
2 Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that will be introduced in Chapters
3 and 4. (It also contains several summations, which Appendix A shows how to
solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to read-
ers who have done computer programming and use it to show how we shall specify
our algorithms. Having specified the algorithm, we then argue that it correctly sorts
and we analyze its running time. The analysis introduces a notation that focuses
on how that time increases with the number of items to be sorted. Following our
discussion of insertion sort, we introduce the divide-and-conquer approach to the
design of algorithms and use it to develop an algorithm called merge sort. We end
with an analysis of merge sort’s running time.

2.1 Insertion sort
Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:
Input: A sequence of n numbers 〈a1, a2, . . . , an〉.
Output: A permutation (reordering) 〈a′1, a′2, . . . , a′n〉 of the input sequence such

that a′1 ≤ a′2 ≤ · · · ≤ a′n .
The numbers that we wish to sort are also known as the keys.

In this book, we shall typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, Pascal, or Java. If you have been
introduced to any of these languages, you should have little trouble reading our al-
gorithms. What separates pseudocode from “real” code is that in pseudocode, we

16 Chapter 2 Getting Started

2
♣

♣

♣ 2♣

4
♣
♣ ♣

♣♣ 4♣

5
♣♣ ♣

♣♣ 5♣

♣

7
♣

♣
♣ ♣

♣ ♣

♣♣
7♣

10
♣

♣
♣ ♣
♣ ♣

♣
♣♣
♣♣

10♣

Figure 2.1 Sorting a hand of cards using insertion sort.

employ whatever expressive method is most clear and concise to specify a given al-
gorithm. Sometimes, the clearest method is English, so do not be surprised if you
come across an English phrase or sentence embedded within a section of “real”
code. Another difference between pseudocode and real code is that pseudocode
is not typically concerned with issues of software engineering. Issues of data ab-
straction, modularity, and error handling are often ignored in order to convey the
essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

Our pseudocode for insertion sort is presented as a procedure called INSERTION-
SORT, which takes as a parameter an array A[1 . . n] containing a sequence of
length n that is to be sorted. (In the code, the number n of elements in A is denoted
by length[A].) The input numbers are sorted in place: the numbers are rearranged
within the array A, with at most a constant number of them stored outside the
array at any time. The input array A contains the sorted output sequence when
INSERTION-SORT is finished.

2.1 Insertion sort 17

1 2 3 4 5 6
5 2 4 6 1 3(a)

1 2 3 4 5 6
2 5 4 6 1 3(b)

1 2 3 4 5 6
2 4 5 6 1 3(c)

1 2 3 4 5 6
2 4 5 6 1 3(d)

1 2 3 4 5 6
2 4 5 61 3(e)

1 2 3 4 5 6
2 4 5 61 3(f)

Figure 2.2 The operation of INSERTION-SORT on the array A = 〈5, 2, 4, 6, 1, 3〉. Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)–(e) The iterations of the for loop of lines 1–8. In each iteration, the black rectangle holds the
key taken from A[j], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key is moved to in line 8. (f) The final sorted array.

INSERTION-SORT(A)

1 for j ← 2 to length[A]
2 do key← A[j]
3 ✄ Insert A[j] into the sorted sequence A[1 . . j − 1].
4 i ← j − 1
5 while i > 0 and A[i] > key
6 do A[i + 1]← A[i]
7 i ← i − 1
8 A[i + 1]← key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for A = 〈5, 2, 4, 6, 1, 3〉. The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the “outer” for loop, which is indexed by j , the subarray con-
sisting of elements A[1 . . j − 1] constitute the currently sorted hand, and elements
A[j + 1 . . n] correspond to the pile of cards still on the table. In fact, elements
A[1 . . j − 1] are the elements originally in positions 1 through j − 1, but now in
sorted order. We state these properties of A[1 . . j−1] formally as a loop invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
A[1 . . j−1] consists of the elements originally in A[1 . . j−1] but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

18 Chapter 2 Getting Started

Initialization: It is true prior to the first iteration of the loop.
Maintenance: If it is true before an iteration of the loop, it remains true before the

next iteration.
Termination: When the loop terminates, the invariant gives us a useful property

that helps show that the algorithm is correct.
When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. Note the similarity to mathematical induction, where to prove that a
property holds, you prove a base case and an inductive step. Here, showing that
the invariant holds before the first iteration is like the base case, and showing that
the invariant holds from iteration to iteration is like the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. It also differs from the usual use of mathematical in-
duction, in which the inductive step is used infinitely; here, we stop the “induction”
when the loop terminates.

Let us see how these properties hold for insertion sort.
Initialization: We start by showing that the loop invariant holds before the first

loop iteration, when j = 2.1 The subarray A[1 . . j − 1], therefore, consists
of just the single element A[1], which is in fact the original element in A[1].
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the outer for loop works
by moving A[j − 1], A[j − 2], A[j − 3], and so on by one position to the right
until the proper position for A[j] is found (lines 4–7), at which point the value
of A[j] is inserted (line 8). A more formal treatment of the second property
would require us to state and show a loop invariant for the “inner” while loop.
At this point, however, we prefer not to get bogged down in such formalism,
and so we rely on our informal analysis to show that the second property holds
for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. For
insertion sort, the outer for loop ends when j exceeds n, i.e., when j = n + 1.
Substituting n + 1 for j in the wording of loop invariant, we have that the
subarray A[1 . . n] consists of the elements originally in A[1 . . n], but in sorted

1When the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j ≤ length[A].

2.1 Insertion sort 19

order. But the subarray A[1 . . n] is the entire array! Hence, the entire array is
sorted, which means that the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this
chapter and in other chapters as well.

Pseudocode conventions
We use the following conventions in our pseudocode.
1. Indentation indicates block structure. For example, the body of the for loop

that begins on line 1 consists of lines 2–8, and the body of the while loop that
begins on line 5 contains lines 6–7 but not line 8. Our indentation style applies
to if-then-else statements as well. Using indentation instead of conventional
indicators of block structure, such as begin and end statements, greatly reduces
clutter while preserving, or even enhancing, clarity.2

2. The looping constructs while, for, and repeat and the conditional constructs
if, then, and else have interpretations similar to those in Pascal.3 There is one
subtle difference with respect to for loops, however: in Pascal, the value of the
loop-counter variable is undefined upon exiting the loop, but in this book, the
loop counter retains its value after exiting the loop. Thus, immediately after a
for loop, the loop counter’s value is the value that first exceeded the for loop
bound. We used this property in our correctness argument for insertion sort.
The for loop header in line 1 is for j ← 2 to length[A], and so when this loop
terminates, j = length[A]+1 (or, equivalently, j = n+1, since n = length[A]).

3. The symbol “✄” indicates that the remainder of the line is a comment.
4. A multiple assignment of the form i ← j ← e assigns to both variables i and j

the value of expression e; it should be treated as equivalent to the assignment
j ← e followed by the assignment i ← j .

5. Variables (such as i , j , and key) are local to the given procedure. We shall not
use global variables without explicit indication.

6. Array elements are accessed by specifying the array name followed by the in-
dex in square brackets. For example, A[i] indicates the i th element of the ar-
ray A. The notation “. .” is used to indicate a range of values within an ar-

2In real programming languages, it is generally not advisable to use indentation alone to indicate
block structure, since levels of indentation are hard to determine when code is split across pages.
3Most block-structured languages have equivalent constructs, though the exact syntax may differ
from that of Pascal.

20 Chapter 2 Getting Started

ray. Thus, A[1 . . j] indicates the subarray of A consisting of the j elements
A[1], A[2], . . . , A[j].

7. Compound data are typically organized into objects, which are composed of
attributes or fields. A particular field is accessed using the field name followed
by the name of its object in square brackets. For example, we treat an array as
an object with the attribute length indicating how many elements it contains. To
specify the number of elements in an array A, we write length[A]. Although we
use square brackets for both array indexing and object attributes, it will usually
be clear from the context which interpretation is intended.
A variable representing an array or object is treated as a pointer to the data
representing the array or object. For all fields f of an object x , setting y ← x
causes f [y] = f [x]. Moreover, if we now set f [x] ← 3, then afterward not
only is f [x] = 3, but f [y] = 3 as well. In other words, x and y point to (“are”)
the same object after the assignment y← x .
Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

8. Parameters are passed to a procedure by value: the called procedure receives
its own copy of the parameters, and if it assigns a value to a parameter, the
change is not seen by the calling procedure. When objects are passed, the
pointer to the data representing the object is copied, but the object’s fields are
not. For example, if x is a parameter of a called procedure, the assignment
x ← y within the called procedure is not visible to the calling procedure. The
assignment f [x]← 3, however, is visible.

9. The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x . If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we evaluate
the expression y only if x evaluates to FALSE. Short-circuiting operators allow
us to write boolean expressions such as “x 6= NIL and f [x] = y” without
worrying about what happens when we try to evaluate f [x] when x is NIL.

Exercises
2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A = 〈31, 41, 59, 26, 41, 58〉.

2.2 Analyzing algorithms 21

2.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of non-
decreasing order.
2.1-3
Consider the searching problem:
Input: A sequence of n numbers A = 〈a1, a2, . . . , an〉 and a value v.
Output: An index i such that v = A[i] or the special value NIL if v does not

appear in A.
Write pseudocode for linear search, which scans through the sequence, looking
for v. Using a loop invariant, prove that your algorithm is correct. Make sure that
your loop invariant fulfills the three necessary properties.
2.1-4
Consider the problem of adding two n-bit binary integers, stored in two n-element
arrays A and B. The sum of the two integers should be stored in binary form in
an (n + 1)-element array C . State the problem formally and write pseudocode for
adding the two integers.

2.2 Analyzing algorithms
Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. Occasionally, resources such as memory, communication band-
width, or computer hardware are of primary concern, but most often it is compu-
tational time that we want to measure. Generally, by analyzing several candidate
algorithms for a problem, a most efficient one can be easily identified. Such anal-
ysis may indicate more than one viable candidate, but several inferior algorithms
are usually discarded in the process.

Before we can analyze an algorithm, we must have a model of the implemen-
tation technology that will be used, including a model for the resources of that
technology and their costs. For most of this book, we shall assume a generic one-
processor, random-access machine (RAM) model of computation as our imple-
mentation technology and understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are executed one after an-
other, with no concurrent operations. In later chapters, however, we shall have
occasion to investigate models for digital hardware.

Strictly speaking, one should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM

22 Chapter 2 Getting Started

model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real comput-
ers do not have such instructions. Our guide, therefore, is how real computers are
designed. The RAM model contains instructions commonly found in real com-
puters: arithmetic (add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point. Although we
typically do not concern ourselves with precision in this book, in some applications
precision is crucial. We also assume a limit on the size of each word of data. For
example, when working with inputs of size n, we typically assume that integers are
represented by c lg n bits for some constant c ≥ 1. We require c ≥ 1 so that each
word can hold the value of n, enabling us to index the individual input elements,
and we restrict c to be a constant so that the word size does not grow arbitrarily. (If
the word size could grow arbitrarily, we could store huge amounts of data in one
word and operate on it all in constant time—clearly an unrealistic scenario.)

Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no; it takes several instructions to compute x y
when x and y are real numbers. In restricted situations, however, exponentiation is
a constant-time operation. Many computers have a “shift left” instruction, which
in constant time shifts the bits of an integer by k positions to the left. In most
computers, shifting the bits of an integer by one position to the left is equivalent to
multiplication by 2. Shifting the bits by k positions to the left is equivalent to mul-
tiplication by 2k . Therefore, such computers can compute 2k in one constant-time
instruction by shifting the integer 1 by k positions to the left, as long as k is no more
than the number of bits in a computer word. We will endeavor to avoid such gray
areas in the RAM model, but we will treat computation of 2k as a constant-time
operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is
common in contemporary computers. That is, we do not model caches or virtual
memory (which is most often implemented with demand paging). Several compu-
tational models attempt to account for memory-hierarchy effects, which are some-
times significant in real programs on real machines. A handful of problems in this
book examine memory-hierarchy effects, but for the most part, the analyses in this
book will not consider them. Models that include the memory hierarchy are quite a
bit more complex than the RAM model, so that they can be difficult to work with.
Moreover, RAM-model analyses are usually excellent predictors of performance
on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The
mathematical tools required may include combinatorics, probability theory, alge-

2.2 Analyzing algorithms 23

braic dexterity, and the ability to identify the most significant terms in a formula.
Because the behavior of an algorithm may be different for each possible input, we
need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given al-
gorithm, we still face many choices in deciding how to express our analysis. We
would like a way that is simple to write and manipulate, shows the important char-
acteristics of an algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort
The time taken by the INSERTION-SORT procedure depends on the input: sorting a
thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-
SORT can take different amounts of time to sort two input sequences of the same
size depending on how nearly sorted they already are. In general, the time taken
by an algorithm grows with the size of the input, so it is traditional to describe the
running time of a program as a function of the size of its input. To do so, we need
to define the terms “running time” and “size of input” more carefully.

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input—for example, the array size n
for sorting. For many other problems, such as multiplying two integers, the best
measure of input size is the total number of bits needed to represent the input in
ordinary binary notation. Sometimes, it is more appropriate to describe the size of
the input with two numbers rather than one. For instance, if the input to an algo-
rithm is a graph, the input size can be described by the numbers of vertices and
edges in the graph. We shall indicate which input size measure is being used with
each problem we study.

The running time of an algorithm on a particular input is the number of primitive
operations or “steps” executed. It is convenient to define the notion of step so
that it is as machine-independent as possible. For the moment, let us adopt the
following view. A constant amount of time is required to execute each line of our
pseudocode. One line may take a different amount of time than another line, but
we shall assume that each execution of the i th line takes time ci , where ci is a
constant. This viewpoint is in keeping with the RAM model, and it also reflects
how the pseudocode would be implemented on most actual computers.4

4There are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, later in this
book we might say “sort the points by x-coordinate,” which, as we shall see, takes more than a
constant amount of time. Also, note that a statement that calls a subroutine takes constant time,
though the subroutine, once invoked, may take more. That is, we separate the process of calling the
subroutine—passing parameters to it, etc.—from the process of executing the subroutine.

24 Chapter 2 Getting Started

In the following discussion, our expression for the running time of INSERTION-
SORT will evolve from a messy formula that uses all the statement costs ci to a
much simpler notation that is more concise and more easily manipulated. This
simpler notation will also make it easy to determine whether one algorithm is more
efficient than another.

We start by presenting the INSERTION-SORT procedure with the time “cost”
of each statement and the number of times each statement is executed. For each
j = 2, 3, . . . , n, where n = length[A], we let t j be the number of times the while
loop test in line 5 is executed for that value of j . When a for or while loop exits in
the usual way (i.e., due to the test in the loop header), the test is executed one time
more than the loop body. We assume that comments are not executable statements,
and so they take no time.
INSERTION-SORT(A) cost times
1 for j ← 2 to length[A] c1 n
2 do key← A[j] c2 n − 1
3 ✄ Insert A[j] into the sorted

sequence A[1 . . j − 1]. 0 n − 1
4 i ← j − 1 c4 n − 1
5 while i > 0 and A[i] > key c5

∑n
j=2 t j

6 do A[i + 1]← A[i] c6
∑n

j=2(t j − 1)

7 i ← i − 1 c7
∑n

j=2(t j − 1)

8 A[i + 1]← key c8 n − 1
The running time of the algorithm is the sum of running times for each statement

executed; a statement that takes ci steps to execute and is executed n times will
contribute cin to the total running time.5 To compute T (n), the running time of
INSERTION-SORT, we sum the products of the cost and times columns, obtaining

T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5
n
∑

j=2
t j + c6

n
∑

j=2
(t j − 1)

+ c7
n
∑

j=2
(t j − 1)+ c8(n − 1) .

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best

5This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily consume mn words of
memory in total.

2.2 Analyzing algorithms 25

case occurs if the array is already sorted. For each j = 2, 3, . . . , n, we then find
that A[i] ≤ key in line 5 when i has its initial value of j − 1. Thus t j = 1 for
j = 2, 3, . . . , n, and the best-case running time is
T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5(n − 1)+ c8(n − 1)

= (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8) .

This running time can be expressed as an+ b for constants a and b that depend on
the statement costs ci ; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element A[j] with each element in the entire
sorted subarray A[1 . . j − 1], and so t j = j for j = 2, 3, . . . , n. Noting that
n
∑

j=2
j = n(n + 1)

2 − 1

and
n
∑

j=2
(j − 1) =

n(n − 1)

2
(see Appendix A for a review of how to solve these summations), we find that in
the worst case, the running time of INSERTION-SORT is
T (n) = c1n + c2(n − 1)+ c4(n − 1)+ c5

(n(n + 1)

2 − 1
)

+ c6
(n(n − 1)

2
)

+ c7
(n(n − 1)

2
)

+ c8(n − 1)

=

(c5
2 +

c6
2 +

c7
2
)

n2 +
(

c1 + c2 + c4 +
c5
2 −

c6
2 −

c7
2 + c8

)

n
− (c2 + c4 + c5 + c8) .

This worst-case running time can be expressed as an2 + bn + c for constants a, b,
and c that again depend on the statement costs ci ; it is thus a quadratic function
of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a
given input, although in later chapters we shall see some interesting “randomized”
algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis
In our analysis of insertion sort, we looked at both the best case, in which the input
array was already sorted, and the worst case, in which the input array was reverse
sorted. For the remainder of this book, though, we shall usually concentrate on

26 Chapter 2 Getting Started

finding only the worst-case running time, that is, the longest running time for any
input of size n. We give three reasons for this orientation.
• The worst-case running time of an algorithm is an upper bound on the running

time for any input. Knowing it gives us a guarantee that the algorithm will never
take any longer. We need not make some educated guess about the running time
and hope that it never gets much worse.

• For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case will often occur when the information is not present in the database.
In some searching applications, searches for absent information may be fre-
quent.

