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Abstract

The admission procedure of higher education institutions is organized by a central-
ized matching program in Hungary since 1985. We present the implemented algorithm,
which is similar to the college-proposing version of the Gale-Shapley algorithm. The
difference is that here ties must be handled, since applicants may have equal scores.
The presented score-limit algorithm finds a solution that satisfies a special stability
condition. We describe the applicant-proposing version of the above algorithm and
we prove that the obtained solutions by these algorithms are the maximal and the
minimal stable score-limits, respectively.

1 Introduction

The college admission problem was introduced and studied by Gale and Shapley [5]. Later
Roth [8] described the history of the National Intern Matching Program, that have used
the same type of algorithm since 1952. Further literature about the two-sided matching
markets can be found in the book of Roth and Sotomayor [10].

Recently, the student admission problem came again into prominence (detailed descrip-
tion about several applications can be found in the paper of Abdulkadiroğlu and Sönmez
[3]). New centralized matching programs have been implemented for public schools in
Boston, and for high schools in New York (see [1] and [2]).

However, there are some studies about existing college admissions programs as well
(see the papers [7] and [4] about the programs in Spain and in Turkey, respectively), the
description of many other important implementations are not available in the literature.

In Hungary, the admission procedure of higher education institutions is organized by
a centralized matching program. The Ministry of Education founded the Admission to
Higher Education National Institute (OFI) in 1985 in order to create, operate and develop
the admission system of the higher education. The number of applicants is around 150000
in each year, about 100000 of them are admitted, and the fees are payed by the state for
approximately 60% of the students (exact statistics in Hungarian are available at [6]).

First, we note that instead of colleges, in Hungary the universities have faculties,
where the education is organized in different fields of studies quite independently. So here,
students apply for fields of studies of particular faculties. For simplicity, these fields are
referred as colleges later in order to keep the original terminology of Gale and Shapley.

At the beginning of the procedure, students give their ranking lists that correspond
to their preferences over the fields they apply for. There is no limit for the length of the
list, however applicants are charged after each item. The students receive scores at each
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field they applied for according to their final notes at the high school, and entrance exams.
Note, that the score of a student can differ at two fields. These scores are integer numbers,
currently limited to 144. Universities can admit a limited number of students to each of
their fields, these quotas are determined by the Ministry of Education.1

The administration is organized by a state-owned center. After collecting the appli-
cants’ rankings and their scores, a centralized program computes the score-limits of the
fields. An applicant is admitted by the first place on his list, where he is above the
score-limit.

Here, we present the currently used basic algorithm that yields a kind of stable as-
signment. This algorithm is very similar to the Gale–Shapley [5] algorithm, in fact, if the
score of the applicants are different at each place then this algorithm is equivalent to the
college-proposing algorithm of Gale and Shapley. This explains why it is not suprising
that similar statements can be proved for the score-limit algoritms. Here, we show that
the score-limits at each field is maximal for the college-proposing version, and minimal for
the applicant-proposing version in the set of the stable score-limits.

2 The definition of stable score-limit

Let A = {a1, a2, . . . , an} be the set of applicants and C be the set of colleges, where qu

denotes the quota of college cu. Let the ranking of the applicant ai be given by a preference
list P i, where cv >i cu denotes if cv preceeds cu in the list, i.e. if the applicant ai prefers
the college cv to cu. Let si

u be ai’s final score at the college cu.
The score-limit l is a nonnegative integer mapping l : C → N. An applicant ai is

admitted by a college cu, if he achieves the limit at college cu, and that is the first such
place in his list, i.e. si

u ≥ l(cu), and si
v < l(cv) for every college cv >i cu. If the score-limit

l implies that a college cu admits applicant ai, then we set the boolean variable xi
u(l) = 1,

and 0 otherwise. Let xu(l) =
∑

i x
i
u(l) be the number of applicants allocated to cu. A

score-limit l is feasible if xu(l) ≤ qu for every college.
Let lu,t be defined as follows: lu,t(u) = l(u)− t and lu,t(v) = l(v) for every v 6= u. That

is, we decrease the score limit by t at college cu, by leaving the other limits unchanged. We
say that a score-limit l is stable if l is feasible but for each college cu, lu,1 is not feasible.
This stability condition means that no college can decrease its limit without violating its
quota (assuming that the others do not change their limits). We note that if no ties occur
(i.e. two applicants have different scores at each college), then this stability condition is
equivalent to the original one by Gale and Shapley.

3 Score-limit algorithms and optimality

First we present the currently used algorithm and verify its correctness, then we describe
its applicant-proposing version. Finally, we prove that these algorithms produce the max-
imal and the minimal stable score-limits, respectively.

The score-limit algorithms

Both score-limit algorithms are very similar to the two versions of the original Gale–
Shapley algorithm. The only difference is that now, the colleges cannot select exactly
as many best applicants as their quotas are, since the applicants may have equal scores.

