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Introduction

We say that a market situation is stable in a general sense, if there is no set of agents
such that all of them are interested in creating a new cooperation (and breaking their
other eventual cooperations). As a special question, Gale and Shapley [19] introduced
and studied the problem of stable marriages. Here a matching, that corresponds to a
set of marriages, is stable, if there exists no man and woman, who would both prefer to
marry each other (after leaving their eventual partners). Gale and Shapley described
a natural algorithm that finds a stable matching for the marriage problem, so when
the graph, that models the possible partnerships, is bipartite.

The stable matching problem and its generalizations have been extensively studied
both in combinatorial optimization and game theory. The main reason is that these
models seem to be useful to describe economic and social situations. Moreover, as real
applications, centralized matching programs have been established in several areas to
solve problems like hospitals-residents matching, student admission or kidney exchange.

The stable matching problem for bipartite graphs is often studied in the context
of stable marriages. Actually, whenever we use the marriages as a natural terminology
for the above problem, explicitly we should have at least three assumptions: payment
(dower) is not allowed, only men and women can marry each other, and everybody can
have at most one partner. The most important generalizations of the stable matching
models can be obtained in fact, by relaxing these conditions.

From a game theoretical point of view the stable matching problems with or
without sidepayments are equivalent to the problem of finding a core element in some
corresponding so-called TU or NTU-games, (i.e. cooperative games with or without
transferable utility,) respectively. The stable marriage problem can be considered as
a basic NTU-game. If we allow transfers between the agents, then the corresponding
TU-game is called the assignment game. Shapley and Shubik [33] proved that these
games always have a nonempty core.

There are many interesting connections between graph and game theory. The core
elements of a TU-game are in fact minimum weight covers if their value is equal to
the maximum weight of matchings, thus, when the core of the game is nonempty.
So, the result of Shapley and Shubik is actually an easy consequence of the theorem
of Egerváry [18] about maximum weight matching in bipartite graphs. If the size
of the basic coalitions may be more than 2, then instead of graphs, we can model
these problems with hypergraphs. The nonemptyness of the core for some families of
NTU-games, like the bipartite matching games, can be proved by using a general game
theoretical lemma of Scarf [32] and a theorem of Lovász [25] on normal hypergraphs.
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2 Stable roommates problem

We model the stable matching problem with a graph G, where the agents are
represented by vertices, and two vertices are linked by an edge if the agents are both
acceptable to each other. For every vertex v, let <v be a linear order on the edges
incident with v. That is, every agent has strict preferences on his possible partnerships.
We say that agent v prefers edge f to e (in other words f dominates e at v) if e <v f
holds. A matching M is a set of edges with pairwise distinct vertices. A matching M
is called stable if every nonmatching edge, e /∈ M is dominated by some matching
edge, f ∈ M . A stable matching can also be defined as a matching without a blocking
edge: an edge e = {u, v} is blocking for a matching M if u is either unmatched or
prefers edge e to the matching edge that covers u in M , and at the same time, v is
either unmatched or prefers edge e to the matching edge that covers v in M .

Alternatively, stable matchings can be described with inequalities. If M is a set of
edges then let xM : E(G) −→ {0, 1} be its characteristic function i.e.

xM(e) =

{

1 e ∈ M
0 e /∈ M

Subset M of E(G) is a stable matching if the following conditions hold:

(M) Matching:
∑

v∈e

xM (e) ≤ 1 for every vertex v ∈ V (G)
(S) Stability:
for every edge e ∈ E there exists a ver-
tex v ∈ e such that

∑

v∈f,f≥ve

xM(f) = 1

We consider the stable marriage problem if the graph is bipartite, and the stable
roommates problem if the graph is general. Gale and Shapley [19] showed that stable
matching may not always exists in the latter case, so the core of the corresponding
NTU-game can be empty. Irving [21] constructed the first polynomial algorithm that
finds a stable matching if there exists one in a given instance. Later, Tan [35] showed
that a so-called stable half-matching always exists for the roommates problems.
Stable half-matchings can be defined easily by using the very same inequalities that
preserve the matching, (M) and stability, (S) property by extending the range of the
weight-function xhM : E(G) −→ {0, 1

2
, 1}.

