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Abstra
t
In this thesis e�
ient algorithms for sequential predi
tion (de
ision) problems are studied.In general, the algorithm has to guess the next element of an unknown sequen
e using someknowledge about the past of the sequen
e and other side information. In this model thegoal of the algorithm is to minimize its 
umulative loss, whi
h is a

umulated from roundto round (in ea
h round one de
ision is made) where the loss is s
ored by some �xed lossfun
tion. The sequen
e of the out
omes is a produ
t of some unspe
i�ed me
hanism, whi
h
ould be deterministi
, sto
hasti
 or even adversarially adaptive to our own behavior.As the �rst result of the thesis, an algorithm is given for the problem when the loss isunbounded and its performan
e is studied under various partial information (also 
alledpartial monitoring) settings. A wide 
lass of partial monitoring problems are introdu
ed:the 
ombination of the label e�
ient and multi-armed bandit problems. In this setting thealgorithm is only informed about the performan
e of its de
ision with probability ε ≤ 1 anddoes not have a

ess to the losses it would have su�ered if it had made a di�erent de
ision.It is shown that 
onsisten
y 
an be a
hieved for unbounded losses, too, depending on thegrowth rate of the overall �worst� de
ision's average loss. Moreover, the above result 
anbe applied to solve the spe
ial problem, when the loss is bounded. For bounded lossesa simple modi�
ation of the previous algorithm is o�ered; its 
onvergen
e rate 
oin
ideswith that of the best �earlier algorithms�, but it 
an be applied more easily for real lifeproblems.In the next part, the on-line shortest path problem is 
onsidered under various modelsof partial monitoring. Given a weighted dire
ted a
y
li
 graph whose edge weights 
an
hange in an arbitrary (adversarial) way, an algorithm (de
ision maker) has to 
hoose inea
h round of a game a path between two distinguished verti
es su
h that the loss of the
hosen path (de�ned as the sum of the weights of its 
omposing edges) be as small aspossible. In a setting generalizing the multi-armed bandit problem, after 
hoosing a path,the algorithm learns only the weights of those edges that belong to the 
hosen path. Forthis problem, an algorithm is given whose average 
umulative loss in n rounds ex
eeds thatof the best path, mat
hed o�-line to the entire sequen
e of the edge weights, by a quantitythat is proportional to 1/

√
n and depends only polynomially on the number of edges of thei



Abstra
t iigraph. The algorithm 
an be implemented with 
omplexity that is linear in the number ofrounds n (i.e., the average 
omplexity per round is 
onstant) and in the number of edges.An extension to the so-
alled label e�
ient setting is also given, in whi
h the algorithmis informed about the weights of the edges 
orresponding to the 
hosen path at a total of
m ≪ n time instan
es. Another extension is shown, where the algorithm 
ompetes againsta time-varying path, a generalization of the problem of tra
king the best expert. A versionof the multi-armed bandit setting for shortest path is also dis
ussed where the algorithmlearns only the total weight of the 
hosen path but not the weights of the individual edgeson the path. Appli
ations to routing in pa
ket swit
hed networks along with simulationresults are also presented.Finally, a predi
tion strategy is introdu
ed for unbounded stationary and ergodi
 real-valued pro
esses and show that the average of squared errors of the algorithm 
onverges,almost surely, to that of the optimum, given by the Bayes predi
tor. The algorithm is basedon a 
ombination of several simple predi
tors, where for this 
ombination the methodologyand results of the previous parts of the thesis are used. Furthermore an extension for thenoisy setting is o�ered, that is when the algorithm has a

ess only to the noisy version ofthe out
ome sequen
e e.g. the �
lean� pro
ess is passed through a �xed binary memoryless
hannel. A simple universally 
onsistent 
lassi�
ation s
heme is provided for zero-one lossin this noisy setting.
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Chapter 1
Introdu
tion