• The “average case” is often roughly as bad as the worst case. Suppose that we
randomly choose n numbers and apply insertion sort. How long does it take to
determine where in subarray A[1 . . j − 1] to insert element A[j]? On average,
half the elements in A[1 . . j − 1] are less than A[j], and half the elements are
greater. On average, therefore, we check half of the subarray A[1 . . j − 1], so
t j = j/2. If we work out the resulting average-case running time, it turns out to
be a quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case or expected
running time of an algorithm; in Chapter 5, we shall see the technique of prob-
abilistic analysis, by which we determine expected running times. One problem
with performing an average-case analysis, however, is that it may not be apparent
what constitutes an “average” input for a particular problem. Often, we shall as-
sume that all inputs of a given size are equally likely. In practice, this assumption
may be violated, but we can sometimes use a randomized algorithm, which makes
random choices, to allow a probabilistic analysis.

Order of growth
We used some simplifying abstractions to ease our analysis of the INSERTION-
SORT procedure. First, we ignored the actual cost of each statement, using the
constants ci to represent these costs. Then, we observed that even these constants
give us more detail than we really need: the worst-case running time is an2+bn+c
for some constants a, b, and c that depend on the statement costs ci . We thus
ignored not only the actual statement costs, but also the abstract costs ci .

We shall now make one more simplifying abstraction. It is the rate of growth,
or order of growth, of the running time that really interests us. We therefore con-
sider only the leading term of a formula (e.g., an2), since the lower-order terms
are relatively insignificant for large n. We also ignore the leading term’s constant
coefficient, since constant factors are less significant than the rate of growth in

2.3 Designing algorithms 27

determining computational efficiency for large inputs. Thus, we write that inser-
tion sort, for example, has a worst-case running time of 2(n2) (pronounced “theta
of n-squared”). We shall use 2-notation informally in this chapter; it will be de-
fined precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, this evaluation may be in error for small inputs. But for large enough
inputs, a 2(n2) algorithm, for example, will run more quickly in the worst case
than a 2(n3) algorithm.

Exercises
2.2-1
Express the function n3/1000 − 100n2 − 100n + 3 in terms of 2-notation.
2.2-2
Consider sorting n numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of A, and exchange it with A[2]. Continue in this manner for the first n−1
elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first n − 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in 2-notation.
2.2-3
Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in 2-notation? Justify your answers.
2.2-4
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms
There are many ways to design algorithms. Insertion sort uses an incremental ap-
proach: having sorted the subarray A[1 . . j − 1], we insert the single element A[j]
into its proper place, yielding the sorted subarray A[1 . . j].

28 Chapter 2 Getting Started

In this section, we examine an alternative design approach, known as “divide-
and-conquer.” We shall use divide-and-conquer to design a sorting algorithm
whose worst-case running time is much less than that of insertion sort. One advan-
tage of divide-and-conquer algorithms is that their running times are often easily
determined using techniques that will be introduced in Chapter 4.

2.3.1 The divide-and-conquer approach
Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:
Divide the problem into a number of subproblems.
Conquer the subproblems by solving them recursively. If the subproblem sizes

are small enough, however, just solve the subproblems in a straightforward
manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.
Divide: Divide the n-element sequence to be sorted into two subsequences of n/2

elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.
The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted se-
quences in the “combine” step. To perform the merging, we use an auxiliary pro-
cedure MERGE(A, p, q, r), where A is an array and p, q, and r are indices num-
bering elements of the array such that p ≤ q < r . The procedure assumes that the
subarrays A[p . . q] and A[q + 1 . . r] are in sorted order. It merges them to form a
single sorted subarray that replaces the current subarray A[p . . r].

Our MERGE procedure takes time 2(n), where n = r − p + 1 is the number
of elements being merged, and it works as follows. Returning to our card-playing

2.3 Designing algorithms 29

motif, suppose we have two piles of cards face up on a table. Each pile is sorted,
with the smallest cards on top. We wish to merge the two piles into a single sorted
output pile, which is to be face down on the table. Our basic step consists of
choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto
the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are checking just
two top cards. Since we perform at most n basic steps, merging takes 2(n) time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
The idea is to put on the bottom of each pile a sentinel card, which contains a
special value that we use to simplify our code. Here, we use ∞ as the sentinel
value, so that whenever a card with ∞ is exposed, it cannot be the smaller card
unless both piles have their sentinel cards exposed. But once that happens, all the
nonsentinel cards have already been placed onto the output pile. Since we know in
advance that exactly r − p + 1 cards will be placed onto the output pile, we can
stop once we have performed that many basic steps.
MERGE(A, p, q, r)
1 n1← q − p + 1
2 n2← r − q
3 create arrays L[1 . . n1 + 1] and R[1 . . n2 + 1]
4 for i ← 1 to n1
5 do L[i]← A[p + i − 1]
6 for j ← 1 to n2
7 do R[j]← A[q + j]
8 L[n1 + 1]←∞
9 R[n2 + 1]←∞

10 i ← 1
11 j ← 1
12 for k ← p to r
13 do if L[i] ≤ R[j]
14 then A[k]← L[i]
15 i ← i + 1
16 else A[k]← R[j]
17 j ← j + 1

In detail, the MERGE procedure works as follows. Line 1 computes the length n1
of the subarray A[p..q], and line 2 computes the length n2 of the subarray
A[q + 1..r]. We create arrays L and R (“left” and “right”), of lengths n1 + 1
and n2 + 1, respectively, in line 3. The for loop of lines 4–5 copies the subar-

30 Chapter 2 Getting Started

A

L R
1 2 3 4 1 2 3 4

i j

k

(a)

2 4 5 7 1 2 3 6

A

L R
1 2 3 4 1 2 3 4

i j

k

(b)

2 4 5 7

1

2 3 61

2 4 5 7 1 2 3 6 4 5 7 1 2 3 6

A

L R

9 10 11 12 13 14 15 16

1 2 3 4 1 2 3 4

i j

k

(c)

2 4 5 7

1

2 3 61

5 7 1 2 3 62 A

L R
1 2 3 4 1 2 3 4

i j

k

(d)

2 4 5 7

1

2 3 61

7 1 2 3 62 2

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 168
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

Figure 2.3 The operation of lines 10–17 in the call MERGE(A, 9, 12, 16), when the subarray
A[9 . . 16] contains the sequence 〈2, 4, 5, 7, 1, 2, 3, 6〉. After copying and inserting sentinels, the
array L contains 〈2, 4, 5, 7,∞〉, and the array R contains 〈1, 2, 3, 6,∞〉. Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9 . . 16], along with the two sentinels. Heavily shaded positions in A contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)–(h) The arrays A, L , and R, and their respective indices k, i , and j
prior to each iteration of the loop of lines 12–17. (i) The arrays and indices at termination. At this
point, the subarray in A[9 . . 16] is sorted, and the two sentinels in L and R are the only two elements
in these arrays that have not been copied into A.

ray A[p . . q] into L[1 . . n1], and the for loop of lines 6–7 copies the subarray
A[q + 1 . . r] into R[1 . . n2]. Lines 8–9 put the sentinels at the ends of the arrays L
and R. Lines 10–17, illustrated in Figure 2.3, perform the r − p+ 1 basic steps by
maintaining the following loop invariant:

At the start of each iteration of the for loop of lines 12–17, the subarray
A[p . . k − 1] contains the k − p smallest elements of L[1 . . n1 + 1] and
R[1 . . n2 + 1], in sorted order. Moreover, L[i] and R[j] are the smallest
elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12–17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.
Initialization: Prior to the first iteration of the loop, we have k = p, so that the

subarray A[p . . k − 1] is empty. This empty subarray contains the k − p = 0

2.3 Designing algorithms 31

A

L R
1 2 3 4 1 2 3 4

i j

k

(e)

2 4 5 7

1

2 3 61

1 2 3 62 2 3 A

L R
1 2 3 4 1 2 3 4

i j

k

(f)

2 4 5 7

1

2 3 61

2 3 62 2 3 4

A

L R
1 2 3 4 1 2 3 4

i j

k

(g)

2 4 5 7

1

2 3 61

3 62 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

(h)

2 4 5 7

1

2 3 61

62 2 3 4 5

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

5
∞

6

A

L R
1 2 3 4 1 2 3 4

i j

k

(i)

2 4 5 7

1

2 3 61

72 2 3 4 5

5
∞

5
∞

6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

smallest elements of L and R, and since i = j = 1, both L[i] and R[j] are the
smallest elements of their arrays that have not been copied back into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] ≤ R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p . . k − 1] contains the k − p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p . . k] will contain the k − p + 1
smallest elements. Incrementing k (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[j],
then lines 16–17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, k = r + 1. By the loop invariant, the subarray
A[p . . k − 1], which is A[p . . r], contains the k − p = r − p + 1 smallest
elements of L[1 . . n1 + 1] and R[1 . . n2 + 1], in sorted order. The arrays L
and R together contain n1 + n2 + 2 = r − p + 3 elements. All but the two
largest have been copied back into A, and these two largest elements are the
sentinels.

To see that the MERGE procedure runs in 2(n) time, where n = r − p + 1,
observe that each of lines 1–3 and 8–11 takes constant time, the for loops of

32 Chapter 2 Getting Started

lines 4–7 take 2(n1 + n2) = 2(n) time,6 and there are n iterations of the for
loop of lines 12–17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the subar-
ray A[p . . r]. If p ≥ r , the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index q that par-
titions A[p . . r] into two subarrays: A[p . . q], containing ⌈n/2⌉ elements, and
A[q + 1 . . r], containing ⌊n/2⌋ elements.7

MERGE-SORT(A, p, r)
1 if p < r
2 then q ← ⌊(p + r)/2⌋
3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q + 1, r)
5 MERGE(A, p, q, r)
To sort the entire sequence A = 〈A[1], A[2], . . . , A[n]〉, we make the initial call
MERGE-SORT(A, 1, length[A]), where once again length[A] = n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length n/2 are merged to form the final
sorted sequence of length n.

2.3.2 Analyzing divide-and-conquer algorithms
When an algorithm contains a recursive call to itself, its running time can often
be described by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

A recurrence for the running time of a divide-and-conquer algorithm is based
on the three steps of the basic paradigm. As before, we let T (n) be the running
time on a problem of size n. If the problem size is small enough, say n ≤ c

6We shall see in Chapter 3 how to formally interpret equations containing 2-notation.
7The expression ⌈x⌉ denotes the least integer greater than or equal to x , and ⌊x⌋ denotes the greatest
integer less than or equal to x . These notations are defined in Chapter 3. The easiest way to verify
that setting q to ⌊(p + r)/2⌋ yields subarrays A[p . . q] and A[q + 1 . . r] of sizes ⌈n/2⌉ and ⌊n/2⌋,
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.

2.3 Designing algorithms 33

5 2 4 7 1 3 2 6

2 5 4 7 1 3 2 6

2 4 5 7 1 2 3 6

1 2 2 3 4 5 6 7

merge

merge

merge

sorted sequence

initial sequence

mergemergemergemerge

Figure 2.4 The operation of merge sort on the array A = 〈5, 2, 4, 7, 1, 3, 2, 6〉. The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

for some constant c, the straightforward solution takes constant time, which we
write as 2(1). Suppose that our division of the problem yields a subproblems,
each of which is 1/b the size of the original. (For merge sort, both a and b are 2,
but we shall see many divide-and-conquer algorithms in which a 6= b.) If we
take D(n) time to divide the problem into subproblems and C(n) time to combine
the solutions to the subproblems into the solution to the original problem, we get
the recurrence
T (n) =

{

2(1) if n ≤ c ,

aT (n/b)+ D(n)+ C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort
Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that
the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n/2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

34 Chapter 2 Getting Started

We reason as follows to set up the recurrence for T (n), the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.
Divide: The divide step just computes the middle of the subarray, which takes

constant time. Thus, D(n) = 2(1).
Conquer: We recursively solve two subproblems, each of size n/2, which con-

tributes 2T (n/2) to the running time.
Combine: We have already noted that the MERGE procedure on an n-element

subarray takes time 2(n), so C(n) = 2(n).
When we add the functions D(n) and C(n) for the merge sort analysis, we are

adding a function that is 2(n) and a function that is 2(1). This sum is a linear
function of n, that is, 2(n). Adding it to the 2T (n/2) term from the “conquer”
step gives the recurrence for the worst-case running time T (n) of merge sort:

T (n) =

{

2(1) if n = 1 ,

2T (n/2)+2(n) if n > 1 .
(2.1)

In Chapter 4, we shall see the “master theorem,” which we can use to show that
T (n) is 2(n lg n), where lg n stands for log2 n. Because the logarithm function
grows more slowly than any linear function, for large enough inputs, merge sort,
with its 2(n lg n) running time, outperforms insertion sort, whose running time
is 2(n2), in the worst case.

We do not need the master theorem to intuitively understand why the solution to
the recurrence (2.1) is T (n) = 2(n lg n). Let us rewrite recurrence (2.1) as

T (n) =

{c if n = 1 ,

2T (n/2)+ cn if n > 1 ,
(2.2)

where the constant c represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.8

Figure 2.5 shows how we can solve the recurrence (2.2). For convenience, we
assume that n is an exact power of 2. Part (a) of the figure shows T (n), which
in part (b) has been expanded into an equivalent tree representing the recurrence.
The cn term is the root (the cost at the top level of recursion), and the two subtrees

8It is unlikely that the same constant exactly represents both the time to solve problems of size 1
and the time per array element of the divide and combine steps. We can get around this problem by
letting c be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting c be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds will be on the order of n lg n and, taken
together, give a 2(n lg n) running time.

2.3 Designing algorithms 35

cn

cn

…

Total: cn lg n + cn

cn

lg n

cn

n

c c c c c c c

…

(d)

(c)

cn

T(n/2) T(n/2)

(b)

T(n)

(a)

cn

cn/2

T(n/4) T(n/4)

cn/2

T(n/4) T(n/4)

cn

cn/2

cn/4 cn/4

cn/2

cn/4 cn/4

Figure 2.5 The construction of a recursion tree for the recurrence T (n) = 2T (n/2) + cn.
Part (a) shows T (n), which is progressively expanded in (b)–(d) to form the recursion tree. The
fully expanded tree in part (d) has lg n + 1 levels (i.e., it has height lg n, as indicated), and each level
contributes a total cost of cn. The total cost, therefore, is cn lg n + cn, which is 2(n lg n).

36 Chapter 2 Getting Started

of the root are the two smaller recurrences T (n/2). Part (c) shows this process car-
ried one step further by expanding T (n/2). The cost for each of the two subnodes
at the second level of recursion is cn/2. We continue expanding each node in the
tree by breaking it into its constituent parts as determined by the recurrence, until
the problem sizes get down to 1, each with a cost of c. Part (d) shows the resulting
tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost c(n/2) + c(n/2) = cn, the level after
that has total cost c(n/4)+ c(n/4)+ c(n/4)+ c(n/4) = cn, and so on. In general,
the level i below the top has 2i nodes, each contributing a cost of c(n/2i), so that
the i th level below the top has total cost 2i c(n/2i) = cn. At the bottom level, there
are n nodes, each contributing a cost of c, for a total cost of cn.

The total number of levels of the “recursion tree” in Figure 2.5 is lg n + 1. This
fact is easily seen by an informal inductive argument. The base case occurs when
n = 1, in which case there is only one level. Since lg 1 = 0, we have that lg n + 1
gives the correct number of levels. Now assume as an inductive hypothesis that the
number of levels of a recursion tree for 2i nodes is lg 2i + 1 = i + 1 (since for
any value of i , we have that lg 2i = i). Because we are assuming that the original
input size is a power of 2, the next input size to consider is 2i+1. A tree with 2i+1
nodes has one more level than a tree of 2i nodes, and so the total number of levels
is (i + 1)+ 1 = lg 2i+1 + 1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. There are lg n+ 1 levels, each costing cn, for a total cost
of cn(lg n + 1) = cn lg n + cn. Ignoring the low-order term and the constant c
gives the desired result of 2(n lgn).

Exercises
2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A = 〈3, 41, 52, 26, 38, 57, 9, 49〉.
2.3-2
Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.
2.3-3
Use mathematical induction to show that when n is an exact power of 2, the solution
of the recurrence

Problems for Chapter 2 37

T (n) =

{2 if n = 2 ,

2T (n/2)+ n if n = 2k , for k > 1
is T (n) = n lg n.
2.3-4
Insertion sort can be expressed as a recursive procedure as follows. In order to sort
A[1 . . n], we recursively sort A[1 . . n−1] and then insert A[n] into the sorted array
A[1 . . n − 1]. Write a recurrence for the running time of this recursive version of
insertion sort.
2.3-5
Referring back to the searching problem (see Exercise 2.1-3), observe that if the
sequence A is sorted, we can check the midpoint of the sequence against v and
eliminate half of the sequence from further consideration. Binary search is an
algorithm that repeats this procedure, halving the size of the remaining portion of
the sequence each time. Write pseudocode, either iterative or recursive, for binary
search. Argue that the worst-case running time of binary search is 2(lg n).
2.3-6
Observe that the while loop of lines 5 – 7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted subarray
A[1 . . j − 1]. Can we use a binary search (see Exercise 2.3-5) instead to improve
the overall worst-case running time of insertion sort to 2(n lg n)?
2.3-7 ⋆

Describe a 2(n lgn)-time algorithm that, given a set S of n integers and another
integer x , determines whether or not there exist two elements in S whose sum is
exactly x .

Problems
2-1 Insertion sort on small arrays in merge sort
Although merge sort runs in 2(n lg n) worst-case time and insertion sort runs
in 2(n2) worst-case time, the constant factors in insertion sort make it faster for
small n. Thus, it makes sense to use insertion sort within merge sort when subprob-
lems become sufficiently small. Consider a modification to merge sort in which
n/k sublists of length k are sorted using insertion sort and then merged using the
standard merging mechanism, where k is a value to be determined.
a. Show that the n/k sublists, each of length k, can be sorted by insertion sort in

2(nk) worst-case time.

38 Chapter 2 Getting Started

b. Show that the sublists can be merged in 2(n lg(n/k)) worst-case time.
c. Given that the modified algorithm runs in 2(nk + n lg(n/k)) worst-case time,

what is the largest asymptotic (2-notation) value of k as a function of n for
which the modified algorithm has the same asymptotic running time as standard
merge sort?

d. How should k be chosen in practice?

