIPT_NAME.

Returns: a String containing the name or path of the servlet being

called, as specified in the request URL, decoded.

getSession()
public HttpSession getSession()

Returns the current session associated with this request, or if the request does

not have a session, creates one.

Returns: the HttpSession associated with this request

See Also:getSession(boolean)

getSession(boolean)
public HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request or, if if there is no

current session and create is true, returns a new session.

If create is false and the request has no valid HttpSession, this method

returns null.

To make sure the session is properly maintained, you must call this method

before the response is committed. If the container is using cookies to maintain

session integrity and is asked to create a new session when the response is

committed, an IllegalStateException is thrown.

Parameters:
<code>true</code> - to create a new session for this request if necessary; false
to return null if there’s no current session

Returns: the HttpSession associated with this request or null if create
is false and the request has no valid session

See Also:getSession()
al Version

Servlets Using HTTP Protocol 199
getUserPrincipal()
public java.security.Principal getUserPrincipal()

Returns a java.security.Principal object containing the name of the current

authenticated user. If the user has not been authenticated, the method returns

null.

Returns: a java.security.Principal containing the name of the user

making this request; null if the user has not been authenticated

isRequestedSessionIdFromCookie()
public boolean isRequestedSessionIdFromCookie()

Checks whether the requested session ID came in as a cookie.

Returns: true if the session ID came in as a cookie; otherwise, false

See Also:getSession(boolean)

isRequestedSessionIdFromUrl()
public boolean isRequestedSessionIdFromUrl()

Deprecated. As of Version 2.1 of the Java Servlet API, use

isRequestedSessionIdFromURL() instead.

isRequestedSessionIdFromURL()
public boolean isRequestedSessionIdFromURL()

Checks whether the requested session ID came in as part of the request URL.

Returns: true if the session ID came in as part of a URL; otherwise,

false

See Also:getSession(boolean)

isRequestedSessionIdValid()
public boolean isRequestedSessionIdValid()

Checks whether the requested session ID is still valid.

Returns: true if this request has an id for a valid session in the current

session context; false otherwise

See Also:getRequestedSessionId(), getSession(boolean),
HttpSessionContext

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)

JAVAX.SERVLET.HTTP

Fin

200

that
. This
lling
Returns a boolean indicating whether the authenticated user is included in the

specified logical “role”. Roles and role membership can be defined using

deployment descriptors. If the user has not been authenticated, the method

returns false.

Parameters:
role - a String specifying the name of the role

Returns: a boolean indicating whether the user making this request

belongs to a given role; false if the user has not been authenticated

SRV.15.1.4 HttpServletRequestWrapper

public class HttpServletRequestWrapper extends
javax.servlet.ServletRequestWrapper implements
javax.servlet.http.HttpServletRequest

All Implemented Interfaces: HttpServletRequest, javax.servlet.Servle-
tRequest

Provides a convenient implementation of the HttpServletRequest interface
can be subclassed by developers wishing to adapt the request to a Servlet
class implements the Wrapper or Decorator pattern. Methods default to ca
through to the wrapped request object.

Since: v 2.3

See Also: HttpServletRequest

SRV.15.1.4.1 Constructors

HttpServletRequestWrapper(HttpServletRequest)
public HttpServletRequestWrapper(HttpServletRequest request)

Constructs a request object wrapping the given request.

Throws:
java.lang.IllegalArgumentException - if the request is null

SRV.15.1.4.2 Methods

getAuthType()
public java.lang.String getAuthType()

The default behavior of this method is to return getAuthType() on the
wrapped request object.

Specified By: HttpServletRequest.getAuthType() in interface
HttpServletRequest
al Version

Servlets Using HTTP Protocol 201

ed

e)

on

e

getContextPath()
public java.lang.String getContextPath()

The default behavior of this method is to return getContextPath() on the
wrapped request object.

Specified By: HttpServletRequest.getContextPath() in interface
HttpServletRequest

getCookies()
public Cookie[] getCookies()

The default behavior of this method is to return getCookies() on the wrapp
request object.

Specified By: HttpServletRequest.getCookies() in interface
HttpServletRequest

getDateHeader(String)
public long getDateHeader(java.lang.String name)

The default behavior of this method is to return getDateHeader(String nam
on the wrapped request object.

Specified By: HttpServletRequest.getDateHeader(String) in interface
HttpServletRequest

getHeader(String)
public java.lang.String getHeader(java.lang.String name)

The default behavior of this method is to return getHeader(String name)
the wrapped request object.

Specified By: HttpServletRequest.getHeader(String) in interface
HttpServletRequest

getHeaderNames()
public java.util.Enumeration getHeaderNames()

The default behavior of this method is to return getHeaderNames() on th
wrapped request object.

Specified By: HttpServletRequest.getHeaderNames() in interface
HttpServletRequest

getHeaders(String)
public java.util.Enumeration getHeaders(java.lang.String name)

JAVAX.SERVLET.HTTP

Fin

202

) on

e)

ped

ed

e

The default behavior of this method is to return getHeaders(String name
the wrapped request object.

Specified By: HttpServletRequest.getHeaders(String) in interface
HttpServletRequest

getIntHeader(String)
public int getIntHeader(java.lang.String name)

The default behavior of this method is to return getIntHeader(String nam
on the wrapped request object.

Specified By: HttpServletRequest.getIntHeader(String) in interface
HttpServletRequest

getMethod()
public java.lang.String getMethod()

The default behavior of this method is to return getMethod() on the wrap
request object.

Specified By: HttpServletRequest.getMethod() in interface
HttpServletRequest

getPathInfo()
public java.lang.String getPathInfo()

The default behavior of this method is to return getPathInfo() on the wrapp
request object.

Specified By: HttpServletRequest.getPathInfo() in interface
HttpServletRequest

getPathTranslated()
public java.lang.String getPathTranslated()

The default behavior of this method is to return getPathTranslated() on th
wrapped request object.

Specified By: HttpServletRequest.getPathTranslated() in interface
HttpServletRequest

getQueryString()
public java.lang.String getQueryString()

The default behavior of this method is to return getQueryString() on the
wrapped request object.
al Version

Servlets Using HTTP Protocol 203

) on
Specified By: HttpServletRequest.getQueryString() in interface
HttpServletRequest

getRemoteUser()
public java.lang.String getRemoteUser()

The default behavior of this method is to return getRemoteUser() on the
wrapped request object.

Specified By: HttpServletRequest.getRemoteUser() in interface
HttpServletRequest

getRequestedSessionId()
public java.lang.String getRequestedSessionId()

The default behavior of this method is to return getRequestedSessionId(
the wrapped request object.

Specified By: HttpServletRequest.getRequestedSessionId() in
interfaceHttpServletRequest

getRequestURI()
public java.lang.String getRequestURI()

The default behavior of this method is to return getRequestURI() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURI() in interface
HttpServletRequest

getRequestURL()
public java.lang.StringBuffer getRequestURL()

The default behavior of this method is to return getRequestURL() on the
wrapped request object.

Specified By: HttpServletRequest.getRequestURL() in interface
HttpServletRequest

getServletPath()
public java.lang.String getServletPath()

The default behavior of this method is to return getServletPath() on the
wrapped request object.

Specified By: HttpServletRequest.getServletPath() in interface
HttpServletRequest

JAVAX.SERVLET.HTTP

Fin

204

ped

te)

om-

om-
getSession()
public HttpSession getSession()

The default behavior of this method is to return getSession() on the wrap
request object.

Specified By: HttpServletRequest.getSession() in interface
HttpServletRequest

getSession(boolean)
public HttpSession getSession(boolean create)

The default behavior of this method is to return getSession(boolean crea
on the wrapped request object.

Specified By: HttpServletRequest.getSession(boolean) in interface
HttpServletRequest

getUserPrincipal()
public java.security.Principal getUserPrincipal()

The default behavior of this method is to return getUserPrincipal() on the
wrapped request object.

Specified By: HttpServletRequest.getUserPrincipal() in interface
HttpServletRequest

isRequestedSessionIdFromCookie()
public boolean isRequestedSessionIdFromCookie()

The default behavior of this method is to return isRequestedSessionIdFr
Cookie() on the wrapped request object.

Specified By:
HttpServletRequest.isRequestedSessionIdFromCookie() in interface
HttpServletRequest

isRequestedSessionIdFromUrl()
public boolean isRequestedSessionIdFromUrl()

The default behavior of this method is to return isRequestedSessionIdFr
Url() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromUrl() in
interfaceHttpServletRequest

isRequestedSessionIdFromURL()
public boolean isRequestedSessionIdFromURL()
al Version

Servlets Using HTTP Protocol 205

om-

id()

 on

cess

 but
The default behavior of this method is to return isRequestedSessionIdFr
URL() on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdFromURL() in
interfaceHttpServletRequest

isRequestedSessionIdValid()
public boolean isRequestedSessionIdValid()

The default behavior of this method is to return isRequestedSessionIdVal
on the wrapped request object.

Specified By: HttpServletRequest.isRequestedSessionIdValid() in
interfaceHttpServletRequest

isUserInRole(String)
public boolean isUserInRole(java.lang.String role)

The default behavior of this method is to return isUserInRole(String role)
the wrapped request object.

Specified By: HttpServletRequest.isUserInRole(String) in interface
HttpServletRequest

SRV.15.1.5 HttpServletResponse

public interface HttpServletResponse extends
javax.servlet.ServletResponse

All Superinterfaces: javax.servlet.ServletResponse

All Known Implementing Classes: HttpServletResponseWrapper

Extends thejavax.servlet.ServletResponse interface to provide HTTP-spe-
cific functionality in sending a response. For example, it has methods to ac
HTTP headers and cookies.

The servlet container creates anHttpServletRequest object and passes it as an
argument to the servlet’s service methods (doGet, doPost, etc).

See Also: javax.servlet.ServletResponse

SRV.15.1.5.1 Fields

SC_ACCEPTED
public static final int SC_ACCEPTED

Status code (202) indicating that a request was accepted for processing,
was not completed.

JAVAX.SERVLET.HTTP

Fin

206

lly

to a

on

ed to

nse
SC_BAD_GATEWAY
public static final int SC_BAD_GATEWAY

Status code (502) indicating that the HTTP server received an invalid
response from a server it consulted when acting as a proxy or gateway.

