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Abstract

We say that a market situation is stable in a general sense, if there is no set of agents
such that all of them are interested in creating a new cooperation (after breaking their
other eventual cooperations). As a special question, Gale and Shapley [48] introduced
and studied the problem of stable marriages. Here a matching, that corresponds to a
set of marriages, is stable, if there exists no man and woman, who would both prefer to
marry each other (after leaving their eventual partners). Gale and Shapley described
a natural algorithm that finds a stable matching for the marriage, so when the graph,
that models the possible partnerships, is bipartite.

The stable matching problem and its generalizations have been extensively studied
in combinatorial optimization and game theory. The main reason is that these models
are useful to describe economic and social situations. Moreover, as real applications,
centralized matching programs have been established in several areas. In this thesis,
beside describing the basic models and studying some special problems, we also
present some important applications.

The stable matching problem for bipartite graphs is often studied in the context
of stable marriages. Actually, whenever we use the marriages as an example for the
above problem, we must have at least three assumptions: payment (dower) is not
allowed, only men and women can marry each other, and everybody can have at most
one partner. The most important generalizations of the stable matching models can
be obtained by relaxing these conditions.

If we allow transfers between the agents in the stable marriage problem, then we get
a problem, that corresponds to the assignment game, defined by Shapley and Shubik
[102]. Stable matching problems with or without sidepayments are equivalent to the
problem of finding a core element of the corresponding so-called TU or NTU-games,
(i.e. cooperative games with or without transferable utility,) respectively. If the size of
the basic coalitions may be more than 2, then instead of graphs, we can model these
problems with hypergraphs.

In Chapter 1, we show that the nonemptyness of the core in bipartite matching
games is a consequence of a game theoretical lemma of Scarf [97] and a theorem
of Lovász [70] on normal hypergraphs. Besides, we describe some other interesting
connections between graph theory and game theory. We note for example that the
result of Shapley and Shubik [102] is an easy consequence of a theorem of Egerváry
[39] about maximum weight matching in bipartite graphs.

If we study one-sided markets instead of two-sided ones, then we get the stable
roommates problem and we model it with nonbipartite graphs. As Gale and Shapley
[48] showed, a stable matching may not always exist. Irving [56] constructed the first
polynomial algorithm that finds a stable matching if there exists one in the given
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instance. Later, Tan [104] showed that a so-called stable half-matching always exists
for the roommates problems.

In Chapter 2, we describe two special studies about the stable roommates problem.
The first one [21] is about the dynamics of the stable marriage and roommates
problems. In this work, we used the algorithm of Roth and Vande Vate [93] in the
bipartite case, and a similar algorithm of Tan and Hsueh [105] in the one-sided case
to model the dynamics of the matching market. We analyze the properties of the
solutions obtained by these incremental algorithms. In the second paper [5], we study
the complexity of the problem of “almost stable matchings”, that is to find a matching
for a roommates problem with the fewest number of blocking pairs.

If an agent can be involved in several partnerships at the same time (according to
a quota), then we get the stable b-matching problem. This problem is also solvable by
the Gale-Shapley algorithm, in fact, the original goal of their paper was to study this
so-called college admission problem. Their algorithm is used currently for many two-
sided markets. Moreover, Roth [83] discovered that the very same method had already
been implemented in 1952 in the National Intern Matching Program [77].

In Chapter 3, we study the higher education admission process in Hungary. Here,
the model is a bit more complicated, since students may have equal scores, so ties
must be handled. The presented results have been published in [18]. In this chapter
we also introduce and study the so-called stable allocation problem, that is the stable
matching problem with bounds on the vertices and capacities on the edges. Here,
we generalize the inductive algorithm of Bäıou and Balinski [14] for nonbipartite graphs.

Finally, we study the problem of exchange of indivisible goods. Shapley and Scarf
[103] introduced the houseswapping game as a basic NTU-game. The TU-version
is called permutation game. Tijs et at. [106] showed that these games also have a
nonempty core.

In Chapter 4, we focus on the problem, in which the lengths of the possible trading
cycles are bounded. Note that if only pairwise exchanges are allowed, then we get again
the stable matching problem (with or without sidepayments). For larger bounds, most
of the problems become NP-hard. Complexity questions about the so-called stable
exchange problems, that are related to the above NTU-games, are studied on the basis
of paper [19]. We present a result published in [20] about the inapproximability of a
special stable exchange problem. Finally, we consider the maximum weight directed
cycle packing problem, that is related to the problem of finding a core element in a
permutation game with restrictions. The presented results come from [22].

We note, that the problem of finding an “optimal” exchange with length restrictions
is relevant also because it has a very special application: in some already established
kidney exchange programs exactly the two- and three-way exchanges are allowed (see
[78] for example).
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Chapter 1

Core of cooperative games

Introduction

Here, we survey the basic literature about the core of the cooperative NTU- and TU-
games. Our final goal is to describe and to study the stable matching problem with the
presented general game theoretical notions.

1.1 NTU-games

We recall the definition of n-person games with nontransferable utility (NTU-game for
short) that can also be referred to as games without side payments.

Definition 1.1.1. An NTU-game is given by a pair (N, V ), where N = {1, 2, . . . , n} is
the set of players and V is a mapping of a set of feasible utility vectors, a subset V (S)
of R

S to each coalition of players, S ⊆ N , such that V (∅) = ∅, and for all S ⊆ N ,
S 6= ∅:
a) V (S) is a closed subset of R

S

b) V (S) is comprehensive, i.e. if uS ∈ V (S) and ũS ≤ uS then ũS ∈ V (S)

c) The set of vectors in V (S) in which each player in S receives no less than the
maximum that he can obtain by himself is a nonempty, bounded set.

One of the most important solution concept is the core.

Definition 1.1.2. A utility vector uN ∈ V (N) is in the core of the game, if there exists
no coalition S ⊆ N with a feasible utility vector ũS ∈ V (S) such that uN

i < ũS
i for every

player i ∈ S. Such a coalition is called a blocking coalition.

An NTU-game (N, V ) is superadditive if V (S)×V (T ) ⊆ V (S ∪T ) for every pair of
disjoint coalitions S and T . In what follows, we restrict our attention to superadditive
games.

8
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1.1.1 Partitioning game, redundant and essential coalitions

Partitioning games are special superadditive games. Given a set of basic coalitions B ⊆
2N , that contain all singletons (i.e. every single player has the right not to cooperate
with the others), a partitioning game (N, V,B) is defined as follows: if ΠB(S) denotes
the set of partitions of S into basic coalitions, then V (S) can be generated as:

V (S) = {uS ∈ R
S|∃π = {B1, B2, . . . , Bk} ∈ ΠB(S) : uS ∈ V (B1)×V (B2)×· · ·×V (Bk)}

This means that uS is a feasible utility vector of S if there exist a partition π of S
into basic coalitions, such that each utility vector uS|Bi

can be obtained as a feasible
utility vector for the basic coalition Bi of π.

Given an NTU-game (N, V ), let U(S) be the set of Pareto optimal utility vectors
of the coalition S, i.e. uS ∈ U(S) if there exists no ũS ∈ V (S), where uS 6= ũS and
uS ≤ ũS.

A utility vector uS ∈ V (S) is separable if there exist a proper partition π of S into
subcoalitions S1, S2, . . . , Sk such that uS|Si

is in V (Si) for every Si ∈ π. A utility vector
that is non-separable, Pareto-optimal and in which each player receives no less than
the maximum that he can obtain by himself is called an efficient vector. A coalition
S is essential if V (S) contain an efficient utility vector. In other words, a coalition S
is essential, if its members can obtain an efficient utility vector that is not achievable
independently by its subcoalitions. The set of essential coalitions is denoted by E(N, V ).

We say that a coalition S is not relevant if for every utility vector uS ∈ V (S) there
exists a proper subcoalition T ⊂ S such that uS|T is in V (T ). The set of relevant
coalitions is denoted by R(N, V ). The idea behind this notion is that if a non-relevant
coalition S is blocking with a utility vector uS, then some of its subcoalitions, T1 must
be also blocking with utility vector uT1 = uS|T1

. Moreover, if T1 is not relevant or uT1 is
separable, then we can find another coalition T2 ⊂ T1, such that uT2 = uT1|T2

= uS|T2
,

an so on. By this, there must be a relevant coalition Ti ⊂ S, that is blocking with a
non-separable vector uTi = uS|Ti

. This observation implies the following Proposition:

Proposition 1.1.3. A utility vector uN ∈ V (N) is in the core if and only if it is not
blocked by any relevant coalition with an efficient utility vector.

Obviously, if a coalition is not essential, then it cannot be relevant either. In a
partitioning game, the set of essential coalitions must be a subset of the basic coalitions
by definition.

Proposition 1.1.4. For every partitioning game (N, V,B), R(N, V,B) ⊆ E(N, V,B) ⊆
B holds.

1.1.2 Preferences over the set of outcomes

Scarf observed in [97] that the previously introduced notions are purely ordinal in
character: they are invariant under a continuous monotonic transformation of the utility
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function of any individual. Hence, without loss of generality, we may assume that
U{i} = {0} for every singleton, and all the efficient utility vectors are nonnegative.
Moreover, the discussion can be carried out on an abstract level with the outcomes for
each individual represented by arbitrary ordered sets.

In order to obtain a particular non-separable vector uS,k in U(S), the members of
S have to perform a common activity, say a

S,k. We denote by AS the set of activities
that yield efficient utility vectors in U(S). The preference of a player over the possible
activities in which he can be involved in is determined by the utilities that he obtains
by the activities. Formally, we have a

S,k ≤i a
T,l ⇐⇒ uS,k

i ≤ uT,l
i for two activities a

S,k

and a
T,l, where i ∈ S and i ∈ T .

Considering an efficient utility vector uN of the grandcoalition N , the non-
separability implies that it corresponds to a common activity a

N of the entire set
of players. Otherwise, if uN is separable, then uN can be obtained as a direct sum of
independent efficient utility vectors of essential subcoalitions that form a partition of
the grandcoalition. This can be considered as a set of independent activities of the sub-
coalitions. An outcome of the game, denoted by X then can be regarded as a partition
π of the players and a set of activities Aπ performed independently by the coalitions
in π, so X = (π, Aπ). An outcome X is judged by a player i according the activity he
is involved in, denoted by ai(X). An outcome is in the core of the game, or in other
words, it is stable if there exist no blocking coalition S and an activity a

S,l that is
strictly preferred by all of its members, so a

S,l >i ai(X) for all i ∈ S. (This is equiv-
alent to the blocking condition uN

i < ũS
i , if the outcome X corresponds to the utility

vector uN .)

uS,1

uS,2

uS,3

uS,4

uS,k

Figure 1.1: Approximation with finite number of efficient utility vectors.

An NTU-game is called finitely generated if for every essential coalition S, U(S)
contains a finite number of vectors. Here, the preference order of a player over the set
of activities, in which he can be involved, can be represented by preference lists. As
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Scarf observed in [97] and [96], a general NTU-game can be approximated by a finitely
generated NTU-game (see an illustration in Figure 1.1), thus they have similar basic
properties. Here, we will not discuss this question in details.

Suppose that in an NTU-game for every essential coalition S, U(S) contains one
single vector uS. In this case, the outcome of the game is just a partition, since each
essential coalition has one single activity to perform. So here, instead of activities, each
player has a preference order over the essential coalitions in which he can be a member.
These games are called coalition formation games (CFG for short), and an outcome
that is in its core is called a core-partition.

Example 1.1.5. In this example, we have 6 players: A, B, C, D, E and F , and 4 pos-
sible basic coalitions corresponding to activities, such that all members are interested
to participate in the activity. The first activity, b (bridge) can be played by A, B, C and
D, the second one, p (poker) can be played by C, D and E. Finally, B can play chess
with C (c1) and D can play chess with F (c2).

D

A

B

C

E

F

Activities Participants Players Preference lists
b : {A, B, C, D} B [b, c1]
p : {C, D, E} C [p, b, c1]
c1 : {B, C} D [b, p, c2]
c2 : {D, F}

Here, {p, {A}, {B}, {F}} is a core-partition, since b is not blocking because C prefers
his present coalition p to b, similarly, c1 is not blocking because C prefers playing poker
with D and E to playing chess with B, and c2 is not blocking because D also prefers
playing poker to playing chess with F . One can easily check that {b, {E}, {F}} is also
a core-partition, but the partition {c1, c2, {A}, {E}} is not stable, since p and b are
blocking coalitions.

1.1.3 Fractional core by Scarf’s lemma

First, we present Scarf’s lemma [97] and we apply it to the original settings. By this, we
introduce the notion of fractional core and we study some consequences. The following
version of the Lemma is due to Aharoni and Fleiner [7], here [n] denotes the integers
1, 2, . . . , n.

Theorem 1.1.6 (Scarf, 1967). Let n, m be positive integers, and b be a vector in R
n
+.

Also let A = (ai,j), C = (ci,j) be matrices of dimension n × (n + m), satisfying the
following three properties: the first n columns of A form an n× n identity matrix (i.e.
ai,j = δi,j for i, j ∈ [n]), the set {x ∈ R

n+m
+ : Ax = b} is bounded, and ci,i < ci,k < ci,j

for any i ∈ [n], i 6= j ∈ [n] and k ∈ [n + m] \ [n].
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Then there is a nonnegative vector x in R
n+m
+ such that Ax = b and the columns of

C that correspond to supp(x) form a dominating set, that is, for any column i ∈ [n+m]
there is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

Let the columns of A and C correspond to the efficient utility vectors (or equiva-
lently to some activities) of the essential coalitions in a finitely generated NTU-game
as follows. If the k-th columns of A and C correspond to the utility vector uS,l, then let
ai,k be 1 if i ∈ S and 0 otherwise, (so the k-th column of A is the membership vector

of coalition S). Furthermore, let ci,k = uS,l
i if i ∈ S and ci,k = M otherwise, where

M is a sufficiently large number. We set ci,i = u
{i}
i = 0 and ci,j = 2M if i 6= j ≤ n.

Finally, let b = 1N . By applying Scarf’s lemma for this setting, we obtain a solution x
that we call a fractional core element of the game.

What is the meaning of a fractional core element? Let us suppose first, that a
fractional core element x is integer, so xi ∈ {0, 1} for all i. In this case we show that x
gives a utility vector uN that is in the core of the game. Let uN be the utility vector
of N received by summing up those independent essential utility vectors for which
x(uS,k) = 1, then uN is obviously in V (N) by superadditivity. To prove that uN must
be in the core of the game, let uS,k be an essential utility vector, with x(uS,k) = 0. By
the statement of Scarf’s lemma, there must be a player i and an essential utility vector
uT,l, such that i ∈ T , x(uT,l) = 1 and uS,k

i ≤ uT,l
i , so S cannot be a blocking coalition

with the efficient utility vector uS,k.
In other words, the Ax = 1N condition of the solution says that x gives a partition

π of N and a set of activities Aπ that are performed (i.e. a
S,k is performed, so a

S,k ∈ Aπ

if x(uS,k) = 1, thus S is a coalition in the partition π). Let X = (π, Aπ) be the
corresponding outcome, and let a

S,k be a not performed activity, (i.e. a
S,k /∈ Aπ).

Then, by Scarf’s lemma there must be a player i of S for which the performed activity
ai(X), he is involved in is not worse than a

S,k, so a
S,k ≤i ai(X), thus S cannot be a

blocking coalition with the activity a
S,k.

In the non-integer case, we shall regard x(uS,k) as the intensity the activity
a

S,k is performed with, by coalition S. The Ax = 1N condition means, that each
player participates in activities with total intensity 1, including maybe the activity
that this single player performs alone. The domination condition says, that for each
activity, that is not performed with intensity 1, there exists a member of the coalition,
who is not interested in increasing the intensity of this activity, since he is satisfied
by some other preferred activities that fill his remaining capacity of intensity. For-
mally, if x(uS,k) < 1, then there must be a player i in S such that

∑

aT,l≥iaS,k x(uT,l) = 1.

In Example 1.1.5, x(p) = 1
3
, x(b) = 2

3
is a fractional core element, since for each

activity there is one player who is not interested in increasing the intensity of that
activity. Below, we show another example, where the core of the game is empty, and
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which has exactly one fractional core element.

Example 1.1.7. In this example we have 6 players, with 6 possible common activities
with the following preferences:

A

B C

D

E

F

Activities Participants Players Preference lists
p1 : {A, D, B} A [p1, p3]
p2 : {B, E, C} B [p2, p1]
p3 : {C, F, A} C [p3, p2]
c1 : {D, E} D [p1, c1, c2]
c2 : {E, F} E [p2, c2, c3]
c3 : {F, D} F [p3, c3, c1]

It can be verified, that here the only fractional core element is x(p1) = x(p2) =
x(p3) = 1

2
and x(c1) = x(c2) = x(c3) = 1

4
. One can easily generalize this construction

having 3n players, and intensity 2−n of some activities in the unique fractional core
element.

1.1.4 Breaking the ties in case of indifferences

In a finitely generated NTU-game it can happen that a player i is indifferent between
some activities a

S,k and a
T,l, since he gets the same utilities (so a

S,k ∼i a
T,l if uS,k

i =
uT,l

i ). In this case so-called ties occur in the preference lists. Here, we recall the three
main core-, or stability-concepts:

• An outcome X is in the weak core, or it is weakly stable, if there exist no blocking
coalition S with an activity a

S,k such that every player i ∈ S strictly prefers a
S,k

to ai(X), (so a
S,k >i ai(X) for all i ∈ S).

• An outcome X is in the strong core, or it is strongly stable, if there exist no
blocking coalition S with an activity a

S,k such that every player i ∈ S strictly
prefers a

S,k to ai(X) or is indifferent between them, and there exist at least one
player j, who strictly prefers a

S,k to aj(X), (so a
S,k ≥i ai(X) for all i ∈ S and

a
S,k >j aj(X) for some j ∈ S).

• An outcome X is in the super core, or it is super stable, if there exist no blocking
coalition S with an activity a

S,k such that every player i ∈ S strictly prefers a
S,k

to ai(X) or is indifferent between them, (so a
S,k ≥i ai(X) for all i ∈ S).

Note that the weak core is simply the core. A derived game for a given finitely
generated NTU-game with indifferences is obtained by breaking all the ties in some
way. If we consider a fractional core x, or an outcome X that is in the core for a
derived game, then obviously x is a fractional core element, or X is an outcome in the
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core of the original game too. In fact, this technique is used also in the algorithm of
Scarf, where the matrix C is perturbed at the beginning of the procedure in order to
avoid indifferences, and thus the cycling caused by the degeneracy.1

1.1.5 Fractional stable matching in hypergraphs

For a finitely generated NTU-game, the problem of finding an outcome that is in
the core, is equivalent to the stable matching problem in a hypergraph as defined by
Aharoni and Fleiner [7]. Here, the vertices of the hypergraph correspond to the players,
the edges correspond to the efficient vectors (or to activities), and the preference of a
vertex over the edges it is incident with comes from the preference of the corresponding
player over the activities he can be involved in. This is called a hypergraphic preference
system. A matching corresponds to a set of common activities performed by some
coalitions, that form a partition of the grandcoalition together with the singletons (i.e.
vertices not covered by the matching). A matching is stable if there exist no blocking
edge, i.e. an edge, that is not in the matching but strictly preferred to the edges in the
matching by all its vertices. The corresponding set of activities gives a stable outcome,
since there exist no blocking coalition with an activity that is strictly preferred by
all of its members (in other words, the direct sum of the corresponding independent
efficient utility vectors is a feasible utility vector for the grandcoalition which is in the
core of the game). A hypergraph that represents the efficient utility vectors of a CFG
is obviously simple.

The fractional stable matching for a stable matching problem in a hypergraph was
defined by Aharoni and Fleiner [7] as follows. A function x assigning non-negative
weights to edges of the hypergraph is called a fractional matching if

∑

v∈h x(h) ≤ 1 for
every vertex v. A fractional matching x is called stable if every edge e contains a vertex
v such that

∑

v∈h,e≤vh x(h) = 1. The existence of a fractional stable matching can be
verified by Scarf’s lemma just like the existence of a fractional core element. Actually,
these two notions are basically equivalent.

To show the equivalence formally, we consider on the one hand the polytope of
intensity vectors {x|Ax = 1N , x ≥ 0}, where A is the membership-matrix of the
efficient utility vectors (or the corresponding activities) of dimension n × (n + m) as
defined by Scarf’s lemma. On the other hand, the fractional matching polytope is
{x|Bx ≤ 1N , x ≥ 0}, where B is the vertex-edge incidence matrix of the hypergraph
of dimension n ×m. Obviously, A = (In|B), so the difference is only an n× n identity
matrix, i.e. the membership-matrix of the singletons. So, there is a natural one-to-one

1We note that the nonemtyness of the core can depend dramatically on the way we break the ties.
In fact, the problem of finding an outcome that is in the core for an NTU-game with indifferences can
theoretically be more complex too. We will study some relevant cases considering matching games in
Section 2.3.
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correspondence between the elements of the two polytopes: if xm is a fractional
matching of dimension m, then let x̄v = 1N − Axm be a vector of dimension n, that
gives the unfilled intensities of the players (or in other words, the intensities of the
single activities). The direct sum of these two independent vectors, x is an intensity
vector of dimension n + m, and vice versa. The stability condition is equivalent to the
domination condition of Scarf’s lemma.

Finally, we have to clarify the question of indifferences. According to the definition
by Aharoni and Fleiner [7], in a hypergraphic preference system the preferences of the
vertices over the edges are strict. If we allow ties, then the corresponding problem is
called stable matching problem in a hypergraph with ties.2

Here, the stable matching problem obtained by breaking the ties in some way
is also called a derived problem. If we consider a fractional stable matching for a
derived problem, this fractional matching is obviously stable for the original setting too.

Aharoni and Fleiner showed that a fractional stable matching can be assumed to
be an extremal point of the fractional matching polytope. This fact comes from a
statement similar to the following Proposition:

Proposition 1.1.8. If x is a fractional core element of a finitely generated NTU-game,
and x =

∑

αix
i, where αi > 0 for all i,

∑

αi = 1 and xi satisfies the Axi = 1N and
xi ≥ 0 conditions, then each xi must be a fractional core element.

The proof of this Proposition is obvious, since supp(xi) ⊆ supp(x), that implies the
dominating property of the fractional core element.

Corollary 1.1.9. For any finitely generated NTU-game, there exists a fractional core
element that is an extremal point of the polytope {x|Ax = 1N , x ≥ 0}.

Corollary 1.1.9 implies that if all the extremal points of the above polytope are
integers, or in other words the polytope has the integer property, then the finitely
generated NTU-game has a nonempty core.

1.1.6 Normality implies the nonemptyness of the core

The definition of a normal hypergraph is due to Lovász [70]. If H is a hypergraph and
H ′ is obtained from H by deleting edges, then H ′ is called a partial hypergraph of H .
The chromatic index χe(H) of a hypergraph H is the least number of colors sufficient
to color the edges of H so that no two edges with the same color have a vertex in
common. Note that the maximum degree, ∆(H) (that is, the maximum number of edges
containing some one vertex) is a lower bound for the chromatic index. A hypergraph

2However, we note that in the literature the stable matching problem for graphs is sometimes
defined by allowing ties in the preference lists (see e.g. the book of Roth ad Sotomayor [92]).
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H is normal if every partial hypergraph H ′ of H satisfies χe(H
′) = ∆(H ′). Obviously,

the normality is preserved by adding or deleting parallel edges or loops. The following
theorem of Lovász [70] gives an equivalent description of normal hypergraphs.

Theorem 1.1.10 (Lovász). The fractional matching polytope of a hypergraph H has
the integer property if and only if H is normal.

Suppose that for a finitely generated NTU-game the set of essential coalitions forms
a normal hypergraph. The hypergraph of the corresponding stable matching problem
must be also normal, since it is obtained by adding parallel edges and by removing the
loops. By Theorem 1.1.10, the fractional matching polytope, {x|Bx ≤ 1N , x ≥ 0} has
the integer property, and so has the polytope of intensity vectors, {x|Ax = 1N , x ≥ 0}
as it was discussed previously. This argument and Corollary 1.1.9 verify the following
Lemma 1.1.11.