2.1 “Almost stable” matchings

For a stable roommates problem, where no stable matching exists, it is a natural
question to find a matching that admits the fewest number of blocking pairs: it can be
regarded as a matching that is “as stable as possible”. If an agent may be indifferent
between two partnerships, then we consider the stable matching problem with ties.
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Here, a matching is weakly stable if there exist no blocking edge where both agents
strictly prefer the other to his actual partner. The following results of Abraham, Biró
and Manlove have been published in [1].

Theorem 2.1. [1] Given an instance of stable roommates problem. The problem of
finding a matching for which the number of blocking edges is minimal is not approx-
imable within n

1

2
−ε, for any ε > 0, unless P = NP .

Theorem 2.2. [1] Given an instance of stable roommates problem with ties. The prob-
lem of finding a matching for which the number of blocking edges is minimal is not
approximable within n1−ε, for any ε > 0, unless P = NP .

Below, we collect some related results in a table. To clarify the connections we
refer these problems with indices [Ri] in the table. We have already mentioned the
results of Gale and Shapley [19] and Irving [21] that have reference indexes [R1] and
[R2], respectively. The problem of finding a weakly stable matching in the roommates
case with ties is NP-complete [R3]. This was proved first by Ronn [28] for complete
graphs and later by Irving and Manlove [23] for incomplete lists.

Beside the stability, the cardinality of the matching can also be an important
goal that we may want to maximize. Manlove et al. [26] proved that the decision
problem related to finding the maximum size of weakly stable matching for a given
instance of stable marriage problem with ties is NP-complete [R4]. Finally, Manlove
proved that given an instance of stable marriage problem, the problem of finding a
maximum cardinality matching for which the number of blocking edges is minimal is
also inapproximable [R5] (personal communication).

The problem is to where bipartite graph arbitrary graph
find a matching M , M (strict) with ties (strict) with ties
s.t. M (arb.) Yes [R1] (Yes) P [R2] NPc [R3]

is stable max (P) NPc [R4] (P) (NPc)
s.t. M has min (arb.) (=0) (=0) NPc (2.1) NPc (2.2)

no. of blocking pairs max NPc [R5] (NPc) (NPc) (NPc)

In this table, P denotes that the problem is polynomial time solvable, NPc denotes
that the (related) problem is NP-complete, (NPc) denotes that the NP-completeness
of the problem is obvious from the mentioned results.

2.2 The dynamics of the stable matchings

For the stable marriage problem, Knuth [24] asked whether it is possible to obtain a
stable matching by starting from an arbitrary matching and successively satisfying
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blocking pairs. Roth and Vande Vate [31] gave a positive answer by a decentralized
algorithm, in which pairs or single agents enter the market in a random order, and
stability is achieved by a proposal-rejection process. Later, Diamantoudi, Miyagawa
and Xue [17] proved the same for solvable stable roommates problems.

However the original goal of Roth and Vande Vate was different, their algorithm
can be used to model the dynamics of the two-sided matching market as well.
In fact, this mechanism also yields an algorithm to find a stable matching for a
market by letting the agents enter the market in a random order and by restoring
the stability in each such active phase. Independently, Tan and Hsueh [36] con-
structed an algorithm, that finds a stable half-matching for general graphs by using
a similar incremental method. In the bipartite case, the Tan-Hsueh algorithm is
equivalent to the Roth-Vande Vate algorithm. In the nonbipartite case infinite repeti-
tions can occur, these are handled by the introduction of half-weighted cycles in the
obtained stable half-matchings. We call these two algorithms “incremental algorithms”.