SC_BAD_REQUEST
public static final int SC_BAD_REQUEST

Status code (400) indicating the request sent by the client was syntactica
incorrect.

SC_CONFLICT
public static final int SC_CONFLICT

Status code (409) indicating that the request could not be completed due
conflict with the current state of the resource.

SC_CONTINUE
public static final int SC_CONTINUE

Status code (100) indicating the client can continue.

SC_CREATED
public static final int SC_CREATED

Status code (201) indicating the request succeeded and created a new
resource on the server.

SC_EXPECTATION_FAILED
public static final int SC_EXPECTATION_FAILED

Status code (417) indicating that the server could not meet the expectati
given in the Expect request header.

SC_FORBIDDEN
public static final int SC_FORBIDDEN

Status code (403) indicating the server understood the request but refus
fulfill it.

SC_GATEWAY_TIMEOUT
public static final int SC_GATEWAY_TIMEOUT

Status code (504) indicating that the server did not receive a timely respo
from the upstream server while acting as a gateway or proxy.
al Version

Servlets Using HTTP Protocol 207

e

sup-

ted

a

 a

I to
SC_GONE
public static final int SC_GONE

Status code (410) indicating that the resource is no longer available at th
server and no forwarding address is known. This conditionSHOULDbe con-
sidered permanent.

SC_HTTP_VERSION_NOT_SUPPORTED
public static final int SC_HTTP_VERSION_NOT_SUPPORTED

Status code (505) indicating that the server does not support or refuses to
port the HTTP protocol version that was used in the request message.

SC_INTERNAL_SERVER_ERROR
public static final int SC_INTERNAL_SERVER_ERROR

Status code (500) indicating an error inside the HTTP server which preven
it from fulfilling the request.

SC_LENGTH_REQUIRED
public static final int SC_LENGTH_REQUIRED

Status code (411) indicating that the request cannot be handled without
definedContent-Length.

SC_METHOD_NOT_ALLOWED
public static final int SC_METHOD_NOT_ALLOWED

Status code (405) indicating that the method specified in theRequest-Line is
not allowed for the resource identified by theRequest-URI.

SC_MOVED_PERMANENTLY
public static final int SC_MOVED_PERMANENTLY

Status code (301) indicating that the resource has permanently moved to
new location, and that future references should use a new URI with their
requests.

SC_MOVED_TEMPORARILY
public static final int SC_MOVED_TEMPORARILY

Status code (302) indicating that the resource has temporarily moved to
another location, but that future references should still use the original UR
access the resource.

SC_MULTIPLE_CHOICES

JAVAX.SERVLET.HTTP

Fin

208

 any

as no

ient

nly
s not

nal-

the
public static final int SC_MULTIPLE_CHOICES

Status code (300) indicating that the requested resource corresponds to
one of a set of representations, each with its own specific location.

SC_NO_CONTENT
public static final int SC_NO_CONTENT

Status code (204) indicating that the request succeeded but that there w
new information to return.

SC_NON_AUTHORITATIVE_INFORMATION
public static final int SC_NON_AUTHORITATIVE_INFORMATION

Status code (203) indicating that the meta information presented by the cl
did not originate from the server.

SC_NOT_ACCEPTABLE
public static final int SC_NOT_ACCEPTABLE

Status code (406) indicating that the resource identified by the request is o
capable of generating response entities which have content characteristic
acceptable according to the accept headerssent in the request.

SC_NOT_FOUND
public static final int SC_NOT_FOUND

Status code (404) indicating that the requested resource is not available.

SC_NOT_IMPLEMENTED
public static final int SC_NOT_IMPLEMENTED

Status code (501) indicating the HTTP server does not support the functio
ity needed to fulfill the request.

SC_NOT_MODIFIED
public static final int SC_NOT_MODIFIED

Status code (304) indicating that a conditional GET operation found that
resource was available and not modified.

SC_OK
public static final int SC_OK

Status code (200) indicating the request succeeded normally.

SC_PARTIAL_CONTENT
al Version

Servlets Using HTTP Protocol 209

the
.

uest
ro-

in

uest

yte
public static final int SC_PARTIAL_CONTENT

Status code (206) indicating that the server has fulfilled the partial GET
request for the resource.

SC_PAYMENT_REQUIRED
public static final int SC_PAYMENT_REQUIRED

Status code (402) reserved for future use.

SC_PRECONDITION_FAILED
public static final int SC_PRECONDITION_FAILED

Status code (412) indicating that the precondition given in one or more of
request-header fields evaluated to false when it was tested on the server

SC_PROXY_AUTHENTICATION_REQUIRED
public static final int SC_PROXY_AUTHENTICATION_REQUIRED

Status code (407) indicating that the clientMUSTfirst authenticate itself with
the proxy.

SC_REQUEST_ENTITY_TOO_LARGE
public static final int SC_REQUEST_ENTITY_TOO_LARGE

Status code (413) indicating that the server is refusing to process the req
because the request entity is larger than the server is willing or able to p
cess.

SC_REQUEST_TIMEOUT
public static final int SC_REQUEST_TIMEOUT

Status code (408) indicating that the client did not produce a requestwith
the time that the server was prepared to wait.

SC_REQUEST_URI_TOO_LONG
public static final int SC_REQUEST_URI_TOO_LONG

Status code (414) indicating that the server is refusing to service the req
because theRequest-URI is longer than the server is willing to interpret.

SC_REQUESTED_RANGE_NOT_SATISFIABLE
public static final int SC_REQUESTED_RANGE_NOT_SATISFIABLE

Status code (416) indicating that the server cannot serve the requested b
range.

JAVAX.SERVLET.HTTP

Fin

210

d

ed,

o

arily

on.

uest
sted
SC_RESET_CONTENT
public static final int SC_RESET_CONTENT

Status code (205) indicating that the agentSHOULDreset the document view
which caused the request to be sent.

SC_SEE_OTHER
public static final int SC_SEE_OTHER

Status code (303) indicating that the response to the request can be foun
under a different URI.

SC_SERVICE_UNAVAILABLE
public static final int SC_SERVICE_UNAVAILABLE

Status code (503) indicating that the HTTP server is temporarily overload
and unable to handle the request.

SC_SWITCHING_PROTOCOLS
public static final int SC_SWITCHING_PROTOCOLS

Status code (101) indicating the server is switching protocols according t
Upgrade header.

SC_TEMPORARY_REDIRECT
public static final int SC_TEMPORARY_REDIRECT

Status code (307) indicating that the requested resource resides tempor
under a different URI. The temporary URISHOULD be given by the
Location field in the response.

SC_UNAUTHORIZED
public static final int SC_UNAUTHORIZED

Status code (401) indicating that the request requires HTTP authenticati

SC_UNSUPPORTED_MEDIA_TYPE
public static final int SC_UNSUPPORTED_MEDIA_TYPE

Status code (415) indicating that the server is refusing to service the req
because the entity of the request is in a format not supported by the reque
resource for the requested method.

SC_USE_PROXY
public static final int SC_USE_PROXY
al Version

Servlets Using HTTP Protocol 211

tiple

spec-
se

ows

thod
Status code (305) indicating that the requested resourceMUST be accessed
through the proxy given by theLocation field.

SRV.15.1.5.2 Methods

addCookie(Cookie)
public void addCookie(Cookie cookie)

Adds the specified cookie to the response. This method can be called mul
times to set more than one cookie.

Parameters:
cookie - the Cookie to return to the client

addDateHeader(String, long)
public void addDateHeader(java.lang.String name, long date)

Adds a response header with the given name and date-value. The date is
ified in terms of milliseconds since the epoch. This method allows respon
headers to have multiple values.

Parameters:
name - the name of the header to set

value - the additional date value

See Also:setDateHeader(String, long)

addHeader(String, String)
public void addHeader(java.lang.String name,

java.lang.String value)

Adds a response header with the given name and value. This method all
response headers to have multiple values.

Parameters:
name - the name of the header

value - the additional header value

See Also:setHeader(String, String)

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

Adds a response header with the given name and integer value. This me
allows response headers to have multiple values.

Parameters:
name - the name of the header

JAVAX.SERVLET.HTTP

Fin

212

ready

d

is
be
dif-
d is

th
value - the assigned integer value

See Also:setIntHeader(String, int)

containsHeader(String)
public boolean containsHeader(java.lang.String name)

Returns a boolean indicating whether the named response header has al
been set.

Parameters:
name - the header name

Returns: true if the named response header has already been set;false

otherwise

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeRedirectURL(String url) instea

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

Encodes the specified URL for use in thesendRedirect method or, if encod-
ing is not needed, returns the URL unchanged. The implementation of th
method includes the logic to determine whether the session ID needs to
encoded in the URL. Because the rules for making this determination can
fer from those used to decide whether to encode a normal link, this metho
seperate from theencodeURL method.

All URLs sent to theHttpServletResponse.sendRedirect method should
be run through this method. Otherwise, URL rewriting cannot be used wi
browsers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

See Also:sendRedirect(String), encodeUrl(String)

encodeUrl(String)
al Version

Servlets Using HTTP Protocol 213

is
thod
d in

g is

s-

clear-

al-
red

d

public java.lang.String encodeUrl(java.lang.String url)

Deprecated. As of version 2.1, use encodeURL(String url) instead

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

encodeURL(String)
public java.lang.String encodeURL(java.lang.String url)

Encodes the specified URL by including the session ID in it, or, if encoding
not needed, returns the URL unchanged. The implementation of this me
includes the logic to determine whether the session ID needs to be encode
the URL. For example, if the browser supports cookies, or session trackin
turned off, URL encoding is unnecessary.

For robust session tracking, all URLs emitted by a servlet should be run
through this method. Otherwise, URL rewriting cannot be used with brow
ers which do not support cookies.

Parameters:
url - the url to be encoded.

Returns: the encoded URL if encoding is needed; the unchanged URL
otherwise.

sendError(int)
public void sendError(int sc)

throws IOException

Sends an error response to the client using the specified status code and
ing the buffer.

If the response has already been committed, this method throws an Illeg
StateException. After using this method, the response should be conside
to be committed and should not be written to.