In this 
hapter the framework of sequential de
ision problems is introdu
ed. Se
tion 1.1des
ribes the main 
on
epts and motivation of the sequential de
ision problems. In Se
tion1.2 literature overview is given. Our 
ontribution is des
ribed in Se
tion 1.3, as well as adetailed overview of the thesis.1.1 MotivationThe goal of this thesis is to design general purpose, e�
ient algorithms for sequential pre-di
tion (de
ision) problems. Predi
tion, as we understand it in this thesis, is 
on
ernedwith guessing the short term evolution of 
ertain phenomena. Examples in
lude fore
astingwhether tomorrow will be rainy or not, or guessing the route with lowest tra�
 betweenour home and our workpla
e on the following working time period. These tasks look similarat an abstra
t level: one has to guess the next element of an unknown sequen
e using someknowledge about the past of the sequen
e and other side information available. Su
h prob-lems naturally arise in real-world appli
ations from portfolio sele
tion in �nan
ial marketthrough real-time optimization of websites to routing in the 
ommuni
ation networks.In the 
lassi
al statisti
al theory of sequential predi
tion, the sequen
e of the elements,so 
alled out
omes, is assumed to be a realization of a stationary sto
hasti
 pro
ess. Insu
h a setup, the statisti
al property of the pro
ess based on past observations 
an beestimated and using this estimation e�
ient predi
tion strategies 
an be 
onstru
ted. Inthat 
ase, the performan
e of a predi
tion strategy is usually evaluated by expe
ted valueof some loss fun
tion whi
h measures the �distan
e� between the predi
ted value and thetrue out
ome.However, in a large part of this thesis we use a di�erent viewpoint. We abandon theassumption that the out
omes are generated by a well-behaved sto
hasti
 pro
ess and viewthe sequen
e of the out
omes as a produ
t of some unspe
i�ed me
hanism, whi
h 
ould bedeterministi
, sto
hasti
 or even adversarially adaptive to our own behavior. This setup1



1.1. Motivation 2where no probabilisti
 assumption is made on how the sequen
e is generated is often referredto as predi
tion of individual sequen
es.In this model the goal of the algorithm is to minimize its 
umulative loss, whi
h isa

umulated from round to round (in ea
h round one de
ision is made) where the lossis s
ored by some �xed loss fun
tion. At the same time, without a probabilisti
 modelit is non-obvious how to measure the performan
e of the algorithm. There is no naturalbaseline as in the sto
hasti
 
ase, and for example it is easy to see that it is not possibleto minimize the 
umulative loss simultaneously for all possible sequen
es. To provide su
ha baseline one of the possible way is to de�ne a set of referen
e fore
asters (predi
tionrules), so 
alled experts. Then the performan
e of the algorithm is evaluated relative tothis set of experts, and the goal is to perform asymptoti
ally as well as the best expertfrom the referen
e 
lass mat
hed to the observed out
ome sequen
e o�-line. The expertsmake their de
isions available to the algorithm before the next out
ome is revealed, andbased on these �pie
es of advi
es� the algorithm forms its own de
ision to keep 
lose its
umulative loss to the 
umulative loss of the best expert.The di�eren
e between the 
umulative loss of the algorithm to that of the best expertis 
alled regret, as it measures how mu
h the algorithm regrets, in hindsight, of not havingfollowed the advi
e of the best expert.On the one hand for �small� expert 
lasses the regret of the algorithm 
onverges �fast�to zero, however, the 
umulative loss of the best expert may be �large�. Borrowing ananalogy from nonparametri
 statisti
s the �rst error 
riterion is 
alled estimation error ofthe algorithm and the se
ond one is the approximation error of the expert 
lass. On theother hand for �large� expert 
lasses it is vi
e versa, the 
onvergen
e of the regret of thealgorithm is slower, at the same time the 
umulative loss of the best expert is smaller. Inmost of this thesis we fo
us on the minimization of the regret.The advantage of this novel te
hnique, predi
tion for individual sequen
es is twofold.On the one hand it is able to handle the 
ase when the sequen
e of the out
omes aregenerated by an adversarial me
hanism. In that 
ase one 
annot assume any stationaryand probabilisti
 me
hanism for the sequen
e. Indeed, that is realisti
 in e.g. rea
tiveenvironments where the 
hoi
e of the algorithm in�uen
es the behaviour of the environment(see below for real-world problems). On the other hand it has huge in
rement in the �eld ofnon-parametri
 statisti
s. Namely, one may have a probabilisti
 model, however, there is aneed to 
onstru
t predi
tion with good rates, i.e., to adapt the parameters of the algorithm.There are su
h adaptations: splitting, 
ross validation, 
omplexity regularization, et
., butthey work well only for memoryless sequen
es, whi
h restri
ts seriously their appli
ability.Another important problem is the universally 
onsistent predi
tion of ergodi
 sequen
e.The 
on
ept of individual sequen
e is extremely e�
ient su
h that the 
hoi
es of theparameters of the algorithm are 
onsidered as experts, and the bounds on the performan
eof the 
ombined (aggregated) algorithm does not depend on the properties of the a
tualsequen
e, and so these bounds result in optimal adaptation both for memoryless sequen
esor in universal 
onsisten
y for ergodi
 sequen
es.The 
on
rete interpretation of the �experts� depends on the spe
i�
 appli
ation. Inthe sequel some important problems whi
h naturally 
ast as experts' advi
e (sequential