Recall, that Gale and Shapley [19] proved that the stable matching obtained by
the deferred-acceptance algorithm is man-optimal if men make the proposals, (i.e. no
man can have a better partner in any other stable matching, so each man gets his best
possible partner). Based on these results, Blum, Roth and Rothblum [13] described
some properties of a dynamic two-sided matching market. They showed the output of
the proposal-rejection process is predictable: if some men enter the market then each
man either remains matched with the same partner (if it is possible) or gets a worse
(but his best) stable partner for the new market.

Blum and Rothblum [14] pointed out that these results imply that the lastcoming
agent gets his best stable partner in the Roth-Vande Vate algorithm. Biró, Cechlárová
and Fleiner [11] generalized most of these results for nonbipartite graphs based on a
new, so-called Key Lemma.

Lemma 2.3 (Key Lemma). [11] If hMv is a stable half-matching for G − v, and edge
{v, u} is not blocking hMv, then v and u cannot be matched in a stable half-matching
for G.

Theorem 2.4. [11] Suppose that an agent v enters the market and stability is restored
by a proposal-rejection process along the sequence S = (A|B). Then each agent a ∈
A(b ∈ B) , who became matched by making (accepting) a proposal gets his best (worst)
stable partner in the obtained stable half-matching.

Corollary 2.5. [11] If an agent enters the market last and becomes matched, then he
gets his best stable partner.
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Theorem 2.6. [11] Each matched agent, that gets a partner in the last active phase
by making (accepting) a proposal, receives his best (worst) stable partner in the stable
solution output by the incremental algorithm.

Corollary 2.7. [11] A stable matching, where no matched agent gets his best stable
partner, cannot be output by the incremental algorithm.

Blum and Rothblum [14] proved that an agent can only benefit from entering the
two-sided market later. The corresponding results we proved are the following in the
roommates case.

Theorem 2.8. [11] Let in the incremental algorithm two arrival orders σ and σ′ differ
only in one agent v in such a way that v arrives later in σ. Let hM and hM ′ be the
outputs of the algorithm realized with the orders σ and σ′ respectively. If v is a matched
agent, then he gets at least as good partner in hM as in hM ′.

Gale and Sotomayor [20] showed that if some man expands his preference-list then
no other man is better off in the new men-optimal stable matching. This implies that
the same statement is true if a number of men enter the market. Roth and Sotomayor
[30] proved that if a man arrives and becomes matched, then certain women will be
better off, and some man will be worse off under any stable matching for the new market
than at any stable matching for the original market. We generalize this theorem by
using an improved version of a result of Irving and Pittel [27] on the core configuration.
(A stable half-matching hMv is a core configuration relative to v if after adding v to
the graph, the associated proposal-rejection sequence S(hMv) is as short as possible.)

Theorem 2.9. [11] If hMv is a core configuration relative to v, then the associated
proposal-rejection sequence a0(= v), b1, a1, . . . , ak−1, bk(, ak) consists of distinct persons,
it is uniquely defined, and for every agent in the sequence, who is matched for G, the
following properties are true:

a) bi is the worst stable partner of ai for G− v and bi+1 is the best stable partner of ai

for G;

b) ai is the best stable partner of bi for G− v and ai−1 is the worst stable partner of bi

for G.

Theorem 2.9 implies the following nonbipartite generalization of a results by Roth
and Sotomayor [30] proved for the marriage problem.

Theorem 2.10. [11] Suppose that a new agent is added to the market. There may
exist some agents that are better off, and some other agents that are worse off under
any stable half-matching for the new market than at any stable half-matching for the
original market. We can efficiently find all of these agents.
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3 Stable allocation problems

The stable allocation problem for hypergraphs is defined as follows. A hypergraph H
and for each vertex v a strict preference order over the edges incident with v is given.
Suppose that nonnegative bounds on the vertices b : V (H) → R+, and nonnegative
capacities on the edges c : E(H) → R+ are fixed. A a nonnegative function x on the
edges in an allocation, if x(e) ≤ c(e) for every edge e and

∑

v∈h x(h) ≤ b(v) for every
vertex v. An allocation is stable if every unsaturated edge e (i.e. x(e) < c(e)) contains
a vertex v such that

∑

v∈h,e≤vh x(h) = b(v). In this case, we say that e is dominated at v.