Parameters:
sc - the error status code

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed before this metho
call

sendError(int, String)

JAVAX.SERVLET.HTTP

Fin

214

the
or-
ntent

ding
ug-

al-
red

irect
er

n-
 rel-

al-
red
public void sendError(int sc, java.lang.String msg)
throws IOException

Sends an error response to the client using the specified status clearing
buffer. The server defaults to creating the response to look like an HTML-f
matted server error page containing the specified message, setting the co
type to “text/html”, leaving cookies and other headers unmodified. If an
error-page declaration has been made for the web application correspon
to the status code passed in, it will be served back in preference to the s
gested msg parameter.

If the response has already been committed, this method throws an Illeg
StateException. After using this method, the response should be conside
to be committed and should not be written to.

Parameters:
sc - the error status code

msg - the descriptive message

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed

sendRedirect(String)
public void sendRedirect(java.lang.String location)

throws IOException

Sends a temporary redirect response to the client using the specified red
location URL. This method can accept relative URLs; the servlet contain
must convert the relative URL to an absolute URL before sending the
response to the client. If the location is relative without a leading ’/’ the co
tainer interprets it as relative to the current request URI. If the location is
ative with a leading ’/’ the container interprets it as relative to the servlet
container root.

If the response has already been committed, this method throws an Illeg
StateException. After using this method, the response should be conside
to be committed and should not be written to.

Parameters:
location - the redirect location URL

Throws:
IOException - If an input or output exception occurs

IllegalStateException - If the response was committed

setDateHeader(String, long)
al Version

Servlets Using HTTP Protocol 215

speci-
een

d

tting

ader

turn
_OK
s

public void setDateHeader(java.lang.String name, long date)

Sets a response header with the given name and date-value. The date is
fied in terms of milliseconds since the epoch. If the header had already b
set, the new value overwrites the previous one. ThecontainsHeader method
can be used to test for the presence of a header before setting its value.

Parameters:
name - the name of the header to set

value - the assigned date value

See Also:containsHeader(String), addDateHeader(String, long)

setHeader(String, String)
public void setHeader(java.lang.String name,

java.lang.String value)

Sets a response header with the given name and value. If the header ha
already been set, the new value overwrites the previous one. Thecontains-

Header method can be used to test for the presence of a header before se
its value.

Parameters:
name - the name of the header

value - the header value

See Also:containsHeader(String), addHeader(String, String)

setIntHeader(String, int)
public void setIntHeader(java.lang.String name, int value)

Sets a response header with the given name and integer value. If the he
had already been set, the new value overwrites the previous one. The
containsHeader method can be used to test for the presence of a header
before setting its value.

Parameters:
name - the name of the header

value - the assigned integer value

See Also:containsHeader(String), addIntHeader(String, int)

setStatus(int)
public void setStatus(int sc)

Sets the status code for this response. This method is used to set the re
status code when there is no error (for example, for the status codes SC
or SC_MOVED_TEMPORARILY). If there is an error, and the caller wishe

JAVAX.SERVLET.HTTP

Fin

216

ook-

e

e

that
rvlet.

call-
to invoke an defined in the web applicaion, thesendError method should be
used instead.

The container clears the buffer and sets the Location header, preserving c
ies and other headers.

Parameters:
sc - the status code

See Also:sendError(int, String)

setStatus(int, String)
public void setStatus(int sc, java.lang.String sm)

Deprecated. As of version 2.1, due to ambiguous meaning of the messag
parameter. To set a status code usesetStatus(int), to send an error with a
description usesendError(int, String). Sets the status code and messag
for this response.

Parameters:
sc - the status code

sm - the status message

SRV.15.1.6 HttpServletResponseWrapper

public class HttpServletResponseWrapper extends
javax.servlet.ServletResponseWrapper implements
javax.servlet.http.HttpServletResponse

All Implemented Interfaces: HttpServletResponse, javax.servlet.Servle-
tResponse

Provides a convenient implementation of the HttpServletResponse interface
can be subclassed by developers wishing to adapt the response from a Se
This class implements the Wrapper or Decorator pattern. Methods default to
ing through to the wrapped response object.

Since: v 2.3

See Also: HttpServletResponse

SRV.15.1.6.1 Constructors

HttpServletResponseWrapper(HttpServletResponse)
public HttpServletResponseWrapper(HttpServletResponse response)

Constructs a response adaptor wrapping the given response.

Throws:
java.lang.IllegalArgumentException - if the response is null
al Version

Servlets Using HTTP Protocol 217

on

e,

 int

e)
SRV.15.1.6.2 Methods

addCookie(Cookie)
public void addCookie(Cookie cookie)

The default behavior of this method is to call addCookie(Cookie cookie)
the wrapped response object.

Specified By: HttpServletResponse.addCookie(Cookie) in interface
HttpServletResponse

addDateHeader(String, long)
public void addDateHeader(java.lang.String name, long date)

The default behavior of this method is to call addDateHeader(String nam
long date) on the wrapped response object.

Specified By: HttpServletResponse.addDateHeader(String, long) in
interfaceHttpServletResponse

addHeader(String, String)
public void addHeader(java.lang.String name,

java.lang.String value)

The default behavior of this method is to return addHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.addHeader(String, String) in
interfaceHttpServletResponse

addIntHeader(String, int)
public void addIntHeader(java.lang.String name, int value)

The default behavior of this method is to call addIntHeader(String name,
value) on the wrapped response object.

Specified By: HttpServletResponse.addIntHeader(String, int) in
interfaceHttpServletResponse

containsHeader(String)
public boolean containsHeader(java.lang.String name)

The default behavior of this method is to call containsHeader(String nam
on the wrapped response object.

Specified By: HttpServletResponse.containsHeader(String) in
interfaceHttpServletResponse

JAVAX.SERVLET.HTTP

Fin

218

ng

e

encodeRedirectUrl(String)
public java.lang.String encodeRedirectUrl(java.lang.String url)

The default behavior of this method is to return encodeRedirectUrl(String
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectUrl(String) in
interfaceHttpServletResponse

encodeRedirectURL(String)
public java.lang.String encodeRedirectURL(java.lang.String url)

The default behavior of this method is to return encodeRedirectURL(Stri
url) on the wrapped response object.

Specified By: HttpServletResponse.encodeRedirectURL(String) in
interfaceHttpServletResponse

encodeUrl(String)
public java.lang.String encodeUrl(java.lang.String url)

The default behavior of this method is to call encodeUrl(String url) on the
wrapped response object.

Specified By: HttpServletResponse.encodeUrl(String) in interface
HttpServletResponse

encodeURL(String)
public java.lang.String encodeURL(java.lang.String url)

The default behavior of this method is to call encodeURL(String url) on th
wrapped response object.

Specified By: HttpServletResponse.encodeURL(String) in interface
HttpServletResponse

sendError(int)
public void sendError(int sc)

throws IOException

The default behavior of this method is to call sendError(int sc) on the
wrapped response object.

Specified By: HttpServletResponse.sendError(int) in interface
HttpServletResponse

Throws:
IOException
al Version

Servlets Using HTTP Protocol 219

on

on)

,

int
sendError(int, String)
public void sendError(int sc, java.lang.String msg)

throws IOException

The default behavior of this method is to call sendError(int sc, String msg)
the wrapped response object.

Specified By: HttpServletResponse.sendError(int, String) in
interfaceHttpServletResponse

Throws:
IOException

sendRedirect(String)
public void sendRedirect(java.lang.String location)

throws IOException

The default behavior of this method is to return sendRedirect(String locati
on the wrapped response object.

Specified By: HttpServletResponse.sendRedirect(String) in interface
HttpServletResponse

Throws:
IOException

setDateHeader(String, long)
public void setDateHeader(java.lang.String name, long date)

The default behavior of this method is to call setDateHeader(String name
long date) on the wrapped response object.

Specified By: HttpServletResponse.setDateHeader(String, long) in
interfaceHttpServletResponse

setHeader(String, String)
public void setHeader(java.lang.String name,

java.lang.String value)

The default behavior of this method is to return setHeader(String name,
String value) on the wrapped response object.

Specified By: HttpServletResponse.setHeader(String, String) in
interfaceHttpServletResponse

setIntHeader(String, int)
public void setIntHeader(java.lang.String name, int value)

The default behavior of this method is to call setIntHeader(String name,
value) on the wrapped response object.

JAVAX.SERVLET.HTTP

Fin

220

ped

 on

t to a

P cli-
cross
orre-

ain a

enti-

iple

, the

rom
ssion
been
Specified By: HttpServletResponse.setIntHeader(String, int) in
interfaceHttpServletResponse

setStatus(int)
public void setStatus(int sc)

The default behavior of this method is to call setStatus(int sc) on the wrap
response object.

Specified By: HttpServletResponse.setStatus(int) in interface
HttpServletResponse

setStatus(int, String)
public void setStatus(int sc, java.lang.String sm)

The default behavior of this method is to call setStatus(int sc, String sm)
the wrapped response object.

Specified By: HttpServletResponse.setStatus(int, String) in
interfaceHttpServletResponse

SRV.15.1.7 HttpSession

public interface HttpSession

Provides a way to identify a user across more than one page request or visi
Web site and to store information about that user.

The servlet container uses this interface to create a session between an HTT
ent and an HTTP server. The session persists for a specified time period, a
more than one connection or page request from the user. A session usually c
sponds to one user, who may visit a site many times. The server can maint
session in many ways such as using cookies or rewriting URLs.

This interface allows servlets to
•View and manipulate information about a session, such as the session id
fier, creation time, and last accessed time
•Bind objects to sessions, allowing user information to persist across mult
user connections

When an application stores an object in or removes an object from a session
session checks whether the object implementsHttpSessionBindingListener .
If it does, the servlet notifies the object that it has been bound to or unbound f
the session. Notifications are sent after the binding methods complete. For se
that are invalidated or expire, notifications are sent after the session has
invalidatd or expired.
al Version

Servlets Using HTTP Protocol 221

set-

se to
ient
,

ion
i-

ds
When container migrates a session between VMs in a distributed container
ting, all session atributes implementing theHttpSessionActivationListener
interface are notified.

A servlet should be able to handle cases in which the client does not choo
join a session, such as when cookies are intentionally turned off. Until the cl
joins the session,isNew returnstrue. If the client chooses not to join the session
getSession will return a different session on each request, andisNew will always
returntrue.

Session information is scoped only to the current web applicat
(ServletContext), so information stored in one context will not be directly vis
ble in another.