Lemma 1.1.11. If, for a finitely generated NTU-game, the set of essential coalitions,
E(N, V ) forms a normal hypergraph, then the core of the game is nonempty.

By Lemma 1.1.11 and Proposition 1.1.4 the following holds.

Theorem 1.1.12. If the set of basic coalitions, B forms a normal hypergraph, then
every finitely generated NTU-game (N, V,B) has a nonempty core.

Let AB denote the membership-matrix of the set of basic coalitions B. The fact
that the integer property of the polytope {x|ABx = 1N , x ≥ 0} implies the nonemp-
tyness of every NTU-game (N, V,B) was proved first by Vasin and Gurvich [108], and
independently, by Kaneko and Wooders [63].

Later, Le Breton et al. [69], Kuipers [68] and Boros and Gurvich [28] observed
independently that the integer property of the polytope {x|ABx = 1N , x ≥ 0} is
equivalent to the integer property of the matching polytope {x|ABx ≤ 1N , x ≥ 0},
and to the normality of the corresponding hypergraph.

We note that the other direction of Theorem 1.1.12 is also true: Boros and Gurvich
[28] proved that if the set of basic coalitions, B has the property that the polytope
{x|ABx = 1N , x ≥ 0} has a non-integer extremal point (thus the corresponding hyper-
graph is not normal), then there always exist a finitely generated NTU-game (N, V,B)
with an empty core.

1.2 TU-games

An n-person game with transferable utility (TU-game for short) is given by a pair
(N, v), where N is the set of players, and v is a payoff function v : 2N → R, such
that v(∅) = 0. Without loss of generality we may assume also that v({i}) = 0 for all
singletons, thus every efficient utility vector is nonnegative. The outcome of the game
is a vector u = uN if it satisfies u(N) = v(N) (also referred to as a preimputation),
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where the notation u(S) means u(S) =
∑

i∈S uN
i . The outcome uN is in the core of the

TU-game (N, v) if u(S) ≥ v(S) holds for every coalition S ⊆ N .
The definition of a TU-game can be easily derived from the definition of NTU-

games, by setting V (S) = {uS ∈ R
S|∑i∈S uS

i ≤ v(S)}.
Superadditivity for a TU-game means v(S) + v(T ) ≤ v(S ∪ T ) for every pair of

disjoint coalitions S and T . Here again, we restrict our attention to superadditive
games.

1.2.1 Partitioning game, relevant and essential coalitions

In a partitioning TU-game (N, v,B) with a set of basic coalitions B, v(S) can be
generated as:

v(S) = max{v(B1) + v(B2) + · · ·+ v(Bk)|π = {B1, B2, . . . , Bk} ∈ ΠB(S)}

To define the essential, relevant and balanced coalitions we introduce some compact
formulas. Let N = 2N\{∅} be the collection of nonempty coalitions. As it was defined in
the previous section, A is the membership-matrix of dimension |N |×|N | (i.e. ai,S = 1 if
i ∈ S and 0 otherwise), and x is a column-vector of R

N
+ called intensity vector. Finally,

let v be a row-vector of R
N that corresponds to the payoff-function. Let maxN (LP ) =

max{v·x|Ax = 1N} and maxN (IP ) = max{v·x|Ax = 1N , x ∈ {0, 1}N} be the optimum
of the linear and integer programs, respectively.

Similarly, if C is an arbitrary collection of nonempty coalitions, so C ⊆ N , then
we define maxC(LP ) and maxC(IP ) to be the optimum of the restricted programs
(i.e if ∪C∈C = C̄, x|C = xC, v|C = vC, and AC is the restricted membership-
matrix of dimension |C̄| × |C|, then maxC(LP ) = max{vC · xC|ACxC = 1C̄} and
maxC(IP ) = max{vC · xC |ACxC = 1C̄ , xC ∈ {0, 1}C}). Finally, let P(S) = {T : T ⊆ S}
and P∗(S) = {T : T ⊂ S}.

A coalition S is essential if maxP∗(S)(IP ) < v(S). The assumed superadditivity
implies that maxP(S)(IP ) = v(S) for every coalition S. Let E(N, v) denote the set of
essential coalitions again. In a partitioning game (N, v,B), the payoff of the coalition
S can be generated simply as v(S) = maxB(IP ), so E(N, v,B) ⊆ B is obvious. The
following Proposition says that the optimum of each integer program remains the same,
if we restrict the support of x to the set of essential coalitions.

Proposition 1.2.1. Given a TU-game (N, v) and E = E(N, v). For every coalition S
maxP(S)(IP ) = maxE∩P(S)(IP ) holds.

A coalition S is relevant3 if maxP∗(S)(LP ) < v(S). A coalition S is balanced if
maxP(S)(LP ) = v(S). If R(N, v) denotes the set of relevant coalitions, then R(N, v) ⊆
E(N, v) obviously. The meaning of the following Proposition is that the optimum of

3This notion was introduced by Gillies [51], he called these coalitions as vital coalitions.
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each linear program remains the same, if we restrict the support of x to the set of
relevant coalitions.

Proposition 1.2.2. Given a TU-game (N, v) and R = R(N, v). For every coalition
S maxP(S)(LP ) = maxR∩P(S)(LP ) holds.

The above Proposition implies that if the core-condition u(S) ≥ v(S) is violated
for some coalition S not in R(N, v), then it must also be violated for some relevant
coalition T ⊂ S.

1.2.2 The core of balanced games

Recall that a TU-game (N, v) is balanced if the grandcoalition N is balanced. The
following well-known theorem was proved independently by Bondareva [26], [27] and
Shapley [101].

Theorem 1.2.3 (Bondareva-Shapley). A TU-game (N, v) has a nonempty core if and
only if it is balanced.

Here, we verify this theorem only in case v is superadditive, although, we note that
the theorem is true for every TU-game.

Proof. We shall observe first that maxN (LP ) = max{v · x|Ax ≤ 1N} (so the equalities
can be changed to inequalities, since all singletons are in N with nonnegative payoffs).
By this we can define the dual of the above linear program: let minN (DLP ) = min{y ·
1N |yA ≥ v, y ∈ R

N
+}, where y is a row-vector, that may correspond to a payoff-function

y : N → R+. The inequalities y(S) ≥ v(S) are in fact the core-conditions, and the
objective function is

∑

i∈N yi = y(N). If y∗ is an optimal solution of the dual program,
then by using the Duality Theorem we get

v(N) = maxN (IP ) ≤ maxN (LP ) = minN (DLP ) = y∗(N) (1.1)

Finally, if u(N) is an outcome in the core, then on the one hand u(N) = v(N), and on
the other hand, u must satisfy the core-conditions, so u(N) ≥ y∗(N). That is possible
if and only if v(N) = maxN (LP ), thus if the game is balanced.

Moreover, Propositions 1.2.1 and 1.2.2 imply that maxN (IP ) = maxE(IP ) and
maxN (IP ) = maxE(IP ) = maxR(LP ) , respectively. So, the core of a TU-game is
nonempty if and only if maxE(IP ) = maxE(LP ). For a partitioning TU-game (N, v,B),
the above equality holds if and only if maxB(IP ) = maxB(LP ), since E(N, v,B) ⊆ B.

We note, that the above primal and dual programs have a well-known equivalent
meaning in the theory of hypergraphs. Let the hypergraph H be formed again by the
essential coalitions of the TU-game, where the weight of an edge e in the hypergraphs,
w(e) is equal to the payoff of the corresponding coalition S in the TU-game, v(S). Recall
that y : V (H) → R+ is a cover of the vertex set V (H) of H , if

∑

v∈e y(v) ≥ w(e) for
every edge e in H . The value of y is

∑

v∈V (H) y(v). The following observation is obvious.
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Remark 1.2.1. The problems max{v · x|Ax ≤ 1N , x ∈ {0, 1}N}, max{v · x|Ax ≤ 1N}
and min{y · 1N |yA ≥ v, y ∈ R

N
+} are equivalent to the maximum weight matching,

maximum weight fractional matching and minimum value cover problems in the corre-
sponding weighted hypergraph H, respectively. Thus a TU-game has nonempty core if
and only if the maximum weight of a matching in H is equal to the maximum weight
of a fractional matching in H.

It is well-known, that the optimum of a linear program can be obtained as an
extremal point of the corresponding polytope. Thus, if the membership-matrix of the
set of basic coalitions, AB is such that the extremal points of the polytope {xB|ABxB =
1N , xB ≥ 0} are integers, then the game has a nonempty core for every payoff function
v. By Theorem 1.1.10 this is possible if and only if the hypergraph formed by the
basic coalitions is normal. This argument directly verifies Theorem 1.1.12 in case of
TU-games.

Theorem 1.2.4. If the set of basic coalitions B forms a normal hypergraph, then every
TU-game (N, v,B) has a nonempty core.

1.2.3 Coalition formation game with sidepayments

Every TU-game can be equivalently described as a coalition formation game with
sidepayments. We recall, that in a coalition formation game each essential coalition
S has only one Pareto-optimal utility vector uS ∈ U(S). A sidepayment pS between
the members of S is a vector in R

S, such that
∑

i∈S pS
i = 0, (i.e. the members of

S can reallocate their utilities between each other). Thus, an outcome of a CFG
with sidepayments consists of a partition π of the grandcoalition, and a sidepayment
vector p, that is the sum of the independent sidepayment-vectors pS for all S ∈ π.
An outcome (π, p) determine the utility of each player i, ui(π, p) = uS

i + pi, where
i ∈ S ∈ π. An outcome (π, p) is in the core (or it is stable), if there exists no blocking
coalition T with some sidepayment pT , such that uT

i + pT
i > ui(π, p) for each i ∈ T ,

(so if each member of T can be strictly better off by cooperating with each other and
by reallocating the common utility in a suitable way).

The corresponding TU-game is defined with the payoff-function v(S) =
∑

i∈S uS.
Obviously, the set of utility vectors uS,p = uS+pS, that is achievable for S by performing
the common activity and by reallocating the common utilities with some sidepayments,
contains every efficient vector of S. This is the reason of the fact that the core of a
CFG with sidepayments is the same as the core of the corresponding TU-game.

1.3 Matching games

Matching games can be defined as partitioning NTU-games, where the cardinality of
each basic coalition is at most 2. For simplicity, in this section we suppose that no
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player is indifferent between two efficient utility vectors, so their preferences between
the common activities are strict. If a matching game is finitely generated, then the
problem of finding an outcome that is in the core is equivalent to a stable matching
problem in a graphic preference system, where the edges of the graph correspond to
the efficient utility vectors (and to the common activities).

Considering the set of utility vectors, basically we have four cases. If each basic
coalition (each couple), has only one efficient utility vector, then the representing
graph is simple, and the problem of finding a core-solution in the obtained CFG can
equivalently be called the stable roommates problem (or stable matching problem
in a simple graph). If each couple has a finite number of efficient utility vectors,
then these activities are represented by parallel edges in the graph, the obtained
stable matching problem can also be referred to as a stable roommates problem with
multiple activities. In case of a general matching game, as we mentioned before,
the set of efficient utility vectors can be approximated with a finite number of
vectors, thus this general game has properties similar to the stable matching problem.
Finally, if the utility is transferable, then the problem can be called roommates game
with transferable utilities (or with sidepayments). Figure 1.2 illustrates these four cases.

5

3

5 3

54

4

5

5

3

5 3

5

3

35

a

b

a b

b

a

a

b

a

b

ba

a

b

a b

V ({a, b}) V ({a, b}) V ({a, b}) V ({a, b})

pab

pab

+pab

Figure 1.2: The set of efficient utility vectors and the corresponding edges.

We present two simple examples of three players considering both the stable room-
mates problem and the roommates problem with transferable utilities for the given
utilities.

Example 1.3.1. In the first example, the utility of the players from the possible com-
mon activities are the following: u

{a,b}
a = 6, u

{a,b}
b = 3, u

{b,c}
b = 4, u

{b,c}
c = 1, u

{c,a}
c = 2,

u
{c,a}
a = 1.

Here, there is no stable matching (the core of the CFG is empty), but there exists
a matching {a, b} with a sidepayment from a to b of a value between 2 and 3, that is
stable (thus the core of the TU-game is nonempty).
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Figure 1.3: Example 1.3.1 illustrates a core-outcome in case of the TU-game.

Example 1.3.2. The utility of the players from the possible common activities are the
following: u

{a,b}
a = 2, u

{a,b}
b = 3, u

{b,c}
b = 2, u

{b,c}
c = 1, u

{c,a}
c = 2, u

{c,a}
a = 1.
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Figure 1.4: Example 1.3.2 illustrates a stable matching in case of NTU-game.

Here, the matching {a, b} is stable (the core of the CFG is nonempty), but the
roommates game with transferable utilities has an empty core. (The reason of this
latter fact will be explained at the end of this subsection.)

Let us suppose the set of players N can be divided into two parts, M and W
such that every two-member basic coalition contains one member from each side (so if
{m, w} ∈ B then m ∈ M and w ∈ W ). In this case we get a two-sided matching game
(in the general case the matching game is called one-sided).

1.3.1 Two-sided matching games

If a two-sided matching game is finitely generated, then the corresponding graphic
representation of the stable matching problem is bipartite. For bipartite graphs, the
following Proposition is well-known.
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Proposition 1.3.3. Every bipartite graph is normal.

This Proposition and Theorem 1.1.12 imply the following result.

Theorem 1.3.4. Every finitely generated two-sided matching game has a nonempty
core.

Theorem 1.3.4 was proved for every two-sided matching game, originally called
central assignment game, by Kaneko [62]. For the corresponding CFG-s, called stable
marriage problems, this result was proved by Gale and Shapley [48]. Finally, the same
result for two-sided matching games with transferable utilities, defined as assignment
games, was showed by Shapley and Shubik [102]. We note that by Remark 1.2.1 the
latter result is an immediate consequence of the theorem by Egerváry [39], which states
that the maximum weight of a matching and the minimum value of a cover are equal
in every bipartite graph.

1.3.2 One-sided matching games

As it was shown by Examples 1.3 and 1.4, a one-sided matching game can have an empty
core, even for the special CFG and TU-games. Here, we present that the half-integer
property of the fractional matching polytope implies the existence of half-solutions in
each case. The following observation is due to Balinski [15].

Theorem 1.3.5 (Balinski). The fractional matching polytope for every graph has only
half-integer extremal points.

This theorem of Balinski [15] and Scarf’s lemma imply that in every matching
game there exists a fractional core element x that has the half-integer property, i.e.
xi ∈ {0, 1

2
, 1}, called a half-core element.

Theorem 1.3.6. If a matching game is finitely generated then it always has a half-core
element.

For CFG-s, the fact that for every stable matching problem there exists a stable
half-matching was proved by Tan [104]. For matching games (or roommates games)
with transferable utilities, a similar result was proved by Eriksson and Karlander [41].
In this case, by Remark 1.2.1 the nonemptyness of the core depends on whether the
corresponding weighted matching and weighted fractional matching problems have the
same optimum or not. This question is solvable in polynomial time by the algorithm of
Edmonds [38]. This fact explains why the TU-game in Example 1.4 has an empty core:
the maximum weight of a matching is at most 5, while there exist a half-matching
with weight 5.5.



Chapter 2

Stable matching problems

Introduction

In this chapter, we start with a short overview on the stable matching problem.
Then we present some results on the dynamics of stable matchings, published in [21].
Finally, we consider the stable matching problem with ties, where we collect a family
of related problems and we study their complexity. A part of the results come from
[5].

Some important results are collected in a table at the end of Section 2.3, and a
part of them are included in another table at the end of Section 4.3 as well. To clarify
the connections, we give a reference index [Ri] to each problem contained in these
tables of results.

2.1 The stable marriage and roommates problem

2.1.1 Preliminaries

The stable matching problem on a graphic preference system (or simply the stable
matching problem) was already defined in the previous section as a problem equivalent
to finding an outcome in the core of a finitely generated NTU-game with basic
coalitions of size at most two, called a matching game. Here, we recall the definition
and introduce some further notions.

Let us model the stable matching problem with a graph G, where the agents are
represented by vertices, and two vertices are linked by an edge if the agents are both
acceptable to each other. For every vertex v, let <v be a linear order on the edges
incident with v. That is, every agent has strict preferences on his possible partnerships.

23
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We say that agent v prefers edge f to e (in other words f dominates e at v) if e <v f
holds. A matching M is a set of edges with pairwise distinct vertices. If an edge e =
{u, v} belongs to M , then u and v are matched in M , so u and v are partners in the
market. An agent is single, if his vertex is uncovered in M , i.e. it is not incident with
a matching edge.

A matching M is called stable if every nonmatching edge, e /∈ M is dominated
by some matching edge, f ∈ M . Alternatively, a stable matching can be defined as a
matching without a blocking edge: an edge e = {u, v} is blocking for a matching M
if u is either unmatched or prefers edge e to the matching edge that covers u in M ,
and at the same time, v is either unmatched or prefers edge e to the matching edge
that covers v in M . For a matching market, the stability means that no pair of agents
can benefit by leaving their actual partners and establishing a new mutual partnership.

For simplicity, in this section we suppose that the graphs of the stable matching
problems are simple, thus the corresponding NTU-games are coalition formation games.
The stable matching problem was called stable marriage problem if the graph is bipar-
tite (the two color classes represent men and women), and stable roommates problem
if the graph is general [48]. According to the original definitions, it is assumed that
each agent finds acceptable all his possible partners, so the graph and the preference
lists are also complete. Here, we relax this assumption and study stable marriage and
stable roommates problems with incomplete lists.

2.1.2 The stable marriage problem

The stable marriage problem was defined and studied by Gale and Shapley [48]. In
their seminar paper they proved that stable matching always exists for the marriage
problem, moreover their algorithm produces a solution that is optimal for each member
in one of the sides. Beside presenting this algorithm, we show some other well-known
results.

The original goal of Gale and Shapley was to study the college admission problem,
that is a generalization of the stable marriage problem. Many years later, Roth
discovered that the Gale–Shapley algorithm had been in use since 1952 by the
National Intern Matching Program (now called the National Resident Matching
Program, NRMP), for further details, see [83] and [92]. We study similar problems
with capacities in Chapter 3, where we present the Hungarian higher education
admission program as a special application.

Let the vertex set of a bipartite graph G be the disjoint union of M and W (i.e.
men and women). We suppose that a man and a woman are linked by an edge if they
are both acceptable to each other. Each man and each woman ranks his or her possible
marriages (or equivalently his or her possible partners) in a strict order, represented
by a preference list.
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The deferred-acceptance algorithm

To start, let each man propose to his favorite woman. Each woman who receives
more than one proposal rejects all but her favorite, who becomes her fiancé. In the
further stages, each man who was rejected in the previous stage, proposes to his next
choice according to his list, and each woman who was receiving proposals reject all
but her most preferred among the group consisting of the new proposers together
with her current fiancé. Obviously, men propose to less and less preferred partners,
while women receive proposals from better and better fiancés, thus the algorithm
stops in O(m) time (where m denotes the number of edges in the graph), when no
more proposal is left. The fiancés become husbands. The obtained set of marriages is
obviously a matching.

To show stability, consider an edge {m, w} not in the matching. If m made no
proposal to w, then m has been engaged with a preferred woman in each stage, and
also at the end of the procedure. So pair {m, w} cannot block because of m. Otherwise,
if m proposed to w during the algorithm, then w refused him because she had a better
proposal at that time, and since her situation was improving during the algorithm, she
must have a preferred husband at the end of the algorithm too. Again {m, w} cannot
block.

Theorem 2.1.1 (Gale–Shapley). For every stable marriage problem, there exists a
stable matching. [R1]

Moreover, it can be verified that each man gets his best possible partner (i.e. woman
w is possible for man m if there exists a stable matching M , where {m, w} is a matched
pair) in the matching obtained by the deferred-acceptance algorithm, thus this match-
ing is so-called man-optimal. Indirectly, let us suppose that m is the first such man
who is rejected during the algorithm by a woman w who is possible for him, (i.e. there
exist a stable matching M , where {m, w} ∈ M). At that moment, when m is rejected
by w, w must have a preferred partner, say m′. Obviously, m′ must be matched with
a better partner than w in M , say w′, since otherwise {m′, w} would block M . But,
in this case, m′ must have been rejected by w′ (a possible partner of m′) in a previous
case, a contradiction.

Theorem 2.1.2 (Gale–Shapley). The stable matching obtained by the deferred -
acceptance algorithm is man-optimal.

Below we list some well-known results on stable marriages. All of them can be
found in both the book of Gusfield and Irving [52] and also in the book of Roth and
Sotomayor [92].

Let M and M ′ be two stable matchings for the same stable matching problem. If
e ∈ M \ M ′, then there must exist another edge f ∈ M ′ \ M such that e <v f by the
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domination condition. This observation implies that these edges of M ▽M ′ form even
cycles. The following three theorems are easy consequences of this argument for both
the stable marriage and stable roommates problems.

Theorem 2.1.3. For a given stable marriage problem, the same agents are matched
in every stable matching.

An agent is said to prefer a matching M to another matching M ′ if he prefers his
partner in M to his partner in M ′.

Theorem 2.1.4. If {m, w} ∈ M \M ′ for some stable matchings M and M ′, then one
of m and w prefers M to M ′, and the other prefers M ′ to M .

Theorem 2.1.5. If w is the best possible partner of m, then m is the worst possible
partner of w.

The following theorem presents the fact that in a two-sided matching market the
agents of different sides have an opposite interest over the set of possible stable out-
comes. Moreover, this statement preserves an interesting lattice structure of the set of
stable marriages.

Theorem 2.1.6 (Conway). Let M and M ′ be two stable matchings for a stable mar-
riage problem. If each man is given the better of his partners in M and M ′ (or each
woman is given the worse of her partners), then the result is again a stable matching,
denoted by M ∨M ′. Similarly, if each man is given the better of his partners in M and
M ′ (or each woman is given the less preferred of her partners), then the result is the
same stable matching, denoted by M ∧ M ′.

Corollary 2.1.7. For a stable marriage problem, the set of stable matchings forms a
distributive lattice with the above meet and join operations.

Detailed description of this lattice structure can be found in the book of Gusfield
and Irving [52] and in the thesis of Fleiner [44].

2.1.3 The stable roommates problem

The stable matching problem for nonbipartite simple graphs was called the stable room-
mates problem by Gale and Shapley [48]. They showed the following example to prove
that a stable matching may not exist.

Example 2.1.8.
Agents Preference-lists

A : [B, C, D]
B : [C, A, D]
C : [A, B, D]
D : arbitrary
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Let us imagine that these agents are tennis-players, each one is looking for a
partner to play with for one hour a week. For example Andy would like to play mostly
with Bill, then with Cliff and finally he prefers to play with Daniel the least. (In fact,
everybody tries to avoid Daniel.) There is no stable solution. If a pair is formed from
the first three players, say Andy plays with Bill, then the third one, Cliff must be
matched with Daniel, but in this case Bill and Cliff block this matching.

The stable roommates problem had been a nontrivial open problem, until Irving
[56] constructed the first polynomial time algorithm which determines whether a given
instance of the stable roommates problem admits a stable matching, and if so, finds
one [R2].

As we discussed in Section 1.3, for every matching game there exists a half-core,
that corresponds to a stable half-matching for the stable roommates problem. So, if
the agents can create half-time partnerships then a stable solution always exists in the
sense that no pair of agents would simultaneously like to increase the intensity of their
partnership.

Considering the above example, we suppose that Andy, Bill and Cliff agree to meet
once a week and play half-time games in each formation. Thus, each of them play one
hour in sum, only Daniel remains without any tennis-partner. Stability in this case
means that no pair of tennis-players wants to play more time together with each other.
For example Andy plays with Daniel no time at all, because Andy fills his one-hour by
playing two half-hour games with better partners. Andy and Bill will not play more
than a half-hour, because Bill fills the rest of his time (a half-hour) by playing with a
better partner, Cliff.