1.1. Motivation 3de
ision) problems are shown mostly from the framework of info-
ommuni
ation systems.Let us see �rst an example for the above mentioned adaptation from the �eld of patternre
ognition. We have a k-NN (Nearest Neighbor) 
lassi�er and our goal is to �nd the bestvalue of the number of k. In that 
ase ea
h expert 
an run a k-NN 
lassi�er with di�erentvalues of k. Another typi
al 
hoi
e of the number of the neighbors is: ckn
1/(d+2), where dis the dimension of the samples. In that 
ase ea
h expert 
an use di�erent parameters ck.Se
ond, let us see some examples from info-
ommuni
ation systems. In these problems,the parameters of the networks and proto
ols are needed to be well tuned to ensure thatthe networks operate at the desired Quality of Servi
e (QoS) level. For instan
e, the 
lassof the experts 
an be some Transmission Control Proto
ol (TCP) variants that may usedi�erent parameter settings and the algorithm 
ompetes with the TCP variant whi
h hasthe best parameters in hindsight. In parti
ular, this setup is reasonable when the TCPvariant has to provide good performan
e in a heterogeneous environment or in 
ase ofdelay based TCP variants, like TCP Vegas and FAST TCP, whose performan
e are ultra-sensitive to the value of the parameters 
ontrolling the number of ba
klogged pa
kets inthe bu�ers of the routers on the path. These parameters are responsible for the long runperforman
e of the �ow (as throughput and fairness) and sin
e Vegas and FAST keep theseparameters 
onstant, they 
annot adapt well to the 
urrent 
hara
teristi
s of the network.Another extensively studied issue is the estimation of the available bandwidth in highspeed networks where the previously developed TCP variants (e.g: Reno) do not providegood utilization of the link or they may �nd available bandwidth too slowly. In that 
aseea
h bandwidth estimation te
hnique or proto
ol 
an be 
onsidered as an expert.This approa
h also 
ould be used for modeling the bidding strategy of parti
ipants ofan au
tion. In Dynami
 Spe
trum A

ess networks where the allo
ation of the spe
trumis based on an au
tion me
hanism (e.g: English or Vi
krey au
tion) the set of experts
ontains some �xed pri
e or more 
omplex bidding strategies and the goal of the algorithmis that its expense do not ex
eed too mu
h the 
osts of the best bidding strategy.Other interesting appli
ations are in adaptive routing, whi
h is of great importan
ein the maintenan
e of pa
ket swit
hed 
ommuni
ation networks. A su�
iently �exiblealgorithm 
an yield in
reased QoS, su
h as redu
ed pa
ket loss ratio or delay, even in 
aseof link failures or substantially varying tra�
 s
enarios. These algorithms require 
onstantmonitoring of the network state, and the measured information is 
ombined to updatethe routing tables. Su
h 
ombination 
an be done, for instan
e, with a 
ombination ofthe experts' advi
e. More pre
isely, for ea
h pa
ket the routing algorithm has to 
hoosean expert (path) from sour
e to destination on whi
h the pa
ket is to be sent. The loss
orresponding to the de
ision is the value of the QoS parameter we wish to optimize, su
has the delay, or the number of hops on the path, or the pa
ket loss ratio due to insu�
ientbu�er size.The performan
e of any algorithm obviously depends on how mu
h information is avail-able to the algorithm (the de
ision maker) about the experts' and its own performan
e.Often, only partial information is available to the algorithm, this is the so 
alled partialmonitoring setting. For example, in 
ase of adaptive routing, it is not feasible to assumethat the algorithm knows the delays of ea
h path in the network in ea
h moment. It is