See Also: HttpSessionBindingListener, HttpSessionContext

SRV.15.1.7.1 Methods

getAttribute(String)
public java.lang.Object getAttribute(java.lang.String name)

Returns the object bound with the specified name in this session, ornull if
no object is bound under the name.

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
IllegalStateException - if this method is called on an invalidated session

getAttributeNames()
public java.util.Enumeration getAttributeNames()

Returns anEnumeration of String objects containing the names of all the
objects bound to this session.

Returns: anEnumeration of String objects specifying the names of all the
objects bound to this session

Throws:
IllegalStateException - if this method is called on an invalidated session

getCreationTime()
public long getCreationTime()

Returns the time when this session was created, measured in millisecon
since midnight January 1, 1970 GMT.

JAVAX.SERVLET.HTTP

Fin

222

The
n-

n, as

oci-

MT

will
rvlet
et

ins
Returns: along specifying when this session was created, expressed in
milliseconds since 1/1/1970 GMT

Throws:
IllegalStateException - if this method is called on an invalidated session

getId()
public java.lang.String getId()

Returns a string containing the unique identifier assigned to this session.
identifier is assigned by the servlet container and is implementation depe
dent.

Returns: a string specifying the identifier assigned to this session

getLastAccessedTime()
public long getLastAccessedTime()

Returns the last time the client sent a request associated with this sessio
the number of milliseconds since midnight January 1, 1970 GMT, and
marked by the time the container recieved the request.

Actions that your application takes, such as getting or setting a value ass
ated with the session, do not affect the access time.

Returns: along representing the last time the client sent a request
associated with this session, expressed in milliseconds since 1/1/1970 G

getMaxInactiveInterval()
public int getMaxInactiveInterval()

Returns the maximum time interval, in seconds, that the servlet container
keep this session open between client accesses. After this interval, the se
container will invalidate the session. The maximum time interval can be s
with thesetMaxInactiveInterval method. A negative time indicates the
session should never timeout.

Returns: an integer specifying the number of seconds this session rema
open between client requests

See Also:setMaxInactiveInterval(int)

getServletContext()
public javax.servlet.ServletContext getServletContext()

Returns the ServletContext to which this session belongs.

Returns: The ServletContext object for the web application

Since: 2.3
al Version

Servlets Using HTTP Protocol 223

I.

s

nt
kie-
ssion
getSessionContext()
public HttpSessionContext getSessionContext()

Deprecated. As of Version 2.1, this method is deprecated and has no
replacement. It will be removed in a future version of the Java Servlet AP

getValue(String)
public java.lang.Object getValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
getAttribute(String) .

Parameters:
name - a string specifying the name of the object

Returns: the object with the specified name

Throws:
IllegalStateException - if this method is called on an invalidated session

getValueNames()
public java.lang.String[] getValueNames()

Deprecated. As of Version 2.2, this method is replaced by
getAttributeNames()

Returns: an array ofString objects specifying the names of all the object
bound to this session

Throws:
IllegalStateException - if this method is called on an invalidated session

invalidate()
public void invalidate()

Invalidates this session then unbinds any objects bound to it.

Throws:
IllegalStateException - if this method is called on an already invalidated
session

isNew()
public boolean isNew()

Returnstrue if the client does not yet know about the session or if the clie
chooses not to join the session. For example, if the server used only coo
based sessions, and the client had disabled the use of cookies, then a se
would be new on each request.

JAVAX.SERVLET.HTTP

Fin

224

et

the
thod
Returns: true if the server has created a session, but the client has not y
joined

Throws:
IllegalStateException - if this method is called on an already invalidated
session

putValue(String, Object)
public void putValue(java.lang.String name, java.lang.Object value)

Deprecated. As of Version 2.2, this method is replaced by
setAttribute(String, Object)

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound; cannot be null

Throws:
IllegalStateException - if this method is called on an invalidated session

removeAttribute(String)
public void removeAttribute(java.lang.String name)

Removes the object bound with the specified name from this session. If
session does not have an object bound with the specified name, this me
does nothing.

After this method executes, and if the object implementsHttpSession-

BindingListener, the container callsHttpSessionBinding-
Listener.valueUnbound. The container then notifies any
HttpSessionAttributeListeners in the web application.

Parameters:
name - the name of the object to remove from this session

Throws:
IllegalStateException - if this method is called on an invalidated session

removeValue(String)
public void removeValue(java.lang.String name)

Deprecated. As of Version 2.2, this method is replaced by
removeAttribute(String)

Parameters:
name - the name of the object to remove from this session

Throws:
IllegalStateException - if this method is called on an invalidated session
al Version

Servlets Using HTTP Protocol 225

the

nts

t con-

them
r that

all
setAttribute(String, Object)
public void setAttribute(java.lang.String name,

java.lang.Object value)

Binds an object to this session, using the name specified. If an object of
same name is already bound to the session, the object is replaced.

After this method executes, and if the new object implementsHttpSession-

BindingListener, the container callsHttpSessionBinding-
Listener.valueBound. The container then notifies any
HttpSessionAttributeListeners in the web application.

If an object was already bound to this session of this name that impleme
HttpSessionBindingListener, itsHttpSessionBindingListener.value-
Unbound method is called.

If the value passed in is null, this has the same effect as callingremove-

Attribute().

Parameters:
name - the name to which the object is bound; cannot be null

value - the object to be bound

Throws:
IllegalStateException - if this method is called on an invalidated session

setMaxInactiveInterval(int)
public void setMaxInactiveInterval(int interval)

Specifies the time, in seconds, between client requests before the servle
tainer will invalidate this session. A negative time indicates the session
should never timeout.

Parameters:
interval - An integer specifying the number of seconds

SRV.15.1.8 HttpSessionActivationListener

public interface HttpSessionActivationListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Objects that are bound to a session may listen to container events notifying
that sessions will be passivated and that session will be activated. A containe
migrates session between VMs or persists sessions is required to notify
attributes bound to sessions implementing HttpSessionActivationListener.

Since: 2.3

JAVAX.SERVLET.HTTP

Fin

226

of

e

ter

 the
SRV.15.1.8.1 Methods

sessionDidActivate(HttpSessionEvent)
public void sessionDidActivate(HttpSessionEvent se)

Notification that the session has just been activated.

sessionWillPassivate(HttpSessionEvent)
public void sessionWillPassivate(HttpSessionEvent se)

Notification that the session is about to be passivated.

SRV.15.1.9 HttpSessionAttributeListener

public interface HttpSessionAttributeListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

This listener interface can be implemented in order to get notifications
changes to the attribute lists of sessions within this web application.

Since: v 2.3

SRV.15.1.9.1 Methods

attributeAdded(HttpSessionBindingEvent)
public void attributeAdded(HttpSessionBindingEvent se)

Notification that an attribute has been added to a session. Called after th
attribute is added.

attributeRemoved(HttpSessionBindingEvent)
public void attributeRemoved(HttpSessionBindingEvent se)

Notification that an attribute has been removed from a session. Called af
the attribute is removed.

attributeReplaced(HttpSessionBindingEvent)
public void attributeReplaced(HttpSessionBindingEvent se)

Notification that an attribute has been replaced in a session. Called after
attribute is replaced.

SRV.15.1.10 HttpSessionBindingEvent

public class HttpSessionBindingEvent extends
al Version

Servlets Using HTTP Protocol 227

nts
r
-
on.

t

t

javax.servlet.http.HttpSessionEvent

All Implemented Interfaces: java.io.Serializable

Events of this type are either sent to an object that impleme
HttpSessionBindingListener when it is bound or unbound from a session, o
to a HttpSessionAttributeListener that has been configured in the deploy
ment descriptor when any attribute is bound, unbound or replaced in a sessi

The session binds the object by a call toHttpSession.setAttribute and unbinds
the object by a call toHttpSession.removeAttribute.

See Also: HttpSession, HttpSessionBindingListener, HttpSessionAt-
tributeListener

SRV.15.1.10.1 Constructors

HttpSessionBindingEvent(HttpSession, String)
public HttpSessionBindingEvent(HttpSession session,

java.lang.String name)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implemen
HttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also:getName(), getSession()

HttpSessionBindingEvent(HttpSession, String, Object)
public HttpSessionBindingEvent(HttpSession session,

java.lang.String name, java.lang.Object value)

Constructs an event that notifies an object that it has been bound to or
unbound from a session. To receive the event, the object must implemen
HttpSessionBindingListener .

Parameters:
session - the session to which the object is bound or unbound

name - the name with which the object is bound or unbound

See Also:getName(), getSession()

SRV.15.1.10.2 Methods

getName()

JAVAX.SERVLET.HTTP

Fin

228

e

r

d. If

e.

sion.

ion,

s-
public java.lang.String getName()

Returns the name with which the attribute is bound to or unbound from th
session.

Returns: a string specifying the name with which the object is bound to o
unbound from the session

getSession()
public HttpSession getSession()

Return the session that changed.

Overrides: HttpSessionEvent.getSession() in classHttpSessionEvent

getValue()
public java.lang.Object getValue()

Returns the value of the attribute that has been added, removed or replace
the attribute was added (or bound), this is the value of the attribute. If the
attrubute was removed (or unbound), this is the value of the removed
attribute. If the attribute was replaced, this is the old value of the attribut

Since: 2.3

SRV.15.1.11 HttpSessionBindingListener

public interface HttpSessionBindingListener extends
java.util.EventListener

All Superinterfaces: java.util.EventListener

Causes an object to be notified when it is bound to or unbound from a ses
The object is notified by anHttpSessionBindingEvent object. This may be as a
result of a servlet programmer explicitly unbinding an attribute from a sess
due to a session being invalidated, or due to a session timing out.

See Also: HttpSession, HttpSessionBindingEvent

SRV.15.1.11.1 Methods

valueBound(HttpSessionBindingEvent)
public void valueBound(HttpSessionBindingEvent event)

Notifies the object that it is being bound to a session and identifies the se
sion.

Parameters:
event - the event that identifies the session
al Version

Servlets Using HTTP Protocol 229

the

e-

d

d

hin a
See Also:valueUnbound(HttpSessionBindingEvent)

valueUnbound(HttpSessionBindingEvent)
public void valueUnbound(HttpSessionBindingEvent event)

Notifies the object that it is being unbound from a session and identifies
session.