Recall that half-matching hM consists of matching edges M and half-weighted edges
H , so that hM = H ∪M and each vertex is incident either with at most one matching
edge or with at most two half-weighted edges. In a matching market an agent can
have at most one partner or at most two half-partners. A half-matching hM is stable
if for each edge e not in hM there exists a vertex v, where e is dominated either by
one matching edge or by two half-weighted edges, and for every half-weighted edge h
there exists a vertex v, where h is dominated by another half-weighted edge. So no pair
of agents wants to improve their partnership simultaneously, because for each pair of
agents who are not matched, one of them fills his capacities with better partnership(s).
Otherwise, if a half-matching is unstable, then a blocking edge is an undominated edge.

The fact, that every half-weighted edge must be dominated by another half-weighted
edge at one of its endvertices implies that the half-weighted edges form cycles, where the
direction of the domination between two consecutive half-weighted edges is the same
along the cycle. To illustrate this property in the figures, we orient each half-weighted
edge to its endvertex, where it is dominated by the other half-weighted edge. It is
obvious that an even-cycle can be replaced by matched pairs, but Tan [104] observed
that if an odd-cycle C occurs in hM then C must belong to the H-part of any stable
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half-matching for the given graph, so no stable matching exists. He characterized the
stable half-matching (originally, called stable partition) in the following way:

Theorem 2.1.9 (Tan). For any instance of the stable roommates problem there always
exists a stable half-matching that consists of matched pairs and odd-cycles formed by
half-weighted pairs. The set of agents can be partitioned into:

a) unmatched (or single) agents,

b) cycle-agents and

c) matched agents.

Furthermore, the same agents remain unmatched and the same odd-cycles are formed
in each stable half-matching of the given instance of the problem.

If for a half-matching hM = H ∪ M an edge e = {u, v} is in M , then we say that
the agents u and v are partners. If two agents can be partners in a stable half-matching
we call them stable partners. If an edge e = {u, v} ∈ H is in an odd-cycle, then u and
v are half-partners. If u prefers v to his other half-partner, then v is the successor of u
and u is the predecessor of v.

2.2 The dynamics of stable matchings

For the bipartite case, Knuth [67] asked whether it is possible to obtain a stable match-
ing by starting from an arbitrary matching and successively satisfying blocking pairs.
Roth and Vande Vate [93] gave a positive answer by a decentralized algorithm, in which
pairs or single agents enter the market in a random order, and stability is achieved by
a proposal–rejection process. Knuth’s question for the bipartite case was also answered
by Abeledo and Rothblum [4] by a common generalization of the Roth–Vande Vate
and the Gale–Shapley algorithms. Later, Diamantoudi, Miyagawa and Xue [37] solved
the same problem for the roommates case. They proved that one can always reach a
stable matching, if one exists, from an arbitrary matching by successively satisfying
blocking pairs. Recently, Inarra, Larrea and Molis [55] generalized this result for in-
solvable stable roommates problems by proving the same statement for the so called,
P -stable matchings instead of stable matchings.

However, the original goal of Roth and Vande Vate was different, their algorithm
can be used to model the dynamics of the two-sided matching market as well. In fact,
they considered the situation when a new agent enters the market and the stability
is restored by the natural proposal-rejection process. This mechanism also yields an
algorithm to find a stable matching for a market by letting the agents enter the market
in a random order. Independently, Tan and Hsueh [105] constructed an algorithm, that
finds a stable half-matching for general graphs by using a similar incremental method.
In the bipartite case, the Tan–Hsueh algorithm is equivalent to the Roth–Vande Vate
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algorithm. In the nonbipartite case infinite repetitions can occur, these are handled by
the introduction of cycles. We shall call these two algorithms “incremental algorithms”.

Blum, Roth and Rothblum [24] described the properties of a dynamic two-sided
matching market. They showed that their proposed algorithm is similar to the McVitie–
Wilson’s version [75] of the original deferred-acceptance algorithm. So, the output of
the process is predictable: if some men enter the market then each man either remains
matched with the same partner (if it is possible) or gets a worse (but his best) stable
partner for the new market. Blum and Rothblum [25] pointed out that these results
imply that the lastcoming agent gets his best stable partner in the Roth–Vande Vate
algorithm. Moreover, an agent can only benefit from entering the market later (we
assume here that the others enter the market in the same order). Independently, Ma [72]
observed on an example of Knuth, that if agents enter the market successively then the
Roth–Vande Vate algorithm may not find all stable matchings in general. Cechlárová
[30] strengthened Ma’s result by justifying that in a stable matching output by the
incremental algorithm for a bipartite graph some agent gets his best stable partner.
Here we give direct proofs for the above results in the bipartite case, and we generalize
most of them to general graphs with the help of our Key Lemma.

Gale and Sotomayor [49] showed that if some man expands his preference-list then
no other man is better off in the new men-optimal stable matching. This implies that
the same statement is true if a number of men enter the market. Roth and Sotomayor
[92] proved that if a man arrives and becomes matched, then certain women will be
better off, and some man will be worse off under any stable matching for the new market
than at any stable matching for the original market. We generalize this theorem by
using an improved version of a result of Pittel and Irving [80] on the core configuration.

Our results also have an economic interpretation. Matching markets are well-known
applications of the stable matching problem. A detailed description of two-sided mar-
kets can be found in the book of Roth and Sotomayor [92]. An important example is
job matching. Blum, Roth and Rothblum [24] studied the dynamics of the two-sided
matching market in this context by analyzing the formation of “vacancy chains”.

The dynamic formation of social and economic networks can be described by sta-
ble matching models as Jackson and Watts considered in [61]. They illustrated the
occurring mechanisms with the Roth–Vande Vate algorithm in the bipartite case. We
believe that the same model can be used in the nonbipartite case, where the connec-
tions between individuals might correspond to mutual “best friend” relationships. By
similar reasons, Ericsson and Strimling used the same stable roommates model in [43]
to analyse the mate searching processes for special preferences. Recently, the dynamics
of firm mergers was also described as a one-sided stable matching market by Angelov
[11].



CHAPTER 2. STABLE MATCHING PROBLEMS 30

2.2.1 The incremental algorithms

Suppose a matching market is in an equilibrium with a stable matching. A natural
question is how the situation changes if a new player enters the game and the prefer-
ences over the former partnerships are unchanged. Let the newcomer make proposals
according to his preference order. If no one accepts, then everybody has a better part-
ner, so the former matching remains stable. If somebody accepts a proposal, then a
new pair is formed along the proposal. The eventual left-alone partner has to leave the
market and enter as a newcomer. Note that the same situation happens, when an agent
leaves the market. If he was single, then the matching remains stable. Otherwise, if he
was matched, then his partner has to leave the market and enter again as a newcomer.

The Roth–Vande Vate algorithm for the stable marriage problem

Suppose, that in the algorithm a bipartite graph G is built up step by stepby adding
vertices to the graph in some order. In a phase of the algorithm we add a new agent
and restore stability. To describe a phase, let us add a vertex v to G−v, where a stable
matching Mv exists. Our task is to find a stable matching M for G.

If v is not incident to any blocking edge, then Mv remains stable for G, too. In this
case we call the phase inactive.

A phase is active if the newcomer v is a member of some blocking pair, let {v, u}
be the best blocking pair for v. Let v = a0 and u = b1. If b1 was unmatched in
Mv = Ma0

, then Ma0
∪{a0, b1} is a stable matching for G. Otherwise, b1 had a partner

a1 in Ma0
, whom he leaves after receiving a better proposal. In this case, the matching

Ma1
= Ma0

\ {a1, b1} ∪ {a0, b1} is stable for G − a1. So we have a similar situation as
in the beginning: a1 enters the market and makes proposals. Continuing the process, a
proposal-rejection sequence, S = (A|B) = a0, b1, a1, . . . is constructed with the following
properties:

1. Mak
= Mak−1

\ {ak, bk} ∪ {ak−1, bk} is a stable matching for G − ak.

2. ak−1 is a better partner for bk than ak and

3. bk+1 is a worse partner for ak than bk.

Note that here, a0, a1, . . . are from the same side, and b1, b2, . . . are from the other
one. Property 2 is true, since bk accepted the proposal of ak−1 while he left ak. To
see 3, realize that pairs (ak, bk) and (bk+1, ak+1) are in Mak−1

, so Property 2. and the
assumption that ak prefers bk+1 to bk would imply that (ak, bk+1) is a blocking pair for
Mak−1

.
A proposal-rejection process is illustrated in Figure 2.1. In this and subsequent

figures, a little arrow is directed from a dominated edge to a dominating one and thick
lines correspond to matching and half-weighted edges of the current (half-)matching.

Observe that by this process, each ai ∈ A improves his situation and each bj ∈ B
gets worse off. Consequently, the same agents cannot occur as new pairs. So a phase
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a1 a2 ak−1 ak ak+1

b2 bk bk+1

v = a0

u = b1

Mak

Figure 2.1: Proposal-rejection sequence in the Roth–Vande Vate algorithm.

terminates in O(m) changes, when m denotes the number of the edges in the graph. A
phase has two possible outcomes: either nobody accepts the proposals of some ai (then
the size of the matching remains the same) or the last bj is unmatched, hence the size
of the matching increases by one.

We illustrate with an example the mechanism of the incremental algorithm and we
introduce briefly our results. The preferences of the agents on their possible partnerships
in this two-sided market are the following:

Example 2.2.1.
a1 : [e1, d1, f1] b1 : [f3, d2, n1, e1]
a2 : [e2, d2, f2] b2 : [f2, d1, e3]
a3 : [e3, d3, f3] b3 : [f1, d3, e2]
a4 : [s] b4 : [s, n2]
a5 : [m1, m2] b5 : [m2, n3]
a6 : [n1, n2, n3, n4] b6 : [n4, m1]

Let d = {d1, d2, d3}, e = {e1, e2, e3}, f = {f1, f2, f3}. Suppose, that at the beginning
a6 is not present in the market. Partnerships {e, s, m1} form a stable matching in the
market. (It is the best one for every agent ai.)

When agent a6 enters the market, four new possible partnerships are created. The
best one for the newcomer is n1, and this blocks the actual matching. Following the
algorithm of Roth and Vande Vate let us satisfy this blocking edge: b1 and a6 form a
new pair, and partnership e1 terminates, so agent a1 has to find a new partner as a
newcomer. Continuing this process, the following edges will be satisfied and terminated
in sequence: d1, e3; d3, e2; d2, n1. Afterwards, agent a6 makes proposals again, that b1

and b4 refuse, because they prefer their partners to a6. We will prove later, that if a new
partnership is not blocking, then it cannot be present in any stable matching. In the
last step of our example, a single agent b5 accepts the proposal of a1, and {d, s, m1, n3}
is a stable matching. This stable solution is the best possible for the newcomer a6, since
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Figure 2.2: A stable matching and the lattice of the stable matchings for Example 2.2.1
before the arrival of a6.

the better partnerships, that were refused by his possible partners cannot appear in
any stable matching. This argument also shows that every agent that receives a partner
by making a proposal during the process gets his best stable partner.

d2
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Figure 2.3: The obtained stable matching, and the lattice of the stable matchings for
Example 2.2.1.

Note, that if we started with the stable matching {f, s, m1}, then the process would
stop in one step, since b5 accepts first the proposal of a6. The obtained stable matching
{f, s, m1, n3} yields the best stable partner to the newcomer a6 again, but the other
agents ai do not necessarily get their best stable partners.

The Tan–Hsueh algorithm for the stable roommates problem

Tan and Hsueh [105] proposed an incremental algorithm to find a stable half-matching.
In this more general setting, we use the terminology of the Roth–Vande Vate algorithm.
The only difference is that G is not bipartite, so instead of a matching, we maintain a
half-matching hMv for G − v.

Hereafter, we suppose that the stable half-matchings have no even-cycles. As we
mentioned before, an even-cycle can always be separated into matching pairs, moreover,
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as we will see later, the incremental algorithm does not create even-cycles. By Theorem
2.2.15 we know that for a fixed stable roommates problem, the same odd-cycles are
present in each stable half-matching hM i = H ∪ M i. So H is determined, only the
M i parts can differ for two stable half-matchings for a given graph. In fact, H can
be considered as a disjoint union of half-weighted cycles, so whenever we modify a
stable half-matching during the processes, we will only add or remove matching edges
or half-weighted odd-cycles.

If nobody accepts the newcomer’s proposal, then the phase is called inactive again
and the current stable half-matching is unchanged.

If some agent u accepts the proposal of v then three cases are possible:

a) If u is unmatched in hMv, then hM = hMv ∪{v, u} is a stable half-matching for G.

b) If u is a cycle-vertex in hMv, so u = c0 for some cycle C = (c0, c1, . . . , c2k−1, c2k),
then hM = hMv \C ∪ {v, u}∪ {c1, c2}∪, . . . ,∪{c2k−1, c2k} is a stable half-matching
for G (i.e. we remove the half-weighted cycle C and we add some matching edges).

c) If u is matched with x in hMv, then hMx = hMv \ {u, x} ∪ {v, u} is a stable
half-matching for G − x.

The current phase ends in cases a) and b). Here, unlike in the bipartite case, it can
happen that an agent, who made a proposal earlier can receive a proposal later during
the same phase. So the proposal-rejection sequence might never end. One result of Tan
and Hsueh [105] is that a repetition always occurs along an odd-cycle.

Theorem 2.2.2 (Tan–Hsueh). If S = (A|B) = a0, b1, a1, . . . is a proposal-rejection
sequence and ai = bk (i < k) is the first return, then this proposal-rejection sequence
can be extended in such a way that it will return to ak at bk+m+1, and the following
properties are true: {ak, bk+1, . . . , bk+m, ak+m} are distinct vertices, and in the inverse
order they form an odd-cycle C, and hM = hMak

\{ak+1, bk+1}\ · · · \{ak+m, bk+m}∪C
is a stable half-matching.

The example in Figures 2.4 and 2.5 illustrate the Tan–Hsueh algorithm: Here, vertex
v enters. The first vertex accepting v’s proposal is u, and u’s previous partner x is left
alone. Figure 2.4 shows the stable half-matching hMx for G − x. In the next step, x
makes proposals. Figure 2.5 illustrates the termination of this phase by obtaining an
odd cycle, namely the three-cycle containing vertex x and edges c1 and c2.

2.2.2 Getting the best stable partner by making proposals

Lemma 2.2.3 (Key Lemma). If hMv is a stable half-matching for G − v, and edge
{v, u} is not blocking hMv, then v and u cannot be matched in a stable half-matching
for G.
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Figure 2.4: The Tan–Hsueh algorithm in an example.
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Figure 2.5: The obtained stable half-matching.

Proof. Let us suppose that {v, u} is not blocking hMv but there is a stable half-
matching hM of G, where v and u are matched. Let v = a0 and u = b1. First we consider
the case where none of hM and hMv contains an odd-cycle. Then b1 has a partner in
Mv (say a1), who is better than a0. So {a0, b1} <b1 {a1, b1}, where {a0, b1} ∈ M \ Mv.
Since M cannot dominate {a1, b1} at b1, this edge must be dominated at a1 by some
edge {a1, b2} of M . As {a1, b2} is not in Mv, it must be dominated at b2 by an edge
{a2, b2} of Mv, and so on. The alternating sequence (a0, b1, a1, b2, . . . ) has the following
property: {ai−1, bi} ∈ M \ Mv and {bi, ai} ∈ Mv \ M , furthermore the domination is
also in sequence: {ai−1, bi} <bi

{ai, bi} and {ai, bi} <ai
{ai, bi+1} for every i. We call

this sequence alternating preference sequence. Because a0 is not covered by the stable
matching Mv, the sequence can return neither to a0, nor to any other vertex. Oth-
erwise, the first such a repeated vertex would be covered by two matching edges, a
contradiction. (This part of the proof already settles the bipartite case.)

The other case is, when hMv or hM may contain odd-cycles. The properties of the
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alternating preference sequence remain the same, the difference is that the edges can
be half-weighted edges as well. To avoid repetition, the idea is the following: when an
edge {ai, bi} ∈ hMv is dominated at ai in hM by two edges (so ai is in a cycle in hM),
then we choose bi+1 as the predecessor of ai. Edge {ai, bi+1} is still not in hMv, so it
must be dominated at bi+1. But then the edge(s) that dominate(s) {ai, bi+1} is (are)
better than either of the edges that cover bi+1 in hM , so they are not in hM . This is
why every new edge in this sequence will be alternately in hM \ hMv and hMv \ hM .

a1 a2

b2

hM

v = a0

u = b1

hMv

Figure 2.6: Alternating preference sequence with half-weighted edges.

As the number of agents is finite, the alternating preference sequence must return.
Consider the first such repetition. If ak = ai for some k 6= i then {bk, ai} and {bi, ai}
would be in the same odd-cycle in hMv, but ai would be the predecessor of both bi and
bk by the inductive definition of the sequence, a contradiction. In the other case, assume
that ak = bi for some k 6= i. This means that {bk, bi} and {bi, ai} are in the same odd-
cycle in hMv. By definition, ai is the predecessor of bi, so bk should be the successor of
bi, that would imply {ai, bi} <bi

{bk, bi}. On the other hand, since {bk, bi} ∈ hMv \hM ,
this edge must be dominated at bi in hM . By the inductive rules {ai−1, bi} ∈ hM , this
implies {bk, bi} <bi

{ai−1, bi} <bi
{ai, bi}, a contradiction.

Similarly, if bk = bi for some k 6= i then {ak, bi} and {ai, bi} would be in the
same odd-cycle in hM , but bi would be the predecessor of both ai and ak by the
inductive definition of the sequence, that is impossible. Finally, assume that bk = ai

for some k 6= i. This means that {ak, ai} and {ai, bi} are in the same odd-cycle in
hM . By definition, bi is the predecessor of ai, so ak should be the successor of ai, that
would imply {bi, ai} <ai

{ak, ai}. On the other hand, since {ak, ai} ∈ hM \ hMv, it
must be dominated at ai in hMv. By the inductive rules {bi−1, ai} ∈ hMv, this means
{ak, ai} <ai

{bi−1, ai} <ai
{bi, ai}, a contradiction.

To generalize the results of Blum, Roth and Rothblum [24] we prove that the incre-
mental algorithm assigns the newcomer to his best stable partner in the nonbipartite
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case as well.

Theorem 2.2.4. Suppose that an agent v enters the market and stability is restored
by a proposal-rejection process along the sequence S = (A|B). Then each agent a ∈ A
(b ∈ B) , who became matched by making (accepting) a proposal gets his best (worst)
stable partner in the obtained stable half-matching.

Proof. If an agent a is matched in the output, and receives a partner by making a
proposal, then later he cannot accept any proposal because then he would be a cycle-
agent. The last time when agent a makes a proposal during the process he does not
prefer his last partner only to some agents that refused him. Because of the Key Lemma,
no one of these agents can be a partner of a in a stable solution, so obviously agent
a received his best stable partner. Similarly, each matched agent b ∈ B gets his worst
stable partner by Theorem 2.1.5.

Corollary 2.2.5. If an agent enters the market last and becomes matched, then he
gets his best stable partner. 2

If a phase is inactive in the incremental algorithm, then each stable half-matching
of the extended graph is also a stable half-matching in the original. That is, if hM
is a stable half-matching for G not covering some vertex x, then hM is a stable half-
matching for G− x too, because after deleting x from G no blocking edge can appear.
So, by using the Key Lemma, we can confirm the following result:

Theorem 2.2.6. Each matched agent, who gets a partner in the last active phase by
making (accepting) a proposal, receives his best (worst) stable partner in the stable
solution output by the incremental algorithm. 2

Remark 2.2.7. The vertices that remained uncovered in the last active phase or entered
later in an inactive phase, will still be uncovered at the end of the algorithm, just like
they are in every stable matching. The vertices that form an odd-cycle in the last active
phase will form an odd-cycle at the end of the algorithm, just like they do in every stable
half-matching. Hence these agents also get their best stable partners in this sense.

Corollary 2.2.8. A stable matching, where none of the matched agent gets his best
stable partner, cannot be the output of the incremental algorithm. 2

Let us remark that we did not prove that a stable matching where somebody gets his
best stable partner or which contains an odd-cycle can be obtained by an incremental
algorithm. Our result gives only a necessary condition not a sufficient one.

Blum, Roth and Rothblum [24] proved, that if a man m enters the market G − m
and another man m′ was matched with w′ in Mm, then m′ and w′ remain matched in
the obtained stable matching M for the new market G if and only if they are stable
partners for the new market. Otherwise m′ and w′ get those agents to whom they
are matched in the men-optimal stable matching of G. (So m′ receives his best stable
partner, and w′ receives her worst stable partner in this case.) Below, we generalize
this statement for the nonbipartite case.
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Theorem 2.2.9. Suppose that w and u are matched in a stable half-matching hMv for
G− v. They remain matched in the stable half-matching hM , obtained by the proposal-
rejection process after the arrival of v if and only if they are stable partners for G
as well. Otherwise, if they are not involved in a cycle, then one of them gets a better
partner than he had in hMv but receives his worst stable partner, the other one becomes
single or gets a worse partner than he had in hMv but receives his best stable partner
in hM .

Proof. If w and u are not involved in the proposal-rejection process, then they remain
matched. Otherwise, if S = (A|B) is the proposal-rejection sequence, then one of them,
say w is in A and u must be in B. As they are not involved in a cycle, u improves his
situation and w gets worse off during the process, and finally (by Theorem 2.2.6) u
gets his worst stable partner (better than w) and w gets his best stable partner (worse
than u), so u and w cannot be stable partners in the output.

2.2.3 Improving the situation by accepting proposals

Our next goal is to generalize Theorem 2.26. of Roth and Sotomayor in [92]. First we
give its proof implied by the results presented above.

Theorem 2.2.10 (Roth–Sotomayor). Suppose a woman w is added to the market
G − w. Let MW be the woman-optimal stable matching for the new market, G and let
MM

w be the man-optimal stable matching for G − w. If w is not single in MW , then
there exists a nonempty subset of men, S, such that each man in S is better off, and
each woman in S ′ is worse off under any stable matching for the new market than at
any stable matching for the original market, when S ′ denotes the partners of men in S
under matching MM

w .

Proof. After adding w to the market during the proposal-rejection process starting
from MM

w each man who gets a partner by accepting a proposal gets his worst possible
partner at the end of the process by Theorem 2.2.4. So these men get the same partners
as in MW . But their new partners are strictly better than their original partners in
MM

w , who were actually their best stable partners for G − w. Similarly, each woman
who gets a new partner during the process by making a proposal gets her best stable
partner for G, so these women get the same partners as in MW . But their new partners
are strictly worse than their original partners in MM

w , that were actually their worse
stable partners for G − w.

Pittel and Irving [80] considered the following situation. A new agent v enters the
market, and a perfect stable matching (i.e. a stable matching where no agent is single)
is achieved in such a way that the proposal-rejection sequence is as short as possi-
ble. They called this special half-matching with the associated alternating sequence a
core configuration relative to v. Pittel and Irving [80] proved the following interesting
property.
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Theorem 2.2.11 (Irving–Pittel). If hMv is a core configuration relative to v, then the
associated proposal-rejection sequence v = a0, b1, a1, . . . , ak−1, bk consists of 2k distinct
persons, it is uniquely defined, and for every i = 1 . . . k − 1

1. bi is the worst stable partner of ai for G − v;

2. ai is the best stable partner of bi for G − v.

We generalize Theorem 2.2.11 by extending the notion of core configuration. A
stable half-matching hMv is a core configuration relative to v if after adding v to the
graph, the associated proposal-rejection sequence S(hMv) is as short as possible, by
assuming that in case of cycling the sequence is restricted till bk, where ai = bk is the
first return.

Theorem 2.2.12. If hMv is a core configuration relative to v, then the associated
proposal-rejection sequence a0(= v), b1, a1, . . . , ak−1, bk(, ak) consists of distinct persons,
it is uniquely defined. For every agent in the sequence, who is matched for G, the
following properties are true:

a) bi is the worst stable partner of ai for G− v and bi+1 is the best stable partner of ai

for G;

b) ai is the best stable partner of bi for G− v and ai−1 is the worst stable partner of bi

for G.