Biró and Fleiner proved in [7] that Scarf’s lemma [32] implies the existence of a
stable allocation for every allocation problem in hypergraps.

Theorem 3.1. [7] Every stable allocation problem for hypergraphs is solvable.

The stable allocation problem was introduced by Bäıou and Balinski [5] for
bipartite graphs. Their so-called inductive algorithm solves the problem for two-sided
markets by O(n+m) augmenting steps (where n and m denote the number of vertices
and edges of the input graph, respectively), thus by a strongly polynomial algorithm.

The integral version, (i.e. if the allocation x is required to be integer on every
edge for integer bounds and capacities) was called stable schedule problem by Alkan
and Gale [3], although they considered a more general model, the case of so-called
substitutable preferences. They showed that a stable solution can always be found by a
natural generalization of the Gale-Shapley algorithm. Here, instead of stable schedule
problem, we call the integral version of the stable allocation problem simply as integral
stable allocation problem.

We note, that if every bound and capacity is equal to 1, then we get the stable
matching problem. Another important family of problems can be derived from the
integral stable allocation problem by setting every edge-capacity to be 1. This is called
stable b-matching problem (or many-to-many stable matching problem). Furthermore,
if the vertex-bounds are also equal to 1 in one side of the market, then we get
the many-to-one stable matching (or the college admission or the hospital-resident)
problem.

The above described integral stable allocation problems are also solvable by the
Gale-Shapley algorithm, in fact, the original goal of the Gale-Shapley paper was
to study the college admission problem. Their algorithm is used currently in many
established centralized matching program for several kind of two-sided markets.
Moreover, the very same algorithm had already been implemented in 1952 in the
National Intern Matching Program [29] .
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3.1 Integral stable allocation problem on graphs

Biró and Fleiner showed in [7] that Scarf’s lemma [32] implies the existence of a half-
integer stable allocation for every integral stable allocation problem in nonbipartite
graphs. The proof is similar to the one used by Aharoni and Fleiner [2] that verifies
the existence of the stable half-matching in the roommates case.

Theorem 3.2. [7] For every integral stable allocation problem for graphs there exists
a half-integer stable allocation.

In [6] we presented two alternative proofs for the above result. In the first
argument we showed that every integral stable allocation problem for graphs can be
reduced with graph constructions to a stable roommates problem. Except for a trivial
step, these constructions had already been introduced by Cechlárová and Fleiner in [15].

The second proof is constructive: we generalized the inductive algorithm of Bäıou
and Balinski [5] for nonbipartite graphs. The idea of this algorithm is the following.
At the beginning of the inductive algorithm, we set the bounds to be b0(u) = 0 for
every v ∈ V (G). Here x0(e) = 0 for every e ∈ E(G) is a trivial stable allocation. Then
we successively increment the bounds of the vertices, by simultaneously modifying the
stable allocation along augmenting paths, until reaching the vertex-bounds b for every
vertices.

As the inductive algorithm of Bäıou and Balinski is a kind of generalization
of the incremental algorithm of Roth and Vande Vate, the general inductive algo-
rithm also generalizes the incremental Tan-Hsueh algorithm. In fact, if we use the
inductive algorithm for the roommates problem, then it can be verified that the
augmentation is always conducted along the shortest path that corresponds to the
proposal-rejection sequence of the incremental algorithm in case of a core configuration.

We proved the following result in [6] on the running time of the generated inductive
algorithm.

