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1 Abstract
The edge set of a graph G is partitioned into two subsets EC∪ES. A tensegrity
framework with underlying graph G and with cables for EC and struts for ES

is proved to be rigidly embedable into a 1-dimensional line if and only if G
is 2-edge-connected and every 2-vertex-connected component of G intersects
both EC and ES. Polynomial algorithms are given to find an embedding of
such graphs and to check the rigidity of a given 1-dimensional embedding.

2 Introduction
Tensegrity structures are pin-connected frameworks where some of the mem-
bers are cables or struts. Today, tensegrity structures interest researchers in
engineering, mathematical and biological communities.

In engineering, tensegrity structures provide efficient solutions in such ap-
plications as deployable structures [1, 2], shape-controllable structures, smart
sensors [3] and lightweight structures.
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The biological community employs tensegrity structures as models under-
lying the behavior of a number of biological entities, such as the cytoskeleton
[4]. Adopting such models enables the biologists to interpret some observed
but previously unexplained natural phenomena.

The complexity of the behavior on one hand and the special properties
on the other are those providing the incentive for mathematical studies of
tensegrity structures [5, 6]. The main interest in this respect is concentrated
on the issues of checking rigidity [7, 8] and structural analysis of these struc-
tures.

A key problem in the design of tensegrity structures is the determination
of geometrical configurations where a given structure becomes rigid. For now,
this problem, also referred as the ’form-finding problem’ [9], does not possess
general analytical solution, except for some special relatively simple cases
[10].

The present paper addresses a combinatorial approach for treating one-
dimensional tensegrity structures, i.e. structures where all members are par-
allel. The paper establishes a theorem for checking the topological rigidity
of these structures, i.e. deciding whether for a given graph there exists at
least one rigid geometrical embedding. If yes, the paper provides a graph-
theoretical algorithm for finding a rigid embedding for the given frame topol-
ogy. This can be regarded as an alternative solution for the ’form-finding
problem’, although, for now, it is limited for one dimensional structures. Ad-
ditionally, an algorithm for checking the rigidity of a structure with a given
geometry is shown to be equivalent to checking whether the corresponding
graph is strongly connected.

It is shown that the methodology can partly be considered as a special
case of a more general theorem based on matroid theory [7], which raises the
possibility that in the future the method could be expanded for multidimen-
sional cases.

3 Condition for graph embeddability as rigid
one-dimensional framework

Let G = (V,E) be a finite graph with vertex set V and edge set E and let
χ denote a bipartition E = EC ∪ ES. A function f : V (G) → R is called a
one-dimensional embedding of G if x 6= y implies f(x) 6= f(y).
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A function g : V (G) → R satisfying

|g(x)− g(y)|
{ ≤ |f(x)− f(y)| if {x, y} ∈ EC

≥ |f(x)− f(y)| if {x, y} ∈ ES,
(1)

and
sign[g(x)− g(y)] = sign[f(x)− f(y)] ∀{x, y} ∈ E (2)

is called a motion with respect to the bipartition χ or shortly a χ-motion of
the embedded graph G. Such a χ-motion is trivial if there exists a constant
c ∈ R so that g(x) = f(x) + c for every x ∈ V (G).

A one-dimensional embedding f is called a one-dimensional rigid embed-
ding of G with respect to this bipartition, or shortly a one-dimensional rigid
χ-embedding if every χ-motion of it is trivial.

A circuit C of the graph G is a mixed circuit with respect to a bipartition
χ, or shortly a χ-mixed circuit if neither C ∩ EC nor C ∩ ES is empty.

Theorem 1: A graph has a one-dimensional rigid χ-embedding if and only
if the graph is connected and every edge of it is contained by at least one
χ-mixed circuit.

Remark: The elements of EC and ES can be interpreted as cables and
struts, respectively, of a tensegrity framework with a given topology G. Since
each edge, representing a rod can be replaced by a pair of edges, one rep-
resenting a cable and one representing a strut, Theorem 1 essentially refers
to tensegrity frameworks with all three types of elements. Observe that if a
framework consists of rods only then the condition of the theorem reduces
to the connectivity of the graph, a known condition described in the mathe-
matical literature [11].