Proof. We shall construct a core configuration. Suppose that hM0 is an arbitrary stable
half-matching for G. Let a new agent u enter the market in such a way that u is
acceptable only for v and u is the most preferred partner for v. Let us denote the
proposal-rejection sequence by S(hM0) and the output stable half-matching for G + u
by hM0

+u. Obviously, u and v are partners in any stable half-matching hM ′
+u for G+u,

moreover, hM ′
+u is a stable half-matching for G+u if and only if hM ′

v = hM ′
+u \{u, v}

is a stable half-matching for G − v. So, by deleting {u, v} from hM0
+u we get a stable

half-matching, say hMv for G − v. We prove that hMv is a core configuration relative
to v. (We denote the associated proposal-rejection sequence by S(hMv) and the output
stable half-matching for G by hM .)

To prove that S(hMv) is as short as possible, we show that each agent that is
involved in S(hMv) must be involved in any other proposal-rejection sequence as well,
and each agent occurs exactly once in S(hMv) (unless a new odd-cycle is created, when
ai = bk occurs twice.)

First, we prove that if x ∈ S(hMv) then x ∈ S(hM ′
v) for any stable half-matching

hM ′
v for G − v. We consider the cases according to the status of x (unmatched, cycle-

agent or matched) in the stable half-matchings for G − v and G.
1-2. No agent can be unmatched for G − v and a cycle-agent for G at the same time,
similarly, no agent can be a cycle-agent for G − v and unmatched for G.
3-4. If an agent is unmatched/cycle-agent for G−v and remains unmatched/cycle-agent
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for G then he cannot be involved in any proposal-rejection sequence.
5. If x is matched for G − v and becomes unmatched for G then x = ak, so x is the
last agent in S(hMv) (nobody accepts his proposal) and obviously x must be the last
agent in any other S(hM ′

v) as well.
6. If x is unmatched for G − v and becomes matched for G then x = bk, so x is the
last agent in S(hMv) (he accepts the last proposal) and obviously x must be the last
agent in any other S(hM ′

v) as well.
7. If x is a cycle-agent for G − v and becomes matched for G then x = bk, so x is
the last agent in S(hMv) (he accepts the last proposal). We prove that for any stable
half-matching hM ′

v, x is the last agent in S(hM ′
v) as well. Let C = (c0, c1, . . . c2k) be

the cycle that is eliminated when v enters the market. We suppose indirectly that two
different cycle-agents x = c0 and ci accept the last proposals, made by y and y′ in
S(hMv) and S(hM ′

v) respectively. Obviously, the agent who made the final proposal
is better than the predecessor of the cycle-agent who accepts it, (so y >c0 c2k and
y′ >ci

ci−1). From Theorem 2.2.4, we also know that c0 and ci get their worst stable
partners in hM and hM ′ respectively. This is a contradiction, because if i is even then
ci would be matched with ci−1 in hM and if i is odd then c0 would be matched with
c2k in hM ′.
8. If x is matched for G − v and became a cycle-agent for G then x must occur in any
proposal-rejection sequence until the first return, since Tan and Hsueh [105] proved
that no new agent occurs in the sequence after the first return.
9. Finally, we consider the case where x is matched for G− v and for G as well. Let us
denote x’s partners by y0, yv and y in hM0, hMv and hM , respectively.

a) If y <x yv, then x must receive y during S(hMv) by making a proposal, so by
Theorem 2.2.4, y is the best stable partner of x for G. Thus, y0 ≤ y implies y0 <x yv.
It means that x must receive yv during S(hM0) by accepting a proposal, so yv is
the worst stable partner of x for G− v. It follows that x gets a worse partner under
any stable half-matching for G than at any stable half-matching for G − v, so x
must be involved in any proposal-rejection sequence.

b) Similarly, if y >x yv, then x must receive y during S(hMv) by accepting a proposal,
so by Theorem 2.2.4, y is the worst stable partner of x for G. Thus, y0 ≥ y implies
y0 >x yv, it means that x must receive yv during S(hM0) by making a proposal, so
yv is the best stable partner of x for G − v. It follows that x gets a better partner
under any stable half-matching for G than at any stable half-matching for G − v,
so x must be involved in any proposal-rejection sequence.

c) If y = yv, then x cannot be involved in S(hMv).

Now, we prove that each agent occurs exactly once in S(hMv). Let us consider the
above sequence with an extra stopping rule: if aj looks for a new partner let us choose
the best one among those who either form a blocking pair with aj or some bi with i < j
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such that bi prefers aj to ai (and not to his actual partner ai−1). Assume that the first
repetition (according to the extra stopping rule) would occur at bj+1.

Case 1. If bi = bj+1 for some i < j then let hMaj
be the actual stable half-matching

for G − aj . We construct a new stable partition for G − v: hM ′
v = hMaj

∪ {aj, bi} \
{{ap−1, bp}, 1 ≤ p ≤ i} ∪ {{ap, bp}, 1 ≤ p ≤ i − 1}. It is stable, because by comparing
with hMv only agents {aq, i ≤ q ≤ j} get worse partners, but the extra stopping rule
preserves that no edge {{aq, bp}, 1 ≤ p < i ≤ q ≤ j} can block hM ′

v (and obviously no
other edge).

In hM ′
v every agent {bq, i ≤ q ≤ j} gets a better partner than in hMv, and every

agent {aq, i ≤ q ≤ j} gets a worse partner than in hMv. If some of these agents is
matched for G − v and G as well, then it is a contradiction, because in hMv they are
matched with their best/worst stable partners, respectively.

The last case is that all of these agents are matched for G− v and become a cycle-
agent for G. These agents are in the same cycle (say (c0, c1, . . . , c2k)) in hM0 as well.
So, when S(hM0) ends at c0 by eliminating this cycle, each of these agents becomes
matched in hMv to either with his successor or with his predecessor (so {c2i−1, c2i} ∈
hMv for all 1 ≤ i ≤ k). We show that ai−1 must also be a cycle-agent for G. Otherwise
ai−1 must receive a worse partner than bi in hM , and for bi his predecessor is also
worse than ai−1 (that is why bi accepted the proposal of ai−1). So ai−1 and bi would
block hM . By continuing this argument, for some p < i, ap must be c0, (the cycle-
agent in hMv that accepted the last proposal in S(hM0)). But then bp+1 must be the
predecessor of c0: c2k. Otherwise, if for some 1 ≤ r < 2k, cr = bp+1 then c2k <c0 cr

(since c2k is matched with c2k−1 in hMv, so c2k would accept the proposal of c0) and
cr−1 <cr

c0 (since cr accepted the proposal of c0), so c0 and cr would form a blocking
pair in hM . Similarly, we can prove that the sequence goes along this odd-cycle, so for
each d (0 < d < j − p), ap+d = c2(k−d)+1 and bp+d = c2(k−d). Finally, bi = bj+1 cannot
be the predecessor of aj in hM , a contradiction.

Case 2. If the first repetition is such that ai = bj+1, then the extra stopping
rule was not used. This proves that a new odd-cycle can be created, so hM = hMaj

\
{{aq, bq+1}, i ≤ q ≤ j}∪(ai, aj, bj , aj−1, . . . , ai+1, bi+1) is the output stable half-matching
for G.

Theorem 2.2.12 implies the following generalization of Theorem 2.2.10.

Theorem 2.2.13. Suppose that a new agent is added to the market. There may exist
some agents that are better off, and some other agents that are worse off under any
stable half-matching for the new market than at any stable half-matching for the original
market. We can efficiently find all of these agents. 2
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The arrival order determines the benefits

If we suppose that a centralized matching program uses the incremental algorithm, or
if we model the dynamics of the matching market by the natural proposal-rejection
process, then the obtained solutions are determined by the arrival order of the agents.
We discuss here, as a consequence of the theorems from the last subsections, how the
benefits of agents depend on the arrival orders.

Blum and Rothblum [25] realized that an agent can only benefit by arriving later to
the market in the Roth-Vande Vate algorithm. By a similar argument, we can generalize
this result for the nonbipartite case.

Lemma 2.2.14. Assume that u is a matched agent for both G−v and G, and let hMv

and hM ′
v be two half-matchings for G − v such that u gets at least as good partner in

hMv as in hM ′
v (denoted by hMv ≥u hM ′

v). Let hM and hM ′ be the outputs received
by the proposal-rejection process after the arrival of v, respectively. Then u gets an at
least as good partner in hM as in hM ′ (so hM ≥u hM ′).

Proof. Indirectly, assume that u gets a better partner in hM ′ than in hM , so hM <u

hM ′. This implies hMv >u hM or hM ′
v <u hM ′. In the first case u gets a worse partner

by the proposal-rejection process, so by Theorem 2.2.9, u gets his best stable partner
in hM , a contradiction. Similarly, in the second case u gets a better partner by the
proposal-rejection process, so by Theorem 2.2.9, u gets his worst stable partner in hM ′,
a contradiction.

Lemma 2.2.15. Let hMv and hM ′
v be two half-matchings for G − v such that u is in

the same situation in hMv as in hM ′
v, so u gets the same partner or u is unmatched or

a cycle-agent. Let hM and hM ′ be the outputs received by the proposal-rejection process
after the arrival of v, respectively. Then u is in the same situation in hM ′ as in hM ,
so u gets the same partner if he is matched for G.

Proof. If u is matched for G − v, then Theorem 2.2.9 preserves the above property. If
u is unmatched or a cycle agent for G − v, then the statement is an easy consequence
of the points 6. and 7. from the proof of Theorem 2.2.12, respectively.

Theorem 2.2.16. In the incremental algorithm let two arrival orders σ and σ′ differ
only in one agent v in such a way that v arrives later in σ. Let hM and hM ′ be the
outputs of the algorithm realized with the orders σ and σ′, respectively. If v is a matched
agent, then he gets an at least as good partner in hM as in hM ′.

Proof. Consider the market at the moment when v arrives according to σ. Now, the
same agents are present in the market according to both arrival orders. Since v is
the lastcomer according to σ, Theorem 2.2.6 implies that after the proposal-rejection
processes v cannot be better off in the stable solution according to σ′. Afterwards,
during the incremental algorithm, the same agents enter the market in each phase, so
by the Lemmas 2.2.14 and 2.2.15 it follows, that v cannot be better off in the stable
solutions according to σ′ anymore.
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Let us define two relations, B∗ and W ∗ between the agents in the following way: we
denote by uB∗v if agent v occurs as an agent that makes a proposal in S(hMu) (the
proposal-rejection sequence according to the core configuration relative to u). As an
easy consequence of Theorem 2.2.12, uB∗v implies that v gets his best stable partner
if u enters the market last, moreover the same theorem says, that v gets an even better
partner if u does not enter the market at all. So v can only benefit if u is out of the
market, or u arrives as late as possible. That is why we may regard u as a nightmare-
agent of v.

Similarly, we denote by uW ∗v if agent v occurs as an agent that receives a proposal
in S(hMu). Here, uW ∗v implies that v gets his worst stable partner if u enters the
market last, but v gets an even worse partner if u is not present in the market. So v
can only benefit if u is in the market, and he arrives as soon as possible. We call u as
a dream-agent of v in this case.

Obviously, neither B∗ nor W ∗ is symmetric. Moreover, the following Lemma proves,
that uB∗v implies that vB∗u cannot be true, so the relation B∗ is antisymmetric.

Lemma 2.2.17. If uB∗v, then S(hMv) is the restriction of S(hMu).

Proof. Directly follows from Theorem 2.2.12.

Corollary 2.2.18. The relation B∗ is transitive, so uB∗v and vB∗w imply uB∗w.
Moreover, uB∗v and vW ∗w imply uW ∗w.

To show, that the relation B∗ is not a linear order, one can easily find an example,
where uB∗w and vB∗w, but there is no B∗ relation between u and v. We believe that
there should be some further relevant questions to consider about these relations.

2.2.4 The increasing side gets worse off

Finally, we give alternative proofs for certain results for two-sided matching markets.
Lemma 2.2.19 is a straightforward consequence of Theorem 2 in [49].

Lemma 2.2.19. If a man enters the market then no man can have a better partner in
the new men-optimal stable matching than in the former men-optimal stable matching.

Proof. Let m be the man that enters the market last. We shall prove that if a man
m′ gets w′ in the men-optimal stable matching MM , then m′ cannot have a worse
partner in the men-optimal stable matching MM

m for G − m. If m is unmatched in
MM , then MM is also stable for G−m. If {m, w} ∈ MM , then MM \ {m, w} is stable
for G − {m, w}. After w reenters the market, during the proposal-rejection process
m′ either remains matched with w′ or receives a proposal from a better woman for
him.

Theorem 2.2.20. If some men enter the market one after another then at the end of
the proposal-rejection process they all get their best stable partners in the output stable
matching.
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Proof. Suppose that a man m′ is matched with his best stable partner w′ before a new
man, m enters. If m′ remains matched with w′ in the new obtained matching, then by
Lemma 2.2.19, w′ is still his best stable partner. If m′ gets a new partner during the
phase, then he must receive her by making a proposal, so Theorem 2.2.6 proves that
m′ gets his best stable partner again.

The following theorem of Blum, Roth and Rothblum [24] can be proved the same
way by using Theorem 2.2.9.

Theorem 2.2.21. If some men enter the market then any other man m either remains
matched with his original partner w if w is still a stable partner for m or m receives
his best stable partner in the output. 2

If the arrival order is such that women enter the market first and men follow after
that, then the output will be the same as the output of the deferred-acceptance algo-
rithm with men proposing by Gale and Shapley [48]. Theorem 2.2.20 is an alternative
proof for the statement that the obtained stable matching is optimal for the men.

2.3 Stable matching with ties, complexity results

In this section, we collect some results on the stable matching problem with ties. First,
we study the problem of finding a stable matching according the three main stability
concepts. Then, we consider the problem of finding a matching for which the number
of blocking pairs is minimal.

We recall, the three main stability concepts for the stable matching problem with
ties.

• A matching M is weakly stable if there exist no blocking edge e = {ai, aj} where
both agents strictly prefer the other to his partner in M .

• A matching is strongly stable if there exist no blocking edge e = {ai, aj} such
that one of the agents, say ai strictly prefers aj to his partner in M and aj either
strictly prefers ai to his partner in M or is indifferent between them.

• A matching M is super stable if there exist no blocking edge e = {ai, aj} where
both agents either strictly prefers the other to his partner in M or are indifferent
between them.

We note that weak stability is regarded as stability in general. If for a given instance
I of the stable matching problem with ties, we break the ties, then the obtained instance
I ′ of stable matching problem is called the derived problem. Obviously, a matching that
is stable for some derived problem is also stable for the original one.
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While, the above definitions are also correct in case the graph has parallel edges,
here we restrict our attention to simple graphs, and call the nonbipartite case as stable
roommates problem with ties, and the bipartite case as stable marriage problem with
ties.

2.3.1 Finding a stable matching

Considering the stable roommates problem with ties, the problem of finding a weakly
stable matching, denoted by weakly srt, is NP-complete. This was proved first by
Ronn [82] for complete graphs. Later, Irving and Manlove [59] verified the same result
by a different proof for the more general case, when the lists can be incomplete. More-
over, this result holds even if each tie is of length 2, i.e. there is at most one tie per
list, and the vertices that have a tie in their list are not connected.

Theorem 2.3.1 (Ronn; Irving-Manlove). The problem of finding a weakly stable
matching in an instance of the stable roommates problem is NP-complete [R3].

On the other hand, Irving [57] constructed two polynomial algorithms which
determine whether a given instance of the stable marriage problem with ties admits
a {strongly, super-} stable matching, and if so find one. He proved these results for
complete graphs, later Manlove [73] verified similar results for incomplete lists as well.
The same questions are tractable also for stable roommates problems with ties. This
was verified by Irving and Manlove [59] in case of super-stability and by Scott [99] in
case of strong-stability.

For a stable matching problem it is a natural question to find such a stable match-
ing that has maximal cardinality. If the preferences are strict then this problem is not
interesting, since every stable matching has the same size by Theorem 2.2.15. Consid-
ering weak stability in case of ties Manlove et al. [74] proved the following theorem for
bipartite graphs.

Theorem 2.3.2 (Manlove et al., 2002). The decision problem related to finding the
maximum size of weakly stable matchings for a given instance of the stable marriage
problem with ties, denoted by max weakly smt, is NP-complete, even if ties occur
only in one side of the bipartite graph. [R4].

The problems of finding a maximum size strongly and super-stable matchings are
solvable: Manlove [73] proved that for a given instance of the stable marriage problem,
the same agents are matched in each strongly stable matching, and similarly, the same
agents are matched in each super stable-matching. Similar results were proved in the
roommates case by Irving and Manlove [59] for super-stable matchings and by Scott
[99] for strongly stable matchings.



CHAPTER 2. STABLE MATCHING PROBLEMS 45

2.3.2 “Almost stable” matchings

Here we present some results of Abraham, Biró and Manlove, published in [5]. For a
stable roommates problem, where no stable matching exists, it is a natural question to
find a matching that admits the fewest number of blocking pairs: it can be regarded
as a matching that is “as stable as possible”.

Let us show first an example that is used as a gadget in the proofs of the presented
theorems.

Example 2.3.3. We have given 2k + 2 agents: {b1, b2, . . . , b2k+1} = B and a. The
preference of the agents are the following:

b1

b2k+1

a

b2

bi

a : [b1, arbitrary ]
b1 : [a, b2, b3, . . . , b2k, b2k+1]
b2 : [b3, b4, . . . , b2k+1, b1, a]
. . . . . .
bi : [bi+1, bi+2, . . . , b2k+1, b1, . . . , bi−1, a]
. . . . . .

b2k+1 : [b1, b2, . . . , b2k, a]

This graph can be considered as a “bomb”, where edge {a, b1} is called
priming. One can easily check that if {a, b1} is part of a matching M ,
then M can be stable if the remaining agents are matched as follows:
{b2, bk+2}, {b3, bk+3}, . . . , {bi, bk+i} . . .{bk+1, b2k+1} ∈ M . On the other hand, if
{a, b1} /∈ M , then the number of blocking pairs is at least k, so the bomb is exploding.
To prove this, let bi be an agent, who has no partner from B in M . If {bj , bk} ∈ M ,
then obviously either {bi, bj} or {bi, bk} is a blocking pair. If another agent bl has no
partner from B either, then the pair {bi, bl} is blocking, so bi must belong to at least
k blocking pairs.

Define min-mm (respectively exact-mm) to be the problem of deciding, given a
graph G and integer K, whether G admits a maximal matching of size at most (re-
spectively exactly) K. Both problems are NP-complete even for cubic graph. This was
proved in [53] for min-mm and in [5] for exact-mm.

Theorem 2.3.4. The problem of finding a matching in a given an instance of stable
roommates problem for which the number of blocking edges is minimal is not approx-
imable within n

1

2
−ε, for any ε > 0, unless P = NP . The result holds even for complete

preference lists. [R5]
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Sketch of the proof. The proof is based on a gap-introducing reduction starting
from exact-mm for a cubic graph G of size p with a positive integer K. We create an
instance I of the stable roommates problem of size n, where n >> p and p is fixed, so
p can be considered as a constant relative to n. The instance I contains Θ(

√
n) bombs

of size Θ(
√

n). The construction of I ensures that on the one hand, if every priming
is part of a matching M ′ in I, so no bomb is exploded, then the minimum number of
blocking pairs is bounded by a constant relative to n. On the other hand, if any of
the priming is not part of M ′, so some bomb is exploded, then the minimum number
of blocking pairs is at least Θ(

√
n). In the proof it is verified that G has a maximal

matching M of size K if and only if no bomb is exploded in I. Thus, an algorithm that
could approximate the minimum number of blocking pairs in polynomial time within
a factor less than Θ(

√
n) would be able to decide exact-mm for cubic graphs as well.

Theorem 2.3.5. The problem of finding a matching in a given an instance of stable
roommates problem with ties for which the number of blocking edges is minimal is not
approximable within n1−ε, for any ε > 0, unless P = NP . The result holds even for
complete preference lists. [R6]

Sketch of the proof. The idea is similar to the above proof. The only difference here
is that I contains a constant number of bombs of size Θ(n). By this it follows that
the existence of an approximation algorithm with a factor less than Θ(n) would imply
P = NP .

We note finally, that for bipartite graphs similar inapproximability results were
proved recently by Manlove (personal communication), in case the matching is
restricted to be a complete matching. [R7]

In the following table we collect the above results. Here, P denotes that the problem
is polynomial time solvable, NPc denotes that the (related) problem is NP-complete,
(NPh) denotes that the NP-hardness of the problem is obvious from the presented
results.

The problem is to where bipartite graph arbitrary graph
find a matching M , M (strict) with ties (strict) with ties
s.t. M (arb.) Yes [R1] (Yes) P [R2] NPc [R3]

is stable max (P) NPc [R4] (P) (NPh)
s.t. M has min (arb.) (=0) (=0) NPc [R5] NPc [R6]

no. of blocking pairs max NPc [R7] (NPh) (NPh) (NPh)



Chapter 3

Stable allocation problems

Introduction

In this chapter we study stable matching problems with vertex-bounds and edge-
capacities. To introduce these notions, we recall Scarf’s lemma. Then we show that
if all the bounds and capacities are integers, then the so-called integral stable alloca-
tion problem for graphs can be reduced to the stable roommates problem by a sequence
of constructions. We describe a strongly polynomial algorithm created by Bäıou and
Balinski for two-sided matching markets, and we study its generalization in the one-
sided case. Finally, as a practical application of stable b-matchings, we describe the
higher education admission program in Hungary on the basis of paper [18].

3.1 Stable allocation problem by Scarf’s lemma

3.1.1 Fractional b-core element

In what follows, we introduce the notion of fractional b-core element as a solution of
Scarf’s lemma with the original settings. Let the same matrices A and C of dimension
n × (n + m) correspond to the set of effective utility vectors (or activities) in a given
finitely generated NTU-game as it was described in Section 1.1.3. The only modification
is that now b is an arbitrary vector of R

n
+ (instead of 1N). Let x ∈ R

n+m
+ be referred as

a fractional b-core element if x is a solution of Scarf-lemma for the above setting.
Here, b(i) is an upper bound for the total intensity of which player i is capable to

perform activities, since
∑

i∈S x(uS,l) = b(i). The domination condition of the lemma
says that for every activity a there exists some player i, who is not interested in
increasing the intensity of a, because his remaining intensity b(i) is filled with better
activities, so if uT,l corresponds to activity a, then

∑

u
S,k
i ≥u

T,l
i

x(uS,l) = b(i).

In fact, to produce a fractional core element (in other words, a fractional 1N -core
element) by the algorithm of Scarf, we should perturbate not just matrix C (in case of

47



CHAPTER 3. STABLE ALLOCATION PROBLEMS 48

indifferences at the beginning), but also the vector 1N , to avoid the degeneracy. The
standard nondegeneracy assumption provides that all variables associated with the n
columns of a feasible basis for the equations Ax̃ = b̃ = 1N + εN are strictly positive.
Thus, the perturbation uniquely determines the steps of Scarf algorithm. By rounding
the final fractional b̃-core element x̃, a fractional core element x is found.

The following simple Lemma says that the fractional b-core element has the scaling
property.

Lemma 3.1.1. Given a finitely generated NTU-game, and a positive constant λ. Sup-
pose that b′ = λ · b, then x is a fractional b-core element if and only if x′ = λ · x is a
fractional b′-core element.

An easy consequence is that by Theorem 1.3.5, for every finitely generated matching
game, there always exists an integer 2N -core element. That is actually a half-core
element for the original setting.

3.1.2 Fractional b-core element with capacities: stable alloca-
tion

Assume now, that the intensities of the activities in the finitely generated NTU-game
are bounded by capacities. Formally, for each common activity a and for the corre-
sponding utility vector uS,l, there may exist a nonnegative capacity c(uS,l) for which
x(uS,l) ≤ c(uS,l) is required.