2-2 Correctness of bubblesort
Bubblesort is a popular sorting algorithm. It works by repeatedly swapping adja-
cent elements that are out of order.
BUBBLESORT(A)

1 for i ← 1 to length[A]
2 do for j ← length[A] downto i + 1
3 do if A[j] < A[j − 1]
4 then exchange A[j] ↔ A[j − 1]
a. Let A′ denote the output of BUBBLESORT(A). To prove that BUBBLESORT is

correct, we need to prove that it terminates and that
A′[1] ≤ A′[2] ≤ · · · ≤ A′[n] , (2.3)
where n = length[A]. What else must be proved to show that BUBBLESORT
actually sorts?

The next two parts will prove inequality (2.3).
b. State precisely a loop invariant for the for loop in lines 2–4, and prove that this

loop invariant holds. Your proof should use the structure of the loop invariant
proof presented in this chapter.

c. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 1–4 that will allow you to prove in-
equality (2.3). Your proof should use the structure of the loop invariant proof
presented in this chapter.

d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

Problems for Chapter 2 39

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

P(x) =
n
∑

k=0
akxk

= a0 + x(a1 + x(a2 + · · · + x(an−1 + xan) · · ·)) ,

given the coefficients a0, a1, . . . , an and a value for x :
1 y ← 0
2 i ← n
3 while i ≥ 0
4 do y ← ai + x · y
5 i ← i − 1
a. What is the asymptotic running time of this code fragment for Horner’s rule?
b. Write pseudocode to implement the naive polynomial-evaluation algorithm that

computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare to Horner’s rule?

c. Prove that the following is a loop invariant for the while loop in lines 3 –5.
At the start of each iteration of the while loop of lines 3–5,

y =
n−(i+1)
∑

k=0
ak+i+1xk .

Interpret a summation with no terms as equaling 0. Your proof should follow
the structure of the loop invariant proof presented in this chapter and should
show that, at termination, y =∑n

k=0 akxk .
d. Conclude by arguing that the given code fragment correctly evaluates a poly-

nomial characterized by the coefficients a0, a1, . . . , an .

2-4 Inversions
Let A[1 . . n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the
pair (i, j) is called an inversion of A.
a. List the five inversions of the array 〈2, 3, 8, 6, 1〉.
b. What array with elements from the set {1, 2, . . . , n} has the most inversions?

How many does it have?

40 Chapter 2 Getting Started

c. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation
on n elements in 2(n lg n) worst-case time. (Hint: Modify merge sort.)

Chapter notes
In 1968, Knuth published the first of three volumes with the general title The Art of
Computer Programming [182, 183, 185]. The first volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time, and the
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word “algorithm” is derived from the
name “al-Khowârizmı̂,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algorithms
as a means of comparing relative performance. They also popularized the use of
recurrence relations to describe the running times of recursive algorithms.

Knuth [185] provides an encyclopedic treatment of many sorting algorithms. His
comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical colla-
tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [133], who
credits P. Naur with the first article in this field. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [222] describes more recent progress in
proving programs correct.

6 Heapsort

In this chapter, we introduce another sorting algorithm. Like merge sort, but unlike
insertion sort, heapsort’s running time is O(n lg n). Like insertion sort, but unlike
merge sort, heapsort sorts in place: only a constant number of array elements are
stored outside the input array at any time. Thus, heapsort combines the better
attributes of the two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: the use of a data
structure, in this case one we call a “heap,” to manage information during the exe-
cution of the algorithm. Not only is the heap data structure useful for heapsort, but
it also makes an efficient priority queue. The heap data structure will reappear in
algorithms in later chapters.

We note that the term “heap” was originally coined in the context of heapsort, but
it has since come to refer to “garbage-collected storage,” such as the programming
languages Lisp and Java provide. Our heap data structure is not garbage-collected
storage, and whenever we refer to heaps in this book, we shall mean the structure
defined in this chapter.

6.1 Heaps
The (binary) heap data structure is an array object that can be viewed as a nearly
complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each node
of the tree corresponds to an element of the array that stores the value in the
node. The tree is completely filled on all levels except possibly the lowest, which
is filled from the left up to a point. An array A that represents a heap is an
object with two attributes: length[A], which is the number of elements in the
array, and heap-size[A], the number of elements in the heap stored within ar-
ray A. That is, although A[1 . . length[A]] may contain valid numbers, no element
past A[heap-size[A]], where heap-size[A] ≤ length[A], is an element of the heap.

128 Chapter 6 Heapsort

(a)

16 14 10 8 7 9 3 2 4 1
1 2 3 4 5 6 7 8 9 10

(b)

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

The root of the tree is A[1], and given the index i of a node, the indices of its parent
PARENT(i), left child LEFT(i), and right child RIGHT(i) can be computed simply:
PARENT(i)

return ⌊i/2⌋
LEFT(i)

return 2i
RIGHT(i)

return 2i + 1
On most computers, the LEFT procedure can compute 2i in one instruction by sim-
ply shifting the binary representation of i left one bit position. Similarly, the RIGHT
procedure can quickly compute 2i+1 by shifting the binary representation of i left
one bit position and adding in a 1 as the low-order bit. The PARENT procedure
can compute ⌊i/2⌋ by shifting i right one bit position. In a good implementation
of heapsort, these three procedures are often implemented as “macros” or “in-line”
procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,
the values in the nodes satisfy a heap property, the specifics of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i
other than the root,
A[PARENT(i)] ≥ A[i] ,

6.1 Heaps 129

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains
values no larger than that contained at the node itself. A min-heap is organized in
the opposite way; the min-heap property is that for every node i other than the
root,
A[PARENT(i)] ≤ A[i] .

The smallest element in a min-heap is at the root.
For the heapsort algorithm, we use max-heaps. Min-heaps are commonly used

in priority queues, which we discuss in Section 6.5. We shall be precise in spec-
ifying whether we need a max-heap or a min-heap for any particular application,
and when properties apply to either max-heaps or min-heaps, we just use the term
“heap.”

Viewing a heap as a tree, we define the height of a node in a heap to be the
number of edges on the longest simple downward path from the node to a leaf, and
we define the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is 2(lg n) (see Exercise 6.1-2).
We shall see that the basic operations on heaps run in time at most proportional to
the height of the tree and thus take O(lg n) time. The remainder of this chapter
presents five basic procedures and shows how they are used in a sorting algorithm
and a priority-queue data structure.
• The MAX-HEAPIFY procedure, which runs in O(lg n) time, is the key to main-

taining the max-heap property.
• The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-

heap from an unordered input array.
• The HEAPSORT procedure, which runs in O(n lg n) time, sorts an array in

place.
• The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE-KEY,

and HEAP-MAXIMUM procedures, which run in O(lg n) time, allow the heap
data structure to be used as a priority queue.

Exercises
6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?
6.1-2
Show that an n-element heap has height ⌊lg n⌋.

130 Chapter 6 Heapsort

6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.
6.1-4
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?
6.1-5
Is an array that is in sorted order a min-heap?
6.1-6
Is the sequence 〈23, 17, 14, 6, 13, 10, 1, 5, 7, 12〉 a max-heap?
6.1-7
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by ⌊n/2⌋ + 1, ⌊n/2⌋ + 2, . . . , n.

6.2 Maintaining the heap property
MAX-HEAPIFY is an important subroutine for manipulating max-heaps. Its inputs
are an array A and an index i into the array. When MAX-HEAPIFY is called, it is
assumed that the binary trees rooted at LEFT(i) and RIGHT(i) are max-heaps, but
that A[i] may be smaller than its children, thus violating the max-heap property.
The function of MAX-HEAPIFY is to let the value at A[i] “float down” in the max-
heap so that the subtree rooted at index i becomes a max-heap.
MAX-HEAPIFY(A, i)
1 l ← LEFT(i)
2 r ← RIGHT(i)
3 if l ≤ heap-size[A] and A[l] > A[i]
4 then largest← l
5 else largest← i
6 if r ≤ heap-size[A] and A[r] > A[largest]
7 then largest← r
8 if largest 6= i
9 then exchange A[i] ↔ A[largest]

10 MAX-HEAPIFY(A, largest)
Figure 6.2 illustrates the action of MAX-HEAPIFY. At each step, the largest of

the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its index is

6.2 Maintaining the heap property 131

16

4 10

14 7 9

2 8 1
(a)

16

14 10

4 7 9 3

2 8 1
(b)

16

14 10

8 7 9 3

2 4 1
(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

Figure 6.2 The action of MAX-HEAPIFY(A, 2), where heap-size[A] = 10. (a) The initial con-
figuration, with A[2] at node i = 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging A[2] with A[4],
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY(A, 4) now
has i = 4. After swapping A[4] with A[9], as shown in (c), node 4 is fixed up, and the recursive call
MAX-HEAPIFY(A, 9) yields no further change to the data structure.

stored in largest. If A[i] is largest, then the subtree rooted at node i is a max-heap
and the procedure terminates. Otherwise, one of the two children has the largest
element, and A[i] is swapped with A[largest], which causes node i and its children
to satisfy the max-heap property. The node indexed by largest, however, now has
the original value A[i], and thus the subtree rooted at largest may violate the max-
heap property. Consequently, MAX-HEAPIFY must be called recursively on that
subtree.

The running time of MAX-HEAPIFY on a subtree of size n rooted at given node i
is the 2(1) time to fix up the relationships among the elements A[i], A[LEFT(i)],
and A[RIGHT(i)], plus the time to run MAX-HEAPIFY on a subtree rooted at one
of the children of node i . The children’s subtrees each have size at most 2n/3—the
worst case occurs when the last row of the tree is exactly half full—and the running
time of MAX-HEAPIFY can therefore be described by the recurrence

132 Chapter 6 Heapsort

T (n) ≤ T (2n/3)+2(1) .

The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1),
is T (n) = O(lg n). Alternatively, we can characterize the running time of MAX-
HEAPIFY on a node of height h as O(h).

Exercises
6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY(A, 3) on
the array A = 〈27, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0〉.
6.2-2
Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure
MIN-HEAPIFY(A, i), which performs the corresponding manipulation on a min-
heap. How does the running time of MIN-HEAPIFY compare to that of MAX-
HEAPIFY?
6.2-3
What is the effect of calling MAX-HEAPIFY(A, i) when the element A[i] is larger
than its children?
6.2-4
What is the effect of calling MAX-HEAPIFY(A, i) for i > heap-size[A]/2?
6.2-5
The code for MAX-HEAPIFY is quite efficient in terms of constant factors, except
possibly for the recursive call in line 10, which might cause some compilers to
produce inefficient code. Write an efficient MAX-HEAPIFY that uses an iterative
control construct (a loop) instead of recursion.
6.2-6
Show that the worst-case running time of MAX-HEAPIFY on a heap of size n
is �(lg n). (Hint: For a heap with n nodes, give node values that cause MAX-
HEAPIFY to be called recursively at every node on a path from the root down to a
leaf.)

6.3 Building a heap
We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an
array A[1 . . n], where n = length[A], into a max-heap. By Exercise 6.1-7, the

6.3 Building a heap 133

elements in the subarray A[(⌊n/2⌋+1) . . n] are all leaves of the tree, and so each is
a 1-element heap to begin with. The procedure BUILD-MAX-HEAP goes through
the remaining nodes of the tree and runs MAX-HEAPIFY on each one.
BUILD-MAX-HEAP(A)

1 heap-size[A] ← length[A]
2 for i ← ⌊length[A]/2⌋ downto 1
3 do MAX-HEAPIFY(A, i)
Figure 6.3 shows an example of the action of BUILD-MAX-HEAP.

To show why BUILD-MAX-HEAP works correctly, we use the following loop
invariant:

At the start of each iteration of the for loop of lines 2–3, each node i + 1,

i + 2, . . . , n is the root of a max-heap.
We need to show that this invariant is true prior to the first loop iteration, that each
iteration of the loop maintains the invariant, and that the invariant provides a useful
property to show correctness when the loop terminates.
Initialization: Prior to the first iteration of the loop, i = ⌊n/2⌋. Each node
⌊n/2⌋ + 1, ⌊n/2⌋ + 2, . . . , n is a leaf and is thus the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant, observe that
the children of node i are numbered higher than i . By the loop invariant, there-
fore, they are both roots of max-heaps. This is precisely the condition required
for the call MAX-HEAPIFY(A, i) to make node i a max-heap root. Moreover,
the MAX-HEAPIFY call preserves the property that nodes i + 1, i + 2, . . . , n
are all roots of max-heaps. Decrementing i in the for loop update reestablishes
the loop invariant for the next iteration.

Termination: At termination, i = 0. By the loop invariant, each node 1, 2, . . . , n
is the root of a max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O(lg n) time, and there
are O(n) such calls. Thus, the running time is O(n lg n). This upper bound, though
correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for MAX-HEAPIFY to
run at a node varies with the height of the node in the tree, and the heights of most
nodes are small. Our tighter analysis relies on the properties that an n-element heap
has height ⌊lg n⌋ (see Exercise 6.1-2) and at most ⌈n/2h+1⌉ nodes of any height h
(see Exercise 6.3-3).

The time required by MAX-HEAPIFY when called on a node of height h is O(h),
so we can express the total cost of BUILD-MAX-HEAP as

134 Chapter 6 Heapsort

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7
(a)

16

4 1 23 16 9 10 14 8 7

4

1 3

2 9 10

14 8 7
(b)

16

4

1 3

14 9 10

2 8 7
(c)

16

4

1 10

14 9 3

2 8 7
(d)

16

4

16 10

14 9 3

2 8 1
(e)

7

16

14 10

8 9 3

2 4 1
(f)

7

A

i i

ii

i

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. (a) A 10-element input array A and the bi-
nary tree it represents. The figure shows that the loop index i refers to node 5 before the call
MAX-HEAPIFY(A, i). (b) The data structure that results. The loop index i for the next iteration
refers to node 4. (c)–(e) Subsequent iterations of the for loop in BUILD-MAX-HEAP. Observe that
whenever MAX-HEAPIFY is called on a node, the two subtrees of that node are both max-heaps.
(f) The max-heap after BUILD-MAX-HEAP finishes.

6.4 The heapsort algorithm 135

⌊lgn⌋
∑

h=0

⌈ n
2h+1

⌉

O(h) = O
(

n
⌊lg n⌋
∑

h=0

h
2h
)

.

The last summation can be evaluated by substituting x = 1/2 in the formula (A.8),
which yields
∞
∑

h=0

h
2h =

1/2
(1− 1/2)2

= 2 .

Thus, the running time of BUILD-MAX-HEAP can be bounded as

O
(

n
⌊lg n⌋
∑

h=0

h
2h
)

= O
(

n
∞
∑

h=0

h
2h
)

= O(n) .

Hence, we can build a max-heap from an unordered array in linear time.
We can build a min-heap by the procedure BUILD-MIN-HEAP, which is the

same as BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced
by a call to MIN-HEAPIFY (see Exercise 6.2-2). BUILD-MIN-HEAP produces a
min-heap from an unordered linear array in linear time.

Exercises
6.3-1
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the
array A = 〈5, 3, 17, 10, 84, 19, 6, 22, 9〉.
6.3-2
Why do we want the loop index i in line 2 of BUILD-MAX-HEAP to decrease from
⌊length[A]/2⌋ to 1 rather than increase from 1 to ⌊length[A]/2⌋?
6.3-3
Show that there are at most ⌈n/2h+1⌉ nodes of height h in any n-element heap.

6.4 The heapsort algorithm
The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap
on the input array A[1 . . n], where n = length[A]. Since the maximum element
of the array is stored at the root A[1], it can be put into its correct final position

136 Chapter 6 Heapsort

by exchanging it with A[n]. If we now “discard” node n from the heap (by decre-
menting heap-size[A]), we observe that A[1 . . (n − 1)] can easily be made into a
max-heap. The children of the root remain max-heaps, but the new root element
may violate the max-heap property. All that is needed to restore the max-heap
property, however, is one call to MAX-HEAPIFY(A, 1), which leaves a max-heap
in A[1 . . (n − 1)]. The heapsort algorithm then repeats this process for the max-
heap of size n − 1 down to a heap of size 2. (See Exercise 6.4-2 for a precise loop
invariant.)
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)

2 for i ← length[A] downto 2
3 do exchange A[1] ↔ A[i]
4 heap-size[A] ← heap-size[A] − 1
5 MAX-HEAPIFY(A, 1)

Figure 6.4 shows an example of the operation of heapsort after the max-heap is
initially built. Each max-heap is shown at the beginning of an iteration of the for
loop of lines 2–5.

The HEAPSORT procedure takes time O(n lg n), since the call to BUILD-MAX-
HEAP takes time O(n) and each of the n − 1 calls to MAX-HEAPIFY takes
time O(lg n).

Exercises
6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A = 〈5, 13, 2, 25, 7, 17, 20, 8, 4〉.
6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 2–5, the subarray
A[1 . . i] is a max-heap containing the i smallest elements of A[1 . . n], and
the subarray A[i + 1 . . n] contains the n − i largest elements of A[1 . . n],
sorted.

6.4-3
What is the running time of heapsort on an array A of length n that is already sorted
in increasing order? What about decreasing order?
6.4-4
Show that the worst-case running time of heapsort is �(n lg n).

6.4 The heapsort algorithm 137

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

1 2 3 4 7 8 9 10 14 16

10

2
1 3

4 7 8 9
1614

1
2 3

4 7 8 9
161410

3
2 1

9874
10 14 16

4
2 3

9871
10 14 16

8
37

4 2 1 9
161410

7
4 3

9821
10 14 16

9
8 3

2174
161410

10
8 9

3174
16142

14
8 10

3974
1612

16
14 10

3978
142

A

i
i

i
i i

i i
i

i

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after it has been
built by BUILD-MAX-HEAP. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5.
The value of i at that time is shown. Only lightly shaded nodes remain in the heap. (k) The resulting
sorted array A.

138 Chapter 6 Heapsort

6.4-5 ⋆

Show that when all elements are distinct, the best-case running time of heapsort
is �(n lg n).