1.2. Literature overview 4more natural to assume that at ea
h moment the algorithm learns information about thedelay of the path its pa
ket is sent on, and no information is available about the delay itwould have su�ered had it 
hosen a di�erent path (e.g., this feedba
k is available througha
knowledgments). Another example when the de
ision maker has the option to query thedelays at a 
ertain moments, e.g., with �ooding.Both full information (when the performan
e of ea
h expert is available for the algo-rithm) and partial monitoring problems are well-studied in 
ase when the experts 
lass is�small� and the loss fun
tion is bounded. In these settings good 
onvergen
e rates and also
onsisten
y results are 
onsidered. The extensions of these results to �large� expert 
lassesor to unbounded loss fun
tions are important open-questions, but unfortunately usuallythey make di�
ulties. For a general 
lass of experts the 
omputational 
omplexity of theexpert algorithms available in the literature usually grows linearly with time and with thenumber of the experts. This 
omplexity may be prohibitive for large 
lasses of experts, e.g.,when an expert is a path in a network (the number of su
h paths is typi
ally exponentialin the size of the network). Finally, in most 
ases, one assumes that the loss is bounded,and su
h a bound is known in advan
e, during the design of the algorithm, whi
h is nota

eptable in 
ase of many real-life appli
ations. For instan
e, in 
ase of adaptive routing,the algorithm has no information about the maximum value of the delay.At this point some questions arise in 
onne
tion with the above appli
ations. Is itpossible to 
onstru
t an algorithm whose performan
e a
hieves asymptoti
ally the perfor-man
e of the best expert (
onsisten
y) if the bound of the loss is unknown? If yes, then isthere a way to somehow extend the result for the 
ase of partial monitoring? Furthermore,do 
onsistent algorithms exist with low time and spa
e 
omplexity if the number of theexperts is large (e.g., the number of the paths in a network) under partial monitoring? Ifwe have some (sto
hasti
) assumptions about the behavior of the out
ome sequen
e (e.g.,the delays on the links are realizations of stationary and ergodi
 pro
esses in the routingproblem) is it possible to improve in some sense the 
onvergen
e of the algorithm? Most ofthe material in this thesis is devoted to provide answers to these and to related questions.1.2 Literature overviewResear
h on sequential de
ision problems started in the 1950s, see, for example, Bla
kwell[15℄ and Hannan [43℄ for some of the basi
 results, and gained new life in the 1990s followingthe work of Vovk [70℄, Littlestone and Warmuth [53℄, and Cesa-Bian
hi et al. [20℄. Theseresults show that for any bounded loss fun
tion, if the de
ision maker has a

ess to thepast losses of all experts, then it is possible to 
onstru
t on-line algorithms that perform,for any possible behavior of the environment, almost as well as the best expert. For a goodsurvey on predi
tion of individual sequen
es, the reader is referred to, e.g., the re
ent bookof Cesa-Bian
hi and Lugosi [21℄.The theory has been extended to di�erent dire
tions, 
onsidering 
omplexity issues orthe amount of available information.A representative example of the partial monitoring problem is the multi-armed bandit



1.2. Literature overview 5problem where the algorithm has only information on the loss of the 
hosen expert. Thisproblem was originally 
onsidered in the sto
hasti
 setting � it was assumed that the lossesare randomly and independently drawn with respe
t to a �xed but unknown distribution� by Robbins [63℄ and Lai and Robbins [52℄ (for a re
ent e�
ient solution, see Auer et al.[4℄). For the non-sto
hasti
 setting 
onsistent algorithms are given in Auer et al. [6℄, [5℄and Hart and Mas Colell [44℄. Auer et al. [5℄ gave an algorithm whose average 
umulativeloss in n rounds ex
eeds that of the best expert by a quantity that is proportional to√
N/n, where N is the number of the experts. Another example of partial monitoringproblems is the label e�
ient predi
tion problem, where it is expensive to obtain the lossesof the experts, and therefore the algorithm has the option to query this information (seeHelmbold and Panizza [45℄ and Cesa-Bian
hi et. al [22℄). The main open problem left isto extend these results to unbounded losses.For large 
lasses of experts, su
h as the shortest path problem in graphs, the spe
ialstru
ture of the experts allows to implement the algorithms with signi�
antly lower 
om-plexity in the full information 
ase, see, e.g., Helmbold and S
hapire [64℄, Mohri [55℄, Auerand Warmuth [9℄, Helmbold and Warmuth [46℄, Takimoto and Warmuth [68℄, [69℄, Kalaiand Vempala [49℄ and György et al. [36℄. However, in 
ase of the multi-armed banditproblem, if one applies the general bandit algorithm of Auer et al. [5℄, the resulting regretbound (on the average ex
ess loss relative to the best expert) will be una