The stable allocation problem can be defined for hypergraphs as follow. A hyper-
graph H is given and for each vertex v a strict preference order over the edges incident
with v (this corresponds again to the preferences of the players over the activities,
in which they can be involved). Suppose, that nonnegative bounds on the vertices
b : V (H) → R+, and nonnegative capacities on the edges c : E(H) → R+ are fixed. A
nonnegative function x on the edges, is an allocation if x(e) ≤ c(e) for every edge e
and

∑

v∈h x(h) ≤ b(v) for every vertex v. An allocation is stable if every unsaturated
edge e (i.e. x(e) < c(e)) contains a vertex v such that

∑

v∈h,e≤vh x(h) = b(v). In this
case we say that e is dominated at v.

The stable allocation problem was introduced by Bäıou and Balinski [14] for bipar-
tite graphs. The integer version, (i.e. if the allocation x is required to be integer on every
edge for integer bounds and capacities) was called the stable schedule problem by Alkan
and Gale [10], however they considered a more general model, the case of so-called
substitutable preferences. Here, instead of stable schedule problem, we call the integral
version of the stable allocation problem simply as the integral stable allocation problem.

The following theorem was presented in [17] as a joint result with Tamás Fleiner.
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Theorem 3.1.2. Every stable allocation problem for hypergraphs is solvable.

Proof. Let V (H) = {v1, v2, . . . , vn} be the set of vertices, and let E(H) =
{e1, e2, . . . , em} be the set of edges in a given hypergraph H . We define the extended
membership-matrix A, and the extended preference-matrix C of size (n+m)×(n+2m)
as follows.

The left part of A is an identity matrix of size (n+m)× (n+m), (i.e. ai,j = δi,j for
i, j ∈ [n + m]). At the bottom of the right side there is another identity matrix of size
m × m, so an+i,n+m+j = δi,j for i, j ∈ [m]. Finally, at the top of the right side we have
the vertex-edge incidence matrix of H (i.e. ai,n+m+j = 1 if vi ∈ ej and 0 otherwise for
i ∈ [n] and j ∈ [m]).

The top-right part of C correspond to the preference of the vertices (that is the
preference of the players over the activities). We require the following two conditions:

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej ∩ ek and ej <vi
ek;

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej \ ek.

Furthermore, suppose that cn+i,n+m+i < cn+i,n+m+j for every i 6= j ∈ [m] in the
bottom-right part of C. Finally, let the left part of C be such that it satisfies the
conditions of Scarf’s lemma.

Finally, the constant vector, b ∈ Rn+m
+ is given by the bounds and capacities, let

bi = b(vi) for i ∈ [n] and bn+j = c(ej) for j ∈ [m].

We shall prove that the fractional core element x, obtained by Scarf’s lemma,
gives a stable allocation, xe by simply taking the last m coordinates of x. Here, xe

j is
equal to xe(ej) that is the weight of the edge ej (or equivalently, this is the intensity,
the corresponding activity is performed with). If x̄v and x̄e are the vectors obtained
by taking the [1, . . . , n] and [n + 1, . . . , n + m] coordinates of x, then these vectors
correspond the remaining weights of the vertices and edges (or the remaining intensities
of the players and the activities), respectively.

Obviously, xe is an allocation by Ax = b, since the first n equations preserve the
∑

v∈h xe(h) ≤ b(v) condition for every vertex v, and the last m equations preserve
xe(e) ≤ c(e) for every edge e.

To prove stability, let us consider an unsaturated edge ej and let us suppose that
the corresponding row by the lemma is k. First we show, that i ∈ [n]. From Ax = b,
obviously x̄e(ek)+xe(ek) = c(ek) for every edge ek. Since xe(ej) < c(ej), then x̄e(ej) > 0,
thus the assumptions on C imply that i 6= n + j, for other i ∈ [n + m] \ [n] the
contradiction is trivial. If i ∈ [n], then e is dominated at vi, since x̄v(vi) = 0 by the
assumptions on C, and the Ax = b condition for the i-th row with the statement of
the lemma imply

∑

vi∈h,ej≤vi
h xe(h) = b(vi).

The following theorem is an easy consequence of Theorem 3.1.2. In the next sub-
section we give other evidences that verify this theorem.
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Theorem 3.1.3. For every integral stable allocation problem in a graph there exists a
half-integer stable allocation. If the graph is bipartite, then every integral stable alloca-
tion problem is solvable.

Proof. Suppose that we have a stable allocation x that has some weights that are not
half-integers. We create another stable allocation x′ with half-integer weights. If x(e) is
not integer, then let v be the vertex, where e is dominated. Since b(v) is integer, there
must be another edge f , that is incident with v and has non-integer weight. Moreover,
f cannot be dominated at v. By this argument, it can be verified that the edges with
non-integer weights form vertex-disjoint cycles, and in a such cycle, the fractional parts
of the weights are ε and 1− ε alternately. If a cycle is odd, then ε must be 1

2
. If a cycle

is even, then ε can be modified to be 0 (or 1), the obtained allocation x′ remains stable
and has half-integer weights.

If the graph is bipartite, thus has no odd cycle, then x′ has only integer weights, so
it is a integral stable allocation .

We note that the scaling property holds also for the stable allocation problem.
By this, if every bound and capacity is even, then the existence of an integral stable
allocation is straightforward by Theorem 3.1.3.

In the next example, we illustrate a integral stable allocation problem in a graph
for which a half-integer stable allocation is obtained by the algorithm of Scarf.

Example 3.1.4. Here, 6 agents and 7 possible pairwise activities are given. The
bounds of the agents are: b(a1) = 4, b(a2) = 1, b(a3) = 1, b(a4) = 2, b(a5) = 2 and
b(a6) = 4. The capacities of the possible activities are: c({a1, a2}) = 1, c({a1, a3}) = 2,
c({a1, a5}) = 2, c({a1, a6}) = 3, c({a2, a5}) = 1, c({a3, a6}) = 2 and c({a4, a6}) = 1.
The preference-lists of the agents are the following:

a1

a3

a6

a4

a5

a2

4
3

4
2

2

2
2

1
1

2 1 1

1

a1 : [a6, a3, a2, a5]
a2 : [a5, a1]
a3 : [a6, a1]
a4 : [a6]
a5 : [a1, a2]
a6 : [a4, a3, a1]

The extended membership-matrix A is the following:
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A =





























































1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

− − − − − − − − − − − − − − − − − − − −
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1





























































The matrix C that represents the preference of the players can be generated as
follows:

C =





























































0 24 23 22 21 20 19 18 17 16 15 14 13 3 4 2 5 8 7 6

25 0 23 22 21 20 19 18 17 16 15 14 13 4 11 10 9 5 7 6

25 24 0 22 21 20 19 18 17 16 15 14 13 12 4 10 9 8 5 6

25 24 23 0 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5

25 24 23 22 0 20 19 18 17 16 15 14 13 12 11 5 9 4 7 6

25 24 23 22 21 0 19 18 17 16 15 14 13 12 11 10 3 8 4 5

− − − − − − − − − − − − − − − − − − − −
25 24 23 22 21 20 0 18 17 16 15 14 13 1 11 10 9 8 7 6

25 24 23 22 21 20 19 0 17 16 15 14 13 12 1 10 9 8 7 6

25 24 23 22 21 20 19 18 0 16 15 14 13 12 11 1 9 8 7 6

25 24 23 22 21 20 19 18 17 0 15 14 13 12 11 10 1 8 7 6

25 24 23 22 21 20 19 18 17 16 0 14 13 12 11 10 9 1 7 6

25 24 23 22 21 20 19 18 17 16 15 0 13 12 11 10 9 8 1 6

25 24 23 22 21 20 19 18 17 16 15 14 0 12 11 10 9 8 7 1





























































In the algorithm, we used the following perturbation on b: we set b̃i = bi + εi =
bi +1/p101−i, where pi is the i-th prime number. By rounding the output x̃ of the Scarf
algorithm, we get the following fractional b-core element x, and stable allocation xe:
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a1

a3

a6 a5

a2a4

3

2

1 1

2

1

2

1

2

x = [x̄v|x̄e|xe], where xe = [
1

2
, 0,

3

2
, 2,

1

2
, 1, 1]

x̄v = [0, 0, 0, 1, 0, 0] and x̄e = [
1

2
, 2,

1

2
, 1,

1

2
, 1, 0]

In the above figure, we oriented each unsaturated edge to its endvertex, where it is
dominated.

3.2 Integral stable allocation problem for graphs

3.2.1 Special cases

If, for a integral stable allocation problem c(e) = 1 for every edge e, then this special
case is called a stable b-matching problem (see Fleiner [46]). If the graph may contain
parallel edges, then this problem was referred to as a stable multiple activities problem
by Cechlárová and Fleiner [31]. In case of simple graphs, this problem was called a
stable fixtures problem by Irving and Scott [60]. If b(v) = 1 for every vertex, then
the stable matching problem is obtained, that is called stable roommates problem for
simple graphs.

Furthermore, if the given graph is simple and bipartite, then the stable b-matching
problem can be called many-to-many stable matching problem. If b(v) = 1 for every
vertex of one of the sides, then the problem can be referred to as many-to-one stable
matching, college admission or hospitals/residents problem. Finally, if b(v) = 1 for
every vertex, then we get the stable marriage problem.

3.2.2 Reduction by constructions

Here, we present a result of Cechlárová and Fleiner [31], and we extend it by one trivial
primary step. This argument says that every integral stable allocation problem on a
graph can be reduced graph constructions to a stable roommates problem. However,
this reduction is not polynomial.

1st step: creating parallel edges in order to omit the capacities

Given a integral stable allocation problem for a graph G0. We reduce the problem to
a stable b-matching problem for a graph G1 as follows.

Let G1 has the same vertex-set as G0, with the same bounds, so V (G1) = V (G0),
and if v′ corresponds to v, then b(v′) = b(v). If {u, v} = e ∈ E(G0) and c(e) = l, then
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let e′1, e
′
2, . . . , e

′
l ∈ E(G1), where e′i = {u, v} and c(e′i) = 1 for every index i = 1, . . . l.

Preferences are the following: if e <v f in G0, then let e′i <v′ f ′
j in G1 for each pair of

indices i, j. Moreover, let e′i >v′ e′j whenever i < j.

G0 → G1
u

v

u′

v′

e

c(e) = l

e′1 e′l

c(e′i) = 1

Figure 3.1: Creating parallel edges

Suppose that x0 is a stable allocation for G0, we shall construct a stable b-matching
x1 for G1. If x0(e) = k, then let x1(e′i) = 1 for every i = 1, . . . , k. Obviously, x1 is a
b-matching. If an edge e′i ∈ E(G1) is not in the b-matching, so if x1(e′i) = 0, and e is
dominated at v in G0, then

∑

v∈h,e≤vh x0(h) = b(v) = b(v′) =
∑

v′∈h,e′i≤v′h
x1(h), so e′i

is dominated at v′.
In the other direction, suppose that x1 is a stable b-matching for G1. Let x0(e) =

∑l

i=1 x(e′i), x0 is obviously a integral stable allocation for G0.
We note, that here, x1(e′j) = 1 implies x1(e′i) = 1 for every i < j, since otherwise e′i

cannot be dominated. This observation yields to a one-to-one correspondence between
the integral stable allocation s of G0 and the stable b-matchings of G1.

2nd step: introducing 6-cycles on the edges

Given a stable b-matching problem for a graph G1. We reduce the problem to another
stable b-matching problem for a graph G2, where G2 is simple and satisfies the
many-to-one property (i.e. {u, v} ∈ E(G2) ⇒ b(u) = 1 or b(v) = 1).

If v ∈ V (G1) then let v′ ∈ V (G2) with the same bounds, b(v′) = b(v). If {u, v} = e ∈
E(G1), then let u′

e,1, u′
e,2, u′

e,3, v′
e,1, v′

e,2, v′
e,3 ∈ V (G2) with unit bounds, and {u′, u′

e,1},
{v′, v′

e,1}, {u′
e,1, u

′
e,2}, {u′

e,2, v
′
e,3}, {v′

e,3, v
′
e,1},{v′

e,1, v
′
e,2}, {v′

e,2, u
′
e,3}, {u′

e,3, u
′
e,1} ∈ E(G2)

(with unit capacities), with the following preferences:

u′
e,1 : [u′

e,2, u
′, u′

e,3] u′
e,2 : [v′

e,3, u
′
e,1] u′

e,3 : [u′
e,1, v

′
e,2]

v′
e,1 : [v′

e,2, v
′, v′

e,3] v′
e,2 : [u′

e,3, v
′
e,1] v′

e,3 : [v′
e,1, u

′
e,2]

Suppose that x1 corresponds to a stable b-matching M1 for G1 (i.e.
e ∈ M1 ⇔ x1(e) = 1). We can construct another stable b-matching, M2 for G2
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G1 → G2
u

v

u′

v′

e

u′
e,2

u′
e,3

v′
e,1

v′
e,3v′

e,2

u′
e,1

Figure 3.2: Introducing 6-cycles

as follows:
If {u, v} = e ∈ E(G1), then
- e ∈ M1 ⇒ {u′, u′

e,1}, {u′
e,2, v

′
e,3}, {v′

e,2, u
′
e,3}, {v′, v′

e,1} ∈ M2

- e /∈ M1 and e is dominated at v ⇒ {u′
e,1, u

′
e,2}, {v′

e,3, v
′
e,1}, {v′

e,2, u
′
e,3} ∈ M2

It can be verified that M2 is a stable b-matching for G2 (see [31]).

In the other direction, suppose that x2 corresponds to a stable b-matching M2 for
G2. Let us create M1 is the following way:
- {u′, u′

e,1}, {u′
e,2, v

′
e,3}, {v′

e,2, u
′
e,3}, {v′, v′

e,1} ∈ M2 ⇒ e ∈ M1

It can be verified that M1 is a stable b-matching for G1 (see [31]).

3rd step: b-expansion of the vertices in order to omit the bounds

Given a stable b-matching problem for a graph G2, where G2 is simple and satisfies
the many-to-one property. We reduce the problem to a stable roommates problem for
a graph G3 as follows.

If u ∈ V (G2) and b(u) = 1, then let u′ ∈ V (G3) with b(u′) = 1. If v ∈ V (G2)
and b(v) = k, then let v′

1, v′
2, . . . , v′

k ∈ V (G3) with b(v′
i) = 1. If {u, v} ∈ E(G2) and

b(u) = 1, b(v) = k, then let {u′, v′
1}, {u′, v′

2}, . . . , {u′, v′
k} ∈ E(G3). Considering the

preferences: if {u, v} <u {u, w} in G2, then let {u′, v′
i} <u′ {u′, w′

j} for every pair of
indices i, j, and let {u′, v′

j} <u′ {u′, v′
i} for i < j in G3.

Suppose that M2 is a stable b-matching for G2. We can construct a stable
matching M3 for G3 as follows: If {u, v} ∈ M2 for b(u) = 1 and b(v) = k, where
|{e : e ∈ M2, e ≥v {u, v}| = j then let {u′, v′

j} ∈ M3.
It can be verified that M3 is a stable matching for G3 (see [31], or [52] p.38 and [92]
p. 131-132 in the bipartite case).

In the other direction, suppose that M3 is a stable matching for G3. Let {u, v} ∈ M2

whenever {u′, v′
i} ∈ M3 for some i. It can be verified that M2 is a stable b-matching
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G2 → G3

v

u′u

v′
1 v′

2 v′
k

b(v) = k b(v′
i) = 1

Figure 3.3: b-expansion of the vertices

for G2 (see [31], or [52] p.38 and [92] p. 131-132 in the bipartite case).

3.2.3 Generalizations of the basic algorithms

By the above argument it is not surprising that every algorithm that solves the stable
roommates or the stable marriage problem can be generalized to solve the integral
stable allocation problem as well.

In the bipartite case, the generalized version of the deferred-acceptance algorithm
of Gale and Shapley was applied for the many-to-one stable matching problem (or
college admission problem) in their paper [48]. Its straightforward generalization was
presented by Bäıou and Balinski [14] for the integral stable allocation problem. We note
that Gale–Shapley type algorithms were created to solve stable b-matching problems
for more general preferences, or choice functions by Kelso and Crawford [66], Roth
[84], [85], Blair [23], Fleiner [44], [46], [45], Alkan [9], Eguchi, Fujishige and Tamura
[40], and for integral stable allocation problems by Alkan and Gale [10], Fujishige and
Tamura [47].

Considering the nonbipartite case, the generalized version of Irving’s algorithm
[56] was used to solve the stable fixtures problem in [60] and for the stable multiple
activities problem in [31] and [35].

However, we must remark, that the details of the generalization can be crucial
considering the running time of the algorithm. The main result of Cechlárová and
Viera [35] is that their implementation preserves an O(m) running time also for their
general settings.

On the other hand, the straightforward generalization of the Gale–Shapley
algorithm becomes slow for the integral stable allocation problem. Bäıou and Balinski
[14] showed by an example with 4 vertices and 4 edges, that the number of rounds in
the algorithm can be equal to the sum of the bounds.
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In the next section we present the algorithm of Bäıou and Balinski [14], that provide
a stable allocation for every stable allocation problem for bipartite graphs in strongly
polynomial time. (Thus, its running time does not depend on the bounds and capacities,
only on the number of vertices and edges.) Then we generalize their inductive algorithm
for integral stable allocation problems in the nonbipartite case, however we show by
an example that this algorithm does not remain polynomial.

Actually, these inductive algorithms are also a kind of generalizations of the Roth-
Vande Vate and the Tan–Hsueh algorithms, respectively. Thus, they can be used to
model dynamic market situations. Moreover, the obtained stable allocations by these
algorithms may have special properties, similar to the properties of the obtained stable
matchings and half-matchings described in Section 2.2.

3.2.4 The inductive algorithm for bipartite graphs

Let us suppose that we have given a stable allocation problem for a (not necessarily
bipartite) graph G with vertex-bounds b and edge-capacities c. Suppose that x is a
stable allocation.

Recall, that an edge is saturated if x(e) = c(e), and a vertex v is saturated if x(v) :=
∑

v∈e x(e) = b(v). Finally, edge e is dominated at vertex v if
∑

v∈e,e≤vh x(h) = b(v).
(Note, that an allocation is stable, if every non-saturated edge is dominated at some
of its endvertices.)

Furthermore, let us define l(v) to be the edge e, that is dominated at v and x(e) > 0.
Let f(v) be the edge e, that is dominated only at v, e is not saturated, and there exist
no other edge f that satisfies the same property with e <v f . (Note that l(v) or f(v)
may not exist, but they are unique if they exist.)

Lemma 3.2.1. Given a stable allocation problem for a graph G with vertex-bounds b
and edge-capacities c, and given a stable allocation x.

a) Suppose that {u, v} = l(v) and ε ≤ x({u, v}).

Let b′(w) =

{

b(w) − ε if w = u, v
b(w) otherwise.

Then x′(e) =

{

x(e) − ε if e = {u, v}
x(e) otherwise

is a stable allocation for the modified bounds b′.

b) Suppose that {v, w} = l(v) and ε ≤ c({v, w})− x({v, w}).

Let b′(u) =

{

b(u) + ε if u = v, w
b(u) otherwise.

Then x′(e) =

{

x(e) + ε if e = {v, w}
x(e) otherwise

is a stable allocation for the modified bounds b′.
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Proof. a) Obvious, since {u, v} remains dominated at v, and every other edge that was
dominated at u or v remains dominated there.

b) Obvious, since {v, w} remains dominated at v, and every other edge that was dom-
inated at v or w remains dominated there.

Augmenting procedures

Suppose that our goal is to increment the bound of a vertex v from b(v) to b′(v) =
b(v)+ε, by simultaneously modifying x to x′ in such a way that x′ is a stable allocation
for the new settings.

If f(v) does not exist, then obviously x′ = x remains stable. Otherwise, we will
construct, a so-call augmenting path, to conduct the improvement of x(v). To create
such a path, let a0 = v, and let the 2i-th and the (2i + 1)-th element of the sequence
be

• bi if {ai−1, bi} = f(ai−1) and

• ai if {bi, ai} = l(bi), respectively

for every index i from i = 1 while such vertex exists and no repetition occurs.

Depending on the termination of the above augmenting path, under the assumption
that G is bipartite graph, we have 4 cases:

I1) f(ak) does not exist: the augmenting path is a0, b1, a1, . . . , bk, ak.

Let εl := min1≤j≤k{x({bj , aj})}, εf := min1≤j≤k{c({aj−1, bj}) − x({aj−1, bj})},
ε = min{εl, εf} and b′(v) = b(v) + ε. Finally, let

x′(e) =







x(e) + ε if e = {aj−1, bj} for 1 ≤ j ≤ k,
x(e) − ε if e = {bj , aj} for 1 ≤ j ≤ k and
x(e) otherwise.

Then x′ is a stable allocation for b′ by Lemma 3.2.1 and by the definition of f(v).

I2) l(bk) does not exist: the augmenting path is a0, b1, a1, . . . , ak−1, bk.

Let εl := min1≤j≤k{x({bj , aj})}, εf := min1≤j≤k{c({aj−1, bj}) − x({aj−1, bj})},
ε = min{εl, εf , b(bk) − x(bk)} and b′(v) = b(v) + ε. Finally, let

x′(e) =







x(e) + ε if e = {aj−1, bj} for 1 ≤ j ≤ k,
x(e) − ε if e = {bj , aj} for 1 ≤ j ≤ k − 1 and
x(e) otherwise.

Then x′ is a stable allocation for b′ by Lemma 3.2.1 and by the definition of l(v).
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C1) ak = ai for some k > i: the augmenting path is a0, b1, a1, . . . , bi, ai, . . . , bk, ak = ai.

Let εl := mini≤j≤k{x({bj , aj})}, εf := mini≤j≤k{c({aj−1, bj}) − x({aj−1, bj})},
ε = min{εl, εf} and let

x′(e) =







x(e) + ε if e = {aj−1, bj} for i ≤ j ≤ k,
x(e) − ε if e = {bj , aj} for i ≤ j ≤ k and
x(e) otherwise.

Then x′ is a stable allocation for b by Lemma 3.2.1.

C2) bk = bi for some k > i: the augmenting path is a0, b1, a1, . . . , bi, ai, . . . , ak−1, bk =
bi.

Let εl := mini≤j≤k−1{x({bj , aj})}, εf := mini≤j≤k{c({aj−1, bj}) − x({aj−1, bj})},
ε = min{εl, εf} and let

x′(e) =







x(e) + ε if e = {aj−1, bj} for i ≤ j ≤ k,
x(e) − ε if e = {bj , aj} for i ≤ j ≤ k − 1 and
x(e) otherwise.

Then x′ is a stable allocation for b by Lemma 3.2.1.

The algorithm of Bäıou and Balinski

A stable allocation problem for a bipartite graph G is given with vertex set
V (G) = A∪B, vertex-bounds b and edge-capacities c. Let n be the number of vertices
and let m be the number of edges in G. Here, we present the so-called inductive
algorithm of Bäıou and Balinski [14], that solves this problem by using at most
O(n + m) times the above augmenting procedures.

At the beginning of the inductive algorithm, we set the bounds to be b0(u) = 0
for every u ∈ A and b0(v) = b(v) for every v ∈ B. Here x0(e) = 0 for every e ∈ E(G)
is a trivial stable allocation. The idea of the algorithm is to successively increment
the bounds of the vertices in A, considering the vertices in order of their indices,
by simultaneously modifying the stable allocation for the problem with the actual
bounds, until reaching the vertex-bounds b for every vertex.

Suppose that after i augmenting steps a stable allocation xi for vertex-bounds bi

is given, where bi(aj) = b(aj) for every j < k, bi(ak) < b(ak) and bi(al) = 0 for every
l > k. We construct the augmenting path, and we execute the formed augmenting
procedure, by setting ε̄ = min{ε, b(ak) − bi(ak)} in cases I1) and I2).
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Analysis of the running time

For the actual stable allocation problem in the i-th step, with bounds bi, and stable
allocation xi, we define the following partition of E(G):

T1(i) : {e|xi(e) = 0 and e is dominated only at some u ∈ A},

T2(i) : {e|0 < xi(e) < c(e) and e is dominated only at some u ∈ A},

T3(i) : {e|xi(e) = c(e)},

T4(i) : {e|0 < xi(e) < c(e) and e is dominated at some v ∈ B},

T5(i) : {e|xi(e) = 0 and e is dominated at some v ∈ B}.