Theorem 3.3. [6] The inductive algorithm produces a stable half-allocation for a given
integral stable allocation problem in O(n + m)

∑

v∈V (G) b(v) augmenting steps.

So unfortunately, the generalized inductive algorithm does not remain strongly poly-
nomial. Moreover, in [6] it is shown by a special construction that the order of growing
in the running time of the general inductive algorithm can be an exponentional function
of n. However, we note that a scaling property ensures that this algorithm can be mod-
ified with standard techniques to become polynomial for the integral stable allocation
problem. But it is still an open question whether there exists a strongly polynomial al-
gorithm for the integral stable allocation or the more general stable allocation problem
for nonbipartite graphs.
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3.2 Higher education admission in Hungary

Since 1985, the admission procedure of higher education institutions is based on a
centralized matching program in Hungary. Hungarian universities have faculties, where
the education is organized in different fields of studies, quite independently. So, stu-
dents apply for fields of studies of particular faculties, referred simply as fields hereafter.

At the beginning of the procedure, students give their ranking lists over the fields
they apply for. Students receive scores at each field they applied for according to
their final notes at the high school, and entrance exams. Note, that the score of a
student can differ at two fields. Universities can admit a limited number of students to
each of their fields, these quotas are determined by the Ministry of Education. After
collecting the applicants’ rankings and their scores, a centralized program computes
the score-limits of the fields. An applicant is admitted by the first place on his list,
where he is above the score-limit.

Formally, let A = {a1, a2, . . . , an} be the set of applicants and F be the set
of field of studies, where qu denotes the quota of field fu. Let the ranking of the
applicant ai be given by a preference list P i, where fv >i fu denotes that fv preceeds fu

in the list, i.e. applicant ai prefers the field fv to fu. Let si
u be ai’s final score at field fu.

The score-limit l is a nonnegative integer mapping l : F → N. An applicant ai is
admitted by a university to a field fu, if he achieves the limit at field fu, and fu is
the first such place in his list, i.e. si

u ≥ l(fu), and si
v < l(fv) for every field fv >i fu.

A score-limit l is feasible if the number of admitted applicants is not more than the
given quota for each field. A score-limit is stable if no university can decrease the
limit of any of its fields without violating its quota (assuming that the others do not
change their limits). We note that this definition coincides with the original stability
condition of Gale and Shapley [19] if there are no ties in the lists (i.e. if the scores of
the applicants are distinct at each field).

The currently used college-proposing score-limit algorithm and the applicant-
proposing version are described in [8]. Both algorithms are very similar to the
original Gale-Shapley algorithms. The only difference is that here, universities
cannot select exactly as many best applicants to their fields as their quotas are,
since the applicants may have equal scores. Here, instead universities set their score-
limits at each field always to be the smallest one, for that their quotas are not exceeded.

If the scores of the applicants are distinct at each field then these algorithms are
equivalent to the original ones by Gale and Shapley. That is why it is not suprising
that similar statements can be proved for this more general setting:
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Theorem 3.4. [8] Both the score-limit lF , obtained by the college-proposing algorithm
and the score-limit lA, obtained by the applicant-proposing algorithm are stable.

We say that a score-limit l is better than l∗ for the applicants if l ≤ l∗, (i.e. l(fu) ≤
l∗(fu) for every field fu). In this case every applicant is admitted by the same or by a
preferred place at score-limit l than at l∗.

Theorem 3.5. [8] lF is the worst possible and lA is the best possible stable score-limit
for the applicants, i.e. for any stable score-limit l, lA ≤ l ≤ lF holds.

4 Exchange of indivisible goods

Assume that a simple digraph D = (V, A) is given, where V is the set of agents.
Suppose that each agent has exactly one piece of indivisible goods, and (i, j) is an
arc of A if the good of agent i is suitable for agent j. An exchange is a permutation
π of V such that, for each i ∈ V , i 6= π(i) implies (i, π(i)) ∈ A. This can be consid-
ered equivalently as a directed cycle packing in the digraph. We denote by Cπ(i) the
cycle of π containing i. If Cπ(i) has length at least 2, then the agent is said to be covered.