eptably largeto be of pra
ti
al use be
ause of its square-root-type dependen
e on the number of expert.The most important issues here are the improvement of the algorithms in multi-armed ban-dit problem to a
hieve better regret bounds and further redu
tion of the 
omputational
omplexity.One may wonder whether it is possible to improve the above results if we have someprobabilisti
 assumptions about the behavior of the out
ome sequen
e. If the out
omesequen
e is a realization of a stationary and ergodi
 random pro
ess then one 
an showan algorithm (strategy) whose performan
e 
onverges not only to the performan
e of thebest expert, but in 
ase of a 
arefully de�ned 
lass of the experts, it also 
onverges to thetheoreti
al optimum that 
an be a
hieved in full knowledge of the underlying distributiongenerating the out
ome sequen
e. A strategy is 
alled universally 
onsistent if it a
hievesasymptoti
ally this optimum. In 
ase of squared loss, Algoet [1℄ and Morvai, Yakowitz, andGyör� [57℄ proved that there exists a predi
tion strategy that 
an a
hieve this well-de�nedoptimum. Györ� and Lugosi [32℄ introdu
ed a simple universally 
onsistent predi
tionstrategy. We refer to Nobel [58℄, Singer and Feder [65℄, [66℄ and Yang [74℄ for 
loselyrelated re
ent works. In 
ase of 0−1 loss, Ornstein [59℄ and Bailey [12℄ proved the existen
eof universally 
onsistent predi
tors. This was later generalized by Algoet [1℄. A simplerestimator with the same 
onvergen
e property was introdu
ed by Morvai, Yakowitz, andGyör� [57℄. Motivated by the need for a pra
ti
al estimator, Morvai, Yakowitz, and Algoet[56℄ introdu
ed an even simpler algorithm. However, it is not known whether their predi
toris universally 
onsistent. Györ�, Lugosi, and Morvai [33℄ introdu
ed a simple randomizeduniversally 
onsistent pro
edure with a pra
ti
al appeal. Weissman and Merhav [72℄, [73℄studied 
onsisten
y in noisy environment.



1.3. Contribution and thesis overview 61.3 Contribution and thesis overviewIn this thesis we address some fundamental open questions of the sequential de
ision prob-lems.In Chapter 2 we introdu
e the general model of sequential de
ision problems anda

urately de�ne spe
ialized problems and algorithms of whi
h we make extensive use laterin this thesis. Moreover, this 
hapter also 
ontains a more detailed literature overview.As mentioned before, if the bound of the loss is unknown beforehand or if it 
an slowlygrow with time, most of the existing algorithms are not appli
able. In Chapter 3 we give anew algorithm for this situation and study its performan
e under various partial observationsettings. We introdu
e a wide 
lass of partial monitoring problems: the 
ombination of thelabel e�
ient problem and the multi-armed bandit problem. In the label e�
ient setting thealgorithm is informed about the experts' performan
e only with probability ε ≤ 1, whilein the model of multi-armed bandit, only the performan
e of the 
hosen expert is known.In the 
ombination of the label e�
ient problem and the multi-armed bandit problem thealgorithm is only informed about the performan
e of the 
hosen expert with probability
ε ≤ 1. We show that 
onsisten
y 
an be a
hieved for unbounded losses, if the growth rateof the worst expert's average square of the losses is sublinear in the number of rounds.Moreover, the above result 
an be applied to solve the spe
ial problem when the loss isbounded. For bounded losses a simple modi�
ation of the previous algorithm is o�ered;its 
onvergen
e rate 
oin
ides with that of an earlier algorithm due to Auer et al. [5℄, butit 
an be applied more easily to pra
ti
al problems.In many appli
ations the set of experts has a 
ertain stru
ture that may be exploitedto 
onstru
t e�
ient on-line de
ision algorithms. Constru
tion of su
h algorithms hasbeen of great interest in 
omputational learning theory. In Chapter 4 we study the on-line shortest path problem, a representative example of stru
tured expert 
lasses that hasre
eived attention in the literature for its many appli
ations, in
luding, among others,routing in 
ommuni
ation networks and data 
ompression. In this problem, a weighteddire
ted (a
y
li
) graph is given whose edge weights 
an 
hange in an arbitrary manner,and in ea
h round the de
ision maker has to 
hoose a path between two distinguishedverti
es su
h that the loss of the 
hosen path (de�ned as the sum of the weights of its
omposing edges) be as small as possible. In the multi-armed bandit setting, after 
hoosinga path, the de
ision maker learns only the weights of those edges that belong to the 
hosenpath. For this problem, an algorithm is given whose average 
umulative loss in n roundsex
eeds that of the best path, mat
hed o�-line to the entire sequen
e of the edge weights,by a quantity that is proportional to 1/