Obviously, T1(0) = E(G). It can be easily verifyied that for two indices
1 ≤ p ≤ q ≤ 5 it is impossible an edge e belongs to both Tq(i) and Tp(i+1), no matter
which augmenting procedure is executed in the i-th step. Furthermore, if a vertex
v ∈ B is unsaturated before the i-th step, then it can become saturated after the i-th
step, but never conversely.

Moreover, after an augmenting step, one of the following four cases holds:

• a new edge e becomes saturated, so e ∈ T3(i + 1) \ T3(i),

• a new edge e becomes 0-weighted, so e ∈ T5(i + 1) \ T5(i),

• a new vertex v ∈ B becomes saturated, so b(v) = xi+1(v) > xi(v),

• a new bound is reached, so b(ak) = bi+1(ak) > bi(ak).

Thus, the number of augmenting steps in the Bäıou–Balinski algorithm is at most
2m + n.

3.2.5 The inductive algorithm for general graphs

Additional augmenting procedures

Assume that x is a stable allocation for a graph G with vertex-bounds b and edge-
capacities c. If G is not necessarily bipartite, then the augmenting path can have
two more possible endings, thus these two cases yield two new possible augmenting
procedures:

I3) ak = bi for some k > i: the augmenting path is a0, b1, a1, . . . , bi, ai, . . . , bk, ak = bi.
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Let εl := min1≤j≤i−1{x({bj , aj})}, εf := min1≤j≤i{c({aj−1, bj}) − x({aj−1, bj})},
εhl := mini≤j≤k{x({bj , aj})}, εhf := mini+1≤j≤k{c({aj−1, bj}) − x({aj−1, bj})},
ε = min{εl, εf , 2 · εhl, 2 · εhf} and let

x′(e) =























x(e) + ε if e = {aj−1, bj} for 1 ≤ j ≤ i,
x(e) − ε if e = {bj , aj} for 1 ≤ j ≤ i − 1,
x(e) + ε

2
if e = {aj−1, bj} for i + 1 ≤ j ≤ k,

x(e) − ε
2

if e = {bj , aj} for i ≤ j ≤ k and
x(e) otherwise.

Then x′ is a stable allocation for b by Lemma 3.2.1.

I4) bk = ai for some k > i: the augmenting path is a0, b1, a1, . . . , bi, ai, . . . , ak−1, bk =
ai.

Let εl := min1≤j≤i{x({bj , aj})}, εf := min1≤j≤i{c({aj−1, bj}) − x({aj−1, bj})},
εhl := mini+1≤j≤k−1{x({bj , aj})}, εhf := mini+1≤j≤k{c({aj−1, bj})−x({aj−1, bj})},
ε = min{εl, εf , 2 · εhl, 2 · εhf} and let

x′(e) =























x(e) + ε if e = {aj−1, bj} for 1 ≤ j ≤ i,
x(e) − ε if e = {bj, aj} for 1 ≤ j ≤ i,
x(e) + ε

2
if e = {aj−1, bj} for i + 1 ≤ j ≤ k,

x(e) − ε
2

if e = {bj, aj} for i + 1 ≤ j ≤ k − 1 and
x(e) otherwise.

Then x′ is a stable allocation for b by Lemma 3.2.1.

We refer hereby to the augmenting procedures I1), I2), I3) and I4) as improving
procedures, and to C1), C2) as cycle-swapping procedures.

The general inductive algorithm

Fix a integral stable allocation problem for a graph G with vertex-bounds b and
edge-capacities c. The idea of the inductive algorithm in this general case is the same:
We start with a trivial problem with b0(v) = 0 for every v ∈ V (G), and a integral
stable allocation x0(e) = 0 for every edge e ∈ E(G). Then we successively execute
augmenting procedures considering the vertices in order of their indices, until reaching
the vertex-bounds b for every vertex.

To prove that this algorithm terminates in finitely many steps, we shall show first
that each stable allocation xi has only half-integer weights, moreover, the non-integer
edges form disjoint odd cycles. This property trivially holds for x0. We suppose that it
is true for xi, and we show that this remains true for xi+1.
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Suppose that v is incident with two non-integer edges e and e′, such that
e <v e′. In this case e is obviously dominated only at v, so e = l(v) = f(v).
This observation implies that if a vertex v is the first vertex along the actual
augmenting path that belongs to an odd cycle of non-integer weights, then case
I3) or I4) occurs. This is because the first repetition is at v, moreover each edge in
the augmenting path has integer weight until v, and has non-integer weights after
v. Thus the improvement, ε must be integer, and xi+1 must have the required property.

We shall verify that cases C1) and C2) cannot occur consecutively infinite many
times. Indeed, we prove that within 2m steps, at least one improving procedure must
be executed in the inductive algorithm.

Lemma 3.2.2. Assume that a stable allocation problem for a graph G is given with
a stable allocation x. Let the number of edges in G be |E(G)| = m. If we invoke the
increment procedure continuously for one vertex a0 ∈ V (G), then after at most 2m
rounds an improving procedure will be executed.

Proof. Indirectly suppose, that after each call a cycle-swapping procedure is executed.
We build a bipartite subgraph G′ of G with vertex set A∪B in the following way. Let
the first augmenting path be P 1 = (A1|B1). If u = aj,1 ∈ A1 then let u ∈ A and if
v = bj,1 ∈ B1 then v ∈ B. Moreover, we create a directed subgraph D of G′ by directing
each occuring vertex in the sequence to the consecutive vertex. So, if next(u) = bj+1,1,
then (u, next(u)) ∈ A(D). Similarly, if next(v) = aj,1, then (v, next(v)) ∈ A(D). Note,
that {u, next(u)} = f(u) before the first round and {u, next(u)} = l(u) after the first
round. Similarly {v, next(v)} = l(v) before the first round and {v, next(v)} = f(v)
after the first round. Let us denote the vertex, where the first repetition occurs in P 1

by r1. Obviously there exist a directed path to r1 from each vertex of P 1 in D. Moreover,
r1 must be part of the second augmenting path, P 2, since until r1 the augmenting path
P 2 is the same as P 1.

Similarly, let the t-th augmenting path be P t = (At|Bt). If u = aj,t ∈ At then let
u ∈ A and if v = bj,t ∈ Bt then v ∈ B. If v ∈ V (D) then we remove (v, v′) from A(D)
and after we add (v, next(v)) to A(D), where next(v) is defined as above. Let rt denote
the vertex, where the repetition occurs in P t. Obviously, there exists a directed path
to rt from each vertex of P t in D, thus from rt−1, as well. This implies, by induction,
that there exists a directed path to rt from each vertex of V (D) in D.

To show that the above definition of G′ is correct, we have to verify that u ∈ At∩B
(and similarly v ∈ Bt ∩A) is not possible. Suppose otherwise that u is the first vertex
such that u = aj,t ∈ B. Obviously, rt−1 is already part of P t before u, since until rt−1,
the augmenting path P t is the same as P t−1. We can assume by induction, that there
exists a directed path from u to rt−1 in D. Moreover, this directed path actually is the
same as the augmenting path from u by the definition of next(v), where all the vertices
are in the opposite side as before (i.e. next(u) ∈ Bt ∩ A, next(next(u)) ∈ At ∩ B and
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so on). So, a repetition must occur, either bk,t = ai,t or ak,t = bi,t thus case I3) or I4)
holds, a contradiction.

Finally, we define T ′
1(t), T ′

2(t), T ′
3(t), T ′

4(t) and T ′
5(t) on G′ in the very same way

as T1(i), T2(i), T3(i), T4(i) and T5(i) were defined before. Similarly, it can be verified
that for two indices 1 ≤ p ≤ q ≤ 5 it is impossible an edge e belongs to both T ′

q(t) and
T ′

p(t+1), if one of the cycle-swapping procedure is executed in the t-th step. Moreover,
one of the following two cases surely happen after a cycle-swapping procedure:

• a new edge e of G′ becomes saturated, so e ∈ T ′
3(t + 1) \ T ′

3(t),

• a new edge e of G′ becomes 0-weighted, so e ∈ T ′
5(t + 1) \ T ′

5(t),

So, we could execute at most 2m cycle-swapping procedures consequently.

A corollary of Lemma 3.2.2 is that the number of steps of the inductive algorithm
is O(n + m)

∑

v∈V (G) b(v).

An example for bad case running time

Below, we create a integral stable allocation problem for a graph G, for which the
number of steps in the inductive algorithm is not polynomial in n = |V (G)|.
Example 3.2.3. Let Fi denotes the i-th Fibonacci number (i.e. F1 = F2 = 1, and
Fi = Fi−2 + Fi−1 for i ≥ 3). A graph G of n vertices is given: a1, a2, . . . , an with the
following edges, preferences, bounds and capacities:

a1 : [a3, a2]
a2 : [a4, a3, a1]
ai : [ai+2, ai+1, ai−1, ai−2]

for every i = 3, . . . , n − 2
an−1 : [an, an−2, an−3]
an : [an−1, an−2]

b(ai) = Fi for every i = 1, . . . , n
c({ai, ai+1}) = Fi for every i = 1, . . . , n − 1
c({ai, ai+2}) = Fi for every i = 1, . . . , n − 2

It can be verified that the inductive algorithm executes Fi improving operations
on ai, namely I1) and I2) alternately, each with improvement 1. Thus the number of
steps in the algorithm is

∑n

i=1 Fi, that is an exponential function of n

However, we have just shown that the general inductive algorithm is not polynomial,
we note that the scaling property ensures that this algorithm can be modified with
standard techniques to become polynomial for the integral stable allocation problem.
But it remains an open question whether there exists a strongly polynomial algorithm
for the integral stable allocation or for the more general stable allocation problem on
nonbipartite graphs.
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Properties of the obtained solutions

Finally, we remark that solutions for the stable allocation problem obtained by the in-
cremental algorithm have similar properties to the stable matchings and half-matchings
for the stable roommates problem obtained by the inductive algorithm, since the Bäıou–
Balinski algorithm is a kind of generalization of the Roth-Vande Vate algorithm, and
the general inductive algorithm is a generalization of the Tan–Hsueh algorithm.

b(a0) = ε
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Figure 3.4: A core configuration as an εv-core element.

For example, let us run the inductive algorithm for a stable matching problem. If
we consider an improving procedure executed for a vertex v, then the augmenting path
is actually the proposal-rejection sequence, associated to a core-configuration relative
to v. To prove this by the uniqueness of the above sequence, it is enough to see that
an ε-improvement for every 0 ≤ ε ≤ 1 creates a stable allocation for the problem
with bounds b(v) = ε and b(u) = 1 for every u 6= v, that is a special fractional b-core
element, called εv-core element, illustrated in Figure 3.4.

3.3 An application: College admission in Hungary

Since 1985 the admission procedure of higher education institutions is organized by
a centralized matching program in Hungary. We present the implemented algorithm,
which is similar to the college-proposing version of the Gale–Shapley algorithm. The
difference is that here ties must be handled, since applicants may have equal scores.
The presented score-limit algorithm finds a solution that satisfies a special stability
condition. We describe the applicant-proposing version of the above algorithm and we
prove that the obtained solutions by these algorithms are the maximal and the minimal
stable score-limits, respectively.

Preliminaries

As we already noted in Section 2.1., the college admission problem was introduced
and studied by Gale and Shapley [48]. Later Roth [83] described the history of the
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National Intern Matching Program, that have used the same type of algorithm since
1952. Further literature about the two-sided matching markets can be found in the
book of Roth and Sotomayor [92].

Recently, the student admission problem came again into prominence (detailed
description about several applications can be found in the paper of Abdulkadiroğlu
and Sönmez [3]). New centralized matching programs have been implemented for public
schools in Boston, and for high schools in New York (see [1] and [2]).

However, there are some studies about existing college admissions programs as well
(see the papers [81] and [16] about the programs in Spain and in Turkey, respectively),
the description of many other important implementations are not available in the lit-
erature.

In Hungary, the admission procedure of higher education institutions is organized
by a centralized matching program. The Ministry of Education founded the Admission
to Higher Education National Institute (OFI) in 1985 in order to create, operate and
develop the admission system of the higher education. The number of applicants is
around 150000 in each year, about 100000 of them are admitted, and the fees are payed
by the state for approximately 60% of the students (exact statistics in Hungarian are
available at [76]).

First, we note that instead of colleges, in Hungary the universities have faculties,
where the education is organized in different fields of studies quite independently. So
here, students apply for fields of studies of particular faculties. For simplicity, these
fields are referred as colleges later in order to keep the original terminology of Gale and
Shapley.

At the beginning of the procedure, students give their ranking lists that correspond
to their preferences over the fields they apply for. There is no limit for the length of the
list, however applicants are charged after each item. The students receive scores at each
field they applied for according to their final notes at the high school, and entrance
exams. Note, that the score of a student can differ at two fields. These scores are integer
numbers, currently limited to 144. Universities can admit a limited number of students
to each of their fields, these quotas are determined by the Ministry of Education.1

The administration is organized by a state-owned center. After collecting the ap-
plicants’ rankings and their scores, a centralized program computes the score-limits of
the fields. An applicant is admitted by the first place on his list, where he is above the
score-limit.

Here, we present the currently used basic algorithm that yields a kind of stable
assignment. This algorithm is very similar to the Gale–Shapley [48] algorithm, in fact,
if the score of the applicants are different at each place then this algorithm is equivalent
to the college-proposing algorithm of Gale and Shapley. This explains why it is not
suprising that similar statements can be proved for the score-limit algoritms. Here, we
show that the score-limits at each field is maximal for the college-proposing version,

1We describe some further specialities and requirements in the last subsection, that are not included
in the presented basic model.
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and minimal for the applicant-proposing version in the set of the stable score-limits.

3.3.1 The definition of stable score-limit

Let A = {a1, a2, . . . , an} be the set of applicants and C be the set of colleges, where
qu denotes the quota of college cu. Let the ranking of the applicant ai be given by a
preference list P i, where cv >i cu denotes if cv preceeds cu in the list, i.e. the applicant
ai prefers the college cv to cu. Let si

u be ai’s final score at the college cu.
The score-limit l is a nonnegative integer mapping l : C → N. An applicant ai is

admitted by a college cu, if he achieves the limit at college cu, and that is the first
such place in his list, i.e. si

u ≥ l(cu), and si
v < l(cv) for every college cv >i cu. If the

score-limit l implies that a college cu admits applicant ai, then we set the boolean
variable xi

u(l) = 1, and 0 otherwise. Let xu(l) =
∑

i x
i
u(l) be the number of applicants

allocated to cu. A score-limit l is feasible if xu(l) ≤ qu for every college.
Let lu,t be defined as follows: lu,t(u) = l(u) − t and lu,t(v) = l(v) for every v 6= u.

That is, we decrease the score limit by t at college cu, by leaving the other limits
unchanged. We say that a score-limit l is stable if l is feasible but for each college cu,
lu,1 is not feasible. This stability condition means that no college can decrease its limit
without violating its quota (assuming that the others do not change their limits). We
note that if no ties occur (i.e. two applicants have different scores at each college), then
this stability condition is equivalent to the original one by Gale and Shapley.

3.3.2 Score-limit algorithms and optimality

First we present the currently used algorithm and verify its correctness, then we
describe its applicant-proposing version. Finally, we prove that these algorithms
produce the maximal and the minimal stable score-limits, respectively.

The score-limit algorithms

Both score-limit algorithms are very similar to the two versions of the original
Gale–Shapley algorithm. The only difference is that now, the colleges cannot select
exactly as many best applicants as their quotas are, since the applicants may have
equal scores. Here, instead each college sets its score-limits always to be the smallest
one, such that its quota is not exceeded. If the scores of the applicants are distinct at
each college then these algorithms are equivalent to the original ones.

College-proposing algorithm:
In the first stage of the algorithm, let us set the score-limit at each college independently
to be the smallest value such that the number of admitted applicants does not exceed
its quota by considering all its applications. Let us denote this limit by l1. Obviously,
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there can be some applicants, who are admitted by several places. These applicants
keep their best offer, and reject all the less preferred ones, moreover they cancel also
their less preferred applications.

In the further stages, the colleges check whether their score-limits can be further
decreased, since some of their applications may have been cancelled in the previous
stage, hence they look for new students to fill up the empty places. So each college sets
its score-limit independently to be the least possible, considering their actual applica-
tions. If an applicant is admitted by some new, better place, then he accepts the best
offer in suspense, and rejects or cancels his other, worse applications.

Formally, let lk be the score-limit after the k-th stage. In the next stage, at every
college cu, the largest integer tu is chosen, such that xu(l

u,tu
k ) ≤ qu. That is, by decreasing

its score-limit by tu, the number of admitted applicants by cu does not exceed its
quota, supposing that all other score-limits remained the same. For every college let
lk+1(cu) := lu,tu

k (cu) be the new score-limit. If some limits are decreased simultaneously,
then some applicants can be admitted by more than one place, so xu(lk+1) ≤ xu(l

u,tu
k ).

Obviously, the new score-limit remains feasible.
Finally, if no college can decrease its limit, then the algorithm stops. The stability

of the final score-limit is obvious by definition.

Example 3.3.1. In this example we consider only 3 colleges, ccs, ce and cm (i.e. college
of computer science, economics and maths, respectively) and the effect caused by two
applicants, ai and aj. We suppose that all the other applicants have only one place
in their lists. The preferences of ai and aj are the following: P i = ce, ccs, cm, . . . and
P j = ccs, cm, ce, . . . . Their scores are: si

cs = 112, si
e = 100, si

m = 117, sj
cs = 110,

sj
e = 103 and sj

m = 105. Let the quotas be qcs = 500, qe = 500 and qm = 100. We
suppose that the number of applicants having

- at least 110 points at ccs is 510,
- more than 110 points at ccs is 483,
- at least 100 points at ce is 501,
- more than 100 points at ce is 460,
- at least 105 points at cm is 101,
- more than 105 points at cm is 87.

In the first stage of the college-proposing algorithm the score-limits are l1(ccs) = 111,
l1(ce) = 101 and l1(cm) = 106. At these limits ai is admitted to the college of computer
science and to the college of maths too, while aj is admitted to the college of economics
only. Since ai prefers the computer science, he rejects the latter offer (and he cancels
also his other less preferred applications.) Now, in the second stage, the score-limit can
be decreased by one at the college of maths, because the number of currect applications
having at least 105 points is exactly 100. In this way, aj becomes admitted to this
college, and since he prefers maths to economics, he rejects his offer there. In the third
stage, the score-limit can be decreased by one at the college of economics. After this
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Figure 3.5: The score-limits in the college-proposing algorithm

change ai is admitted to the college of economics, that is his most preferred place, so
he cancels all his other applications. In the final stage no score-limit can be decreased,
so the algorithm stops.

Applicant-proposing algorithm:
Let each applicant propose to his first choise in his list. If a college receives more
applications than its quota, then let this score-limit be the smallest value such that the
number of temporary accepted applicants does not exceed its quota. We set the other
limits to be 0.

Let the score-limit after the k-th stage be lk. If an applicant has been rejected in
the k-th stage, then let him apply for the next place in his list, say cu where he achieves
the actual score-limit lk(cu), (if there remained such a place in his list). Some colleges
may receive new proposals, so if the number of admitted applicants exceeds their quota
at a college, they set a new, higher score-limit lk+1. At the same time, they reject all
those applicants that do not achieve this new limit.

The algorithm stops if there is no new application. The final score-limit is obviously
feasible. It is also stable, because after a limit is increased for the last time, then the
rejected applicants get worse and worse offers during the algorithm. So if the limit were
decreased by one at the final solution in this place, then these applicants would accept
the offer, and the quota would have been exceeded.

Theorem 3.3.2. Both the score-limit lC, obtained by the college-proposing algorithm
and the score-limit lA, obtained by the applicant-proposing algorithm are stable.

Below, we give a simple example to show that not only some applicants can be
admitted by preferred places in lA than in lC , but the number of admitted applicants
can also be larger in lA.

Example 3.3.3. We consider only two places ccs and ce with two applicants ai and aj.
We suppose that all the other applicants have only one single place in their lists. The
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preference-lists of ai and aj are P i = ce, ccs, . . . and P j = ccs, ce, . . . , and their scores
are: si

cs = 112, si
e = 100, sj

cs = 110 and sj
e = 103. Both places have quotas 500. We

suppose that the number of applicants having

- at least 110 points at ccs is 501,
- more than 110 points at ccs is 487,
- at least 100 points at ce is 501,
- more than 100 points at ce is 460.

A

AC

C
501st

501st

487th

460th

CS

Econ

J1

I1J2

I2

I1

J1

Figure 3.6: The final score-limits of the college-proposing and the applicants-proposing
algorithm

Here, both algorithms stop after one stage. The final score-limit obtained by the
college-proposing algorithm is lC(ccs) = 111 and lC(ce) = 101. The number of admitted
applicants are xcs(lC) = 487 and xe(lC) = 460, respectively. While, the final score-
limit obtained by the applicant-proposing algorithm is lA(ccs) = 110 and lA(ce) = 100.
Moreover, the number of admitted applicants are 500 at both places. This extreme
example shows that the difference between the solutions can be relevant.

The optimality

We say that a score-limit l is better than l∗ for the applicants if l ≤ l∗, (i.e. l(cu) ≤ l∗(cu)
for every college cu). In this case every applicant is admitted by the same or by a
preferred place at score-limit l than at l∗.

Theorem 3.3.4. lC is the worst possible and lA is the best possible stable score-limit
for the applicants, i.e. for any stable score-limit l, lA ≤ l ≤ lC holds.

Proof. Both proofs are based on indirect arguments, that are similar to the original
one of Gale and Shapley’s.

Suppose first, that there exists a stable score-limit l∗ and a college cu such that
l∗(cu) > lC(cu). During the college-proposing algorithm there must be two consecutive
stages with score-limits lk and lk+1, such that l∗ ≤ lk and l∗(cu) > lk+1(cu) for some
college cu. Obviously, lu,tu

k (cu) = lk+1(cu) by definition and xu(l
u,tu
k ) ≤ qu < xu(l

u,1
∗ )

by the stability of l∗. So, on the one hand, there must be an applicant, say ai who is
admitted by cu at lu,1

∗ but not admitted by cu at lu,tu
k . On the other hand, the indirect
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assumption lu,tu
k (cu) = lk+1(cu) ≤ l∗(cu)−1 = lu,1

∗ (cu) implies that ai must be admitted
by another, preferred place than cu at lu,tu

k (since ai has at least lu,tu
k (cu) score there),

and obviously also at lk. That is impossible if l∗ ≤ lk, a contradiction.
To prove the other direction, we suppose that there exist a stable score-limit l∗ and

a place cu such that l∗(cu) < lA(cu). During the applicant-proposing algorithm there
must be two consecutive stages with score-limits lk and lk+1, such that l∗ ≥ lk and
l∗(cu) < lk+1(cu) for some college cu. At this moment, the reason of the incrementation
is that more than qu students are applying for cu with at least l∗ score. This implies
that one of these students, say ai is not admitted by cu at l∗ (however he has at least
l∗(cu) score there). So, by the stability of l∗, he must be admitted by a preferred place,
say cv at l∗. Consequently, ai must have been rejected by cv in a previous stage of the
algorithm, that is possible only if l∗(cv) < lk(cv), a contradiction.

3.3.3 Further notes

There are many further rules required by the law. Some of them are considered in the
present algorithm, some are handled manually afterwards.

At each place there is a minimum score that is generally equal to 60% of the
maximum score (that is 144 points usually). If an applicant does not have the minimum
score at a place, then this application is simply deleted.

In Hungary, some studies are completely financed by the state, some are partly
financed by the students. At most of the places there are two different quotas for both
kind of studies. The applicants have to indicate also in their rankings which kind of
study they apply for at some field.2 These are considered in the algorithm as distinct
places with distinct quotas. However, there are some requirements on their score-limits:
the difference between the score-limits of the state-financed and the privately-financed
studies at the same place can not be more than 10%. This rule is tracted by the current
algorithm.