Shapley and Scarf [34] described the exchange problem of indivisible goods
as a partitioning NTU-game, referred also as houseswapping game. Here, the set
of common activities for a coalition S corresponds to the set of permutations of
S. Preferences of the agents over the possible permutations are derived from the
preferences over the goods they receive. As in an exchange π each agent i receives the
good of his predecessor, π−1(i), agent i prefers an exchange π to another exchange
σ, if he prefers π−1(i) to σ−1(i). Thus, an exchange π is in the core of the game,
or it is stable, if there is no blocking coalition B and permutation σ of B, such
that each agent i ∈ B prefers σ to π. Shapley and Scarf proved that each such
market has a nonempty core. Moreover, they showed that a core solution can al-
ways be found by the Top Trading Cycle (TTC) algorithm proposed originally by Gale.

The permutation game is the houseswapping game with payments. The nonempty-
ness of the core of permutation games was proved first by Tijs et al. [37], they showed
that these TU-games are always balanced. We note that here, every core element
corresponds to a maximum weight exchange in the given weighted digraph.

An interesting recent application of this model is the kidney exchange problem.
Patients needing transplants may have donors who cannot donate them because of
immunological incompatibility. So these incompatible patient-donor pairs may accept
an exchange with other pairs. Formally, the set V of nodes represents incompatible
patient-donor pairs and an arc (u, v) means that the kidney of u′s donor is suitable
for v′s patient.
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Basically, there are three main concepts used already in established programs
or studied in the literature. As a first priority, most of the current models want to
maximize the number of patients that receive a suitable kidney in the exchange that
yields to the problem of finding a maximum size directed cycle packing in the digraph.
A more sophisticated model makes a distinction between suitable kidneys and tries
to find a solution where the sum of benefits is maximal, thus find a maximum weight
directed cycle packing. A third concept requires stability of the solution under various
criterias. So in the basic case, we get the problem of finding a core-solution in the
corresponding houseswapping game.

In these models, the difficulty of the corresponding problem is due to the fact
that the length of the cycles in the exchanges is bounded. The reason is that all
surgeries along a cycle have to be done simultaneously. Most programs allow only
pairwise exchanges, but sometimes 3-way exchanges are also possible. This motivates
the problem of exchange with restricted lengths. Thus here, a possible solution of the
problem is an l-way exchange that contains no cycle with length more than l, that is
equivalent to a vertex-disjoint packing of directed cycles with length at most l.

If l = 2, so only pairwise exchanges are allowed, then the problem becomes a
matching problem in an undirected graph G with the same vertex set. (Here, an edge
links two vertices if a pairwise exchange is possible between the corresponding pairs.)
Thus, the houseswapping game is equivalent to the stable roommates problem, and
the permutation game is equivalent to the stable roommates problem with transferable
utilities. These games may have an empty core, but the problem of finding a core-
solution, if one exists is solvable in polynomial time in both cases. For l ≥ 3 the
problem of exchange of indivisible goods, becomes theoretically hard for the NTU and
TU-games as well.

4.1 Maximum weight exchange with restrictions

Here, we collect some results of Biró and Rizzi [12] about the complexity of maximum
size and maximum weight l-way exchange problems.

Theorem 4.1. [12] The problem of finding a maximum size l-way exchange is APX-
hard for any integer l ≥ 3.

This result obviously implies that the maximum weight version is also APX-hard,
since that is a more general problem. This fact motivates the study of finding
approximation algorithms for these problems.

The maximum weight l-way exchange problem can also be reduced to the maximum
weight l-set packing problem (that can be considered as a maximum weigth matching
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problem in a hypergraph). The following approximation result was proved by Arkin
and Hassin in [4]. An alternative proof of Biró and Rizzi [12] is based on a less general
local search algorithm.

