Theory of Algorithms Final January 11, 2007

Write your name and a code of at least 5 characters, in print, onto each sheet you turn in. The code will be used to put up the results on the web page http://www.cs.bme.hu/~pbiro/thalg.html preserving your privacy.

1. Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in $8 n^{2}$ steps, while merge sort runs in $32 n \lg n$ steps. For which values of n does insertion sort beat merge sort?
2. What is a balanced partitioning? Show that the total cost of quicksort is $O(n \lg n)$ if the partitioning algorithm always produces a 9 -to-1 proportional split.
3. We have given a MAX-HEAP of size $2^{n}-1$. How many comparisions do we exactly need if we have to find the SMALLEST element?
4. Suppose that we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363. Which of the following sequences could not be the sequence of nodes examined?
(a) $2,252,401,398,330,344,397,363$.
(b) $925,202,911,240,912,245,363$.
5. We have given n points in the plain with their integer coordinates: $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right), \ldots, P_{n}\left(x_{n}, y_{n}\right)$. Give an $O(n \log n)$ time algorithm to decide whether there exist two points $P_{i}, P_{j}(i \neq j)$, such that their distance is at most 2 .
6. Implement a queue by a singly linked list L. The operations ENQUEUE and DEQUEUE should still take $O(1)$ time.
7. Given a directed graph $G(V, E)$. Show that there exists a E_{1}, E_{2} partition of the edges $\left(E=E_{1} \cup E_{2}\right.$ and $\left.\emptyset=E_{1} \cap E_{2}\right)$, where neither of the subgraphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ has a directed cycle. Give an algorithm to find such a partition.

Each problem is worth 10 points, you need 28 points at least to pass. Your point total in the final exam counts for 70% of your final grade.