1We describe some further specialities and requirements in the last subsection, that are not included in
the presented basic model.
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Here, instead each college sets its score-limits always to be the smallest one, such that
its quota is not exceeded. If the scores of the applicants are distinct at each college then
these algorithms are equivalent to the original ones.

College-proposing algorithm:
In the first stage of the algorithm, let us set the score-limit at each college independently
to be the smallest value such that the number of admitted applicants does not exceed
its quota by considering all its applications. Let us denote this limit by l1. Obviously,
there can be some applicants, who are admitted by several places. These applicants keep
their best offer, and reject all the less preferred ones, moreover they cancel also their less
preferred applications.

In the further stages, the colleges check whether their score-limits can be further de-
creased, since some of their applications may have been cancelled in the previous stage,
hence they look for new students to fill up the empty places. So each college sets its
score-limit independently to be the least possible, considering their actual applications.
If an applicant is admitted by some new, better place, then he accepts the best offer in
suspense, and rejects or cancels his other, worse applications.

Formally, let lk be the score-limit after the k-th stage. In the next stage, at every college
cu, the largest integer tu is chosen, such that xu(lu,tu

k ) ≤ qu. That is, by decreasing its score-
limit by tu, the number of admitted applicants by cu does not exceed its quota, supposing
that all other score-limits remained the same. For every college let lk+1(cu) := l

u,tu
k (cu)

be the new score-limit. If some limits are decreased simultaneously, then some applicants
can be admitted by more than one place, so xu(lk+1) ≤ xu(lu,tu

k ). Obviously, the new
score-limit remains feasible.

Finally, if no college can decrease its limit, then the algorithm stops. The stability of
the final score-limit is obvious by definition.

Example 1. In this example we consider only 3 colleges, ccs, ce and cm (i.e. college of
computer science, economics and maths, respectively) and the effect caused by two appli-
cants, ai and aj . We suppose that all the other applicants have only one place in their lists.
The preferences of ai and aj are the following: P i = ce, ccs, cm, . . . and P j = ccs, cm, ce, . . ..

Their scores are: si
cs = 112, si

e = 100, si
m = 117, s

j
cs = 110, s

j
e = 103 and s

j
m = 105. Let

the quotas be qcs = 500, qe = 500 and qm = 100. We suppose that the number of applicants
having

- at least 110 points at ccs is 510,
- more than 110 points at ccs is 483,
- at least 100 points at ce is 501,
- more than 100 points at ce is 460,
- at least 105 points at cm is 101,
- more than 105 points at cm is 87.

In the first stage of the college-proposing algorithm the score-limits are l1(ccs) = 111,
l1(ce) = 101 and l1(cm) = 106. At these limits ai is admitted to the college of computer
science and to the college of maths too, while aj is admitted to the college of economics
only. Since ai prefers the computer science, he rejects the latter offer (and he cancels
also his other less preferred applications.) Now, in the second stage, the score-limit can
be decreased by one at the college of maths, because the number of currect applications
having at least 105 points is exactly 100. In this way, aj becomes admitted to this college,
and since he prefers maths to economics, he rejects his offer there. In the third stage, the
score-limit can be decreased by one at the college of economics. After this change ai is
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Figure 1: The score-limits in the college-proposing algorithm

admitted to the college of economics, that is his most preferred place, so he cancels all
his other applications. In the final stage no score-limit can be decreased, so the algorithm
stops.

Applicant-proposing algorithm:
Let each applicant propose to his first choise in his list. If a college receives more applica-
tions than its quota, then let this score-limit be the smallest value such that the number
of temporary accepted applicants does not exceed its quota. We set the other limits to be
0.

Let the score-limit after the k-th stage be lk. If an applicant has been rejected in the
k-th stage, then let him apply for the next place in his list, say cu where he achieves the
actual score-limit lk(cu), (if there remained such a place in his list). Some colleges may
receive new proposals, so if the number of admitted applicants exceeds their quota at a
college, they set a new, higher score-limit lk+1. At the same time, they reject all those
applicants that do not achieve this new limit.

The algorithm stops if there is no new application. The final score-limit is obviously
feasible. It is also stable, because after a limit is increased for the last time, then the
rejected applicants get worse and worse offers during the algorithm. So if the limit were
decreased by one at the final solution in this place, then these applicants would accept the
offer, and the quota would have been exceeded.

Theorem 3.1. Both the score-limit lC , obtained by the college-proposing algorithm and
the score-limit lA, obtained by the applicant-proposing algorithm are stable.

Below, we give a simple example to show that not only some applicants can be admitted
by preferred places in lA than in lC , but the number of admitted applicants can also be
larger in lA.