Parameters:
event - the event that identifies the session

See Also:valueBound(HttpSessionBindingEvent)

SRV.15.1.12 HttpSessionContext

public interface HttpSessionContext

Deprecated. As of Java(tm) Servlet API 2.1 for security reasons, with no replac
ment. This interface will be removed in a future version of this API.

See Also: HttpSession, HttpSessionBindingEvent, HttpSessionBind-
ingListener

SRV.15.1.12.1 Methods

getIds()
public java.util.Enumeration getIds()

Deprecated. As of Java Servlet API 2.1 with no replacement. This metho
must return an emptyEnumeration and will be removed in a future version of
this API.

getSession(String)
public HttpSession getSession(java.lang.String sessionId)

Deprecated. As of Java Servlet API 2.1 with no replacement. This metho
must return null and will be removed in a future version of this API.

SRV.15.1.13 HttpSessionEvent

public class HttpSessionEvent extends java.util.EventObject

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses:HttpSessionBindingEvent

This is the class representing event notifications for changes to sessions wit
web application.

JAVAX.SERVLET.HTTP

Fin

230

tive
tion

n.
Since: v 2.3

SRV.15.1.13.1 Constructors

HttpSessionEvent(HttpSession)
public HttpSessionEvent(HttpSession source)

Construct a session event from the given source.

SRV.15.1.13.2 Methods

getSession()
public HttpSession getSession()

Return the session that changed.

SRV.15.1.14 HttpSessionListener

public interface HttpSessionListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Implementations of this interface may are notified of changes to the list of ac
sessions in a web application. To recieve notification events, the implementa
class must be configured in the deployment descriptor for the web applicatio

Since: v 2.3

See Also: HttpSessionEvent

SRV.15.1.14.1 Methods

sessionCreated(HttpSessionEvent)
public void sessionCreated(HttpSessionEvent se)

Notification that a session was created.

Parameters:
se - the notification event

sessionDestroyed(HttpSessionEvent)
public void sessionDestroyed(HttpSessionEvent se)

Notification that a session was invalidated.

Parameters:
se - the notification event
al Version

Servlets Using HTTP Protocol 231

tion

rors.

 the

 the
SRV.15.1.15 HttpUtils

public class HttpUtils

Deprecated. As of Java(tm) Servlet API 2.3. These methods were only useful
with the default encoding and have been moved to the request interfaces.

SRV.15.1.15.1 Constructors

HttpUtils()
public HttpUtils()

Constructs an emptyHttpUtils object.

SRV.15.1.15.2 Methods

getRequestURL(HttpServletRequest)
public static java.lang.StringBuffer

getRequestURL(HttpServletRequest req)

Reconstructs the URL the client used to make the request, using informa
in theHttpServletRequest object. The returned URL contains a protocol,
server name, port number, and server path, but it does not include query
string parameters.

Because this method returns aStringBuffer, not a string, you can modify
the URL easily, for example, to append query parameters.

This method is useful for creating redirect messages and for reporting er

Parameters:
req - aHttpServletRequest object containing the client’s request

Returns: aStringBuffer object containing the reconstructed URL

parsePostData(int, ServletInputStream)
public static java.util.Hashtable parsePostData(int len,

javax.servlet.ServletInputStream in)

Parses data from an HTML form that the client sends to the server using
HTTP POST method and theapplication/x-www-form-urlencoded MIME
type.

The data sent by the POST method contains key-value pairs. A key can
appear more than once in the POST data with different values. However,
key appears only once in the hashtable, with its value being an array of
strings containing the multiple values sent by the POST method.

JAVAX.SERVLET.HTTP

Fin

232

any
l nota-

id

a
-
a

s.
g an

any
l nota-
The keys and values in the hashtable are stored in their decoded form, so
+ characters are converted to spaces, and characters sent in hexadecima
tion (like %xx) are converted to ASCII characters.

Parameters:
len - an integer specifying the length, in characters, of the
ServletInputStream object that is also passed to this method

in - theServletInputStream object that contains the data sent from the
client

Returns: aHashTable object built from the parsed key-value pairs

Throws:
IllegalArgumentException - if the data sent by the POST method is inval

parseQueryString(String)
public static java.util.Hashtable parseQueryString(java.lang.String

s)

Parses a query string passed from the client to the server and builds aHash-

Table object with key-value pairs. The query string should be in the form of
string packaged by the GET or POST method, that is, it should have key
value pairs in the formkey=value, with each pair separated from the next by
& character.

A key can appear more than once in the query string with different value
However, the key appears only once in the hashtable, with its value bein
array of strings containing the multiple values sent by the query string.

The keys and values in the hashtable are stored in their decoded form, so
+ characters are converted to spaces, and characters sent in hexadecima
tion (like %xx) are converted to ASCII characters.

Parameters:
s - a string containing the query to be parsed

Returns: aHashTable object built from the parsed key-value pairs

Throws:
IllegalArgumentException - if the query string is invalid
al Version

ifica-

ecifi-

n-

ges
Changes since version
2.2

This document is the Proposed Final Draft version of the Java Servlet 2.3 Spec
tion developed under the Java Commuity ProcessSM (JCP).

SRV.S.16 Changes in this document since version 2.2

The Java Servlet 2.2 Specification was the last released version of the servlet sp
cation. The following changes have been made since version 2.2:

• Incorporation of JavadocTM API definitions into the specification document

• Application Events

• Servlet Filtering

• Requirement of J2SE 1.2 or newer as the underlying platform for web co
tainers

• Dependencies on installed extensions

• Internationalization fixes

• Incorporation of Servlet 2.2 errata and numerous other clarifications

SRV.S.17 Changes since Public Draft

Responding to a large amount of feedback to the public draft, the following chan
were made:
ccxxxi-

CHANGES SINCE VERSION 2.2

Fin

ccxxxiv
SRV.S.17.1 Specification document changes

• Added 2.2 deployment descriptor as appendix

• Added the API documentation as part of the specfication

• Many editorial changes

• Added change list

SRV.S.17.2 Servlets - Chapter 2

• AddeddoHead() method back toHttpServlet (see API)

SRV.S.17.3 ServletContexts - Chapter 3

• addedgetServletContextName() (see API)

• addedgetResourcePaths() (see API)

SRV.S.17.4 Request - Chapter 4

• Add attributes for error processing

• AddedUnsupportedCharacterEncoding to throws clause of
setCharacterEncoding() (see API)

• getQueryString() - specify value is not decoded (see API)

• getParameterMap() - return value is immutable (see API)

• clarify getAuthType() API documentation, added statics for authentication
types (see API)

• clarify default character encoding

• clarify behavior ofgetRealPath() (see API)

• clarification ofHttpServletRequest.getHeaders()when name not found (see
API)
al Version

Changes since Public Draft ccxxxv

d

ee
SRV.S.17.5 Response - Chapter 5

• clarify status code on response when errors occur (see API)

• addedresetBuffer() method toServletResponse (see API)

• sendError clarifications (see API))

• disallow container defaulting the content type of a response

• clarify behavior offlush() onPrintWriter and ServletOutputStream (see
API)

• clarify default character encoding of response

• clarify what container does with headers onsetStatus() (see API)

• sendRedirect() clarification for non-absolute URLs (API doc)

• sendError() clarifications (API doc)

SRV.S.17.6 Filters - Chapter 6

• Scoping of filter instances

• Clarification of filters acting on static resources

• AddedFilterChain interface and minor refactoring

• RemovedConfig interface

• Addedset{Response,Request} methods to filter wrapper classes

SRV.S.17.7 Sessions - Chapter 7

• Addition of HttpSessionActivationListener interface used in distributed
containers (also see API)

• Clarification of semantics for persisting & migrating sessions in distribute
containers

• many clarifications of session expiry and notification, order of notification (s
API)

CHANGES SINCE VERSION 2.2

Fin

ccxxx-

r

man-
SRV.S.17.8 Application Event Listeners - Chapter 10

• Clarifying notifications on shutdown and ordering thereof

SRV.S.17.9 RequestMappings - Chapter 11

• clarified servlet mapped to/foo/* is called by a request for/foo

• Request matching is done by case-sensitive string match

SRV.S.17.10 Security - Chapter 12

• Specify a default behavior forisUserInRole() in absernce ofrole-refs

• Clarify interaction betweenRequestDispatcher and security model

• Clarify policy for processing multiple security constraints

• Added security attributes for SSL algorithm

• Specify status code for failed form login

• Specify allowed methods of return for form login error page

SRV.S.17.11 Deployment Descriptor - Chapter 13

• corrected bad comment forejb-ref-type

• clarifying web container policy for whitespace in the deployment descripto

• clarifying paths in deployment descriptor are assumed decoded

• recommend validation of deployment descriptor documents and some se
tic checking by web containers as aid to developers

• policy for paths refering to resources in theWAR: must start with ’/’

• clarify policy for relativizing paths inweb.xml

• added display name to security-constraint for tool manipulation

• fixed security example

• Use of "*" to mean ’all roles’ in the security-constraint element

• syntax for specifying sharing scope for connection factory connections

• syntax for declaring dependencies on administered objects in J2EE
al Version

Changes since Proposed Final Draft 1 ccxxx-

and

ca-
• clarify <error-page> path usage

• clarify <jsp-file> path usage

• snyc with EJB and EE specs on allowed strings inres-auth element

• clarify 2.2 dtd must be supported for backwards compatibility

SRV.S.18 Changes since Proposed Final Draft 1

• Minor changes to Filter API

• Renaming listener classes

• added getServletContext() to HttpSession

• added ServletContext.getResourcePaths() directory argument

• expanded section on error pages

• many typos and clarification of text

• many javadoc and DTD clarifications

• many small clarifications of behaviors in the document text

SRV.S.19 Changes since Proposed Final Draft 2

• editorial changes

• added trademarks

• added clarification that containers can recycle container objects SRV.4.10
SRV.5.6

• clarification of wrapper behavior SRV.6.2.2

• clarification of number of instances of filters SRV.6.2.3

• clarification of filter mappings SRV.6.2.4

• removed requirement of ordering of JARs within a WAR SRV.9.5

• clarified requirements around JNDI/lookups & object invokations on appli
tion threads SRV.9.11

CHANGES SINCE VERSION 2.2

Fin

ccxxx-
• clarified function of session invalidation on form login SRV.12.5.3

• added status code 307 (temporary redirect) to HttpServletResponse
al Version

A P P E N D I XSRV.A

r

ers

nt
Deployment Descripto
Version 2.2

This appendix defines the deployment descriptor for version 2.2. All web contain
are required to support web applications using the 2.2 deployment descriptor.