6.5 Priority queues
Heapsort is an excellent algorithm, but a good implementation of quicksort, pre-
sented in Chapter 7, usually beats it in practice. Nevertheless, the heap data struc-
ture itself has enormous utility. In this section, we present one of the most popular
applications of a heap: its use as an efficient priority queue. As with heaps, there
are two kinds of priority queues: max-priority queues and min-priority queues. We
will focus here on how to implement max-priority queues, which are in turn based
on max-heaps; Exercise 6.5-3 asks you to write the procedures for min-priority
queues.

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value called a key. A max-priority queue supports the following
operations.
INSERT(S, x) inserts the element x into the set S. This operation could be written

as S← S ∪ {x}.
MAXIMUM(S) returns the element of S with the largest key.
EXTRACT-MAX(S) removes and returns the element of S with the largest key.
INCREASE-KEY(S, x, k) increases the value of element x’s key to the new value k,

which is assumed to be at least as large as x’s current key value.
One application of max-priority queues is to schedule jobs on a shared computer.

The max-priority queue keeps track of the jobs to be performed and their relative
priorities. When a job is finished or interrupted, the highest-priority job is selected
from those pending using EXTRACT-MAX. A new job can be added to the queue
at any time using INSERT.

Alternatively, a min-priority queue supports the operations INSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an
event-driven simulator. The items in the queue are events to be simulated, each
with an associated time of occurrence that serves as its key. The events must be
simulated in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. The simulation program uses
EXTRACT-MIN at each step to choose the next event to simulate. As new events are
produced, they are inserted into the min-priority queue using INSERT. We shall see
other uses for min-priority queues, highlighting the DECREASE-KEY operation, in
Chapters 23 and 24.

6.5 Priority queues 139

Not surprisingly, we can use a heap to implement a priority queue. In a given ap-
plication, such as job scheduling or event-driven simulation, elements of a priority
queue correspond to objects in the application. It is often necessary to determine
which application object corresponds to a given priority-queue element, and vice-
versa. When a heap is used to implement a priority queue, therefore, we often need
to store a handle to the corresponding application object in each heap element. The
exact makeup of the handle (i.e., a pointer, an integer, etc.) depends on the applica-
tion. Similarly, we need to store a handle to the corresponding heap element in each
application object. Here, the handle would typically be an array index. Because
heap elements change locations within the array during heap operations, an actual
implementation, upon relocating a heap element, would also have to update the ar-
ray index in the corresponding application object. Because the details of accessing
application objects depend heavily on the application and its implementation, we
shall not pursue them here, other than noting that in practice, these handles do need
to be correctly maintained.

Now we discuss how to implement the operations of a max-priority queue. The
procedure HEAP-MAXIMUM implements the MAXIMUM operation in 2(1) time.
HEAP-MAXIMUM(A)

1 return A[1]
The procedure HEAP-EXTRACT-MAX implements the EXTRACT-MAX opera-

tion. It is similar to the for loop body (lines 3–5) of the HEAPSORT procedure.
HEAP-EXTRACT-MAX(A)

1 if heap-size[A] < 1
2 then error “heap underflow”
3 max← A[1]
4 A[1] ← A[heap-size[A]]
5 heap-size[A] ← heap-size[A] − 1
6 MAX-HEAPIFY(A, 1)

7 return max
The running time of HEAP-EXTRACT-MAX is O(lg n), since it performs only a
constant amount of work on top of the O(lg n) time for MAX-HEAPIFY.

The procedure HEAP-INCREASE-KEY implements the INCREASE-KEY opera-
tion. The priority-queue element whose key is to be increased is identified by an
index i into the array. The procedure first updates the key of element A[i] to its
new value. Because increasing the key of A[i] may violate the max-heap prop-
erty, the procedure then, in a manner reminiscent of the insertion loop (lines 5–7)
of INSERTION-SORT from Section 2.1, traverses a path from this node toward the

140 Chapter 6 Heapsort

root to find a proper place for the newly increased key. During this traversal, it re-
peatedly compares an element to its parent, exchanging their keys and continuing
if the element’s key is larger, and terminating if the element’s key is smaller, since
the max-heap property now holds. (See Exercise 6.5-5 for a precise loop invariant.)
HEAP-INCREASE-KEY(A, i, key)
1 if key < A[i]
2 then error “new key is smaller than current key”
3 A[i] ← key
4 while i > 1 and A[PARENT(i)] < A[i]
5 do exchange A[i] ↔ A[PARENT(i)]
6 i ← PARENT(i)
Figure 6.5 shows an example of a HEAP-INCREASE-KEY operation. The running
time of HEAP-INCREASE-KEY on an n-element heap is O(lg n), since the path
traced from the node updated in line 3 to the root has length O(lg n).

The procedure MAX-HEAP-INSERT implements the INSERT operation. It takes
as an input the key of the new element to be inserted into max-heap A. The proce-
dure first expands the max-heap by adding to the tree a new leaf whose key is −∞.
Then it calls HEAP-INCREASE-KEY to set the key of this new node to its correct
value and maintain the max-heap property.
MAX-HEAP-INSERT(A, key)
1 heap-size[A] ← heap-size[A] + 1
2 A[heap-size[A]] ←−∞
3 HEAP-INCREASE-KEY(A, heap-size[A], key)
The running time of MAX-HEAP-INSERT on an n-element heap is O(lg n).

In summary, a heap can support any priority-queue operation on a set of size n
in O(lg n) time.

Exercises
6.5-1
Illustrate the operation of HEAP-EXTRACT-MAX on the heap A = 〈15, 13, 9, 5,

12, 8, 7, 4, 0, 6, 2, 1〉.
6.5-2
Illustrate the operation of MAX-HEAP-INSERT(A, 10) on the heap A = 〈15, 13,

9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉. Use the heap of Figure 6.5 as a model for the HEAP-
INCREASE-KEY call.

6.5 Priority queues 141

16

14 10

8 7 9 3

2 4 1
(a)

i

16

14 10

8 7 9 3

2 15 1
(b)

16

14 10

8

7 9 3

2

15

1
(c)

i

i

16

14

10

8

7 9 3

2

15

1
(d)

i

Figure 6.5 The operation of HEAP-INCREASE-KEY. (a) The max-heap of Figure 6.4(a) with a
node whose index is i heavily shaded. (b) This node has its key increased to 15. (c) After one
iteration of the while loop of lines 4–6, the node and its parent have exchanged keys, and the index i
moves up to the parent. (d) The max-heap after one more iteration of the while loop. At this point,
A[PARENT(i)] ≥ A[i]. The max-heap property now holds and the procedure terminates.

6.5-3
Write pseudocode for the procedures HEAP-MINIMUM, HEAP-EXTRACT-MIN,
HEAP-DECREASE-KEY, and MIN-HEAP-INSERT that implement a min-priority
queue with a min-heap.
6.5-4
Why do we bother setting the key of the inserted node to −∞ in line 2 of MAX-
HEAP-INSERT when the next thing we do is increase its key to the desired value?

142 Chapter 6 Heapsort

6.5-5
Argue the correctness of HEAP-INCREASE-KEY using the following loop invari-
ant:

At the start of each iteration of the while loop of lines 4–6, the array
A[1 . . heap-size[A]] satisfies the max-heap property, except that there may
be one violation: A[i] may be larger than A[PARENT(i)].

6.5-6
Show how to implement a first-in, first-out queue with a priority queue. Show
how to implement a stack with a priority queue. (Queues and stacks are defined in
Section 10.1.)
6.5-7
The operation HEAP-DELETE(A, i) deletes the item in node i from heap A. Give
an implementation of HEAP-DELETE that runs in O(lg n) time for an n-element
max-heap.
6.5-8
Give an O(n lg k)-time algorithm to merge k sorted lists into one sorted list,
where n is the total number of elements in all the input lists. (Hint: Use a min-
heap for k-way merging.)

Problems
6-1 Building a heap using insertion
The procedure BUILD-MAX-HEAP in Section 6.3 can be implemented by repeat-
edly using MAX-HEAP-INSERT to insert the elements into the heap. Consider the
following implementation:
BUILD-MAX-HEAP′(A)

1 heap-size[A] ← 1
2 for i ← 2 to length[A]
3 do MAX-HEAP-INSERT(A, A[i])
a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP ′ always create

the same heap when run on the same input array? Prove that they do, or provide
a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP ′ requires 2(n lg n) time to
build an n-element heap.

Problems for Chapter 6 143

6-2 Analysis of d-ary heaps
A d-ary heap is like a binary heap, but (with one possible exception) non-leaf
nodes have d children instead of 2 children.
a. How would you represent a d-ary heap in an array?
b. What is the height of a d-ary heap of n elements in terms of n and d?
c. Give an efficient implementation of EXTRACT-MAX in a d-ary max-heap. An-

alyze its running time in terms of d and n.
d. Give an efficient implementation of INSERT in a d-ary max-heap. Analyze its

running time in terms of d and n.
e. Give an efficient implementation of INCREASE-KEY(A, i, k), which first sets

A[i] ← max(A[i], k) and then updates the d-ary max-heap structure appropri-
ately. Analyze its running time in terms of d and n.

6-3 Young tableaus
An m × n Young tableau is an m × n matrix such that the entries of each row are
in sorted order from left to right and the entries of each column are in sorted order
from top to bottom. Some of the entries of a Young tableau may be ∞, which we
treat as nonexistent elements. Thus, a Young tableau can be used to hold r ≤ mn
finite numbers.
a. Draw a 4×4 Young tableau containing the elements {9, 16, 3, 2, 4, 8, 5, 14, 12}.
b. Argue that an m × n Young tableau Y is empty if Y [1, 1] = ∞. Argue that Y

is full (contains mn elements) if Y [m, n] <∞.
c. Give an algorithm to implement EXTRACT-MIN on a nonempty m × n Young

tableau that runs in O(m + n) time. Your algorithm should use a recur-
sive subroutine that solves an m × n problem by recursively solving either
an (m − 1)× n or an m × (n − 1) subproblem. (Hint: Think about MAX-
HEAPIFY.) Define T (p), where p = m + n, to be the maximum running time
of EXTRACT-MIN on any m × n Young tableau. Give and solve a recurrence
for T (p) that yields the O(m + n) time bound.

d. Show how to insert a new element into a nonfull m × n Young tableau in
O(m + n) time.

e. Using no other sorting method as a subroutine, show how to use an n×n Young
tableau to sort n2 numbers in O(n3) time.

144 Chapter 6 Heapsort

f. Give an O(m+n)-time algorithm to determine whether a given number is stored
in a given m × n Young tableau.

Chapter notes
The heapsort algorithm was invented by Williams [316], who also described how
to implement a priority queue with a heap. The BUILD-MAX-HEAP procedure
was suggested by Floyd [90].

We use min-heaps to implement min-priority queues in Chapters 16, 23, and 24.
We also give an implementation with improved time bounds for certain operations
in Chapters 19 and 20.

Faster implementations of priority queues are possible for integer data. A data
structure invented by van Emde Boas [301] supports the operations MINIMUM,
MAXIMUM, INSERT, DELETE, SEARCH, EXTRACT-MIN, EXTRACT-MAX, PRE-
DECESSOR, and SUCCESSOR in worst-case time O(lg lgC), subject to the restric-
tion that the universe of keys is the set {1, 2, . . . ,C}. If the data are b-bit in-
tegers, and the computer memory consists of addressable b-bit words, Fredman
and Willard [99] showed how to implement MINIMUM in O(1) time and INSERT
and EXTRACT-MIN in O(

√lg n) time. Thorup [299] has improved the O(
√lg n)

bound to O((lg lg n)2) time. This bound uses an amount of space unbounded in n,
but it can be implemented in linear space by using randomized hashing.

An important special case of priority queues occurs when the sequence of
EXTRACT-MIN operations is monotone, that is, the values returned by succes-
sive EXTRACT-MIN operations are monotonically increasing over time. This case
arises in several important applications, such as Dijkstra’s single-source shortest-
paths algorithm, which is discussed in Chapter 24, and in discrete-event simulation.
For Dijkstra’s algorithm it is particularly important that the DECREASE-KEY oper-
ation be implemented efficiently. For the monotone case, if the data are integers in
the range 1, 2, . . . ,C , Ahuja, Melhorn, Orlin, and Tarjan [8] describe how to im-
plement EXTRACT-MIN and INSERT in O(lgC) amortized time (see Chapter 17
for more on amortized analysis) and DECREASE-KEY in O(1) time, using a data
structure called a radix heap. The O(lgC) bound can be improved to O(

√lgC) us-
ing Fibonacci heaps (see Chapter 20) in conjunction with radix heaps. The bound
was further improved to O(lg1/3+ǫ C) expected time by Cherkassky, Goldberg, and
Silverstein [58], who combine the multilevel bucketing structure of Denardo and
Fox [72] with the heap of Thorup mentioned above. Raman [256] further improved
these results to obtain a bound of O(min(lg1/4+ǫ C, lg1/3+ǫ n)), for any fixed ǫ > 0.
More detailed discussions of these results can be found in papers by Raman [256]
and Thorup [299].

7 Quicksort

Quicksort is a sorting algorithm whose worst-case running time is 2(n2) on an
input array of n numbers. In spite of this slow worst-case running time, quicksort
is often the best practical choice for sorting because it is remarkably efficient on
the average: its expected running time is 2(n lg n), and the constant factors hidden
in the 2(n lg n) notation are quite small. It also has the advantage of sorting in
place (see page 16), and it works well even in virtual memory environments.

Section 7.1 describes the algorithm and an important subroutine used by quick-
sort for partitioning. Because the behavior of quicksort is complex, we start with
an intuitive discussion of its performance in Section 7.2 and postpone its precise
analysis to the end of the chapter. Section 7.3 presents a version of quicksort that
uses random sampling. This algorithm has a good average-case running time, and
no particular input elicits its worst-case behavior. The randomized algorithm is
analyzed in Section 7.4, where it is shown to run in 2(n2) time in the worst case
and in O(n lg n) time on average.

7.1 Description of quicksort
Quicksort, like merge sort, is based on the divide-and-conquer paradigm introduced
in Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a
typical subarray A[p . . r].
Divide: Partition (rearrange) the array A[p . . r] into two (possibly empty) subar-

rays A[p . . q − 1] and A[q + 1 . . r] such that each element of A[p . . q − 1] is
less than or equal to A[q], which is, in turn, less than or equal to each element
of A[q + 1 . . r]. Compute the index q as part of this partitioning procedure.

Conquer: Sort the two subarrays A[p . . q−1] and A[q+1 . . r] by recursive calls
to quicksort.

Combine: Since the subarrays are sorted in place, no work is needed to combine
them: the entire array A[p . . r] is now sorted.

146 Chapter 7 Quicksort

The following procedure implements quicksort.
QUICKSORT(A, p, r)
1 if p < r
2 then q ← PARTITION(A, p, r)
3 QUICKSORT(A, p, q − 1)

4 QUICKSORT(A, q + 1, r)
To sort an entire array A, the initial call is QUICKSORT(A, 1, length[A]).

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray A[p . . r] in place.
PARTITION(A, p, r)
1 x ← A[r]
2 i ← p − 1
3 for j ← p to r − 1
4 do if A[j] ≤ x
5 then i ← i + 1
6 exchange A[i] ↔ A[j]
7 exchange A[i + 1] ↔ A[r]
8 return i + 1

Figure 7.1 shows the operation of PARTITION on an 8-element array. PARTITION
always selects an element x = A[r] as a pivot element around which to partition
the subarray A[p . . r]. As the procedure runs, the array is partitioned into four
(possibly empty) regions. At the start of each iteration of the for loop in lines 3–6,
each region satisfies certain properties, which we can state as a loop invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

Figure 7.2 summarizes this structure. The indices between j and r − 1 are not
covered by any of the three cases, and the values in these entries have no particular
relationship to the pivot x .

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

7.1 Description of quicksort 147

2 8 7 1 3 5 6 4
p,j ri

(a)

2 8 7 1 3 5 6 4
p,i rj

(b)

2 8 7 1 3 5 6 4
p,i rj

(c)

2 8 7 1 3 5 6 4
p,i rj

(d)

2 871 3 5 6 4
p rj

(e)
i

2 8 71 3 5 6 4
p rj

(f)
i

2 8 71 3 5 6 4
p rj

(g)
i

2 8 71 3 5 6 4
p r

(h)
i

2 871 3 5 64
p r

(i)
i

Figure 7.1 The operation of PARTITION on a sample array. Lightly shaded array elements are all in
the first partition with values no greater than x . Heavily shaded elements are in the second partition
with values greater than x . The unshaded elements have not yet been put in one of the first two
partitions, and the final white element is the pivot. (a) The initial array and variable settings. None of
the elements have been placed in either of the first two partitions. (b) The value 2 is “swapped with
itself” and put in the partition of smaller values. (c)–(d) The values 8 and 7 are added to the partition
of larger values. (e) The values 1 and 8 are swapped, and the smaller partition grows. (f) The values
3 and 8 are swapped, and the smaller partition grows. (g)–(h) The larger partition grows to include
5 and 6 and the loop terminates. (i) In lines 7–8, the pivot element is swapped so that it lies between
the two partitions.

Initialization: Prior to the first iteration of the loop, i = p − 1, and j = p. There
are no values between p and i , and no values between i + 1 and j − 1, so the
first two conditions of the loop invariant are trivially satisfied. The assignment
in line 1 satisfies the third condition.

Maintenance: As Figure 7.3 shows, there are two cases to consider, depending
on the outcome of the test in line 4. Figure 7.3(a) shows what happens when

148 Chapter 7 Quicksort

≤ x > x unrestricted
x

p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray A[p . . r]. The
values in A[p . . i] are all less than or equal to x , the values in A[i + 1 . . j − 1] are all greater than x ,
and A[r] = x . The values in A[j . . r − 1] can take on any values.