Example 2. We consider only two places ccs and ce with two applicants ai and aj.
We suppose that all the other applicants have only one single place in their lists. The
preference-lists of ai and aj are P i = ce, ccs, . . . and P j = ccs, ce, . . ., and their scores are:

si
cs = 112, si

e = 100, s
j
cs = 110 and s

j
e = 103. Both places have quotas 500. We suppose

that the number of applicants having

- at least 110 points at ccs is 501,
- more than 110 points at ccs is 487,
- at least 100 points at ce is 501,
- more than 100 points at ce is 460.
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Figure 2: The final score-limits of the college-proposing and the applicants-proposing
algorithm

Here, both algorithms stop after one stage. The final score-limit obtained by the
college-proposing algorithm is lC(ccs) = 111 and lC(ce) = 101. The number of admitted
applicants are xcs(lC) = 487 and xe(lC) = 460, respectively. While, the final score-
limit obtained by the applicant-proposing algorithm is lA(ccs) = 110 and lA(ce) = 100.
Moreover, the number of admitted applicants are 500 at both places. This extreme example
shows that the difference between the solutions can be relevant.

The optimality

We say that a score-limit l is better than l∗ for the applicants if l ≤ l∗, (i.e. l(cu) ≤ l∗(cu)
for every college cu). In this case every applicant is admitted by the same or by a preferred
place at score-limit l than at l∗.

Theorem 3.2. lC is the worst possible and lA is the best possible stable score-limit for the
applicants, i.e. for any stable score-limit l, lA ≤ l ≤ lC holds.

Proof. Both proofs are based on indirect arguments, that are similar to the original one
of Gale and Shapley’s.

Suppose first, that there exists a stable score-limit l∗ and a college cu such that l∗(cu) >

lC(cu). During the college-proposing algorithm there must be two consecutive stages with
score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu) for some college cu.
Obviously, l

u,tu
k (cu) = lk+1(cu) by definition and xu(lu,tu

k ) ≤ qu < xu(lu,1
∗ ) by the stability

of l∗. So, on the one hand, there must be an applicant, say ai who is admitted by cu

at l
u,1
∗ but not admitted by cu at l

u,tu
k . On the other hand, the indirect assumption

l
u,tu
k (cu) = lk+1(cu) ≤ l∗(cu) − 1 = l

u,1
∗ (cu) implies that ai must be admitted by another,

preferred place than cu at l
u,tu
k (since ai has at least l

u,tu
k (cu) score there), and obviously

also at lk. That is impossible if l∗ ≤ lk, a contradiction.
To prove the other direction, we suppose that there exist a stable score-limit l∗ and a

place cu such that l∗(cu) < lA(cu). During the applicant-proposing algorithm there must be
two consecutive stages with score-limits lk and lk+1, such that l∗ ≥ lk and l∗(cu) < lk+1(cu)
for some college cu. At this moment, the reason of the incrementation is that more than qu

students are applying for cu with at least l∗ score. This implies that one of these students,
say ai is not admitted by cu at l∗ (however he has at least l∗(cu) score there). So, by the
stability of l∗, he must be admitted by a preferred place, say cv at l∗. Consequently, ai

must have been rejected by cv in a previous stage of the algorithm, that is possible only
if l∗(cv) < lk(cv), a contradiction.

4 Further notes

There are many further rules required by the law. Some of them are considered in the
present algorithm, some are handled manually afterwards.
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At each place there is a minimum score that is generally equal to 60% of the maximum
score (that is 144 points usually). If an applicant does not have the minimum score at a
place, then this application is simply deleted.

In Hungary, some studies are completely financed by the state, some are partly financed
by the students. At most of the places there are two different quotas for both kind of
studies. The applicants have to indicate also in their rankings which kind of study they
apply for at some field.2 These are considered in the algorithm as distinct places with
distinct quotas. However, there are some requirements on their score-limits: the difference
between the score-limits of the state-financed and the privately-financed studies at the
same place can not be more than 10%. This rule is tracted by the current algorithm.

Another speciality is that certain pairs of fields can be chosen simultaneously, and
some others must come in pairs. These cases are solved manually after the first run of the
program, and might cause overflowings.

An actual problem of the program is that the scoring system is not fine enough, that
is why huge ties are likely to emerge. As a consequence, the difference between the quota
and the number of admitted applicants can be large. Moreover, in an extreme case, if the
number of applicants having maximum score is greater than the quota of that place, no
student can be admitted. So, it is a good news, that recently a finer scoring system has
been proposed in the actual law that will increase the maximum score from 144 to 480.

In our opinion, to change the direction of the algorithm would also be reasonable.
Not just because some applicants could be admitted by preferred places, but also because
the number of admitted applicants could increase too. We think that the effect of such
a change would be more significant than the effect of a similar change in the National
Resident Matching Program (see the study of Roth and Peranson [9] about this).
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