Another speciality is that certain pairs of fields can be chosen simultaneously, and
some others must come in pairs. These cases are solved manually after the first run of
the program, and might cause overflowings.

An actual problem of the program is that the scoring system is not fine enough,
that is why huge ties are likely to emerge. As a consequence, the difference between the
quota and the number of admitted applicants can be large. Moreover, in an extreme
case, if the number of applicants having maximum score is greater than the quota of
that place, no student can be admitted. So, it is a good news, that recently a finer
scoring system has been proposed in the actual law that will increase the maximum
score from 144 to 480.

2An applicant may rank first a state-financed study in economics at a university in Budapest,
then secondly another state-financed study in economics at another university in Pécs, and thirdly a
privately-financed study in economics at the first university in Budapest. So the fees are included in
the preferences of the applicants in this way.
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In our opinion, to change the direction of the algorithm would also be reasonable.
Not just because some applicants could be admitted by preferred places, but also
because the number of admitted applicants could increase too. We think that the
effect of such a change would be more significant than the effect of a similar change
in the National Resident Matching Program (see the study of Roth and Peranson [86]
about this).



Chapter 4

Exchange of indivisible goods

Introduction

In this chapter we study the question of exchanging indivisible goods. First we give a
game theoretical overview on the basic results and we describe some applications that
motivate our studies. In Section 4.2, we consider the optimal exchange problem with
restrictions, based on the paper [22]. Finally, we study the problem of stable exchanges
in Section 4.3, where we present some results published in [20] and [19].

4.1 Preliminaries, applications

4.1.1 The core of exchange games

Assume that a simple digraph D = (V, A) is given, where V is the set of agents. Suppose
that each agent has exactly one piece of indivisible goods, and (i, j) ∈ A if the good of
agent i is suitable for agent j. An exchange is a permutation π of V such that, for each
i ∈ V , i 6= π(i) implies (i, π(i)) ∈ A. We denote by Cπ(i) the cycle of π containing i. If
Cπ(i) has length at least 2, then the agent is said to be covered.

The houseswapping game

Shapley and Scarf [103] described the exchange problem of indivisible goods as a par-
titioning NTU-game, referred also as houseswapping game. Here, the set of common
activities for a coalition S corresponds to the set of permutations of S. The preferences
of the agents over the possible permutations are derived from the preferences over the
goods that are suitable for them. As in an exchange π each agent i receives the good
of his predecessor, π−1(i), agent i prefers an exchange π to another exchange σ, if he
prefers π−1(i) to σ−1(i). Thus, an exchange π is in the core of the game, or it is stable,
if there is no blocking coalition B and permutation σ of B, such that each agent i ∈ B
prefers σ to π.

71
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Shapley and Scarf proved that each such market has a nonempty core. Moreover,
they showed that a core solution can always be found by the Top Trading Cycle (TTC)
algorithm proposed originally by Gale.

The permutation game

The permutation game is the houseswapping game with payments. Alternatively, this is
a TU-game, where the utility of each agent i having j’s good is given as a weight, w(a)
of the corresponding arc a = (i, j). The payoff of a coalition S is the maximum utility
of a permutation π of S, that is the sum of the utilities, so v(S) = max{∑a∈π w(a)|π
is a permutation of S}.

The nonemptyness of the core of permutation games was proved first by Tijs et al.
[106], they showed that these games are always balanced.

Note that an exchange is equivalent to a vertex-disjoint packing of directed cycles,
thus the payoff of a coalition is the maximum weight of a directed cycle packing.
Moreover, by Remark 1.2.1, it is obvious that the balancedeness condition is equivalent
with the statement that the maximum weight of a directed cycle packing is equal to
the maximum weight of a fractional packing of directed cycles. (Formally, if C is the
set of directed cycles in D, then xc : C → R+ is a fractional packing if

∑

v∈Ci
x(Ci) ≤ 1

for every v ∈ V (D).)

It is well-known, that every maximum weight directed cycle packing problem can be
reduced to a maximum weight perfect matching problem in a bipartite graph through
the following construction. Define bipartite graph Gdp by dublicating the vertices of
D, so vd, vp ∈ V (Gdp) if v ∈ V (D). Let {ud, vp} ∈ E(Gdp) if (u, v) ∈ A(D) with weight
w({ud, vp}) = w(u, v) and let {ud, up} ∈ E(Gdp) with weight 0 for every u ∈ V (D). If
C∗ ⊆ C is a set of vertex-disjoint directed cycles of maximum weight, then we create
a perfect matching M of maximum weight as follows: let {ud, vp} ∈ M if (u, v) = a ∈
Ci ∈ C∗, and {ud, up} ∈ M if u is not covered by C∗. And vica versa.

Furthermore, a fractional packing of directed cycles xc corresponds to a fractional
perfect matching xm (i.e. a fractional matching that covers each vertex with total
weight 1). Formally, for every (u, v) = a ∈ A(D), let xm({ud, vp}) =

∑

a∈Ci
xc(Ci).

Since the fractional perfect matching polytope has the integer property for every
bipartite graph, the integer and the relaxed problems have the same optimum, that
implies the balancedeness of the game.1

1We note, that the problem can be reduced to the minimum-cost circulation problem as well: We
direct the edges of Gdp from up to vd if u = v and from vd to up otherwise. We set f(a) = 0 lower and
g(a) = 1 upper bounds for each arc and use the negative of the weights in Gdp. Here, a minimum-
cost 0-1 circulation corresponds to a maximum weight directed cycle packing. Furthermore, the dual
solution of this problem corresponds to an outcome in the core. (For details, see [98], page 289.)
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The problem of finding a maximum weight perfect matching in a bipartite graph
can be solved in O(n(m + nlogn)) time, where n is the number of vertices and m is
the number of edges in Gdp (see [98], page 288). So, a core-solution of the permutation
game can be found by a polynomial-time algorithm.

Finally, let us remark, that although a core-solution provides an exchange with
maximum utility, the assumption that the utilities are transferable is quite unrealistic
in several barter exchange markets. Moreover, transfers may not be allowed at all, like
in the case of living organ exchanges. Therefore, to achieve a maximum utility, or so-
called optimal exchange in the market the establishment of a centralized clearinghouse
is needed. Furthermore, a maximum utility solution always exists even if the core of the
game is empty. This is the case when the lengths of the trading cycles are restricted.

Exchanges with restricted lengths

Let us suppose that the size of the basic coalitions are restricted, so B = {B : |B| ≤ l}.
Thus here, the outcome of the game is an l-way exchange that contains no cycle with
length more than l. Obviously, an l-way exchange is equivalent to a vertex-disjoint
packing of directed cycles with length at most l.

If l = 2, so only pairwise exchanges are allowed, then the problem becomes a
matching problem in an undirected graph G with the same vertex set. Here, an edge
links two vertices if a pairwise exchange is possible between the corresponding pairs.
So {u, v} ∈ E(G) if both (u, v) and (v, u) ∈ A(D). Thus, the houseswapping game is
equivalent to the stable roommates problem, and the permutation game is equivalent
to the stable roommates problem with transferable utilities, where the utility of a
possible pair is w({u, v}) = w(u, v) + w(v, u), respectively. As we have seen in Section
1.3. these games may have an empty core, but the problem of finding a core-solution,
if one exists is solvable in polynomial time in both cases.

For l ≥ 3 the problem of exchanging indivisible goods, becomes theoretically hard
for the NTU and TU-games as well. We study these problems in details in Section 4.2
and 4.3.

4.1.2 An application: Kidney exchange problem

The trade of goods without transfer (barter exchange) is not usual in markets nowadays.
However, in some countries the exchange of tenancies [42] or residences [109] is only
allowed in this way. Abraham et al. [6] also mention several such exchange programs as
Peerfix (DVDs), Read It Swap It (books), Intervac (holiday houses) or the National odd
shoe exchange. The most serious recent application of the studied model is certainly the
kidney exchange problem. Here, to find an optimal solution by a centralized program
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is not just possible, but also required.
Currently, living donation is the most effective treatment for kidney failure. But

patients needing transplants may have donors who cannot donate them because of
immunological incompatibility. So these incompatible patient-donor pairs may want
to exchange kidneys with other pairs. Kidney exchange programs have already been
established in several countries [71], [65], [78]. The most important question, what the
goal of the program is. As a first priority, most of the current models want to maximize
the number of patients who receive a suitable kidney in the exchange (see [90], [89], [91],
[94], [95]) by considering only the suitability of the kidneys. Some more sophisticated
models ([100], [22], [6]) consider the difference between suitable kidneys and try to find
a solution where the sum of benefits is maximal. A third concept, introduced in [88]
and developed in [32], [33], [20] requires first the stability of the solution under various
criteria.

Formally, if we model this problem by a digraph D(V, A), then the set of nodes
V represent incompatible-donor pairs and an arc (u, v) means that the kidney of u′s
donor is suitable for v′s patient. In terms of the above concepts, the first problem is
actually the problem of finding a maximum size directed cycle packing in this digraph.
The second is a maximum weight directed cycle packing problem (that is obviously
a generalization of the first problem). We remark that such a maximum weight solu-
tion is actually a core-solution of the corresponding permutation game. Finally, the
third concept is actually the problem of finding a core-solution in the corresponding
houseswapping game.

In these models, the difficulties of the corresponding problems are due to the fact
that the length of the cycles in the exchanges is bounded. The reason is that all surg-
eries along a cycle have to be done simultaneously. Most programs allow only pairwise
exchanges. Sometimes 3-way exchanges are also possible, like it is possible currently in
the New England Program [78], and it may also be allowed in the national program of
the USA (as it is declared to be a goal of the system in the future in the Proposal for
National Paired Donation Program [107]).

In Section 4.2, we consider the maximum size and maximum weight exchange prob-
lems (also called optimal exchange problem) with length restrictions. In Section 4.3 as
a generalization of the houseswapping game, we define and study the so-called stable
exchange problems.

4.2 Optimal exchange with restrictions

Here, we prove that the problem of finding a 3-way exchange that covers the maximum
number of vertices is APX-hard. We give a 2+ε approximation for the maximum weight
3-way exchange problem, and finally we present an exact algorithm for the weighted
version.

Suppose that a directed graph D(V, A) is given. Let maxcover l-way exchange
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denote the problem of finding an l-way exchange that covers the maximum number
of vertices. Furthermore, if w : A(D) −→ R+ is a weight-function on the edges, then
let maxweight l-way exchange denote the problem of finding a maximum weight
l-way exchange.

4.2.1 The APX-hardness of maxcover l-way exchange

In this subsection, we show that maxcover l-way exchange is APX-hard for any
constant l ≥ 3.

The problem we reduce from and the background of APX-hardness

Let G = (V, E) be a simple and undirected graph. A triangle of G is any induced
subgraph of G having precisely 3 edges and 3 vertices. A family of triangles T1, . . . , Tk

of G is called a vertex-packing of triangles if T1, . . . , Tk are vertex-disjoint. The size of
this packing is k. The problem of finding a maximum size vertex-packing of triangles
in a given graph G, called node-disjoint triangle packing (NTP), is known [50]
to be NP-hard.

In particular, NTP is known to be NP-hard also in the planar case. Moreover,
NTP is known to be APX-hard [64] even for graphs with maximum degree 4 [13]. The
above negative results also hold in the case when we restrict the problem to 3-partite
graphs, that is, when the vertex set V of G is partitioned into three disjoint color
classes V = A∪B∪C and no edge of G has its two endvertices in the same color class.
Notice that when G has this special structure, every triangle of G must have precisely
one vertex in each one of the three color classes.

Given a maximization problem P, let optP (I) denote the optimal solution value for
some instance I of P and, for a solution S of I, let valP (I, S) denote the associated
value. Given a constant ε ∈ (0, 1), a 1

1−ε
-approximation algorithm for P is an algorithm

that, applied to any instance I of P, runs in time polynomial in the size of I and
produces a solution whose value is at least (1 − ε) · optP (I). If such an algorithm
exists, P belongs to APX. Moreover, P is said to be APX-hard if the existence of a

1
1−ε

-approximation algorithm for P for any ε ∈ (0, 1) would imply the existence of a
1

1−δ
-approximation algorithm for any δ ∈ (0, 1) for all problems in APX. To show that

P is APX-hard, it sufficies to show a special type of polynomial time reduction from
some problem Q already known to be APX-hard to P. An L-reduction [13] from Q to
P consists of a pair of polynomial-time computable functions (f, g) such that, for two
fixed constants α and β: (a) f maps input instances of Q into input instances of P; (b)
given a Q-instance I, the corresponding P-instance f(I), and any feasible solution S
for f(I), g(I, S) is a feasible solution for the Q-instance I; (c) |optP (f(I))| ≤ α|optQ(I)|
for all I, and (d) |optQ(I) − valQ(I, g(I, S))| ≤ β|optP (f(I)) − valP (f(I), S)| for each
I and for every feasible solution S for f(I). From this definition it follows that the
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relative errors are linearly related, i.e.

|optQ(I) − valQ(I, g(I, S))|
optQ(I)

≤ α β
|optP (f(I)) − valP (f(I), S)|

optP (f(I))
.

Hence, if both Q and P are maximization problems, the existence of a 1
1−ε

-

approximation algorithm for P implies the existence of a 1
1−αβε

-approximation algo-
rithm for Q.

The inapproximability of maxcover 3-way exchange

We first illustrate the bare reduction idea for the case l = 3 and then we give a
construction to generalize the APX-hardness result to any constant l. Let G = (V, E)
be a 3-partite graph received in input and comprising an instance of NTP. Let A, B and
C be the 3 color classes in which V is partitioned. We construct a digraph D = (V, A)
by simply orienting each edge e of G as follows: if e has one endpoint in A and the
other in B, then orient e as to go from A to B; if e has one endpoint in B and the other
in C, then orient e as to go from B to C; if e has one endpoint in A and the other in
C, then orient e as to go from C to A. To summarize, V (D) := V (G) = A ∪ B ∪ C,
and

A(D) := {(u, v) | uv ∈ E(G), u ∈ A, v ∈ B} ∪
{(u, v) | uv ∈ E(G), u ∈ B, v ∈ C} ∪
{(u, v) | uv ∈ E(G), u ∈ C, v ∈ A} .

Clearly, the digraph D can be constructed in polynomial time starting from the
graph G. Moreover, the following lemma says that the above is an objective func-
tion preserving reduction (a primary case of L reduction), whence the claimed APX-
hardness result follows.

Lemma 4.2.1. The graph G admits a packing of vertex-disjoint triangles covering t
vertices if and only if the digraph D admits a 3-way exchange covering t vertices.

Proof. Three vertices u, v, z ∈ V induce a triangle in G if and only if they induce a
directed cycle with length 3 in D. As a consequence, a packing of triangles in G can
be regarded as a 3-way exchange covering precisely the same set of vertices. In the
other direction, notice that D contains no digons (anti-parallel arcs). Thus, any 3-way
exchange contains only cycles with length 3 and can hence be regarded as a packing of
triangles in G covering precisely the same set of vertices.

The inapproximability of maxcover l-way exchange

The trick to generalize the above reduction to a generic l ≥ 3 is as follows. Once D
has been obtained, then obtain a second digraph D′ from D as follows. For each arc
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a = (u, v) of D with u ∈ C and v ∈ A, add the vertices wa,1, . . . , wa,l−3 and replace the
arc a = (u, v) with the arcs (u, wa,1), (wa,l−3, v) and (wa,i, wa,i+1) for i = 1, . . . , l−4. To
summarize, V (D′) := V (D)∪ {wa,i | a = (u, v) ∈ A(D), u ∈ A, v ∈ C, i = 1, . . . , l − 3},
and

A(D′) := {(u, v) | uv ∈ E(G), u ∈ A, v ∈ B} ∪
{(u, v) | uv ∈ E(G), u ∈ B, v ∈ C} ∪
{(u, wa,1), (wa,l−3, v) | uv ∈ E(G), u ∈ C, v ∈ A} ∪
{(wa,i, wa,i+1) | uv ∈ E(G), u ∈ C, v ∈ A, i = 1, . . . , l − 3} .

Clearly, the digraph D′ can be constructed in polynomial time starting from the
graph G. Moreover, the following lemma says that the above is an L-reduction, whence
the problem is APX-hard for any constant l.

Lemma 4.2.2. The graph G admits a packing of vertex-disjoint triangles covering t
vertices if and only if the digraph D′ admits an l-way exchange covering tl/3 vertices.

Proof. Notice that D′ contains no directed cycle of length less then l. Moreover, three
vertices a ∈ A, b ∈ B and c ∈ C induce a triangle in G if and only if the arc f = (c, a)
belongs to D and the vertices a, b, c, wf,1, . . . , wf,l−4 induce a directed cycle in D′. As
a consequence, a packing of triangles in G can be regarded as an l-way exchange in
D covering precisely l/3 as many vertices. In the other direction, since D′ contains no
directed cycle of length less then l, then any l-way exchange contains only cycles with
length l and can hence be regarded as a packing of triangles in G covering precisely
3/l as many vertices.

Lemmas 4.2.1 and 4.2.2 imply the following theorem.

Theorem 4.2.3. maxcover l-way exchange is APX-hard for any integer l ≥ 3.

We remark, that maxweight l-way exchange is also APX-hard, since max-

cover l-way exchange is its particular problem for unit weights.

4.2.2 Approximation of the maxweight l-way exchange

The maxweight l-way exchange problem can be reduced to the maximum weight
matching problem in a hypergraph. Let H(V, E) be defined on the same vertex set as
D. A hyperedge eX corresponds to a set of vertices X ⊂ V (D) if |X| ≤ l and there exist
a directed cycle on X that covers every vertex of X. Let the weight wH(eX) be equal to
the weight of a maximum weight such cycle that can be formed on X. Obviously, there
is a one-to-one correspondence between the l-way exchanges in D and the matchings in
H . Moreover, the weights of the maximum-weight solutions are equal, so the following
problem is a generalization.

Given a hypergraph H = (V, E) where every hyperedge has size at most l and a
nonnegative weight wH(e) ∈ R+ associated to each hyperedge e. Define maxweight
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l-set packing to be the problem of finding a maximum weight matching M of H .
First we describe two simple l-approximations by greedy algorithms.

Greedy algorithm

The greedy algorithm constructs a matching Mgr in the following way. We start with
the original edge set E0 := E(H) and M0

gr = ∅. In the i-th iteration we add a maximum
weight edge ei to the current matching M i

gr := M i−1
gr ∪ ei and delete ei together with

the set of edges that intersect ei, denoted by N i(ei), from the current edge set, so
Ei := Ei−1 \ N i(ei) \ ei. We repeat until all edges are removed.

This algorithm is an l-approximation. To prove this, let denote a maximum weight
matching by Mopt. We partition Mopt into subsets M i, where M i denotes the edges of
Mopt that were removed in the i-th iteration of the greedy algorithm. Here, M i is either
equal to ei or it is an independent set of edges from N i(ei), so |M i| ≤ l. Since each
edge in N i(ei) has weight less or equal to wH(ei), then wH(M i) ≤ l · wH(ei) holds for
each index i. By summarizing these inequalities, we get wH(Mopt) ≤ l · wH(Mgr).

Mean-greedy algorithm

The mean-greedy algorithm is a modification of the above algorithm as we look for a
maximum mean-weights edge, that is the original weight divided by the size of the
edge. So let mwH(e) := wH(e)/|e| for each e ∈ E(H), and let the final matching be
Mmgr.

To prove the approx-factor, we use the similarly defined partition of a maximum
weight solution Mopt into subsets M i as for the mean-greedy algorithm. By using a
similar notation here, |M i| ≤ |ei|. Since each edge in N i(ei) has mean-weight less
or equal to mwH(ei), then mwH(M i) ≤ |ei| · mwH(ei) = wH(ei) holds for each in-
dex i, which implies wH(M i) ≤ l · wH(ei). By summarizing these inequalities, we get
wH(Mopt) ≤ l · wH(Mmgr).

We remark, that in a kidney exchange program, the greedy algorithm is likely to
choose 3-way cycles first, which are not optimal, since two-way exchanges are more
safe. That is why the mean-greedy algorithm seems to be a better heuristic for kidney
exchange programs.

Local search

The maxweight l-set packing problem can further be reduced to the problem of
maxweight independent set in (l + 1)-claw free graphs, by working on the
intersection graph of the hypergraph. In this simple graph, L(H) the vertices are the
edges of H , and two vertices are adjacent if the corresponding edges intersect. The fact
that H contains only edges with size at most l implies that L(H) is an (l + 1)-claw
free graph. We define a weight-function on the vertices of L(H) in a natural way: let
wL(vX) = wH(X) if X is an edge in H and vX is the corresponding vertex in L(H).
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Obviously, a maximum weight independent set in L(H) corresponds to a maximum
weight matching in H (that corresponds to a maximum weight exchange in D). Our
goal is to approximate this more general problem.

Fix an independent set I in L(G). A natural idea to improve the actual solution is
the t-local search (see [12]). This means that we attempt to add an independent set X
to I with cardinality at most t and remove the subset of I that is in N(X), so that
the total weight increases. If no such t-local improvement exists then the solution is a
t-local optimum.

Note, that if we compare two disjoint independent sets, say I and Iopt, then these
sets can be viewed as the two sides of a bipartite subgraph of L(H). Moreover, each
vertex in this subgraph has degree at most l, by the (l+1)-claw freeness of L(H). That
is why the conditions of the following theorem can describe the relation of a t-local
optimum I and a global optimum Iopt.

Theorem 4.2.4 (Arkin, Hassin, 1998). For any given k and t and every instance
G = (A, B, E) satisfying the following three conditions:

• |N(a)| ≤ k for each a ∈ A;

• |N(b)| ≤ k for each b ∈ B;

• any subset X ⊆ A of at most t vertices satisfies w(X) ≤ w(N(X));

we have
w(A)

w(B)
≤ k − 1 +

1

t
.

The above theorem obviously implies that a t-local optimum approximates the
global optimum with the same factor for any t. By this, it can be proved that an
algorithm, based on the t-local search method, also approximates the maxweight

l-set packing problem with factor l − 1 + ε for any ε > 0.

Augmenting path search

Here we show, that the same approximating ratio can be reached by using only a partic-
ular t-local search. The t-augmenting path search is a special t-local search, where the
new set X is chosen along an alternating path in L(H). Formally, let X = x1, x2, . . . , xs,
where s ≤ t and there is a subset Y of the actual solution I, such that |Y | = s− 1 and
X = x1, y1, x2, y2, . . . xs−1, ys−1, xs is a path in the intersection graph, L(H).

Theorem 4.2.5. For any given k and t and every instance G = (A, B, E) satisfying
the following three conditions:

• |N(a)| ≤ k for each a ∈ A;

• |N(b)| ≤ k for each b ∈ B;
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• any subset X ⊆ A of at most t vertices, where X is a set of consecutive vertices
in an alternating path of G, satisfies w(X) ≤ w(N(X));

we have
w(A)

w(B)
≤ k − 1 +

2

t
.

This theorem implies an alternative proof for the existence of an approximation
algorithm – that use “only” augmenting path searches – with factor l − 1 + ε for any
ε > 0.

We use the following well-known lemma in the proof of Theorem 4.2.5:

Lemma 4.2.6. If G(A, B, E) is a k-regular bipartite graph, then the set of edges, E(G)
can be partitioned into k perfect matchings.

Proof. (of Theorem 4.2.5) We complete G into a k-regular graph G′ by adding
dummy vertices with zero weight and some edges. By Lemma 4.2.6 we can partition
the set of edges into k perfect matchings. Two of these perfect matchings form a 2-
factor, that is a perfect covering by a set of disjoint alternating cycles. Le us fix this
2-factor C.