Proof: I. Necessity. The connectedness is obvious – if G0 were a connected
component of a disconnected graph G then the function

g(x) =

{
f(x) + c0 if x ∈ V (G0)
f(x) otherwise (3)

with c0 6= 0 would be a nontrivial χ-motion of G. Similarly, if the edge
e = {a, b} ∈ ES (or ∈ EC , respectively) were a bridge of G and G0 denotes
one of the components of G−e then the same function could be applied using
a value of c0 so that |g(b)−g(a)| must be greater (smaller, respectively) than
|f(b)− f(a)|.
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Hence from now on we may suppose that G is connected and bridgeless.
Consider one of its 2-connected components G0 and suppose indirectly that
it has no χ-mixed circuits, that is, all of its edges are in, say, EC . Let x0 be a
vertex of V (G0) so that f(x0) is an internal point of the interval spanned by
the values {f(v)|v ∈ V (G0)}. Then g(x) = f(x0)+ c[f(x)−f(x0)] with some
c < 1 applied for x ∈ V (G0) and then extended by an appropriate constant
translation for the remaining elements of V (G) would define a nontrivial χ-
motion of G. (If all of the edges of G0 were in ES then use the same argument
with c > 1.)

II. Sufficiency. If every edge of a connected graph G is contained in some
circuits then G is clearly bridgeless. Hence it is either 2-connected or has a
cactus-decomposition into 2-connected components. It is clearly enough to
prove the embeddability for a single 2-connected component.

Lemma 1. A single χ-mixed circuit has a one-dimensional rigid χ-
embedding.

Proof: We may suppose that struts and cables alternate in the circuit
(otherwise replace temporarily a maximum path of struts or cables with
a single strut (cable, respectively); after embedding this tensegrity frame-
work into the one-dimensional space one can readily finish the original em-
bedding by “subdividing” some struts and cables into smaller ones). Let
[v0, v1, v2, . . . , vk−1, vk = v0] be a cyclic description of the vertices of the
χ-mixed circuit. Then

• Let f(v0) be an arbitrary real number and i = 0.

• If i = k − 1 then stop.

• If {vi, vi+1} ∈ EC then “jump to the right”, that is, define f(vi+1) as an
arbitrary value greater than any of the values f(v0), f(v1), . . . , f(vi).

• If {vi, vi+1} ∈ ES then “jump to the left”, that is, define f(vi+1) as an
arbitrary value less than any of the values f(v0), f(v1), . . . , f(vi).

• Increase the value of i by one and go to the second step.

Figure 1 shows an example of a mixed circuit and its embedding obtained by
means of this procedure:
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Figure 1: Example of a rigid embedding of a mixed circuit: (a) the mixed
circuit; (b) reducing the circuit to an alternating form; (c) rigid embedding
of the reduced mixed circuit; (d) the rigid embedding of the original circuit
(with the corresponding cable ’subdivided’).

In order to prove the rigidity of this embedding, consider a motion g(x)
of the obtained system. Without loss of generality we may suppose that
{v1, v2} ∈ ES, thus by Eq. (1), the following set of inequalities is satisfied:

|g(v1)− g(v2)| ≥ |f(v1)− f(v2)|

|g(v2)− g(v3)| ≤ |f(v2)− f(v3)|
...

|g(vk)− g(v1)| ≤ |f(vk)− f(v1)| (4)

The definition of g(v) (Eq. 2) and the above synthesis procedure for {vi, vj} ∈
ES imply that g(vi) > g(vj) and f(vi) > f(vj), while those for {vi, vj} ∈ EC
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imply that g(vi) < g(vj) and f(vi) < f(vj). Therefore the above inequalities
can now be rewritten without using the absolute values:

g(v1)− g(v2) ≥ f(v1)− f(v2)

g(v2)− g(v3) ≥ f(v2)− f(v3)

...

g(vk)− g(v1) ≥ f(vk)− f(v1) (5)

Rearranging the terms in the above inequalities yields:

g(v1)− f(v1) ≥ g(v2)− f(v2) ≥ ... ≥ g(vk)− f(vk) ≥ g(v1)− f(v1) (6)

Obviously, this set of inequalities can be resolved only if g(x) is trivial with
respect to f(x), which proves that f(x) is a rigid embedding. ¤

Lemma 2. Suppose that a 2-connected proper subgraph G′ of a 2-
connected graph G has already a one-dimensional rigid χ-embedding and
let [v0, v1, . . . , vk] be a path of G so that {v0, v1, . . . , vk} ∩ V (G′) = {v0, vk}.
Then this embedding can be extended to that of a subgraph containing G′

and this path. (Here k ≥ 1, hence we permit that a single edge is added
only.)