SRV.A.1 Deployment Descriptor DOCTYPE

All valid web application deployment descriptors must contain the following
DOCTYPE declaration:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Appli-

cation 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

SRV.A.2 DTD

The DTD that follows defines the XML grammar for a web application deployme
descriptor.

<!--

The web-app element is the root of the deployment descriptor for a
web application
-->
239

Fin

240
<!ELEMENT web-app (icon?, display-name?, description?,

distributable?, context-param*, servlet*, servlet-mapping*,

session-config?, mime-mapping*, welcome-file-list?, error-page*,

taglib*, resource-ref*, security-constraint*, login-config?,

security-role*, env-entry*, ejb-ref*)>

<!--

The icon element contains a small-icon and a large-icon element
which specify the location within the web application for a small and
large image used to represent the web application in a GUI tool. At a
minimum, tools must accept GIF and JPEG format images.
-->

<!ELEMENT icon (small-icon?, large-icon?)>

<!--

The small-icon element contains the location within the web
application of a file containing a small (16x16 pixel) icon image.
-->

<!ELEMENT small-icon (#PCDATA)>

<!--

The large-icon element contains the location within the web
application of a file containing a large (32x32 pixel) icon image.
-->

<!ELEMENT large-icon (#PCDATA)>

<!--

The display-name element contains a short name that is intended
to be displayed by GUI tools
-->

<!ELEMENT display-name (#PCDATA)>

<!--

The description element is used to provide descriptive text about
the parent element.
-->

<!ELEMENT description (#PCDATA)>

<!--

The distributable element, by its presence in a web application
deployment descriptor, indicates that this web application is
al Version

241
programmed appropriately to be deployed into a distributed servlet
container
-->

<!ELEMENT distributable EMPTY>

<!--

The context-param element contains the declaration of a web
application’s servlet context initialization parameters.
-->

<!ELEMENT context-param (param-name, param-value, description?)>

<!--

The param-name element contains the name of a parameter.
-->

<!ELEMENT param-name (#PCDATA)>

<!--

The param-value element contains the value of a parameter.
-->

<!ELEMENT param-value (#PCDATA)>

<!--

The servlet element contains the declarative data of a
servlet.
If a jsp-file is specified and the load-on-startup element is
present, then the JSP should be precompiled and loaded.
-->

<!ELEMENT servlet (icon?, servlet-name, display-name?, description?,

(servlet-class|jsp-file), init-param*, load-on-startup?,

security-role-ref*)>

<!--

The servlet-name element contains the canonical name of the
servlet.
-->

<!ELEMENT servlet-name (#PCDATA)>

<!--

The servlet-class element contains the fully qualified class name

Fin

242
of the servlet.
-->

<!ELEMENT servlet-class (#PCDATA)>

<!--

The jsp-file element contains the full path to a JSP file within
the web application.
-->

<!ELEMENT jsp-file (#PCDATA)>

<!--

The init-param element contains a name/value pair as an
initialization param of the servlet
-->

<!ELEMENT init-param (param-name, param-value, description?)>

<!--

The load-on-startup element indicates that this servlet should be
loaded on the startup of the web application.
The optional contents of these element must be a positive integer
indicating the order in which the servlet should be loaded.
Lower integers are loaded before higher integers.
If no value is specified, or if the value specified is not a positive
integer, the container is free to load it at any time in the startup
sequence.
-->

<!ELEMENT load-on-startup (#PCDATA)>

<!--

The servlet-mapping element defines a mapping between a servlet and
a url pattern
-->

<!ELEMENT servlet-mapping (servlet-name, url-pattern)>

<!--

The url-pattern element contains the url pattern of the
mapping. Must follow the rules specified in Section 10 of the Servlet
API Specification.
-->

<!ELEMENT url-pattern (#PCDATA)>
al Version

243
<!--

The session-config element defines the session parameters for this
web application.
-->

<!ELEMENT session-config (session-timeout?)>

<!--

The session-timeout element defines the default session timeout
interval for all sessions created in this web application.
The specified timeout must be expressed in a whole number of minutes.
-->

<!ELEMENT session-timeout (#PCDATA)>

<!--

The mime-mapping element defines a mapping between an extension and
a mime type.
-->

<!ELEMENT mime-mapping (extension, mime-type)>

<!--

The extension element contains a string describing an
extension. example: "txt"
-->

<!ELEMENT extension (#PCDATA)>

<!--

The mime-type element contains a defined mime type. example: "text/
plain"
-->

<!ELEMENT mime-type (#PCDATA)>

<!--

The welcome-file-list contains an ordered list of welcome files
elements.
-->

<!ELEMENT welcome-file-list (welcome-file+)>

Fin

244
<!--

The welcome-file element contains file name to use as a default
welcome file, such as index.html
-->

<!ELEMENT welcome-file (#PCDATA)>

<!--

The taglib element is used to describe a JSP tag library.
-->

<!ELEMENT taglib (taglib-uri, taglib-location)>

<!--

The taglib-uri element describes a URI, relative to the location of
the web.xml document, identifying a Tag Library used in the Web
Application.
-->

<!ELEMENT taglib-uri (#PCDATA)>

<!--

the taglib-location element contains the location (as a resource
relative to the root of the web application) where to find the Tag
Libary Description file for the tag library.
-->

<!ELEMENT taglib-location (#PCDATA)>

<!--

The error-page element contains a mapping between an error code or
exception type to the path of a resource in the web application
-->

<!ELEMENT error-page ((error-code | exception-type), location)>

<!--

The error-code contains an HTTP error code, ex: 404
-->

<!ELEMENT error-code (#PCDATA)>

<!--

The exception type contains a fully qualified class name of a Java
exception type.
-->
al Version

245
<!ELEMENT exception-type (#PCDATA)>

<!--

The location element contains the location of the resource in the
web application
-->

<!ELEMENT location (#PCDATA)>

<!--

The resource-ref element contains a declaration of a Web
Application’s reference to an external resource.
-->

<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-

auth)>

<!--

The res-ref-name element specifies the name of the resource factory
reference name.
-->

<!ELEMENT res-ref-name (#PCDATA)>

<!--

The res-type element specifies the (Java class) type of the data
source.
-->

<!ELEMENT res-type (#PCDATA)>

<!--

The res-auth element indicates whether the application component
code performs resource signon programmatically or whether the
container signs onto the resource based on the principle mapping
information supplied by the deployer.

Must be CONTAINER or SERVLET
-->

<!ELEMENT res-auth (#PCDATA)>

<!--

The security-constraint element is used to associate security
constraints with one or more web resource collections
-->

Fin

246
<!ELEMENT security-constraint (web-resource-collection+, auth-

constraint?, user-data-constraint?)>

<!--

The web-resource-collection element is used to identify a subset of
the resources and HTTP methods on those resources within a web
application to which a security constraint applies.
If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.
-->

<!ELEMENT web-resource-collection (web-resource-name, description?,

url-pattern*, http-method*)>

<!--

The web-resource-name contains the name of this web resource
collection
-->

<!ELEMENT web-resource-name (#PCDATA)>

<!--

The http-method contains an HTTP method (GET | POST |...)
-->

<!ELEMENT http-method (#PCDATA)>

<!--

The user-data-constraint element is used to indicate how data
communicated between the client and container should be protected
-->

<!ELEMENT user-data-constraint (description?, transport-guarantee)>

<!--

The transport-guarantee element specifies that the communication
between client and server should be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the application does not require any transport
guarantees.
A value of INTEGRAL means that the application requires that the data
sent between the client and server be sent in such a way that it
can’t be changed in transit.
CONFIDENTIAL means that the application requires that the data be
transmitted in a fashion that prevents other entities from observing
the contents of the transmission.
al Version

247
In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag will
indicate that the use of SSL is required.
-->

<!ELEMENT transport-guarantee (#PCDATA)>

<!--

The auth-constraint element indicates the user roles that should be
permitted access to this resource collection.
The role used here must appear in a security-role-ref element.
-->

<!ELEMENT auth-constraint (description?, role-name*)>

<!--

The role-name element contains the name of a security role.
-->

<!ELEMENT role-name (#PCDATA)>

<!--

The login-config element is used to configure the authentication
method that should be used, the realm name that should be used for
this application, and the attributes that are needed by the form
login mechanism.
-->

<!ELEMENT login-config (auth-method?, realm-name?, form-login-

config?)>

<!--

The realm name element specifies the realm name to use in HTTP Basic
authorization
-->

<!ELEMENT realm-name (#PCDATA)>

<!--

The form-login-config element specifies the login and error pages
that should be used in form based login.
If form based authentication is not used, these elements are ignored.
-->

<!ELEMENT form-login-config (form-login-page, form-error-page)>

Fin

248
<!--

The form-login-page element defines the location in the web app where
the page that can be used for login can be found
-->

<!ELEMENT form-login-page (#PCDATA)>

<!--

The form-error-page element defines the location in the web app where
the error page that is displayed when login is not successful can be
found
-->

<!ELEMENT form-error-page (#PCDATA)>

<!--

The auth-method element is used to configure the authentication
mechanism for the web application.
As a prerequisite to gaining access to any web resources which are
protected by an authorization constraint, a user must have
mechanism.
Legal values for this element are "BASIC", "DIGEST", "FORM", or
"CLIENT-CERT".
-->

<!ELEMENT auth-method (#PCDATA)>

<!--

The security-role element contains the declaration of a security role
which is used in the security-constraints placed on the web
application.
-->

<!ELEMENT security-role (description?, role-name)>

<!--

The role-name element contains the name of a role. This element must
contain a non-empty string.
-->

<!ELEMENT security-role-ref (description?, role-name, role-link)>

<!--

The role-link element is used to link a security role reference to
a defined security role.
al Version

249
The role-link element must contain the name of one of the security
roles defined in the security-role elements.
-->

<!ELEMENT role-link (#PCDATA)>

<!--

The env-entry element contains the declaration of an application’s
environment entry.
This element is required to be honored on in J2EE compliant servlet
containers.
-->