√
n and depends only polynomially on the size ofthe graph. The algorithm has linear 
omplexity in the number of rounds n and in thenumber of edges. Motivated by Cognitive Pa
ket Networks [28℄, an extension to the labele�
ient setting is also given, in whi
h the de
ision maker is informed about the weightsof the edges 
orresponding to the 
hosen path in only a fra
tion m ≪ n of the rounds.Another extension is shown where the de
ision maker 
ompetes against a time-varyingpath, a generalization of the problem of tra
king the best expert. A version of the multi-armed bandit setting for shortest path is also dis
ussed where the de
ision maker learns



1.3. Contribution and thesis overview 7only the total weight of the 
hosen path but not those of the individual edges on the path.This model is parti
ularly important for routing minimizing the pa
ket loss ratio.In Chapter 5 we provide a simple on-line pro
edure for the predi
tion of a stationaryand ergodi
 pro
esses. The proposed pro
edure does not only minimize the estimationerror but also guarantees that the approximation error vanishes asymptoti
ally. First apredi
tion strategy (algorithm) is given for unbounded stationary and ergodi
 real-valuedpro
esses and it is shown that the algorithm is universally 
onsistent in 
ase of the squaredloss. Furthermore, we o�er an extension for this setting, where the algorithm has a

essonly to a noisy version of the original sequen
e. This setup was introdu
ed and studied byWeissman and Merhav [72, 73℄. We show a universally 
onsistent algorithm in the noisysetting for 
onvex loss fun
tions (e.g., squared loss, absolute loss, et
.) and �nally a simpleuniversally 
onsistent 
lassi�
ation s
heme is provided for 0 − 1 loss both in the noiselessand in the noisy settings.



Chapter 2
Sequential Predi
tion

In this 
hapter the terminology and the introdu
tion to the theory of sequential predi
tionare presented. The aim is to provide the reader with the ne
essary ba
kground materialneeded for this thesis.2.1 Sequential predi
tion of individual sequen
esThe sequential (often referred also as on-line) de
ision problem 
onsidered in this thesisis des
ribed as follows. Suppose a de
ision maker has to make a sequen
e of a
tions. Atea
h time instant t = 1, 2, . . . , n, an a
tion at ∈ A is made, where A denotes the a
tionspa
e and n is the number of rounds the algorithm is run for. Then, based on the state ofthe environment yt ∈ Y , where Y is some state spa
e, the de
ision maker su�ers some loss
ℓ(at, yt) with a nonnegative loss fun
tion ℓ : A × Y → R. In some spe
ial 
ases we take
A = Y , but in general A may be di�erent from Y . The a
tion at time t may depend onall previous a
tions a1, . . . , at−1, and on all the information available to the de
ision makerabout the past behavior of the environment. This information, for example, may 
onsistof the past environment states y1, . . . , yt−1; however, the de
ision maker may not be ableto observe the state yi of the environment, where i = 1, . . . , t− 1. The goal of the de
isionmaker is to minimize the average loss of the algorithm in the long run, that is, to minimize

1

n

n∑

t=1

ℓ(at, yt) ,for large n. Sin
e no probabilisti
 assumption is made on how the sequen
e {yt} is gener-ated, it is not possible to minimize the 
umulative loss of the algorithm
L̂n

def
=

n∑

t=1

ℓ(at, yt)simultaneously for all y1, . . . , yn sequen
e. 8



2.1. Sequential predi
tion of individual sequen
es 9For predi
ting individual sequen
es, a possible problem formulation is that we evaluatethe performan
e of the algorithm with respe
t to a referen
e 
lass of predi
tion rules,
alled experts su
h that the goal of the algorithm is to perform as well as the best expert.Formally, given N experts, at ea
h time instant t, for every i = 1, . . . , N , expert i 
hoosesits a
tion fi,t ∈ A and su�ers loss ℓ(fi,t, yt). The de
ision maker is allowed to make its ownde
ision at using the experts' advi
e f1,t, . . . , fN,t, however, without knowing the experts'loss in advan
e. Formally, the sequential predi
tion problem is given in Figure 2.1.Sequential predi
tion problemParameters: number N of experts, state spa
e Y , a
tion spa
e A, non-negative loss fun
tion ℓ : A × Y → R, number n of rounds (n 
an be
∞).At time instants t = 1, . . . , n,(1) ea
h expert forms its a
tion fi,t ∈ A, i = 1, . . . , N ;(2) the de
ision maker observes the a
tions of the experts and forms itown predi
tion at ∈ A;(3) the state of the environment yt ∈ Y may or may not be revealed;(4) the de
ision maker in
urs loss ℓ(at, yt) and ea
h expert in
urs loss