Theorem 4.2 (Ankin-Hassin 1998, [12]). The problem of finding a maximum weight
l-set packing is approximable with factor l − 1 + ε for any ε > 0.

Since the application of kidney exchanges requires an optimal solution, creating an
exact algorithm is important. The following result is based on a particular algorithm
for the 3-way exchange problem.

Theorem 4.3. [12] The problem of finding a maximum weight 3-way exchange is solv-
able in O(2

m

2 ) time (where m denotes the number of arcs in the digraph).

4.2 Stable exchange problem

A family of stable exchange problems has been introduced and studied in [9]. We have
already mentioned, that the basic stable exchange problem was solved by Shapley and
Scarf [34] as the problem of finding a core element in the houseswapping game. We
note, that according to their definition, in case of ties a core element corresponds to a
weakly stable matching.

Cechlárová et al. introduced L-preferences in [16]. Here, an agent i prefers a
permutation π to another permutation σ if either he prefers π−1(i) to σ−1(i) or he is
indifferent between them, but the length of Cπ(i) is smaller than the length of Cσ(i).
They called the corresponding NTU-game as kidney exchange game. The solution
produced by the TTC algorithm remain stable for this setting too. While Biró and
Cechlárová [10] proved that the problem of maximizing the number of agents covered
by a stable exchange under L-preferences (denoted by maxcover-Lse) is hard.

Theorem 4.4. [10] maxcover-Lse is not approximable within n1−ε for any ε > 0
unless P = NP .

Considering an l-way exchange problem, the size of the blocking coalitions can
also be restricted. We say that an exchange is b-way stable if there exist no blocking
coalition of size at most b. Biró [9], [6] proved the following results about 3-way stable
3-way exchange problems.

Theorem 4.5. [9], [6] The 3-way stable 3-way exchange problem is NP-complete.
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Theorem 4.6. [9], [6] The decision problem related to finding a 3-way stable 3-way
exchange that covers the maximum number of agents is NP-complete, even for three-
sided cyclic digraphs (i.e. V (D) = M ∪ W ∪ C where every arc (i, j) ∈ A(D) is from
either W × M or C × W or M × C).

Hereby, we collect again some related results and we refer these problems with
indices [Ri] in the following table. We have already mentioned some results about
pairwise stable pairwise exchanges (i.e. stable roommates problems) with indices [R2],
[R3] and [R4]. The theorem of Shapley and Scarf [34] on the existence of a nonempty
core for the houseswapping game gets index [R5]. Irving [22] proved recently that the
problem of finding a (cycle) stable pairwise exchange is NP-complete [R6]. The same
result holds for 3-way stable pairwise exchanges [R7]. Finally, ??? means that we think
that these unsolved problems are relevant, the reasons are explained below.

l = 2-way exchange 3-way exchange exchange
b = (strict) ties (strict) ties (strict) ties
2-way existence P [R2] NPc [R3] ??? (Yes) (Yes)
stable maxcover P NPc [R4] ???
3-way existence NPc [R7] (NPc) NPc (4.5) (NPc) (Yes) (Yes)
stable maxcover (NPc) (NPc) NPc (4.6) (NPc)
(cycle) existence NPc [R6] (NPc) (NPc) (NPc) (Yes) Yes [R5]

stable maxcover (NPc) (NPc) (NPc) (NPc) ???

In the present applications of kidney exchange, some programs allow three-way
exchanges, and pairwise stability may become a natural expectation. This is why the
problem of finding a pairwise stable 3-way exchange in an instance of SE is important.
Considering the exchanges without restrictions on the cycle-lengths, the TTC algorithm
always provides a stable exchange, that is also a pairwise stable exchange. But the
problem of maximizing the number of covered vertices by a stable or by a pairwise
stable exchange is still open.
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