<!ELEMENT env-entry (description?, env-entry-name, env-entry-

value?, env-entry-type)>

<!--

The env-entry-name contains the name of an application’s environment
entry
-->

<!ELEMENT env-entry-name (#PCDATA)>

<!--

The env-entry-value element contains the value of an application’s
environment entry
-->

<!ELEMENT env-entry-value (#PCDATA)>

<!--

The env-entry-type element contains the fully qualified Java type of
the environment entry value that is expected by the application
code.
The following are the legal values of env-entry-type:
java.lang.Boolean, java.lang.String, java.lang.Integer,
java.lang.Double, java.lang.Float.
-->

<!ELEMENT env-entry-type (#PCDATA)>

<!--

The ejb-ref element is used to declare a reference to an enterprise
bean.
-->

Fin

250
<!ELEMENT ejb-ref (description?, ejb-ref-name, ejb-ref-type, home,

remote, ejb-link?)>

<!--

The ejb-ref-name element contains the name of an EJB
reference. This is the JNDI name that the servlet code uses to get a
reference to the enterprise bean.
-->

<!ELEMENT ejb-ref-name (#PCDATA)>

<!--

The ejb-ref-type element contains the expected java class type of
the referenced EJB.
-->

<!ELEMENT ejb-ref-type (#PCDATA)>

<!--

The ejb-home element contains the fully qualified name of the EJB’s
home interface
-->

<!ELEMENT home (#PCDATA)>

<!--

The ejb-remote element contains the fully qualified name of the EJB’s
remote interface
-->

<!ELEMENT remote (#PCDATA)>

<!--

The ejb-link element is used in the ejb-ref element to specify that
an EJB reference is linked to an EJB in an encompassing Java2
Enterprise Edition (J2EE) application package.
The value of the ejb-link element must be the ejb-name of and EJB in
the J2EE application package.
-->

<!ELEMENT ejb-link (#PCDATA)>

<!--

The ID mechanism is to allow tools to easily make tool-specific
references to the elements of the deployment descriptor.
al Version

251
This allows tools that produce additional deployment information
(i.e information beyond the standard deployment descriptor
information) to store the non-standard information in a separate
file, and easily refer from these tools-specific files to the
information in the standard web-app deployment descriptor.
-->

<!ATTLIST web-app id ID #IMPLIED>
<!ATTLIST icon id ID #IMPLIED>
<!ATTLIST small-icon id ID #IMPLIED>
<!ATTLIST large-icon id ID #IMPLIED>
<!ATTLIST display-name id ID #IMPLIED>
<!ATTLIST description id ID #IMPLIED>
<!ATTLIST distributable id ID #IMPLIED>
<!ATTLIST context-param id ID #IMPLIED>
<!ATTLIST param-name id ID #IMPLIED>
<!ATTLIST param-value id ID #IMPLIED>
<!ATTLIST servlet id ID #IMPLIED>
<!ATTLIST servlet-name id ID #IMPLIED>
<!ATTLIST servlet-class id ID #IMPLIED>
<!ATTLIST jsp-file id ID #IMPLIED>
<!ATTLIST init-param id ID #IMPLIED>
<!ATTLIST load-on-startup id ID #IMPLIED>
<!ATTLIST servlet-mapping id ID #IMPLIED>
<!ATTLIST url-pattern id ID #IMPLIED>
<!ATTLIST session-config id ID #IMPLIED>
<!ATTLIST session-timeout id ID #IMPLIED>
<!ATTLIST mime-mapping id ID #IMPLIED>
<!ATTLIST extension id ID #IMPLIED>
<!ATTLIST mime-type id ID #IMPLIED>
<!ATTLIST welcome-file-list id ID #IMPLIED>
<!ATTLIST welcome-file id ID #IMPLIED>
<!ATTLIST taglib id ID #IMPLIED>
<!ATTLIST taglib-uri id ID #IMPLIED>
<!ATTLIST taglib-location id ID #IMPLIED>
<!ATTLIST error-page id ID #IMPLIED>
<!ATTLIST error-code id ID #IMPLIED>
<!ATTLIST exception-type id ID #IMPLIED>
<!ATTLIST location id ID #IMPLIED>
<!ATTLIST resource-ref id ID #IMPLIED>
<!ATTLIST res-ref-name id ID #IMPLIED>
<!ATTLIST res-type id ID #IMPLIED>
<!ATTLIST res-auth id ID #IMPLIED>
<!ATTLIST security-constraint id ID #IMPLIED>
<!ATTLIST web-resource-collection id ID #IMPLIED>
<!ATTLIST web-resource-name id ID #IMPLIED>
<!ATTLIST http-method id ID #IMPLIED>
<!ATTLIST user-data-constraint id ID #IMPLIED>

Fin

252
<!ATTLIST transport-guarantee id ID #IMPLIED>
<!ATTLIST auth-constraint id ID #IMPLIED>
<!ATTLIST role-name id ID #IMPLIED>
<!ATTLIST login-config id ID #IMPLIED>
<!ATTLIST realm-name id ID #IMPLIED>
<!ATTLIST form-login-config id ID #IMPLIED>
<!ATTLIST form-login-page id ID #IMPLIED>
<!ATTLIST form-error-page id ID #IMPLIED>
<!ATTLIST auth-method id ID #IMPLIED>
<!ATTLIST security-role id ID #IMPLIED>
<!ATTLIST security-role-ref id ID #IMPLIED>
<!ATTLIST role-link id ID #IMPLIED>
<!ATTLIST env-entry id ID #IMPLIED>
<!ATTLIST env-entry-name id ID #IMPLIED>
<!ATTLIST env-entry-value id ID #IMPLIED>
<!ATTLIST env-entry-type id ID #IMPLIED>
<!ATTLIST ejb-ref id ID #IMPLIED>
<!ATTLIST ejb-ref-name id ID #IMPLIED>
<!ATTLIST ejb-ref-type id ID #IMPLIED>
<!ATTLIST home id ID #IMPLIED>
<!ATTLIST remote id ID #IMPLIED>
<!ATTLIST ejb-link id ID #IMPLIED>
al Version

A P P E N D I XSRV.B
s,
les,
li-
t
ncy

em-
g

irec-

oys
nvi-
er
 per-
ro-

ple,
the
era-
Glossary

Application Developer The producer of a web application. The output of an
Application Developer is a set of servlet classes, JSP pages, HTML page
and supporting libraries and files (such as images, compressed archive fi
etc.) for the web application. The Application Developer is typically an app
cation domain expert. The developer is required to be aware of the servle
environment and its consequences when programming, including concurre
considerations, and create the web application accordingly.

Application Assembler Takes the output of the Application Developer and
ensures that it is a deployable unit. Thus, the input of the Application Ass
bler is the servlet classes, JSP pages, HTML pages, and other supportin
libraries and files for the web application. The output of the Application
Assembler is a web application archive or a web application in an open d
tory structure.

Deployer The Deployer takes one or more web application archive files or
other directory structures provided by an Application Developer and depl
the application into a specific operational environment. The operational e
ronment includes a specific servlet container and web server. The Deploy
must resolve all the external dependencies declared by the developer. To
form his role, the deployer uses tools provided by the Servlet Container P
vider.

The Deployer is an expert in a specific operational environment. For exam
the Deployer is responsible for mapping the security roles defined by
Application Developer to the user groups and accounts that exist in the op
tional environment where the web application is deployed.
253

CHAPTER254

ion

d

s

 role

s, in

y

a-
rity

,

s.

nce
and

en-

e

r
the

 is
principal A principal is an entity that can be authenticated by an authenticat
protocol. A principal is identified by aprincipal name and authenticated by
usingauthentication data. The content and format of the principal name an
the authentication data depend on the authentication protocol.

role (development) The actions and responsibilities taken by various partie
during the development, deployment, and running of a web application. In
some scenarios, a single party may perform several roles; in others, each
may be performed by a different party.

role (security) An abstract notion used by an Application Developer in an
application that can be mapped by the Deployer to a user, or group of user
a security policy domain.

security policy domain The scope over which security policies are defined
and enforced by a security administrator of the security service. A securit
policy domain is also sometimes referred to as arealm.

security technology domain The scope over which the same security mech
nism, such as Kerberos, is used to enforce a security policy. Multiple secu
policy domains can exist within a single technology domain.

Servlet Container Provider A vendor that provides the runtime environment
namely the servlet container and possibly the web server, in which a web
application runs as well as the tools necessary to deploy web application

The expertise of the Container Provider is in HTTP-level programming. Si
this specification does not specify the interface between the web server
the servlet container, it is left to the Container Provider to split the implem
tation of the required functionality between the container and the server.

servlet definition A unique name associated with a fully qualified class nam
of a class implementing theServlet interface. A set of initialization parame-
ters can be associated with a servlet definition.

servlet mapping A servlet definition that is associated by a servlet containe
with a URL path pattern. All requests to that path pattern are handled by
servlet associated with the servlet definition.

System Administrator The person responsible for the configuration and
administration of the servlet container and web server. The administrator

255

a-

and
an-
s to

 URL
ce.
e

T-

cal
ible
rre-

d
es,
t in

orm
on-
r it
ro-
also responsible for overseeing the well-being of the deployed web applic
tions at run time.

This specification does not define the contracts for system management
administration. The administrator typically uses runtime monitoring and m
agement tools provided by the Container Provider and server vendor
accomplish these tasks.

uniform resource locator (URL) A compact string representation of
resources available via the network. Once the resource represented by a
has been accessed, various operations may be performed on that resour1 A
URL is a type of uniform resource identifier (URI). URLs are typically of th
form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HT
based URLs which are of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

http://java.sun.com/products/servlet/index.html

https://javashop.sun.com/purchase

In HTTP-based URLs, the‘/’ character is reserved to separate a hierarchi
path structure in the URL-path portion of the URL. The server is respons
for determining the meaning of the hierarchical structure. There is no co
spondence between a URL-path and a given file system path.

web application A collection of servlets, JSP pages , HTML documents, an
other web resources which might include image files, compressed archiv
and other data. A web application may be packaged into an archive or exis
an open directory structure.