ℓ(fi,t, yt).Figure 2.1: Sequential predi
tion problem.Denote the 
umulative loss of expert i up to time n by
Li,n =

n∑

t=1

ℓ(fi,t, t) .Let us de�ne the normalized regret as the di�eren
e between the average loss of the algo-rithm and that of the best expert, that is,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
.The goal of the learning algorithm is to 
ombine the experts' de
isions su
h that thenormalized regret, be universally small for all possible sequen
es of {yt}.If the a
tion spa
e is 
onvex (in this 
ase obviously an in�nite a
tion spa
e is required),then the de
ision maker 
an 
ombine the advi
e of the experts a

ording to a distribution

{pi,t} as follows:
at =

N∑

i=1

pi,tfi,t .



2.1. Sequential predi
tion of individual sequen
es 10If the loss fun
tion ℓ(·, ·) is 
onvex in its �rst argument, then su
h deterministi
 algorithms
an be applied (see e.g. Cesa-Bian
hi and Lugosi [21℄), whi
h will be introdu
ed in Subse
-tion 2.2.2. For general a
tion spa
e, the 
ombination of the experts' advi
e is formulatedby randomization.2.1.1 Randomized predi
tionIt 
an be shown that under general 
onditions on the loss fun
tion and on the �nite a
tionspa
e, ex
luding su
h simple situations when, for example, the loss of the experts are thesame, no deterministi
 algorithm 
an perform well for all possible sequen
e {yt}. Thisis be
ause for ea
h deterministi
 algorithm one 
an 
onstru
t a �bad� sequen
e on whi
hthe a
tual algorithm performs poorly, but the best expert does not. (At the end of thissubse
tion a simple example is presented.)Therefore, in 
ase of �nite a
tion spa
e we 
onsider randomized algorithms. Withoutloss of generality we may assume that the de
ision maker always follows the advi
e of oneof the experts. Let It be the (random) index of the expert was 
hosen by the algorithm atround t, that is, at = fIt,t for some It ∈ {1, . . . , N}. Note that for ea
h t, It is a randomvariable, as well as the 
umulative loss of the randomized algorithm L̂n. Therefore, we
an assume that the de
ision of the de
ision maker is to 
hoose an expert It and follow itsde
ision fIt,t. Formally, the randomized predi
tion model is de�ned as follows:Randomized predi
tion with expert advi
eParameters: number N of experts, state spa
e Y , a
tion spa
e A, non-negative loss fun
tion ℓ : A×Y → R, number n of rounds (n 
an be ∞).At time instants t = 1, . . . , n,(1) ea
h expert forms its a
tion fi,t ∈ A, i = 1, . . . , N ;(2) the de
ision maker observes the a
tions of the experts and 
hoosesan expert It ∈ {1, . . . , N} randomly;(3) the state of the environment yt ∈ Y may or may not be revealed;(4) the de
ision maker in
urs loss ℓ(fIt,t, yt) and ea
h expert in
urs loss
ℓ(fi,t, yt).Figure 2.2: Randomized predi
tion using expert advi
e.For 
onvenien
e we use the notations ℓi,t instead of ℓ(fi,t, yt) and ℓIt,t instead of ℓ(fIt,t, yt).Then the 
umulative loss of the de
ision maker up to time n is

L̂n =
n∑

t=1

ℓIt,t,



2.2. Algorithms 11and the 
umulative loss of expert i is
Li,n =

n∑

t=1

ℓi,t .The goal of the learning algorithm is the same like in non-randomized setting su
hthat the normalized regret, that is the di�eren
e between the average loss of the algorithmand that of the best expert, be universally small for all possible sequen
es of {yt}. Morepre
isely, to ensure
lim sup