A[j] > x ; the only action in the loop is to increment j . After j is incre-
mented, condition 2 holds for A[j − 1] and all other entries remain unchanged.
Figure 7.3(b) shows what happens when A[j] ≤ x ; i is incremented, A[i]
and A[j] are swapped, and then j is incremented. Because of the swap, we
now have that A[i] ≤ x , and condition 1 is satisfied. Similarly, we also have
that A[j − 1] > x , since the item that was swapped into A[j − 1] is, by the
loop invariant, greater than x .

Termination: At termination, j = r . Therefore, every entry in the array is in one
of the three sets described by the invariant, and we have partitioned the values
in the array into three sets: those less than or equal to x , those greater than x ,
and a singleton set containing x .

The final two lines of PARTITION move the pivot element into its place in the
middle of the array by swapping it with the leftmost element that is greater than x .
The output of PARTITION now satisfies the specifications given for the divide step.

The running time of PARTITION on the subarray A[p . . r] is 2(n), where
n = r − p + 1 (see Exercise 7.1-3).

Exercises
7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A = 〈13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21〉.
7.1-2
What value of q does PARTITION return when all elements in the array A[p . . r]
have the same value? Modify PARTITION so that q = (p+ r)/2 when all elements
in the array A[p . . r] have the same value.
7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is 2(n).

7.2 Performance of quicksort 149

≤ x > x
x

p i j r
>x(a)

≤ x > x
x

p i j r

≤ x > x
x

p i j r
≤ x(b)

≤ x > x
x

p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If A[j] > x , the only
action is to increment j , which maintains the loop invariant. (b) If A[j] ≤ x , index i is incremented,
A[i] and A[j] are swapped, and then j is incremented. Again, the loop invariant is maintained.

7.1-4
How would you modify QUICKSORT to sort into nonincreasing order?

7.2 Performance of quicksort
The running time of quicksort depends on whether the partitioning is balanced or
unbalanced, and this in turn depends on which elements are used for partitioning.
If the partitioning is balanced, the algorithm runs asymptotically as fast as merge
sort. If the partitioning is unbalanced, however, it can run asymptotically as slowly
as insertion sort. In this section, we shall informally investigate how quicksort
performs under the assumptions of balanced versus unbalanced partitioning.

Worst-case partitioning
The worst-case behavior for quicksort occurs when the partitioning routine pro-
duces one subproblem with n − 1 elements and one with 0 elements. (This claim
is proved in Section 7.4.1.) Let us assume that this unbalanced partitioning arises
in each recursive call. The partitioning costs 2(n) time. Since the recursive call

150 Chapter 7 Quicksort

on an array of size 0 just returns, T (0) = 2(1), and the recurrence for the running
time is
T (n) = T (n − 1)+ T (0)+2(n)

= T (n − 1)+2(n) .

Intuitively, if we sum the costs incurred at each level of the recursion, we get
an arithmetic series (equation (A.2)), which evaluates to 2(n2). Indeed, it is
straightforward to use the substitution method to prove that the recurrence T (n) =
T (n − 1)+2(n) has the solution T (n) = 2(n2). (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is 2(n2). Therefore the worst-case running time of
quicksort is no better than that of insertion sort. Moreover, the 2(n2) running time
occurs when the input array is already completely sorted—a common situation in
which insertion sort runs in O(n) time.

Best-case partitioning
In the most even possible split, PARTITION produces two subproblems, each of
size no more than n/2, since one is of size ⌊n/2⌋ and one of size ⌈n/2⌉− 1. In this
case, quicksort runs much faster. The recurrence for the running time is then
T (n) ≤ 2T (n/2)+2(n) ,

which by case 2 of the master theorem (Theorem 4.1) has the solution T (n) =
O(n lg n). Thus, the equal balancing of the two sides of the partition at every level
of the recursion produces an asymptotically faster algorithm.

Balanced partitioning
The average-case running time of quicksort is much closer to the best case than to
the worst case, as the analyses in Section 7.4 will show. The key to understand-
ing why is to understand how the balance of the partitioning is reflected in the
recurrence that describes the running time.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at first blush seems quite unbalanced. We then obtain the
recurrence
T (n) ≤ T (9n/10)+ T (n/10)+ cn
on the running time of quicksort, where we have explicitly included the constant c
hidden in the 2(n) term. Figure 7.4 shows the recursion tree for this recurrence.
Notice that every level of the tree has cost cn, until a boundary condition is reached
at depth log10 n = 2(lg n), and then the levels have cost at most cn. The re-
cursion terminates at depth log10/9 n = 2(lg n). The total cost of quicksort is

7.2 Performance of quicksort 151

n

cn

cn

cn

cn

≤ cn

≤ cn

1

1

O(n lg n)

log10 n

log10/9 n

1
10 n 9

10 n

1
100 n 9

100 n9
100 n 81

100 n

81
1000 n 729

1000 n

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O(n lg n). Nodes show subproblem sizes, with per-level costs on the right.
The per-level costs include the constant c implicit in the 2(n) term.

therefore O(n lg n). Thus, with a 9-to-1 proportional split at every level of re-
cursion, which intuitively seems quite unbalanced, quicksort runs in O(n lg n)

time—asymptotically the same as if the split were right down the middle. In fact,
even a 99-to-1 split yields an O(n lg n) running time. The reason is that any split
of constant proportionality yields a recursion tree of depth 2(lg n), where the cost
at each level is O(n). The running time is therefore O(n lg n) whenever the split
has constant proportionality.

Intuition for the average case
To develop a clear notion of the average case for quicksort, we must make an
assumption about how frequently we expect to encounter the various inputs. The
behavior of quicksort is determined by the relative ordering of the values in the
array elements given as the input, and not by the particular values in the array. As
in our probabilistic analysis of the hiring problem in Section 5.2, we will assume
for now that all permutations of the input numbers are equally likely.

When we run quicksort on a random input array, it is unlikely that the partition-
ing always happens in the same way at every level, as our informal analysis has
assumed. We expect that some of the splits will be reasonably well balanced and
that some will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show

152 Chapter 7 Quicksort

n

0 n–1

(n–1)/2 – 1 (n–1)/2

n

(n–1)/2

(a) (b)

(n–1)/2

Θ(n) Θ(n)

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a “bad” split: two subarrays of sizes 0 and n − 1. The partitioning of the subarray of
size n − 1 costs n − 1 and produces a “good” split: subarrays of size (n − 1)/2 − 1 and (n − 1)/2.
(b) A single level of a recursion tree that is very well balanced. In both parts, the partitioning cost for
the subproblems shown with elliptical shading is 2(n). Yet the subproblems remaining to be solved
in (a), shown with square shading, are no larger than the corresponding subproblems remaining to be
solved in (b).

that about 80 percent of the time PARTITION produces a split that is more balanced
than 9 to 1, and about 20 percent of the time it produces a split that is less balanced
than 9 to 1.

In the average case, PARTITION produces a mix of “good” and “bad” splits. In a
recursion tree for an average-case execution of PARTITION, the good and bad splits
are distributed randomly throughout the tree. Suppose for the sake of intuition,
however, that the good and bad splits alternate levels in the tree, and that the good
splits are best-case splits and the bad splits are worst-case splits. Figure 7.5(a)
shows the splits at two consecutive levels in the recursion tree. At the root of the
tree, the cost is n for partitioning, and the subarrays produced have sizes n − 1
and 0: the worst case. At the next level, the subarray of size n − 1 is best-case
partitioned into subarrays of size (n − 1)/2 − 1 and (n − 1)/2. Let’s assume that
the boundary-condition cost is 1 for the subarray of size 0.

The combination of the bad split followed by the good split produces three sub-
arrays of sizes 0, (n − 1)/2 − 1, and (n − 1)/2 at a combined partitioning cost
of 2(n) + 2(n − 1) = 2(n). Certainly, this situation is no worse than that in
Figure 7.5(b), namely a single level of partitioning that produces two subarrays of
size (n − 1)/2, at a cost of 2(n). Yet this latter situation is balanced! Intuitively,
the 2(n − 1) cost of the bad split can be absorbed into the 2(n) cost of the good
split, and the resulting split is good. Thus, the running time of quicksort, when lev-
els alternate between good and bad splits, is like the running time for good splits
alone: still O(n lg n), but with a slightly larger constant hidden by the O-notation.
We shall give a rigorous analysis of the average case in Section 7.4.2.

8 Sorting in Linear Time

We have now introduced several algorithms that can sort n numbers in O(n lg n)

time. Merge sort and heapsort achieve this upper bound in the worst case; quicksort
achieves it on average. Moreover, for each of these algorithms, we can produce a
sequence of n input numbers that causes the algorithm to run in �(n lg n) time.

These algorithms share an interesting property: the sorted order they determine
is based only on comparisons between the input elements. We call such sorting
algorithms comparison sorts. All the sorting algorithms introduced thus far are
comparison sorts.

In Section 8.1, we shall prove that any comparison sort must make �(n lg n)

comparisons in the worst case to sort n elements. Thus, merge sort and heapsort
are asymptotically optimal, and no comparison sort exists that is faster by more
than a constant factor.

Sections 8.2, 8.3, and 8.4 examine three sorting algorithms—counting sort, radix
sort, and bucket sort—that run in linear time. Needless to say, these algorithms use
operations other than comparisons to determine the sorted order. Consequently, the
�(n lg n) lower bound does not apply to them.

8.1 Lower bounds for sorting
In a comparison sort, we use only comparisons between elements to gain order
information about an input sequence 〈a1, a2, . . . , an〉. That is, given two elements
ai and a j , we perform one of the tests ai < a j , ai ≤ a j , ai = a j , ai ≥ a j , or
ai > a j to determine their relative order. We may not inspect the values of the
elements or gain order information about them in any other way.

In this section, we assume without loss of generality that all of the input elements
are distinct. Given this assumption, comparisons of the form ai = a j are useless,
so we can assume that no comparisons of this form are made. We also note that
the comparisons ai ≤ a j , ai ≥ a j , ai > a j , and ai < a j are all equivalent in that

166 Chapter 8 Sorting in Linear Time

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >
〈2,3,1〉

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node an-
notated by i : j indicates a comparison between ai and a j . A leaf annotated by the permutation
〈π(1), π(2), . . . , π(n)〉 indicates the ordering aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n). The shaded path indi-
cates the decisions made when sorting the input sequence 〈a1 = 6, a2 = 8, a3 = 5〉; the permutation
〈3, 1, 2〉 at the leaf indicates that the sorted ordering is a3 = 5 ≤ a1 = 6 ≤ a2 = 8. There are 3! = 6
possible permutations of the input elements, so the decision tree must have at least 6 leaves.

they yield identical information about the relative order of ai and a j . We therefore
assume that all comparisons have the form ai ≤ a j .

The decision-tree model
Comparison sorts can be viewed abstractly in terms of decision trees. A decision
tree is a full binary tree that represents the comparisons between elements that
are performed by a particular sorting algorithm operating on an input of a given
size. Control, data movement, and all other aspects of the algorithm are ignored.
Figure 8.1 shows the decision tree corresponding to the insertion sort algorithm
from Section 2.1 operating on an input sequence of three elements.

In a decision tree, each internal node is annotated by i : j for some i and j in the
range 1 ≤ i, j ≤ n, where n is the number of elements in the input sequence. Each
leaf is annotated by a permutation 〈π(1), π(2), . . . , π(n)〉. (See Section C.1 for
background on permutations.) The execution of the sorting algorithm corresponds
to tracing a path from the root of the decision tree to a leaf. At each internal
node, a comparison ai ≤ a j is made. The left subtree then dictates subsequent
comparisons for ai ≤ a j , and the right subtree dictates subsequent comparisons
for ai > a j . When we come to a leaf, the sorting algorithm has established the
ordering aπ(1) ≤ aπ(2) ≤ · · · ≤ aπ(n). Because any correct sorting algorithm
must be able to produce each permutation of its input, a necessary condition for
a comparison sort to be correct is that each of the n! permutations on n elements
must appear as one of the leaves of the decision tree, and that each of these leaves
must be reachable from the root by a path corresponding to an actual execution of
the comparison sort. (We shall refer to such leaves as “reachable.”) Thus, we shall
consider only decision trees in which each permutation appears as a reachable leaf.

8.1 Lower bounds for sorting 167

A lower bound for the worst case
The length of the longest path from the root of a decision tree to any of its reachable
leaves represents the worst-case number of comparisons that the corresponding
sorting algorithm performs. Consequently, the worst-case number of comparisons
for a given comparison sort algorithm equals the height of its decision tree. A lower
bound on the heights of all decision trees in which each permutation appears as a
reachable leaf is therefore a lower bound on the running time of any comparison
sort algorithm. The following theorem establishes such a lower bound.
Theorem 8.1
Any comparison sort algorithm requires �(n lg n) comparisons in the worst case.
Proof From the preceding discussion, it suffices to determine the height of a
decision tree in which each permutation appears as a reachable leaf. Consider a
decision tree of height h with l reachable leaves corresponding to a comparison
sort on n elements. Because each of the n! permutations of the input appears as
some leaf, we have n! ≤ l. Since a binary tree of height h has no more than 2h
leaves, we have
n! ≤ l ≤ 2h ,

which, by taking logarithms, implies
h ≥ lg(n!) (since the lg function is monotonically increasing)
= �(n lg n) (by equation (3.18)) .

Corollary 8.2
Heapsort and merge sort are asymptotically optimal comparison sorts.
Proof The O(n lg n) upper bounds on the running times for heapsort and merge
sort match the �(n lg n) worst-case lower bound from Theorem 8.1.

Exercises
8.1-1
What is the smallest possible depth of a leaf in a decision tree for a comparison
sort?
8.1-2
Obtain asymptotically tight bounds on lg(n!) without using Stirling’s approxi-
mation. Instead, evaluate the summation ∑n

k=1 lg k using techniques from Sec-
tion A.2.

174 Chapter 8 Sorting in Linear Time

8.4 Bucket sort
Bucket sort runs in linear time when the input is drawn from a uniform distribution.
Like counting sort, bucket sort is fast because it assumes something about the input.
Whereas counting sort assumes that the input consists of integers in a small range,
bucket sort assumes that the input is generated by a random process that distributes
elements uniformly over the interval [0, 1). (See Section C.2 for a definition of
uniform distribution.)

The idea of bucket sort is to divide the interval [0, 1) into n equal-sized subin-
tervals, or buckets, and then distribute the n input numbers into the buckets. Since
the inputs are uniformly distributed over [0, 1), we don’t expect many numbers to
fall into each bucket. To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the elements in each.

Our code for bucket sort assumes that the input is an n-element array A and
that each element A[i] in the array satisfies 0 ≤ A[i] < 1. The code requires an
auxiliary array B[0 . . n − 1] of linked lists (buckets) and assumes that there is a
mechanism for maintaining such lists. (Section 10.2 describes how to implement
basic operations on linked lists.)
BUCKET-SORT(A)

1 n← length[A]
2 for i ← 1 to n
3 do insert A[i] into list B[⌊nA[i]⌋]
4 for i ← 0 to n − 1
5 do sort list B[i] with insertion sort
6 concatenate the lists B[0], B[1], . . . , B[n − 1] together in order
Figure 8.4 shows the operation of bucket sort on an input array of 10 numbers.

To see that this algorithm works, consider two elements A[i] and A[j]. As-
sume without loss of generality that A[i] ≤ A[j]. Since ⌊nA[i]⌋ ≤ ⌊nA[j]⌋,
element A[i] is placed either into the same bucket as A[j] or into a bucket with a
lower index. If A[i] and A[j] are placed into the same bucket, then the for loop of
lines 4–5 puts them into the proper order. If A[i] and A[j] are placed into different
buckets, then line 6 puts them into the proper order. Therefore, bucket sort works
correctly.

To analyze the running time, observe that all lines except line 5 take O(n) time in
the worst case. It remains to balance the total time taken by the n calls to insertion
sort in line 5.

To analyze the cost of the calls to insertion sort, let ni be the random variable
denoting the number of elements placed in bucket B[i]. Since insertion sort runs
in quadratic time (see Section 2.2), the running time of bucket sort is

8.4 Bucket sort 175

1
2
3
4
5
6
7
8
9
10

.78

.17

.39

.72

.94

.21

.12

.23

.68

A

(a)

1
2
3
4
5
6
7
8
9

B

(b)

0
.12 .17
.21 .23

.26
.26

.39

.68

.72 .78

.94

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1 . . 10]. (b) The array B[0 . . 9]
of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open
interval [i/10, (i + 1)/10). The sorted output consists of a concatenation in order of the lists
B[0], B[1], . . . , B[9].

T (n) = 2(n)+
n−1
∑

i=0
O(n2

i) .

Taking expectations of both sides and using linearity of expectation, we have

E [T (n)] = E
[

2(n)+
n−1
∑

i=0
O(n2

i)

]

= 2(n)+
n−1
∑

i=0
E [O(n2

i)] (by linearity of expectation)

= 2(n)+
n−1
∑

i=0
O (E [n2

i]) (by equation (C.21)) . (8.1)

We claim that
E [n2

i] = 2− 1/n (8.2)
for i = 0, 1, . . . , n − 1. It is no surprise that each bucket i has the same value of
E [n2i], since each value in the input array A is equally likely to fall in any bucket.
To prove equation (8.2), we define indicator random variables
X i j = I {A[j] falls in bucket i}
for i = 0, 1, . . . , n − 1 and j = 1, 2, . . . , n. Thus,

176 Chapter 8 Sorting in Linear Time

ni =
n
∑

j=1
X i j .

To compute E [n2i], we expand the square and regroup terms:

E [n2
i] = E

[(n
∑

j=1
X i j

)2]

= E
[n
∑

j=1

n
∑

k=1
X i j X ik

]

= E

n
∑

j=1
X2
i j +

∑

1≤ j≤n

∑

1≤k≤nk 6= j

X i j X ik

=
n
∑

j=1
E [X2

i j
]

+
∑

1≤ j≤n

∑

1≤k≤nk 6= j

E [X i j X ik] , (8.3)

where the last line follows by linearity of expectation. We evaluate the two sum-
mations separately. Indicator random variable X i j is 1 with probability 1/n and 0
otherwise, and therefore
E [X2

i j
]

= 1 · 1
n + 0 ·

(

1− 1
n
)

=
1
n .