Proof: Without loss of generality we may suppose that the edges of the
path belong alternatingly to EC and ES, see the argument in the first para-
graph of the proof of Lemma 1. If k = 1 then simply insert the required
tensegrity element between the two end points which were already in fixed
positions. If k > 1 then

• Let i = 0.

• If i = k − 1 then stop.

• If {vi, vi+1} ∈ EC then “jump to the right”, that is, define f(vi+1) as an
arbitrary value greater than any of the values {f(v0), f(v1), . . . , f(vi)}∪
{f(v)|v ∈ V (G′)}.

• If {vi, vi+1} ∈ ES then “jump to the left”, that is, define f(vi+1) as an
arbitrary value less than any of the values {f(v0), f(v1), . . . , f(vi)} ∪
{f(v)|v ∈ V (G′)}.
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• Increase the value of i by one and go to the second step.

The rigidity of the resulting embedding can be proved in a similar fashion,
as it was done for Lemma 1. ¤

Now the proof of the sufficiency is obvious by considering the cactus-
decomposition of G and realizing the embedding of the individual 2-connected
components as follows: Start with a mixed circuit as in Lemma 1 and then
extend it gradually, as in Lemma 2, with new paths (including the possibility
of single new edges as well). ¤

Figure 2 shows an example of realizing such embedding of a graph.
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Figure 2: Example of a rigid embedding of a complex graph: (a) the rigid
embedding; (b) the corresponding graph

4 Condition for rigidity of a given one-
dimensional framework

Consider a one-dimensional embedding F of a tensegrity framework. The
corresponding directed graph representation GF is defined so that the vertices
vi of GF correspond to the joints i of F and a tensegrity element between the
joints i, j with f(vi) < f(vj) correspond to the edge e = {i, j} of GF , with
an orientation from i to j if e is a cable and from j to i if e is a strut.

By Eq.(1), a function g(x) is a valid motion function with respect to GF

if:
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g(h)− g(t) ≥ f(h)− f(t) ∀e = ~(t, h) ∈ GF (7)

Theorem 2: A given one-dimensional tensegrity framework F is rigid if
and only if the corresponding directed graph GF is strongly connected.

Proof: I. Necessity. Let us suppose indirectly that GF possesses a directed
cut-set which separates GF into two connected subgraphs, Gh and Gt, con-
nected respectively to the head and the tail vertices of the edges belonging
to the cut-set. Then the function:

g(x) =

{
f(x) + c0 if x ∈ Gh

f(x) if x ∈ Gt
(8)

with c0 6= 0 would be a valid nontrivial motion of F .

II. Sufficiency. Any two vertices u, v ∈ V (GF ) belong to a common di-
rected circuit {v, v2, ..., u, ..., vk, v}. Applying Eq. (7) to the edges of the cir-
cuit yields a system of inequalities identical to Eq. (5). Again, this set of
inequalities implies that the members and the joints corresponding to the
circuit form a rigid framework not allowing relative displacement between u
and v. As the condition is satisfied for any two joints of the framework, the
framework as a whole is also rigid. ¤

It is interesting to note that Theorem 2 can be considered a special case of
a more general theorem developed by the first author on the basis of matroid
theory. We recall Theorem 18.3.2 in [7], referring to tensegrity frameworks of
any dimension.

Theorem 3: Let F be a tensegrity framework and suppose that the un-
derlying system F ′ is rigid (i.e. dynamically determined). Suppose that the
oriented matroid M(F ) is graphic and is described by a directed graph G.
Then F is rigid if and only if the tensegrity transformation of G is strongly
connected.

M(F ) in Theorem 3 is the oriented matroid represented by the row vec-
tors of the rigidity matrix of the tensegrity framework F and the tensegrity
transformation of G reverses the orientation of the edges corresponding to
struts.

In the one-dimensional case the rigidity matrix is actually the transposed
incidence matrix of F , where each column is multiplied by the length of the
corresponding member. Thus, in this case,M(F ) is always a graphic matroid,
determined by GF itself.
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