Theory of Algorithms Final January 4, 2007

Write your name and a code of at least 5 characters, in print, onto each sheet you turn in.

 The code will be used to put up the results on the web page http://www.cs.bme.hu/~pbiro/thalg.html preserving your privacy.1. A software solves a problem of size k in a day if we run the program on our old computer. We bought a new computer that is 100 -times faster than the old one. What is the approximate size of a problem that we can solve on the new computer in a day, supposing that for an input of size n the running time of our software is
(a) $\Theta\left(n^{3}\right)$
(b) $\Theta\left(2^{n}\right)$
2. Analyse the running time of the merge sort algorithm.
3. Illustrate the operation of HEAPSORT on the array $<5,1,10,6,2,4>$.
4. How many comparisons do we exactly need if we have to find one of the 10 smallest elements from an unsorted array of size n ?
5. We have given a complete binary search tree of size $n=2^{k}-1$. The keys are different integers from the interval $I=\left[1,2^{k}\right]$. This implies that only one single integer from I is not presented in the tree. Give an $O(k)$-time procedure to determine that integer.
6. Is the hash function $h(K)=K^{2}(\bmod 7)$ is good if the table size is 7 ?
7. Given a directed graph $G(V, E)$ with weights 1,2 or 3 on the edges. Give an $O(|V|+|E|)$-time algorithm that finds the minimum-weight paths from a given node s to each of the other nodes.

Each problem is worth 10 points, you need 28 points at least to pass. Your point total in the final exam counts for 70% of your final grade.