When k 6= j , the variables X i j and X ik are independent, and hence
E [X i j X ik] = E [X i j] E [X ik]

=
1
n ·

1
n

=
1
n2 .

Substituting these two expected values in equation (8.3), we obtain
E [n2

i] =
n
∑

j=1

1
n +

∑

1≤ j≤n

∑

1≤k≤nk 6= j

1
n2

= n · 1
n + n(n − 1) ·

1
n2

= 1+ n − 1
n

= 2− 1
n ,

8.4 Bucket sort 177

which proves equation (8.2).
Using this expected value in equation (8.1), we conclude that the expected time

for bucket sort is 2(n) + n · O(2 − 1/n) = 2(n). Thus, the entire bucket sort
algorithm runs in linear expected time.

Even if the input is not drawn from a uniform distribution, bucket sort may still
run in linear time. As long as the input has the property that the sum of the squares
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us
that bucket sort will run in linear time.

Exercises
8.4-1
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array
A = 〈.79, .13, .16, .64, .39, .20, .89, .53, .71, .42〉.
8.4-2
What is the worst-case running time for the bucket-sort algorithm? What simple
change to the algorithm preserves its linear expected running time and makes its
worst-case running time O(n lg n)?
8.4-3
Let X be a random variable that is equal to the number of heads in two flips of a
fair coin. What is E [X2]? What is E2 [X]?
8.4-4 ⋆

We are given n points in the unit circle, pi = (xi , yi), such that 0 < x2i + y2i ≤ 1
for i = 1, 2, . . . , n. Suppose that the points are uniformly distributed; that is,
the probability of finding a point in any region of the circle is proportional to the
area of that region. Design a 2(n) expected-time algorithm to sort the n points by
their distances di =

√

x2i + y2i from the origin. (Hint: Design the bucket sizes in
BUCKET-SORT to reflect the uniform distribution of the points in the unit circle.)
8.4-5 ⋆

A probability distribution function P(x) for a random variable X is defined by
P(x) = Pr {X ≤ x}. Suppose that a list of n random variables X1, X2, . . . , Xn
is drawn from a continuous probability distribution function P that is computable
in O(1) time. Show how to sort these numbers in linear expected time.

178 Chapter 8 Sorting in Linear Time

Problems
8-1 Average-case lower bounds on comparison sorting
In this problem, we prove an �(n lg n) lower bound on the expected running time
of any deterministic or randomized comparison sort on n distinct input elements.
We begin by examining a deterministic comparison sort A with decision tree TA.
We assume that every permutation of A’s inputs is equally likely.
a. Suppose that each leaf of TA is labeled with the probability that it is reached

given a random input. Prove that exactly n! leaves are labeled 1/n! and that the
rest are labeled 0.

b. Let D(T) denote the external path length of a decision tree T ; that is, D(T)

is the sum of the depths of all the leaves of T . Let T be a decision tree with
k > 1 leaves, and let LT and RT be the left and right subtrees of T . Show that
D(T) = D(LT)+ D(RT)+ k.

c. Let d(k) be the minimum value of D(T) over all decision trees T with k > 1
leaves. Show that d(k) = min1≤i≤k−1 {d(i)+ d(k − i)+ k}. (Hint: Consider a
decision tree T with k leaves that achieves the minimum. Let i0 be the number
of leaves in LT and k − i0 the number of leaves in RT.)

d. Prove that for a given value of k > 1 and i in the range 1 ≤ i ≤ k − 1,
the function i lg i + (k − i) lg(k − i) is minimized at i = k/2. Conclude that
d(k) = �(k lg k).

e. Prove that D(TA) = �(n! lg(n!)), and conclude that the expected time to sort n
elements is �(n lg n).

Now, consider a randomized comparison sort B. We can extend the decision-tree
model to handle randomization by incorporating two kinds of nodes: ordinary com-
parison nodes and “randomization” nodes. A randomization node models a random
choice of the form RANDOM(1, r) made by algorithm B; the node has r children,
each of which is equally likely to be chosen during an execution of the algorithm.
f. Show that for any randomized comparison sort B, there exists a deterministic

comparison sort A that makes no more comparisons on the average than B does.

8-2 Sorting in place in linear time
Suppose that we have an array of n data records to sort and that the key of each
record has the value 0 or 1. An algorithm for sorting such a set of records might
possess some subset of the following three desirable characteristics:

Problems for Chapter 8 179

1. The algorithm runs in O(n) time.
2. The algorithm is stable.
3. The algorithm sorts in place, using no more than a constant amount of storage

space in addition to the original array.
a. Give an algorithm that satisfies criteria 1 and 2 above.
b. Give an algorithm that satisfies criteria 1 and 3 above.
c. Give an algorithm that satisfies criteria 2 and 3 above.
d. Can any of your sorting algorithms from parts (a)–(c) be used to sort n records

with b-bit keys using radix sort in O(bn) time? Explain how or why not.
e. Suppose that the n records have keys in the range from 1 to k. Show how to

modify counting sort so that the records can be sorted in place in O(n + k)
time. You may use O(k) storage outside the input array. Is your algorithm
stable? (Hint: How would you do it for k = 3?)

8-3 Sorting variable-length items
a. You are given an array of integers, where different integers may have different

numbers of digits, but the total number of digits over all the integers in the array
is n. Show how to sort the array in O(n) time.

b. You are given an array of strings, where different strings may have different
numbers of characters, but the total number of characters over all the strings
is n. Show how to sort the strings in O(n) time.
(Note that the desired order here is the standard alphabetical order; for example,
a < ab < b.)

8-4 Water jugs
Suppose that you are given n red and n blue water jugs, all of different shapes and
sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover,
for every red jug, there is a blue jug that holds the same amount of water, and vice
versa.

It is your task to find a grouping of the jugs into pairs of red and blue jugs that
hold the same amount of water. To do so, you may perform the following operation:
pick a pair of jugs in which one is red and one is blue, fill the red jug with water,
and then pour the water into the blue jug. This operation will tell you whether the
red or the blue jug can hold more water, or if they are of the same volume. Assume
that such a comparison takes one time unit. Your goal is to find an algorithm that

180 Chapter 8 Sorting in Linear Time

makes a minimum number of comparisons to determine the grouping. Remember
that you may not directly compare two red jugs or two blue jugs.
a. Describe a deterministic algorithm that uses 2(n2) comparisons to group the

jugs into pairs.
b. Prove a lower bound of �(n lg n) for the number of comparisons an algorithm

solving this problem must make.
c. Give a randomized algorithm whose expected number of comparisons is

O(n lg n), and prove that this bound is correct. What is the worst-case num-
ber of comparisons for your algorithm?

8-5 Average sorting
Suppose that, instead of sorting an array, we just require that the elements in-
crease on average. More precisely, we call an n-element array A k-sorted if, for all
i = 1, 2, . . . , n − k, the following holds:
∑i+k−1

j=i A[j]
k ≤

∑i+k
j=i+1 A[j]

k .

a. What does it mean for an array to be 1-sorted?
b. Give a permutation of the numbers 1, 2, . . . , 10 that is 2-sorted, but not sorted.
c. Prove that an n-element array is k-sorted if and only if A[i] ≤ A[i + k] for all

i = 1, 2, . . . , n − k.
d. Give an algorithm that k-sorts an n-element array in O(n lg(n/k)) time.
We can also show a lower bound on the time to produce a k-sorted array, when k is
a constant.
e. Show that a k-sorted array of length n can be sorted in O(n lg k) time. (Hint:

Use the solution to Exercise 6.5-8.)
f. Show that when k is a constant, it requires �(n lg n) time to k-sort an n-element

array. (Hint: Use the solution to the previous part along with the lower bound
on comparison sorts.)

8-6 Lower bound on merging sorted lists
The problem of merging two sorted lists arises frequently. It is used as a subroutine
of MERGE-SORT, and the procedure to merge two sorted lists is given as MERGE
in Section 2.3.1. In this problem, we will show that there is a lower bound of 2n−1

Notes for Chapter 8 181

on the worst-case number of comparisons required to merge two sorted lists, each
containing n items.

First we will show a lower bound of 2n − o(n) comparisons by using a decision
tree.
a. Show that, given 2n numbers, there are (2n

n
) possible ways to divide them into

two sorted lists, each with n numbers.
b. Using a decision tree, show that any algorithm that correctly merges two sorted

lists uses at least 2n − o(n) comparisons.
Now we will show a slightly tighter 2n − 1 bound.
c. Show that if two elements are consecutive in the sorted order and from opposite

lists, then they must be compared.
d. Use your answer to the previous part to show a lower bound of 2n − 1 compar-

isons for merging two sorted lists.

Chapter notes
The decision-tree model for studying comparison sorts was introduced by Ford and
Johnson [94]. Knuth’s comprehensive treatise on sorting [185] covers many vari-
ations on the sorting problem, including the information-theoretic lower bound on
the complexity of sorting given here. Lower bounds for sorting using generaliza-
tions of the decision-tree model were studied comprehensively by Ben-Or [36].

Knuth credits H. H. Seward with inventing counting sort in 1954, and also with
the idea of combining counting sort with radix sort. Radix sorting starting with the
least significant digit appears to be a folk algorithm widely used by operators of
mechanical card-sorting machines. According to Knuth, the first published refer-
ence to the method is a 1929 document by L. J. Comrie describing punched-card
equipment. Bucket sorting has been in use since 1956, when the basic idea was
proposed by E. J. Isaac and R. C. Singleton.

Munro and Raman [229] give a stable sorting algorithm that performs O(n1+ǫ)

comparisons in the worst case, where 0 < ǫ ≤ 1 is any fixed constant. Although
any of the O(n lg n)-time algorithms make fewer comparisons, the algorithm by
Munro and Raman moves data only O(n) times and operates in place.

The case of sorting n b-bit integers in o(n lg n) time has been considered by
many researchers. Several positive results have been obtained, each under slightly
different assumptions about the model of computation and the restrictions placed
on the algorithm. All the results assume that the computer memory is divided into

182 Chapter 8 Sorting in Linear Time

addressable b-bit words. Fredman and Willard [99] introduced the fusion tree data
structure and used it to sort n integers in O(n lg n/ lg lg n) time. This bound was
later improved to O(n√lg n) time by Andersson [16]. These algorithms require
the use of multiplication and several precomputed constants. Andersson, Hagerup,
Nilsson, and Raman [17] have shown how to sort n integers in O(n lg lg n) time
without using multiplication, but their method requires storage that can be un-
bounded in terms of n. Using multiplicative hashing, one can reduce the stor-
age needed to O(n), but the O(n lg lg n) worst-case bound on the running time
becomes an expected-time bound. Generalizing the exponential search trees of
Andersson [16], Thorup [297] gave an O(n(lg lg n)2)-time sorting algorithm that
does not use multiplication or randomization, and uses linear space. Combining
these techniques with some new ideas, Han [137] improved the bound for sorting
to O(n lg lg n lg lg lg n) time. Although these algorithms are important theoretical
breakthroughs, they are all fairly complicated and at the present time seem unlikely
to compete with existing sorting algorithms in practice.

204 Chapter 10 Elementary Data Structures

10.1-5
Whereas a stack allows insertion and deletion of elements at only one end, and a
queue allows insertion at one end and deletion at the other end, a deque (double-
ended queue) allows insertion and deletion at both ends. Write four O(1)-time
procedures to insert elements into and delete elements from both ends of a deque
constructed from an array.
10.1-6
Show how to implement a queue using two stacks. Analyze the running time of the
queue operations.
10.1-7
Show how to implement a stack using two queues. Analyze the running time of the
stack operations.

10.2 Linked lists
A linked list is a data structure in which the objects are arranged in a linear order.
Unlike an array, though, in which the linear order is determined by the array in-
dices, the order in a linked list is determined by a pointer in each object. Linked
lists provide a simple, flexible representation for dynamic sets, supporting (though
not necessarily efficiently) all the operations listed on page 198.

As shown in Figure 10.3, each element of a doubly linked list L is an object
with a key field and two other pointer fields: next and prev. The object may also
contain other satellite data. Given an element x in the list, next[x] points to its
successor in the linked list, and prev[x] points to its predecessor. If prev[x] = NIL,
the element x has no predecessor and is therefore the first element, or head, of the
list. If next[x] = NIL, the element x has no successor and is therefore the last
element, or tail, of the list. An attribute head[L] points to the first element of the
list. If head[L] = NIL, the list is empty.

A list may have one of several forms. It may be either singly linked or doubly
linked, it may be sorted or not, and it may be circular or not. If a list is singly
linked, we omit the prev pointer in each element. If a list is sorted, the linear order
of the list corresponds to the linear order of keys stored in elements of the list; the
minimum element is the head of the list, and the maximum element is the tail. If
the list is unsorted, the elements can appear in any order. In a circular list, the prev
pointer of the head of the list points to the tail, and the next pointer of the tail of
the list points to the head. The list may thus be viewed as a ring of elements. In the
remainder of this section, we assume that the lists with which we are working are
unsorted and doubly linked.

10.2 Linked lists 205

head[L] 9 16 4 1

prev key next

(a)

head[L] 9 16 4 1(b) 25

head[L] 9 16 1(c) 25

Figure 10.3 (a) A doubly linked list L representing the dynamic set {1, 4, 9, 16}. Each element in
the list is an object with fields for the key and pointers (shown by arrows) to the next and previous
objects. The next field of the tail and the prev field of the head are NIL, indicated by a diagonal slash.
The attribute head[L] points to the head. (b) Following the execution of LIST-INSERT(L , x), where
key[x] = 25, the linked list has a new object with key 25 as the new head. This new object points to
the old head with key 9. (c) The result of the subsequent call LIST-DELETE(L , x), where x points to
the object with key 4.

Searching a linked list
The procedure LIST-SEARCH(L , k) finds the first element with key k in list L
by a simple linear search, returning a pointer to this element. If no object with
key k appears in the list, then NIL is returned. For the linked list in Figure 10.3(a),
the call LIST-SEARCH(L , 4) returns a pointer to the third element, and the call
LIST-SEARCH(L , 7) returns NIL.
LIST-SEARCH(L , k)
1 x ← head[L]
2 while x 6= NIL and key[x] 6= k
3 do x ← next[x]
4 return x
To search a list of n objects, the LIST-SEARCH procedure takes 2(n) time in the
worst case, since it may have to search the entire list.

Inserting into a linked list
Given an element x whose key field has already been set, the LIST-INSERT proce-
dure “splices” x onto the front of the linked list, as shown in Figure 10.3(b).

206 Chapter 10 Elementary Data Structures

LIST-INSERT(L , x)
1 next[x] ← head[L]
2 if head[L] 6= NIL
3 then prev[head[L]] ← x
4 head[L] ← x
5 prev[x] ← NIL

The running time for LIST-INSERT on a list of n elements is O(1).

Deleting from a linked list
The procedure LIST-DELETE removes an element x from a linked list L . It must
be given a pointer to x , and it then “splices” x out of the list by updating pointers.
If we wish to delete an element with a given key, we must first call LIST-SEARCH
to retrieve a pointer to the element.
LIST-DELETE(L , x)
1 if prev[x] 6= NIL
2 then next[prev[x]] ← next[x]
3 else head[L] ← next[x]
4 if next[x] 6= NIL
5 then prev[next[x]] ← prev[x]
Figure 10.3(c) shows how an element is deleted from a linked list. LIST-DELETE
runs in O(1) time, but if we wish to delete an element with a given key, 2(n) time
is required in the worst case because we must first call LIST-SEARCH.

Sentinels
The code for LIST-DELETE would be simpler if we could ignore the boundary
conditions at the head and tail of the list.
LIST-DELETE′(L , x)
1 next[prev[x]] ← next[x]
2 prev[next[x]] ← prev[x]
A sentinel is a dummy object that allows us to simplify boundary conditions. For
example, suppose that we provide with list L an object nil[L] that represents NIL
but has all the fields of the other list elements. Wherever we have a reference
to NIL in list code, we replace it by a reference to the sentinel nil[L]. As shown
in Figure 10.4, this turns a regular doubly linked list into a circular, doubly linked
list with a sentinel, in which the sentinel nil[L] is placed between the head and

10.2 Linked lists 207

9 16 4 1

9 16 4 125

9 16 425

(a) nil[L]

(b) nil[L]

(c) nil[L]

(d) nil[L]

Figure 10.4 A circular, doubly linked list with a sentinel. The sentinel nil[L] appears between the
head and tail. The attribute head[L] is no longer needed, since we can access the head of the list
by next[nil[L]]. (a) An empty list. (b) The linked list from Figure 10.3(a), with key 9 at the head
and key 1 at the tail. (c) The list after executing LIST-INSERT′(L , x), where key[x] = 25. The new
object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail is
the object with key 4.

tail; the field next[nil[L]] points to the head of the list, and prev[nil[L]] points to
the tail. Similarly, both the next field of the tail and the prev field of the head
point to nil[L]. Since next[nil[L]] points to the head, we can eliminate the attribute
head[L] altogether, replacing references to it by references to next[nil[L]]. An
empty list consists of just the sentinel, since both next[nil[L]] and prev[nil[L]] can
be set to nil[L].

The code for LIST-SEARCH remains the same as before, but with the references
to NIL and head[L] changed as specified above.
LIST-SEARCH′(L , k)
1 x ← next[nil[L]]
2 while x 6= nil[L] and key[x] 6= k
3 do x ← next[x]
4 return x
We use the two-line procedure LIST-DELETE ′ to delete an element from the list.
We use the following procedure to insert an element into the list.
LIST-INSERT′(L , x)
1 next[x] ← next[nil[L]]
2 prev[next[nil[L]]] ← x
3 next[nil[L]] ← x
4 prev[x] ← nil[L]

208 Chapter 10 Elementary Data Structures

Figure 10.4 shows the effects of LIST-INSERT ′ and LIST-DELETE ′ on a sample list.
Sentinels rarely reduce the asymptotic time bounds of data structure operations,

but they can reduce constant factors. The gain from using sentinels within loops
is usually a matter of clarity of code rather than speed; the linked list code, for
example, is simplified by the use of sentinels, but we save only O(1) time in the
LIST-INSERT ′ and LIST-DELETE ′ procedures. In other situations, however, the
use of sentinels helps to tighten the code in a loop, thus reducing the coefficient of,
say, n or n2 in the running time.