All compatible servlet containers must accept a web application and perf
a deployment of its contents into their runtime. This may mean that a c
tainer can run the application directly from a web application archive file o
may mean that it will move the contents of a web application into the app
priate locations for that particular container.

1. See RFC 1738

CHAPTER256

s
th or
eb

rder.
web application archive A single file that contains all of the components of a
web application. This archive file is created by using standard JAR tools
which allow any or all of the web components to be signed.

Web application archive files are identified by the.war extension. A new
extension is used instead of.jar because that extension is reserved for file
which contain a set of class files and that can be placed in the classpa
double clicked using a GUI to launch an application. As the contents of a w
application archive are not suitable for such use, a new extension was in o

web application, distributable A web application that is written so that

it can be deployed in a web container distributed across multiple Java

virtual machines running on the same host or different hosts. The

deployment descriptor for such an application uses the distributable

element.

257

	Java™ Servlet Specification Version 2.3
	Preface
	SRV.P.1 Additional Sources
	SRV.P.2 Who Should Read This Specification
	SRV.P.3 API Reference
	SRV.P.4 Other Java™ Platform Specifications
	SRV.P.5 Other Important References
	SRV.P.6 Providing Feedback
	SRV.P.7 Acknowledgements

	Overview
	SRV.1.1 What is a Servlet?
	SRV.1.2 What is a Servlet Container?
	SRV.1.3 An Example
	SRV.1.4 Comparing Servlets with Other Technologies
	SRV.1.5 Relationship to Java 2, Platform Enterprise Edition

	The Servlet Interface
	SRV.2.1 Request Handling Methods
	SRV.2.1.1 HTTP Specific Request Handling Methods
	SRV.2.1.2 Additional Methods
	SRV.2.1.3 Conditional GET Support

	SRV.2.2 Number of Instances
	SRV.2.2.1 Note About The Single Thread Model

	SRV.2.3 Servlet Life Cycle
	SRV.2.3.1 Loading and Instantiation
	SRV.2.3.2 Initialization
	SRV.2.3.3 Request Handling
	SRV.2.3.4 End of Service

	Servlet Context
	SRV.3.1 Introduction to the ServletContext Interface
	SRV.3.2 Scope of a ServletContext Interface
	SRV.3.3 Initialization Parameters
	SRV.3.4 Context Attributes
	SRV.3.4.1 Context Attributes in a Distributed Container

	SRV.3.5 Resources
	SRV.3.6 Multiple Hosts and Servlet Contexts
	SRV.3.7 Reloading Considerations
	SRV.3.7.1 Temporary Working Directories

	The Request
	SRV.4.1 HTTP Protocol Parameters
	SRV.4.1.1 When Parameters Are Available

	SRV.4.2 Attributes
	SRV.4.3 Headers
	SRV.4.4 Request Path Elements
	SRV.4.5 Path Translation Methods
	SRV.4.6 Cookies
	SRV.4.7 SSL Attributes
	SRV.4.8 Internationalization
	SRV.4.9 Request data encoding
	SRV.4.10 Lifetime of the Request Object

	The Response
	SRV.5.1 Buffering
	SRV.5.2 Headers
	SRV.5.3 Convenience Methods
	SRV.5.4 Internationalization
	SRV.5.5 Closure of Response Object
	SRV.5.6 Lifetime of the Response Object

	Filtering
	SRV.6.1 What is a filter?
	SRV.6.1.1 Examples of Filtering Components

	SRV.6.2 Main Concepts
	SRV.6.2.1 Filter Lifecycle
	SRV.6.2.2 Wrapping Requests and Responses
	SRV.6.2.3 Filter Environment
	SRV.6.2.4 Configuration of Filters in a Web Application

	Sessions
	SRV.7.1 Session Tracking Mechanisms
	SRV.7.1.1 Cookies
	SRV.7.1.2 SSL Sessions
	SRV.7.1.3 URL Rewriting
	SRV.7.1.4 Session Integrity

	SRV.7.2 Creating a Session
	SRV.7.3 Session Scope
	SRV.7.4 Binding Attributes into a Session
	SRV.7.5 Session Timeouts
	SRV.7.6 Last Accessed Times
	SRV.7.7 Important Session Semantics
	J2EE.7.7.1 Threading Issues
	SRV.7.7.2 Distributed Environments
	SRV.7.7.3 Client Semantics

	Dispatching Requests
	SRV.8.1 Obtaining a RequestDispatcher
	SRV.8.1.1 Query Strings in Request Dispatcher Paths

	SRV.8.2 Using a Request Dispatcher
	SRV.8.3 The Include Method
	SRV.8.3.1 Included Request Parameters

	SRV.8.4 The Forward Method
	SRV.8.4.1 Query String

	SRV.8.5 Error Handling

	Web Applications
	SRV.9.1 Web Applications Within Web Servers
	SRV.9.2 Relationship to ServletContext
	SRV.9.3 Elements of a Web Application
	SRV.9.4 Deployment Hierarchies
	SRV.9.5 Directory Structure
	SRV.9.5.1 Example of Application Directory Structure

	SRV.9.6 Web Application Archive File
	SRV.9.7 Web Application Deployment Descriptor
	SRV.9.7.1 Dependencies On Extensions
	SRV.9.7.2 Web Application Classloader

	SRV.9.8 Replacing a Web Application
	SRV.9.9 Error Handling
	SRV.9.9.1 Request Attributes
	SRV.9.9.2 Error Pages

	SRV.9.10 Welcome Files
	SRV.9.11 Web Application Environment

	Application Lifecycle Events
	SRV.10.1 Introduction
	SRV.10.2 Event Listeners
	SRV.10.2.1 Event Types and Listener Interfaces
	SRV.10.2.2 An Example of Listener Use

	SRV.10.3 Listener Class Configuration
	SRV.10.3.1 Provision of Listener Classes
	SRV.10.3.2 Deployment Declarations
	SRV.10.3.3 Listener Registration
	SRV.10.3.4 Notifications At Shutdown

	SRV.10.4 Deployment Descriptor Example
	SRV.10.5 Listener Instances and Threading
	SRV.10.6 Distributed Containers
	SRV.10.7 Session Events

	Mapping Requests to Servlets
	SRV.11.1 Use of URL Paths
	SRV.11.2 Specification of Mappings
	SRV.11.2.1 Implicit Mappings
	SRV.11.2.2 Example Mapping Set

	Security
	SRV.12.1 Introduction
	SRV.12.2 Declarative Security
	SRV.12.3 Programmatic Security
	SRV.12.4 Roles
	SRV.12.5 Authentication
	SRV.12.5.1 HTTP Basic Authentication
	SRV.12.5.2 HTTP Digest Authentication
	SRV.12.5.3 Form Based Authentication
	SRV.12.5.4 HTTPS Client Authentication

	SRV.12.6 Server Tracking of Authentication Information
	SRV.12.7 Propagation of Security Identity in EJBTM Calls
	SRV.12.8 Specifying Security Constraints
	SRV.12.9 Default Policies

	Deployment Descriptor
	SRV.13.1 Deployment Descriptor Elements
	SRV.13.2 Rules for Processing the Deployment Descriptor
	SRV.13.2.1 Deployment Descriptor DOCTYPE

	SRV.13.3 DTD
	SRV.13.4 Examples
	SRV.13.4.1 A Basic Example
	SRV.13.4.2 An Example of Security

	javax.servlet
	SRV.14.1 Generic Servlet Interfaces and Classes
	SRV.14.2 The javax.servlet package
	SRV.14.2.1 Filter
	SRV.14.2.2 FilterChain
	SRV.14.2.3 FilterConfig
	SRV.14.2.4 GenericServlet
	SRV.14.2.5 RequestDispatcher
	SRV.14.2.6 Servlet
	SRV.14.2.7 ServletConfig
	SRV.14.2.8 ServletContext
	SRV.14.2.9 ServletContextAttributeEvent
	SRV.14.2.10 ServletContextAttributeListener
	SRV.14.2.11 ServletContextEvent
	SRV.14.2.12 ServletContextListener
	SRV.14.2.13 ServletException
	SRV.14.2.14 ServletInputStream
	SRV.14.2.15 ServletOutputStream
	SRV.14.2.16 ServletRequest
	SRV.14.2.17 ServletRequestWrapper
	SRV.14.2.18 ServletResponse
	SRV.14.2.19 ServletResponseWrapper
	SRV.14.2.20 SingleThreadModel
	SRV.14.2.21 UnavailableException

	javax.servlet.http
	SRV.15.1 Servlets Using HTTP Protocol
	SRV.15.1.1 Cookie
	SRV.15.1.2 HttpServlet
	SRV.15.1.3 HttpServletRequest
	SRV.15.1.4 HttpServletRequestWrapper
	SRV.15.1.5 HttpServletResponse
	SRV.15.1.6 HttpServletResponseWrapper
	SRV.15.1.7 HttpSession
	SRV.15.1.8 HttpSessionActivationListener
	SRV.15.1.9 HttpSessionAttributeListener
	SRV.15.1.10 HttpSessionBindingEvent
	SRV.15.1.11 HttpSessionBindingListener
	SRV.15.1.12 HttpSessionContext
	SRV.15.1.13 HttpSessionEvent
	SRV.15.1.14 HttpSessionListener
	SRV.15.1.15 HttpUtils

	Changes since version 2.2
	SRV.S.16 Changes in this document since version 2.2
	SRV.S.17 Changes since Public Draft
	SRV.S.17.1 Specification document changes
	SRV.S.17.2 Servlets - Chapter 2
	SRV.S.17.3 ServletContexts - Chapter 3
	SRV.S.17.4 Request - Chapter 4
	SRV.S.17.5 Response - Chapter 5
	SRV.S.17.6 Filters - Chapter 6
	SRV.S.17.7 Sessions - Chapter 7
	SRV.S.17.8 Application Event Listeners - Chapter 10
	SRV.S.17.9 RequestMappings - Chapter 11
	SRV.S.17.10 Security - Chapter 12
	SRV.S.17.11 Deployment Descriptor - Chapter 13

	SRV.S.18 Changes since Proposed Final Draft 1
	SRV.S.19 Changes since Proposed Final Draft 2

	Deployment Descriptor Version 2.2
	SRV.A.1 Deployment Descriptor DOCTYPE
	SRV.A.2 DTD

	Glossary