The main idea of the proof is that the cycles of C with length exceeding 2t can
be cut into alternating paths of length at most 2t such that the total weight of the
endvertices of these paths in B is at most 2

t
w(B). This is done as follows: Consider a

cycle Ci = (Xi|Yi) = (x1
i , y

1
i , x

2
i , . . . , x

c
i , y

c
i ) from C, with |Xi| = |Yi| = c > t. We show

that we can always find a set of vertices Ri ⊂ Yi with cardinality
⌈

c
t

⌉

, that satisfies the
following properties:

If rj
i = yp

i and rj+1
i = yp+s

i are in Ri then s ≤ t (mod c) (4.1)

w(Ri)

|Ri|
≤ w(Yi)

|Yi|
(4.2)

(Here, property (4.1) ensures that between two consecutive vertices in Ri the dis-
tance is at most t. Property (4.2) says that the mean-weight of Ri is less or equal than
the mean-weight of Yi.)

The proof of the existence is easy: first we choose a set with the given cardinality
that satisfies the (4.1) property, then we rotate this set along the cycle (we increase all
of the indexes one by one) and we select the set with minimum total weight.

Using property (4.2) and c > t, we get

w(Ri) ≤
|Ri|
|Yi|

w(Yi) =

⌈

c
t

⌉

c
w(Yi) <

2

t
w(Yi) .

If we consider all of the cycles Ci ∈ C with length more than 2t, then for R = ∪Ri

we have
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w(R) =
∑

i:|Xi|>t

w(Ri) <
∑

i:|Xi|>t

2

t
w(Yi) ≤

2

t
w(B). (4.3)

Now, we create a partition of A the following way: we restrict the graph of C from G′

to G, then we delete the vertices of R. The graph we get consists of disjoint paths and
cycles - the cycles have length at most 2t whereas the paths contain at most t vertices
in A. Form partition A from sets of vertices X ⊆ A that are in the same component in
the above graph. Obviously, for each X ∈ A the third condition of the Theorem 4.2.5
applies. Notice that a vertex b ∈ B belongs to at most k sets of the form N(X) with
X ∈ A. Moreover, if b ∈ B \R, then b belongs to at most k − 1 sets of the form N(X)
with X ∈ A since either |N(b)| ≤ k − 1 or b has two neighbors in the same class of the
partition A. Therefore, by summing up these inequalities and using (4.3), (since only
the vertices of R can be counted k-times, from each of their k neighbors,) we get:

w(A) =
∑

X∈A

w(X) ≤
∑

X∈A

w(N(X))

≤ (k − 1)w(B \ R) + k w(R) ≤ (k − 1)w(B) + w(R)

<

(

k − 1 +
2

t

)

w(B) .

The proof is complete.

Combined methods, heuristics

Chandra and Halldórsson [36] showed a 2(l + 1)/3-approximation algorithm for the
maxweight independent set problem in (l + 1)-claw free graphs by combining
the above presented two methods. Their algorithm starts with an independent set
obtained by the greedy algorithm. Then the solution I is improved by a special local
search, where the new, added set X is chosen from the neighbors of a vertex from I, in
such a way that the ratio of the weights of X and the removed set, N(X)∩ I is always
maximal.

We remark, that this algorithm beats the two previously described local search
methods for l ≥ 5. It is open, whether a better approximation can be achieved by
starting with the greedy (or with the mean-greedy) algorithm, and then always making
the best t-local improvement (or t-augmenting path improvement). Such an algorithm
might be useful as a heuristic for the original problem.

Approximability of maxcover l-way exchange

For the approximability of maxcover l-way exchange, a general result of [54] leads
to a polynomial time (l/2 + ε)-approximation algorithm (for any ε > 0) for any fixed
l. In the special case of l = 3, this gives a (3/2 + ε)-approximation algorithm (for
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any fixed ε > 0). An approximation algorithm improving this ratio could be directly
translated into an algorithm for NTP with a better approximation guarantee than the
one known so far.

4.2.3 Exact algorithm for maxweight 3-way exchange

The maxcover 3-way exchange problem is currently solved in the New England
Program by integer programming methods as it is described in [91] and [95]. Recently,
Abraham et al. [6] implemented such a special IP-heuristic for the maxweight 3-way

exchange problem that is capable of handling the data of the USA (for approximately
10.000 couples) according to their simulations. In spite of these promising results, it is
still an interesting question to construct an exact algorithm for this special NP-hard
problem. Below, we present some ideas about this question that might be useful to
improve heuristic algorithms.

Fix a maxweight 3-way exchange problem in a digraph D, and an optimal
solution π∗ that contains some 3-way exchanges {C1, C2, . . . , Cl}. Suppose that some-
body tells us a list of arcs: one arc from each 3-way exchange, so let Y = {a1, a2, . . . al},
where ai ∈ Ci. We show that by this information we can efficiently find a maximum
weight set of 3-way exchanges.

We transform the maxweight 3-way exchange problem to a maximum weight
matching problem in an undirected graph GY in the following way. We denote by V (Y )
the set of vertices in D that are covered by Y . Let yi,j ∈ V (GY ) if (vi, vj) ∈ Y , otherwise
let xi ∈ V (GY ) if vi ∈ V (D)\V (Y ). Let {xi, xj} ∈ E(GY ) if both (vi, vj) and (vj, vi) ∈
A(D), and let {xk, yi,j} ∈ E(GY ) if both (vk, vi) and (vj , vk) ∈ A(D). Considering the
weights, w′({xi, xj}) := w(vi, vj)+w(vj, vi), and w′({xk, yi,j}) := w(vk, vi)+w(vi, vj)+
w(vj, vk).

Obviously, a matching M in GY corresponds to a set of 3-way exchanges π in D,
in such a way that {xi, xj} ∈ M if and only if π(vi) = vj and π(vj) = vi is a 2-way
exchange in D, furthermore {xk, yi,j} ∈ M if and only if π(vk) = (vi), π(vi) = (vj) and
π(vj) = (vk) is a 3-way exchange in D. By this, the weight of a matching M is equal to
the weight of the corresponding set of exchanges π. So, if π∗ is an optimal solution in
D, and Y is a set of arcs as it is described above, then by solving a maximum weight
matching problem in GY we can find a matching that corresponds either to π∗ or to
an other maximum weight set of 3-way exchanges in D.

An exact algorithm can be constructed from the above idea: first we guess a set of
arc Yi ⊂ A(D) and then we find a maximum weight matching in GYi

, that corresponds
to a feasible solution in D. The question is how can we reduce the number of guesses.

As a trivial approach, we can try each of the set of arcs, that produce 2m rounds,
where m is the number of arcs in D. But obviously, we should try only the independent
subsets (i.e. that do not admit two incident arcs).
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One idea is to reduce the set of arcs to a subset T , such that by deleting T
from D, the obtained subgraph does not contain any cycle with length 3. Since if
{C1, C2, . . . , Cl} are the 3-way exchanges of an optimal solution π∗, then we can always
find a suitable subset YT = {a1, a2, . . . , al} from T , as required. If t = |T |, then the
number of guesses is only 2t. We note, that t ≤ m

2
always holds, since every directed

graph can become acyclic by removing at most half of its arcs. Thus this approach
gives an O(2

m
2 ) time exact algorithm.

Another idea, is to consider a vertex set S, such that D \ S (the digraph, obtained
by removing the vertices of S from D) does not contain any cycle with length 3. For
a vertex v let ∆+(v) be the set of arcs with tail from v, and ∆−(v) the set of arcs
with head to v. We denote by δ+(v) := |∆+(v)| and δ−(v) := |∆−(v)|, furthermore, let
o(v) := min{δ+, δ−} and s = |S|. If we choose either ∆+(v) or ∆−(v) for each vertex
v ∈ S, (practically to one with less cardinality), that we denote by T ∗(v), then the
union of these sets of arcs: T ∗ := ∪s

i=1T
∗(vi) is a suitable candidate for T , as defined

above. Moreover, if we guess an independent set from this T ∗, then obviously it will
contain at most one arc from each T ∗(v). This implies that the number of possible
guesses is at most

∏s

i=1(o(vi) + 1). Since D is a simple digraph, this gives an ns upper
bound for the number of rounds.

Finally, we remark, that the latter approach can be useful, because the number of
incompatible pairs, that are in fact ABO-compatible, is relatively small in the current
pools (these pairs are in the “short side” of the market, see [91] for details). Obviously,
without these pairs no 3-way exchange is possible.

4.3 Stable exchange problems

As a generalization of the houseswapping game, we study the question of stable ex-
changes, where the length of the cycles in the exchange may be restricted, and the size
of the blocking coalitions can also be bounded, independently. We consider the prob-
lem of finding weakly, strongly and super-stable exchange in case ties are allowed in
the preference lists. We recall the definition of L-preferences introduced in [32]. There,
the preferences of the agents are lexicographic, the agents primarily care about the
goods that they receive, secondarily they want to minimize the length of their trading
cycle. Beside finding a stable solution, another natural goal is to maximize the number
of agents involved in the exchange. Here, we describe well-known complexity results
from a general point of view, and we present an inapproximability result published in
[20] and two theorems on the NP-hardness of some basic 3-way stable 3-way exchange
problems.
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4.3.1 Stable exchange with ties

The stable exchange problem, as we defined it in the Preliminaries, is equivalent to the
problem of finding an outcome in the core of the corresponding houseswapping game.
In this study we consider the case of strict preferences and also the case of preferences
with ties. Strict preference means linear ordering. If some goods are tied in a preference
list of agent i, then agent i is indifferent between them. In the stable exchange problem
(SE) we suppose that the preferences are strict. The stable exchange problem with ties
is denoted by SE+T.

Here, we recall again the three main stability concepts introduced in Subsection
1.1.4. for general NTU-games, and specified in Section 2.3 for stable matchings.

• An exchange is weakly stable if there exists no blocking coalition B and permu-
tation σ of B, such that each agent i ∈ B strictly prefers σ to π.

• An exchange is strongly stable if there exists no blocking coalition B and permu-
tation σ of B, such that one of the agents from B strictly prefers σ to π, and each
other agent i ∈ B either strictly prefers σ to π or is indifferent between them.

• An exchange is super-stable if there exists no blocking coalition B and permu-
tation σ of B, such that σ is not equal to π on B and each agent i ∈ B either
strictly prefers σ to π or is indifferent between them.

The following propositions are obvious.

Proposition 4.3.1. Given an instance of SE+T.

4.3.1/a) If an exchange π is strongly stable, then it is also weakly stable.

4.3.1/b) If an exchange π is super-stable, then it is also strongly stable.

Given an instance I of SE+T. If an instance I ′ of SE is obtainable from I by
breaking the ties, then I ′ is a derived instance from I.

Proposition 4.3.2. Let I be an instance of SE+T.

4.3.2/a) An exchange π is weakly stable if it is weakly stable in at least one instance
I ′ of SE that can be derived from I.

4.3.2/b) An exchange π is super-stable if it is super-stable in every instance I ′ of SE
that can be derived from I.
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4.3.2 Stable exchange under L-preferences

Under L-preferences, an agent i prefers a permutation π to another permutation σ if
he either prefers π−1(i) to σ−1(i) or is indifferent between them, but the length of Cπ(i)
is smaller than the length of Cσ(i). This notion was introduced by Cechlárová et al. in
[32]. They called the NTU-game related to the problem of SE under L-preferences the
kidney exchange game. (To distinguish L-preferences and the original ones, the latter
will be referred to as normal preferences hereafter.)

We remark, that a similar ordering, the B-preference was defined earlier by
Cechlárová and Romero-Medina in [34]. There, an agent i prefers a coalition C to
another coalition D, if either he prefers the best member of C to the best member of
D, or he is indifferent between them, but the size of C is smaller than the size of D.
The following proposition is obvious.

Proposition 4.3.3. Given an instance of SE+T.

4.3.3/a) If an exchange π is (weakly) stable under L-preferences, then it is also (weakly)
stable under normal preferences.

4.3.3/b) If an exchange π is super-stable under normal preferences, then it is also
super-stable under L-preferences.

4.3.3 Restrictions on the lengths

Considering an l-way exchange problem, the size of the blocking coalitions can also be
restricted. We say that an exchange is b-way stable if there exist no blocking coalition of
size at most b. Obviously, the most relevant problems are the ones with l = 2, 3. If b = l
then a stable exchange is actually a core-solution of the corresponding NTU-game, as
it was described in the Preliminaries. The following observations can be easily verified.

Proposition 4.3.4. Suppose that π is a b-way stable l-way exchange, then

4.3.4/a) it is also a (b − 1)-way stable l-way exchange, and

4.3.4/b) it is also a b-way stable (l + 1)-way exchange.

A 2-way exchange is called pairwise exchange, that is actually a matching of the
agents.

Proposition 4.3.5. Given an instance of SE+T.

4.3.5/a) If a pairwise exchange π is (weakly) stable under normal preferences, then it
is also (weakly) stable under L-preferences.

4.3.5/b) If a pairwise exchange π is strongly stable under normal preferences, then it
is also strongly stable under L-preferences.
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The weakest stability condition is the 2-way stability (or in other words, the pairwise
stability), where no pair of agents can block a stable solution.

Proposition 4.3.6. Given an instance of SE+T.

4.3.6/a) If an exchange π is pairwise super-stable under L-preferences, then it is also
pairwise super-stable under normal preferences.

4.3.6/b) If an exchange π is pairwise strongly stable under L-preferences, then it is
also pairwise strongly stable under normal preferences.

Corollary 4.3.7. Given an instance I of SE+T. A pairwise exchange π is pair-
wise {weakly, strongly, super-} stable under L-preferences if and only if π is pairwise
{weakly, strongly, super-} stable under normal preferences, respectively.

If we consider strict preferences, then some further statements can be verified.

Proposition 4.3.8. Given an instance of SE.

4.3.8/a) If an exchange π is strongly stable, then π is also super-stable.

4.3.8/b) If an exchange π is strongly stable under L-preferences, then π is also super-
stable under L-preferences.

Proposition 4.3.9. Given an instance of SE.

4.3.9/a) If a pairwise exchange π is strongly stable under L-preferences, then π is also
weakly stable under L-preferences.

4.3.9/b) If an exchange π is pairwise strongly stable under L-preferences, then π is
also pairwise weakly stable under L-preferences.

Corollary 4.3.10. In an instance I of SE the same pairwise exchanges are {weakly,
strongly, super-} stable under L-preferences, and {strongly, super-} stable under nor-
mal preferences. Moreover, the same exchanges are pairwise {weakly, strongly, super-}
stable under L-preferences, and weakly stable under normal preferences. Thus, in case
of pairwise stable pairwise exchanges, these stability concepts are equivalent if the pref-
erences are strict.

4.3.4 Maximum size stable exchange problems

Beside finding a stable exchange, we may want to find such a stable solution, where
the number of covered agents is maximal. We denote the problem of finding such a
maximal solution for a stable exchange problem by

• maxcover-se in the basic case, (i.e. normal preferences, no ties, no restrictions)
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• maxcover-{w,su,st}-se+t for {weakly, strongly, super-} stable exchanges
with ties,

• maxcover-Lse under L-preferences, and

• maxcover-sbel for b-way stable l-way exchanges.

4.3.5 Complexity results

We present some complexity results on exchange problems, matching problems and
3-way exchange problems using the above definitions. Some results from Section 2.3
are recalled, and together with the results presented below, collected in a table at the
end of this section, with reference indices [Ri].

Exchange problems

Shapley and Scarf showed in [103], that there always exists a (weakly) stable exchange
in an instance I of SE+T [R8]. Roth and Postlewaite [87] proved that the exchange
obtained by the TTC algorithm is super-stable for instances of SE. Moreover, this is
the only possible super-stable solution. We remark that this uniqueness holds also for
strongly stable exchanges by Proposition 4.3.1/a, but obviously, not for the weakly
stable exchanges. Thus here, the maxcover-se problem is nontrivial. In the case of
L-preferences, Biró and Cechlárová [20] proved recently the following theorem.

Theorem 4.3.11. maxcover-Lse is not approximable within n1−ε for any ε > 0
unless P = NP .

Sketch of the proof. The proof is based on a gap-introducing reduction starting
from min-mm for a cubic graph G of size p with a positive integer K. We create a
maxcover-Lse problem I of size n, that contains one directed cycle C of size Θ(n).
Here, n >> p and p is fixed, so p can be considered as a constant relative to n. If C
is part of an exchange π, then the number of covered vertices is Θ(n), whilst if C does
not belong to π then the number of covered vertices is just a constant relative to n. In
the proof it is verified that G admits a maximal matching of size at most K if and only
if C is part of some stable exchange in I. Thus, an algorithm that could approximate
maxcover-Lse in polynomial time within a factor less than Θ(n) would be able to
decide min-mm for cubic graphs as well.

Matching problems

As we already explained in Section 4.1, the pairwise stable pairwise exchange problem
is equivalent to the stable roommates problem. Here, we note that the results, presented
in Section 2.3 can be equivalently described by the above definitions as follows. The
algorithm of Irving [56] finds a pairwise stable pairwise exchange if there exists one for
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the given stable exchange problem [R2]. Theorem 2.3.1 states that the decision problem
of finding a (weakly) pairwise stable pairwise exchange in an instance of SE+T is NP-
complete [R3]. By Theorem 2.3.2, the decision problem related to maxcover-s2e2+t

is NP-complete, even for bipartite graphs [R4].
Recently, Irving [58] showed that the decision problem of finding a cycle stable

matching in an instance of the cycle stable roommates problem (SCR) is NP-complete.
Moreover, the length of each possible blocking cycle is at most 3 in his construction,
so he proved the following:

Theorem 4.3.12 (Irving). The problem of finding a stable pairwise exchange in an
instance of SE is NP-complete [R9]. The same result holds for 3-way stable pairwise
exchanges [R10].

Exchange with restricted lengths

Assume now, that the 2-way and 3-way exchanges are also allowed. The following
theorems were presented in [19].

Theorem 4.3.13. The 3-way stable 3-way exchange problem in an instance of SE is
NP-complete [R11].

Proof. Clearly, the problem is in NP. To show NP-hardness, we give a transforma-
tion from weakly srt. This problem is NP-complete [59], even if there is no edge
between those vertices that have ties in their preference lists. Let G = (V, E) be
the undirected graph in the instance of weakly srt. Without loss of generality, as-
sume that {v1, v2, . . . , vt} ⊆ V (G) are the vertices that have no tie in their lists, and
{vt+1, vt+2, . . . , vn} ⊆ V (G) are the vertices that have preferences with ties. We denote
by T k

i the k-th tie in vi’s preference list.
We construct an instance I of SE as follows: let U ′ ∪ U ′′ ∪ X ∪ Y be the set of

vertices of the digraph D. Here U ′ = {u1, u2, . . . , ut} and U ′′ = {ut+1, ut+2, . . . , un}.
Let X correspond to the edges without ties, so xi,j ∈ X if {vi, vj} ∈ E(G) for some
i < j and vi is not tied in the preference of vj. Let Y correspond to the ties in the
lists, so yk

i ∈ Y if T k
i exists. We define A(G) in the following way: if {vi, vj} ∈ E(G) for

some i < j such that vi is not tied in the preference of vj , then let (vj , vi), (vi, xi,j) and
(xi,j , vj) be in A(D). In the other case, if vi ∈ T k

j , then let (vj, vi), (vi, y
k
j ) and (yk

j , vj)
be in A(D). Let the preference list of each ui ∈ U ′ ∪U ′′ remain similar to vi’s list with
some natural modifications: namely, we write
- uj instead of vj if i < j,
- xi,j instead of vj if j < i and vj is not tied in vi’s list, and
- yk

i instead of tie T k
i .

Furthermore, let each yk
i ’s preference list be arbitrary. (We note that each xi,j has only

one incoming arc.)
There is no directed cycle with length 2 in D, so only 3-way cycles are possible in the

exchange. Moreover, each 3-way cycle in D corresponds to an edge in G. Thus, there
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is a one-to-one correspondence between the matchings in G and the 3-way exchanges
in D. So let M be a matching in G, we construct a 3-way exchange π in the following
way: if {vi, vj} ∈ M for some i < j, where vi is not tied in the preference of vj , then
let (vj, vi, xi,j) ∈ π, otherwise if {vi, vj} ∈ M for some vi ∈ T k

j , then let (vj, vi, y
k
j ) ∈ π.

Finally, we shall prove that a matching M in G is weakly stable if and only if the
corresponding 3-way exchange π is 3-way stable in I. To verify this, it is enough to
see that an edge {vi, vj} /∈ M is blocking for M if and only if the corresponding 3-way
cycle is blocking for π, and this is obvious.

As a natural generalization of the SM problem, Knuth [67] defined the three-sided
stable matching problem. In this special coalition formation game the possible coalitions
are (m, w, c) triples (i.e. families) from M × W × C (i.e. men, women, cats), where
|M | = |W | = |C| = n, and everybody prefers being in a family to remaining single.
Alkan [8] showed that a stable solution may not exist if the preferences of the agents
can be arbitrary over the pairs from the other two sides. Moreover, Ng and Hirschberg
[79] proved that the problem of determining whether a stable solution exists is NP-
complete.

Boros et al. [29] showed that the core of this coalition formation game can be
nonempty even if the preferences of the agents are lexicographically cyclic (i.e. men
primarily care about women, women primarily care about cats, and cats primarily care
about men). They raised the same question for purely cyclic preferences, in which the
men only care about women, so a man is indifferent between two families if he has
the same wife in both of them, (same conditions for women and cats). This problem is
equivalent to the 3-way stable 3-way exchange problem for three-sided cyclic digraphs,
(i.e. V (D) = M ∪ W ∪ C and every arc (i, j) ∈ A(D) is from either W × M or
C × W or M × C), in that special case where the sizes of the three sides are the
same, and the digraph contains all possible edges. Here, we prove that without the two
latter restrictions, the general problem of finding a maximum size 3-way stable 3-way
exchange for three-sided cyclic digraphs is NP-hard.

Theorem 4.3.14. The decision problem related to maxcover-S3E3 is NP-complete,
even for three-sided cyclic digraphs [R12].

Proof. Clearly, the problem is in NP. To show NP-hardness, we give a transformation
from max weakly srt. This problem is NP-complete [74], even if ties occur only in
one side of the bipartite graph.

The construction is similar to the above. If V (G) = A ∪ B, then the three sides of
D are U ′ ∼ A, U ′′ ∼ B and X ∪ Y . We can find a weakly stable matching M with
|M | ≥ l if and only if for the corresponding 3-way stable 3-way exchange π the number
of covered vertices is at least 3l.
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4.3.6 Summary, open questions

We summarize the presented complexity results in the following table for (weakly)
stable exchanges under normal preferences. (Here again, P denotes that the problem
is polynomial time solvable, NPc denotes that the (related) problem is NP-complete,
(NPh) denotes that the NP-hardness of the problem is obvious from the presented
results.) Finally, ??? means that we think that these unsolved problems are relevant,
the reasons are explained below.

l = 2-way exchange 3-way exchange exchange
b = (strict) ties (strict) ties (strict) ties
2-way existence P [R2] NPc [R3] ??? (Yes) (Yes)
stable maxcover P NPc [R4] ???
3-way existence NPc [R10] (NPh) NPc [R11] (NPh) (Yes) (Yes)
stable maxcover (NPh) (NPh) NPc [R12] (NPh)
(cycle) existence NPc [R9] (NPh) (NPh) (NPh) (Yes) Yes [R8]

stable maxcover (NPh) (NPh) (NPh) (NPh) ???

In the current applications of kidney exchange, some programs allow three-way
exchanges, and pairwise stability may become a natural expectation. This is why the
problem of finding a pairwise stable 3-way exchange in an instance of SE is important.
However, it is easy to construct an example to show that such a stable solution may
not exist, but the complexity of this problem is unclear.

Considering the exchanges without restriction on the cycle-lengths, the TTC algo-
rithm always provides a stable exchange, that is also a pairwise stable exchange in an
instance of SE. Here, maxcover-se and maxcover-s2e are two important problems
to solve.

Moreover, the problems of {weakly, strongly, super-} stable exchange with ties,
under normal and L-preferences yield various interesting open questions.
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SSSR Sibirsk. Otdel., Irkutsk, 1977.



BIBLIOGRAPHY 99

[109] Y Yuan. Residence exchange wanted: A stable residence exchange problem. Eu-
ropean Journal of Operational Research, 90:331–341, 1996.