Sentinels should not be used indiscriminately. If there are many small lists, the
extra storage used by their sentinels can represent significant wasted memory. In
this book, we use sentinels only when they truly simplify the code.

Exercises
10.2-1
Can the dynamic-set operation INSERT be implemented on a singly linked list
in O(1) time? How about DELETE?
10.2-2
Implement a stack using a singly linked list L . The operations PUSH and POP
should still take O(1) time.
10.2-3
Implement a queue by a singly linked list L . The operations ENQUEUE and DE-
QUEUE should still take O(1) time.
10.2-4
As written, each loop iteration in the LIST-SEARCH ′ procedure requires two tests:
one for x 6= nil[L] and one for key[x] 6= k. Show how to eliminate the test for
x 6= nil[L] in each iteration.
10.2-5
Implement the dictionary operations INSERT, DELETE, and SEARCH using singly
linked, circular lists. What are the running times of your procedures?
10.2-6
The dynamic-set operation UNION takes two disjoint sets S1 and S2 as input, and
it returns a set S = S1 ∪ S2 consisting of all the elements of S1 and S2. The
sets S1 and S2 are usually destroyed by the operation. Show how to support UNION
in O(1) time using a suitable list data structure.

10.3 Implementing pointers and objects 209

10.2-7
Give a 2(n)-time nonrecursive procedure that reverses a singly linked list of n
elements. The procedure should use no more than constant storage beyond that
needed for the list itself.
10.2-8 ⋆

Explain how to implement doubly linked lists using only one pointer value np[x]
per item instead of the usual two (next and prev). Assume that all pointer
values can be interpreted as k-bit integers, and define np[x] to be np[x] =
next[x] XOR prev[x], the k-bit “exclusive-or” of next[x] and prev[x]. (The value
NIL is represented by 0.) Be sure to describe what information is needed to access
the head of the list. Show how to implement the SEARCH, INSERT, and DELETE
operations on such a list. Also show how to reverse such a list in O(1) time.

10.3 Implementing pointers and objects
How do we implement pointers and objects in languages, such as Fortran, that do
not provide them? In this section, we shall see two ways of implementing linked
data structures without an explicit pointer data type. We shall synthesize objects
and pointers from arrays and array indices.

A multiple-array representation of objects
We can represent a collection of objects that have the same fields by using an array
for each field. As an example, Figure 10.5 shows how we can implement the linked
list of Figure 10.3(a) with three arrays. The array key holds the values of the keys
currently in the dynamic set, and the pointers are stored in the arrays next and prev.
For a given array index x , key[x], next[x], and prev[x] represent an object in the
linked list. Under this interpretation, a pointer x is simply a common index into the
key, next, and prev arrays.

In Figure 10.3(a), the object with key 4 follows the object with key 16 in the
linked list. In Figure 10.5, key 4 appears in key[2], and key 16 appears in key[5],
so we have next[5] = 2 and prev[2] = 5. Although the constant NIL appears in
the next field of the tail and the prev field of the head, we usually use an integer
(such as 0 or −1) that cannot possibly represent an actual index into the arrays. A
variable L holds the index of the head of the list.

In our pseudocode, we have been using square brackets to denote both the in-
dexing of an array and the selection of a field (attribute) of an object. Either way,
the meanings of key[x], next[x], and prev[x] are consistent with implementation
practice.

12 Binary Search Trees

Search trees are data structures that support many dynamic-set operations, includ-
ing SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and
DELETE. Thus, a search tree can be used both as a dictionary and as a priority
queue.

Basic operations on a binary search tree take time proportional to the height of
the tree. For a complete binary tree with n nodes, such operations run in 2(lg n)

worst-case time. If the tree is a linear chain of n nodes, however, the same oper-
ations take 2(n) worst-case time. We shall see in Section 12.4 that the expected
height of a randomly built binary search tree is O(lg n), so that basic dynamic-set
operations on such a tree take 2(lg n) time on average.

In practice, we can’t always guarantee that binary search trees are built ran-
domly, but there are variations of binary search trees whose worst-case perfor-
mance on basic operations can be guaranteed to be good. Chapter 13 presents one
such variation, red-black trees, which have height O(lg n). Chapter 18 introduces
B-trees, which are particularly good for maintaining databases on random-access,
secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sec-
tions show how to walk a binary search tree to print its values in sorted order, how
to search for a value in a binary search tree, how to find the minimum or maximum
element, how to find the predecessor or successor of an element, and how to insert
into or delete from a binary search tree. The basic mathematical properties of trees
appear in Appendix B.

12.1 What is a binary search tree?
A binary search tree is organized, as the name suggests, in a binary tree, as shown
in Figure 12.1. Such a tree can be represented by a linked data structure in which
each node is an object. In addition to a key field and satellite data, each node

254 Chapter 12 Binary Search Trees

5

2 5

3

8

7

5

(a)

5 8

7

3

2

(b)

Figure 12.1 Binary search trees. For any node x , the keys in the left subtree of x are at most key[x],
and the keys in the right subtree of x are at least key[x]. Different binary search trees can represent
the same set of values. The worst-case running time for most search-tree operations is proportional
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary
search tree with height 4 that contains the same keys.

contains fields left, right, and p that point to the nodes corresponding to its left
child, its right child, and its parent, respectively. If a child or the parent is missing,
the appropriate field contains the value NIL. The root node is the only node in the
tree whose parent field is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the
binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree
of x , then key[y] ≤ key[x]. If y is a node in the right subtree of x , then
key[x] ≤ key[y].

Thus, in Figure 12.1(a), the key of the root is 5, the keys 2, 3, and 5 in its left
subtree are no larger than 5, and the keys 7 and 8 in its right subtree are no smaller
than 5. The same property holds for every node in the tree. For example, the key 3
in Figure 12.1(a) is no smaller than the key 2 in its left subtree and no larger than
the key 5 in its right subtree.

The binary-search-tree property allows us to print out all the keys in a binary
search tree in sorted order by a simple recursive algorithm, called an inorder tree
walk. This algorithm is so named because the key of the root of a subtree is printed
between the values in its left subtree and those in its right subtree. (Similarly,
a preorder tree walk prints the root before the values in either subtree, and a
postorder tree walk prints the root after the values in its subtrees.) To use the
following procedure to print all the elements in a binary search tree T , we call
INORDER-TREE-WALK(root[T]).

12.1 What is a binary search tree? 255

INORDER-TREE-WALK(x)
1 if x 6= NIL
2 then INORDER-TREE-WALK(left[x])
3 print key[x]
4 INORDER-TREE-WALK(right[x])
As an example, the inorder tree walk prints the keys in each of the two binary
search trees from Figure 12.1 in the order 2, 3, 5, 5, 7, 8. The correctness of the
algorithm follows by induction directly from the binary-search-tree property.

It takes 2(n) time to walk an n-node binary search tree, since after the ini-
tial call, the procedure is called recursively exactly twice for each node in the
tree—once for its left child and once for its right child. The following theorem
gives a more formal proof that it takes linear time to perform an inorder tree walk.
Theorem 12.1
If x is the root of an n-node subtree, then the call INORDER-TREE-WALK(x)
takes 2(n) time.
Proof Let T (n) denote the time taken by INORDER-TREE-WALK when it is
called on the root of an n-node subtree. INORDER-TREE-WALK takes a small, con-
stant amount of time on an empty subtree (for the test x 6= NIL), and so T (0) = c
for some positive constant c.

For n > 0, suppose that INORDER-TREE-WALK is called on a node x whose
left subtree has k nodes and whose right subtree has n − k − 1 nodes. The time to
perform INORDER-TREE-WALK(x) is T (n) = T (k)+ T (n− k − 1)+ d for some
positive constant d that reflects the time to execute INORDER-TREE-WALK(x),
exclusive of the time spent in recursive calls.

We use the substitution method to show that T (n) = 2(n) by proving that
T (n) = (c+ d)n + c. For n = 0, we have (c+ d) · 0+ c = c = T (0). For n > 0,
we have
T (n) = T (k)+ T (n − k − 1)+ d

= ((c + d)k + c)+ ((c + d)(n − k − 1)+ c)+ d
= (c + d)n + c − (c + d)+ c + d
= (c + d)n + c ,

which completes the proof.

256 Chapter 12 Binary Search Trees

Exercises
12.1-1
For the set of keys {1, 4, 5, 10, 16, 17, 21}, draw binary search trees of height
2, 3, 4, 5, and 6.
12.1-2
What is the difference between the binary-search-tree property and the min-heap
property (see page 129)? Can the min-heap property be used to print out the keys
of an n-node tree in sorted order in O(n) time? Explain how or why not.
12.1-3
Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: There is
an easy solution that uses a stack as an auxiliary data structure and a more compli-
cated but elegant solution that uses no stack but assumes that two pointers can be
tested for equality.)
12.1-4
Give recursive algorithms that perform preorder and postorder tree walks in 2(n)

time on a tree of n nodes.
12.1-5
Argue that since sorting n elements takes �(n lg n) time in the worst case in
the comparison model, any comparison-based algorithm for constructing a binary
search tree from an arbitrary list of n elements takes �(n lg n) time in the worst
case.

12.2 Querying a binary search tree
A common operation performed on a binary search tree is searching for a key
stored in the tree. Besides the SEARCH operation, binary search trees can support
such queries as MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR. In this
section, we shall examine these operations and show that each can be supported in
time O(h) on a binary search tree of height h.

Searching
We use the following procedure to search for a node with a given key in a binary
search tree. Given a pointer to the root of the tree and a key k, TREE-SEARCH
returns a pointer to a node with key k if one exists; otherwise, it returns NIL.

12.2 Querying a binary search tree 257

2 4

3

13

7

6

17 20

18

15

9

Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the
path 15 → 6 → 7 → 13 from the root. The minimum key in the tree is 2, which can be found by
following left pointers from the root. The maximum key 20 is found by following right pointers from
the root. The successor of the node with key 15 is the node with key 17, since it is the minimum key
in the right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its
lowest ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH(x, k)
1 if x = NIL or k = key[x]
2 then return x
3 if k < key[x]
4 then return TREE-SEARCH(left[x], k)
5 else return TREE-SEARCH(right[x], k)
The procedure begins its search at the root and traces a path downward in the
tree, as shown in Figure 12.2. For each node x it encounters, it compares the
key k with key[x]. If the two keys are equal, the search terminates. If k is smaller
than key[x], the search continues in the left subtree of x , since the binary-search-
tree property implies that k could not be stored in the right subtree. Symmetrically,
if k is larger than key[x], the search continues in the right subtree. The nodes
encountered during the recursion form a path downward from the root of the tree,
and thus the running time of TREE-SEARCH is O(h), where h is the height of the
tree.

The same procedure can be written iteratively by “unrolling” the recursion into
a while loop. On most computers, this version is more efficient.
ITERATIVE-TREE-SEARCH(x, k)
1 while x 6= NIL and k 6= key[x]
2 do if k < key[x]
3 then x ← left[x]
4 else x ← right[x]
5 return x

258 Chapter 12 Binary Search Trees

Minimum and maximum
An element in a binary search tree whose key is a minimum can always be found
by following left child pointers from the root until a NIL is encountered, as shown
in Figure 12.2. The following procedure returns a pointer to the minimum element
in the subtree rooted at a given node x .
TREE-MINIMUM(x)
1 while left[x] 6= NIL
2 do x ← left[x]
3 return x
The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a
node x has no left subtree, then since every key in the right subtree of x is at least
as large as key[x], the minimum key in the subtree rooted at x is key[x]. If node x
has a left subtree, then since no key in the right subtree is smaller than key[x] and
every key in the left subtree is not larger than key[x], the minimum key in the
subtree rooted at x can be found in the subtree rooted at left[x].

The pseudocode for TREE-MAXIMUM is symmetric.
TREE-MAXIMUM(x)
1 while right[x] 6= NIL
2 do x ← right[x]
3 return x
Both of these procedures run in O(h) time on a tree of height h since, as in TREE-
SEARCH, the sequence of nodes encountered forms a path downward from the
root.

Successor and predecessor
Given a node in a binary search tree, it is sometimes important to be able to find
its successor in the sorted order determined by an inorder tree walk. If all keys
are distinct, the successor of a node x is the node with the smallest key greater
than key[x]. The structure of a binary search tree allows us to determine the suc-
cessor of a node without ever comparing keys. The following procedure returns the
successor of a node x in a binary search tree if it exists, and NIL if x has the largest
key in the tree.

12.2 Querying a binary search tree 259

TREE-SUCCESSOR(x)
1 if right[x] 6= NIL
2 then return TREE-MINIMUM(right[x])
3 y ← p[x]
4 while y 6= NIL and x = right[y]
5 do x ← y
6 y ← p[y]
7 return y

The code for TREE-SUCCESSOR is broken into two cases. If the right subtree
of node x is nonempty, then the successor of x is just the leftmost node in the
right subtree, which is found in line 2 by calling TREE-MINIMUM(right[x]). For
example, the successor of the node with key 15 in Figure 12.2 is the node with
key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of
node x is empty and x has a successor y, then y is the lowest ancestor of x whose
left child is also an ancestor of x . In Figure 12.2, the successor of the node with
key 13 is the node with key 15. To find y, we simply go up the tree from x until
we encounter a node that is the left child of its parent; this is accomplished by
lines 3–7 of TREE-SUCCESSOR.

The running time of TREE-SUCCESSOR on a tree of height h is O(h), since
we either follow a path up the tree or follow a path down the tree. The proce-
dure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also runs
in time O(h).

Even if keys are not distinct, we define the successor and predecessor of any
node x as the node returned by calls made to TREE-SUCCESSOR(x) and TREE-
PREDECESSOR(x), respectively.

In summary, we have proved the following theorem.
Theorem 12.2
The dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR can be made to run in O(h) time on a binary search tree of
height h.
Exercises
12.2-1
Suppose that we have numbers between 1 and 1000 in a binary search tree and
want to search for the number 363. Which of the following sequences could not be
the sequence of nodes examined?
a. 2, 252, 401, 398, 330, 344, 397, 363.
b. 924, 220, 911, 244, 898, 258, 362, 363.

260 Chapter 12 Binary Search Trees

c. 925, 202, 911, 240, 912, 245, 363.
d. 2, 399, 387, 219, 266, 382, 381, 278, 363.
e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2
Write recursive versions of the TREE-MINIMUM and TREE-MAXIMUM proce-
dures.
12.2-3
Write the TREE-PREDECESSOR procedure.
12.2-4
Professor Bunyan thinks he has discovered a remarkable property of binary search
trees. Suppose that the search for key k in a binary search tree ends up in a leaf.
Consider three sets: A, the keys to the left of the search path; B, the keys on the
search path; and C , the keys to the right of the search path. Professor Bunyan
claims that any three keys a ∈ A, b ∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give
a smallest possible counterexample to the professor’s claim.
12.2-5
Show that if a node in a binary search tree has two children, then its successor has
no left child and its predecessor has no right child.
12.2-6
Consider a binary search tree T whose keys are distinct. Show that if the right
subtree of a node x in T is empty and x has a successor y, then y is the lowest
ancestor of x whose left child is also an ancestor of x . (Recall that every node is
its own ancestor.)
12.2-7
An inorder tree walk of an n-node binary search tree can be implemented by finding
the minimum element in the tree with TREE-MINIMUM and then making n−1 calls
to TREE-SUCCESSOR. Prove that this algorithm runs in 2(n) time.
12.2-8
Prove that no matter what node we start at in a height-h binary search tree, k suc-
cessive calls to TREE-SUCCESSOR take O(k + h) time.
12.2-9
Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y
be its parent. Show that key[y] is either the smallest key in T larger than key[x] or
the largest key in T smaller than key[x].

12.3 Insertion and deletion 261

12.3 Insertion and deletion
The operations of insertion and deletion cause the dynamic set represented by a
binary search tree to change. The data structure must be modified to reflect this
change, but in such a way that the binary-search-tree property continues to hold.
As we shall see, modifying the tree to insert a new element is relatively straight-
forward, but handling deletion is somewhat more intricate.

Insertion
To insert a new value v into a binary search tree T , we use the procedure TREE-
INSERT. The procedure is passed a node z for which key[z] = v, left[z] = NIL,
and right[z] = NIL. It modifies T and some of the fields of z in such a way that z
is inserted into an appropriate position in the tree.
TREE-INSERT(T, z)
1 y ← NIL
2 x ← root[T]
3 while x 6= NIL
4 do y ← x
5 if key[z] < key[x]
6 then x ← left[x]
7 else x ← right[x]
8 p[z] ← y
9 if y = NIL

10 then root[T] ← z ✄ Tree T was empty
11 else if key[z] < key[y]
12 then left[y] ← z
13 else right[y] ← z

Figure 12.3 shows how TREE-INSERT works. Just like the procedures TREE-
SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of the
tree and traces a path downward. The pointer x traces the path, and the pointer y
is maintained as the parent of x . After initialization, the while loop in lines 3–7
causes these two pointers to move down the tree, going left or right depending on
the comparison of key[z] with key[x], until x is set to NIL. This NIL occupies the
position where we wish to place the input item z. Lines 8–13 set the pointers that
cause z to be inserted.

Like the other primitive operations on search trees, the procedure TREE-INSERT
runs in O(h) time on a tree of height h.

262 Chapter 12 Binary Search Trees

2 9

5

13 17

15 19

18

12

Figure 12.3 Inserting an item with key 13 into a binary search tree. Lightly shaded nodes indicate
the path from the root down to the position where the item is inserted. The dashed line indicates the
link in the tree that is added to insert the item.

Deletion
The procedure for deleting a given node z from a binary search tree takes as an
argument a pointer to z. The procedure considers the three cases shown in Fig-
ure 12.4. If z has no children, we modify its parent p[z] to replace z with NIL as its
child. If the node has only a single child, we “splice out” z by making a new link
between its child and its parent. Finally, if the node has two children, we splice
out z’s successor y, which has no left child (see Exercise 12.2-5) and replace z’s
key and satellite data with y’s key and satellite data.

The code for TREE-DELETE organizes these three cases a little differently.
TREE-DELETE(T, z)
1 if left[z] = NIL or right[z] = NIL
2 then y ← z
3 else y ← TREE-SUCCESSOR(z)
4 if left[y] 6= NIL
5 then x ← left[y]
6 else x ← right[y]
7 if x 6= NIL
8 then p[x] ← p[y]
9 if p[y] = NIL

10 then root[T] ← x
11 else if y = left[p[y]]
12 then left[p[y]] ← x
13 else right[p[y]] ← x
14 if y 6= z
15 then key[z] ← key[y]
16 copy y’s satellite data into z
17 return y

12.3 Insertion and deletion 263

3
10 13

12
5

18 23
20

16
15

6
7

z

(a)

3
10

12
5

18 23
20

16
15

6
7

3
10 13

12
5

18 23
20

16
15

6
7

z

(b)

3
10 13

12
5

18 23
20

15

6
7

3
10 13

12
5

18 23
20

16
15

6
7

z

(c)

y

3
10 13

12
5

18 23
20

16
156

7

z
y

3
10 13

12
6

18 23
20

16
15

7

Figure 12.4 Deleting a node z from a binary search tree. Which node is actually removed depends
on how many children z has; this node is shown lightly shaded. (a) If z has no children, we just
remove it. (b) If z has only one child, we splice out z. (c) If z has two children, we splice out its
successor y, which has at most one child, and then replace z’s key and satellite data with y’s key and
satellite data.

In lines 1–3, the algorithm determines a node y to splice out. The node y is either
the input node z (if z has at most 1 child) or the successor of z (if z has two
children). Then, in lines 4–6, x is set to the non-NIL child of y, or to NIL if y has
no children. The node y is spliced out in lines 7–13 by modifying pointers in p[y]
and x . Splicing out y is somewhat complicated by the need for proper handling of
the boundary conditions, which occur when x = NIL or when y is the root. Finally,
in lines 14–16, if the successor of z was the node spliced out, y’s key and satellite
data are moved to z, overwriting the previous key and satellite data. The node y is
returned in line 17 so that the calling procedure can recycle it via the free list. The
procedure runs in O(h) time on a tree of height h.

264 Chapter 12 Binary Search Trees

In summary, we have proved the following theorem.
Theorem 12.3
The dynamic-set operations INSERT and DELETE can be made to run in O(h) time
on a binary search tree of height h.

Exercises
12.3-1
Give a recursive version of the TREE-INSERT procedure.
12.3-2
Suppose that a binary search tree is constructed by repeatedly inserting distinct
values into the tree. Argue that the number of nodes examined in searching for a
value in the tree is one plus the number of nodes examined when the value was first
inserted into the tree.
12.3-3
We can sort a given set of n numbers by first building a binary search tree contain-
ing these numbers (using TREE-INSERT repeatedly to insert the numbers one by
one) and then printing the numbers by an inorder tree walk. What are the worst-
case and best-case running times for this sorting algorithm?
12.3-4
Suppose that another data structure contains a pointer to a node y in a binary search
tree, and suppose that y’s predecessor z is deleted from the tree by the procedure
TREE-DELETE. What problem can arise? How can TREE-DELETE be rewritten to
solve this problem?
12.3-5
Is the operation of deletion “commutative” in the sense that deleting x and then y
from a binary search tree leaves the same tree as deleting y and then x? Argue why
it is or give a counterexample.
12.3-6
When node z in TREE-DELETE has two children, we could splice out its predeces-
sor rather than its successor. Some have argued that a fair strategy, giving equal
priority to predecessor and successor, yields better empirical performance. How
might TREE-DELETE be changed to implement such a fair strategy?

12.4 Randomly built binary search trees 265

⋆ 12.4 Randomly built binary search trees
We have shown that all the basic operations on a binary search tree run in O(h)

time, where h is the height of the tree. The height of a binary search tree varies,
however, as items are inserted and deleted. If, for example, the items are inserted
in strictly increasing order, the tree will be a chain with height n − 1. On the other
hand, Exercise B.5-4 shows that h ≥ ⌊lg n⌋. As with quicksort, we can show that
the behavior of the average case is much closer to the best case than the worst case.

Unfortunately, little is known about the average height of a binary search tree
when both insertion and deletion are used to create it. When the tree is created
by insertion alone, the analysis becomes more tractable. Let us therefore define a
randomly built binary search tree on n keys as one that arises from inserting the
keys in random order into an initially empty tree, where each of the n! permutations
of the input keys is equally likely. (Exercise 12.4-3 asks you to show that this notion
is different from assuming that every binary search tree on n keys is equally likely.)
In this section, we shall show that the expected height of a randomly built binary
search tree on n keys is O(lg n). We assume that all keys are distinct.

We start by defining three random variables that help measure the height of a
randomly built binary search tree. We denote the height of a randomly built binary
search on n keys by Xn , and we define the exponential height Yn = 2Xn . When
we build a binary search tree on n keys, we choose one key as that of the root, and
we let Rn denote the random variable that holds this key’s rank within the set of n
keys. The value of Rn is equally likely to be any element of the set {1, 2, . . . , n}.
If Rn = i , then the left subtree of the root is a randomly built binary search tree
on i − 1 keys, and the right subtree is a randomly built binary search tree on n − i
keys. Because the height of a binary tree is one more than the larger of the heights
of the two subtrees of the root, the exponential height of a binary tree is twice the
larger of the exponential heights of the two subtrees of the root. If we know that
Rn = i , we therefore have that
Yn = 2 ·max(Yi−1,Yn−i) .

As base cases, we have Y1 = 1, because the exponential height of a tree with 1
node is 20 = 1 and, for convenience, we define Y0 = 0.

Next we define indicator random variables Zn,1, Zn,2, . . . , Zn,n , where
Zn,i = I {Rn = i} .

Because Rn is equally likely to be any element of {1, 2, . . . , n}, we have that
Pr {Rn = i} = 1/n for i = 1, 2, . . . , n, and hence, by Lemma 5.1,
E [Zn,i] = 1/n , (12.1)
for i = 1, 2, . . . , n. Because exactly one value of Zn,i is 1 and all others are 0, we
also have

266 Chapter 12 Binary Search Trees

Yn =
n
∑

i=1
Zn,i (2 ·max(Yi−1,Yn−i)) .

We will show that E [Yn] is polynomial in n, which will ultimately imply that
E [Xn] = O(lg n).

The indicator random variable Zn,i = I {Rn = i} is independent of the values
of Yi−1 and Yn−i . Having chosen Rn = i , the left subtree, whose exponential
height is Yi−1, is randomly built on the i − 1 keys whose ranks are less than i . This
subtree is just like any other randomly built binary search tree on i − 1 keys. Other
than the number of keys it contains, this subtree’s structure is not affected at all by
the choice of Rn = i ; hence the random variables Yi−1 and Zn,i are independent.
Likewise, the right subtree, whose exponential height is Yn−i , is randomly built on
the n − i keys whose ranks are greater than i . Its structure is independent of the
value of Rn , and so the random variables Yn−i and Zn,i are independent. Hence,

E [Yn] = E
[n
∑

i=1
Zn,i (2 ·max(Yi−1,Yn−i))

]

=
n
∑

i=1
E [Zn,i (2 ·max(Yi−1,Yn−i))] (by linearity of expectation)

=
n
∑

i=1
E [Zn,i] E [2 ·max(Yi−1,Yn−i)] (by independence)

=
n
∑

i=1

1
n · E [2 ·max(Yi−1,Yn−i)] (by equation (12.1))

=
2
n

n
∑

i=1
E [max(Yi−1,Yn−i)] (by equation (C.21))

≤
2
n

n
∑

i=1
(E [Yi−1]+ E [Yn−i]) (by Exercise C.3-4) .

Each term E [Y0] , E [Y1] , . . . , E [Yn−1] appears twice in the last summation, once
as E [Yi−1] and once as E [Yn−i], and so we have the recurrence

E [Yn] ≤ 4
n

n−1
∑

i=0
E [Yi] . (12.2)

Using the substitution method, we will show that for all positive integers n, the
recurrence (12.2) has the solution
E [Yn] ≤ 1

4
(n + 3

3
)

.

In doing so, we will use the identity

12.4 Randomly built binary search trees 267

n−1
∑

i=0

(i + 3
3
)

=
(n + 3

4
)

. (12.3)

(Exercise 12.4-1 asks you to prove this identity.)
For the base case, we verify that the bound

1 = Y1 = E [Y1] ≤ 1
4
(1+ 3

3
)

= 1
holds. For the substitution, we have that

E [Yn] ≤
4
n

n−1
∑

i=0
E [Yi]

=
4
n

n−1
∑

i=0

1
4
(i + 3

3
)

(by the inductive hypothesis)

=
1
n

n−1
∑

i=0

(i + 3
3
)

=
1
n
(n + 3

4
)

(by equation (12.3))

=
1
n ·

(n + 3)!
4! (n − 1)!

=
1
4 ·

(n + 3)!
3! n!

=
1
4
(n + 3

3
)

.

We have bounded E [Yn], but our ultimate goal is to bound E [Xn]. As Exer-
cise 12.4-4 asks you to show, the function f (x) = 2x is convex (see page 1109).
Therefore, we can apply Jensen’s inequality (C.25), which says that
2E[Xn] ≤ E [2Xn] = E [Yn] ,

to derive that
2E[Xn] ≤

1
4
(n + 3

3
)

=
1
4 ·

(n + 3)(n + 2)(n + 1)

6
=

n3 + 6n2 + 11n + 6
24 .

Taking logarithms of both sides gives E [Xn] = O(lg n). Thus, we have proven the
following:

268 Chapter 12 Binary Search Trees

Theorem 12.4
The expected height of a randomly built binary search tree on n keys is O(lg n).

Exercises
12.4-1
Prove equation (12.3).
12.4-2
Describe a binary search tree on n nodes such that the average depth of a node in
the tree is 2(lg n) but the height of the tree is ω(lg n). Give an asymptotic upper
bound on the height of an n-node binary search tree in which the average depth of
a node is 2(lg n).
12.4-3
Show that the notion of a randomly chosen binary search tree on n keys, where
each binary search tree of n keys is equally likely to be chosen, is different from
the notion of a randomly built binary search tree given in this section. (Hint: List
the possibilities when n = 3.)
12.4-4
Show that the function f (x) = 2x is convex.
12.4-5 ⋆

Consider RANDOMIZED-QUICKSORT operating on a sequence of n input numbers.
Prove that for any constant k > 0, all but O(1/nk) of the n! input permutations
yield an O(n lg n) running time.

Problems
12-1 Binary search trees with equal keys
Equal keys pose a problem for the implementation of binary search trees.
a. What is the asymptotic performance of TREE-INSERT when used to insert n

items with identical keys into an initially empty binary search tree?
We propose to improve TREE-INSERT by testing before line 5 whether or not
key[z] = key[x] and by testing before line 11 whether or not key[z] = key[y].
If equality holds, we implement one of the following strategies. For each strategy,
find the asymptotic performance of inserting n items with identical keys into an
initially empty binary search tree. (The strategies are described for line 5, in which

Problems for Chapter 12 269

011

0

100

10

1011

0 1

1 0

1 0 1

1

Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. Each node’s key can be
determined by traversing the path from the root to that node. There is no need, therefore, to store the
keys in the nodes; the keys are shown here for illustrative purposes only. Nodes are heavily shaded
if the keys corresponding to them are not in the tree; such nodes are present only to establish a path
to other nodes.

we compare the keys of z and x . Substitute y for x to arrive at the strategies for
line 11.)
b. Keep a boolean flag b[x] at node x , and set x to either left[x] or right[x] based

on the value of b[x], which alternates between FALSE and TRUE each time x is
visited during insertion of a node with the same key as x .

c. Keep a list of nodes with equal keys at x , and insert z into the list.
d. Randomly set x to either left[x] or right[x]. (Give the worst-case performance

and informally derive the average-case performance.)

12-2 Radix trees
Given two strings a = a0a1 . . . ap and b = b0b1 . . . bq , where each ai and each b j
is in some ordered set of characters, we say that string a is lexicographically less
than string b if either
1. there exists an integer j , where 0 ≤ j ≤ min(p, q), such that ai = bi for all

i = 0, 1, . . . , j − 1 and a j < b j , or
2. p < q and ai = bi for all i = 0, 1, . . . , p.
For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting
j = 3) and 10100 < 101000 by rule 2. This is similar to the ordering used in
English-language dictionaries.

The radix tree data structure shown in Figure 12.5 stores the bit strings 1011,
10, 011, 100, and 0. When searching for a key a = a0a1 . . . ap , we go left at a node

270 Chapter 12 Binary Search Trees

of depth i if ai = 0 and right if ai = 1. Let S be a set of distinct binary strings
whose lengths sum to n. Show how to use a radix tree to sort S lexicographically
in 2(n) time. For the example in Figure 12.5, the output of the sort should be the
sequence 0, 011, 10, 100, 1011.

12-3 Average node depth in a randomly built binary search tree
In this problem, we prove that the average depth of a node in a randomly built
binary search tree with n nodes is O(lg n). Although this result is weaker than that
of Theorem 12.4, the technique we shall use reveals a surprising similarity between
the building of a binary search tree and the running of RANDOMIZED-QUICKSORT
from Section 7.3.

We define the total path length P(T) of a binary tree T as the sum, over all
nodes x in T , of the depth of node x , which we denote by d(x, T).
a. Argue that the average depth of a node in T is

1
n
∑

x∈T
d(x, T) =

1
n P(T) .

Thus, we wish to show that the expected value of P(T) is O(n lg n).
b. Let TL and TR denote the left and right subtrees of tree T , respectively. Argue

that if T has n nodes, then
P(T) = P(TL)+ P(TR)+ n − 1 .

c. Let P(n) denote the average total path length of a randomly built binary search
tree with n nodes. Show that

P(n) =
1
n

n−1
∑

i=0
(P(i)+ P(n − i − 1)+ n − 1) .

d. Show that P(n) can be rewritten as

P(n) =
2
n

n−1
∑

k=1
P(k)+2(n) .

e. Recalling the alternative analysis of the randomized version of quicksort given
in Problem 7-2, conclude that P(n) = O(n lg n).

At each recursive invocation of quicksort, we choose a random pivot element to
partition the set of elements being sorted. Each node of a binary search tree parti-
tions the set of elements that fall into the subtree rooted at that node.

Problems for Chapter 12 271

f. Describe an implementation of quicksort in which the comparisons to sort a set
of elements are exactly the same as the comparisons to insert the elements into
a binary search tree. (The order in which comparisons are made may differ, but
the same comparisons must be made.)

12-4 Number of different binary trees
Let bn denote the number of different binary trees with n nodes. In this problem,
you will find a formula for bn , as well as an asymptotic estimate.
a. Show that b0 = 1 and that, for n ≥ 1,

bn =
n−1
∑

k=0
bkbn−1−k .

b. Referring to Problem 4-5 for the definition of a generating function, let B(x) be
the generating function

B(x) =
∞
∑

n=0
bnxn .

Show that B(x) = x B(x)2 + 1, and hence one way to express B(x) in closed
form is

B(x) = 1
2x
(1−√1− 4x) .

The Taylor expansion of f (x) around the point x = a is given by

f (x) =
∞
∑

k=0

f (k)(a)
k! (x − a)k ,

where f (k)(x) is the kth derivative of f evaluated at x .
c. Show that

bn = 1
n + 1

(2n
n
)

(the nth Catalan number) by using the Taylor expansion of √1− 4x around
x = 0. (If you wish, instead of using the Taylor expansion, you may use
the generalization of the binomial expansion (C.4) to nonintegral exponents n,
where for any real number n and for any integer k, we interpret (nk

) to be
n(n − 1) · · · (n − k + 1)/k! if k ≥ 0, and 0 otherwise.)

272 Chapter 12 Binary Search Trees

d. Show that

bn = 4n
√

πn3/2 (1+ O(1/n)) .

Chapter notes
Knuth [185] contains a good discussion of simple binary search trees as well as
many variations. Binary search trees seem to have been independently discovered
by a number of people in the late 1950’s. Radix trees are often called tries, which
comes from the middle letters in the word retrieval. They are also discussed by
Knuth [185].

Section 15.5 will show how to construct an optimal binary search tree when
search frequencies are known prior to constructing the tree. That is, given the
frequencies of searching for each key and the frequencies of searching for values
that fall between keys in the tree, we construct a binary search tree for which a
set of searches that follows these frequencies examines the minimum number of
nodes.

The proof in Section 12.4 that bounds the expected height of a randomly built
binary search tree is due to Aslam [23]. Martı́nez and Roura [211] give randomized
algorithms for insertion into and deletion from binary search trees in which the
result of either operation is a random binary search tree. Their definition of a
random binary search tree differs slightly from that of a randomly built binary
search tree in this chapter, however.

13 Red-Black Trees

Chapter 12 showed that a binary search tree of height h can implement any of the
basic dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR,
MINIMUM, MAXIMUM, INSERT, and DELETE—in O(h) time. Thus, the set op-
erations are fast if the height of the search tree is small; but if its height is large,
their performance may be no better than with a linked list. Red-black trees are one
of many search-tree schemes that are “balanced” in order to guarantee that basic
dynamic-set operations take O(lg n) time in the worst case.

13.1 Properties of red-black trees
A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the way nodes can be
colored on any path from the root to a leaf, red-black trees ensure that no such path
is more than twice as long as any other, so that the tree is approximately balanced.

Each node of the tree now contains the fields color, key, left, right, and p. If
a child or the parent of a node does not exist, the corresponding pointer field of
the node contains the value NIL. We shall regard these NIL’s as being pointers to
external nodes (leaves) of the binary search tree and the normal, key-bearing nodes
as being internal nodes of the tree.

A binary search tree is a red-black tree if it satisfies the following red-black
properties:
1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to descendant leaves contain the same

number of black nodes.