n→∞

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 0with probability 1 for every sequen
e {yt}. Su
h an algorithm is 
alled Hannan 
onsistent[21℄.In most of the 
ases we allow that the a
tions of the environment depend on the past
hoi
e of the de
ision maker and also on its own (independent) randomization; this is theso 
alled non-oblivious (adaptive) adversaries.As an example to show that deterministi
 algorithms do not work in general, 
onsiderthe following example.Example 2.1. Assume that we would like to predi
t a binary sequen
e and we have twodi�erent 
onstant experts. The �rst one always predi
ts 0 and the se
ond one alwayspredi
ts 1. Formally, f1,t = 0 and f2,t = 1 for all t = 1, 2, . . .. Let the out
ome sequen
ebe {1, 0, 1, 0, 1, 0, 1, . . .}, that is yt = t mod 2 for all t = 1, 2, . . .. Then the loss sequen
esof the experts are {1, 0, 1, 0, 1, 0, . . .} and {0, 1, 0, 1, 0, 1, . . .}, respe
tively. Let the de
isionmaker's strategy be that it always uses the advi
e of the expert that has been best so far.In 
ase of tie it 
hooses randomly. This is the so 
alled follow-the-leader strategy. Thisstrategy 
hooses uniform randomly at time t if t is odd, and it 
hooses the se
ond expertis 
hosen if t is even, resulting in 
hoosing the worse expert. Then the average loss of thealgorithm 
onverges to 3/4, while the loss of both a
tions are asymptoti
ally 1/2; thus theperforman
e of the algorithm is far from optimal.2.2 AlgorithmsIn this se
tion we provide an overview of the most well-known algorithms in sequentialde
ision problems. Mostly two types of algorithms are used: The so 
alled �follow-the-perturbed-leader�-type algorithms employ the prin
iple (with some additional randomiza-tion) that the so far best expert should perform well in the future, too, while weightedaverage algorithms 
hoose experts randomly su
h that the ones with better past perfor-man
e are 
hosen with higher probability. In what follows both types of algorithms arebrie�y introdu
ed, but throughout the thesis we 
onsider only weighted average type al-gorithms, as for these algorithms better regret bounds are available in 
ase of partialmonitoring s
enarios. Throughout this se
tion we show results in 
ase when the losses arebounded with 1, that is ℓi,t ∈ [0, 1] for all i and t.



2.2. Algorithms 122.2.1 Follow-the-perturbed-leader algorithmIt was shown at the end of Subse
tion 2.1.1 that the follow-the-leader strategy is notoptimal. However, a simple randomization su�
es to a
hieve a signi�
antly improvedperforman
e. The idea is to add small random perturbations to the 
umulative lossesand then follow the �perturbed leader� with best �perturbed� past performan
e. The �rstHannan 
onsistent algorithm whi
h used this idea was given by Hannan [43℄, but here weshow a re
ent version of this algorithm due to Kalai and Vempala [49℄.Follow-the-perturbed-leader algorithmParameters: Fix R > 0.Initialization: Set Li,0 = 0 for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Sele
t the random N -ve
tor Zt with 
omponents Zi,t, i = 1, . . . , N ,uniformly from [0, R].(2) Sele
t an expert
It = arg min

i=1,...,N
(Li,t−1 + Zi,t)(ties are broken in favor of the smallest index).(3) Update the loss of ea
h expert i

Li,t = Li,t−1 + ℓi,t.Figure 2.3: The follow-the-perturbed-leader algorithm in full information 
ase.The following theorem gives an upper bound on the normalized regret of the follow-the-perturbed-leader algorithm given in Figure 2.3 due to [49℄.Theorem 2.1. Assume n,N ≥ 1, 0 < δ < 1, ℓi,t ∈ [0, 1] for all i and t , and let R =
√

nN .Then the follow-the-perturbed leader algorithm satis�es, with probability at least 1 − δ,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
N

n
+

√
ln(N/δ)

2n
.The weakness of this algorithm is that the upper bound has square-root-type dependen
eon the number N of experts. However, Kalai and Vempala [50℄ proposed a follow-the-perturbed-leader type algorithm whi
h use exponential distribution instead of the uniformdistribution to generate the perturbation and it obtains the �right� logarithmi
 dependen
eon N .



2.2. Algorithms 132.2.2 Exponentially weighted average predi
tionIn the �weighted average de
ision�-type algorithms at time instant t an expert i is 
hosenwith probability that in
reases with the past performan
e of the expert. That is, P(It = i)is proportional to r(Li,t−1), where r is a non-in
reasing fun
tion. The most popular 
hoi
eof r is r(x) = e−ηx, leading to the exponentially weighted average predi
tion, where η > 0is tuning parameter. In that 
ase the probability that 
hoosing a
tion i at round t ≥ 2

pi,t =
exp(−η

∑t−1
s=1 ℓi,s)∑N

j=1 exp(−η
∑t−1

s=1 ℓj,s)
for i = 1, . . . , N .Formally, the algorithm for bounded losses is given in Figure 2.4.Exponentially weighted average predi
torParameters: Fix η > 0.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .For ea
h round t = 1, 2, . . .(1) Randomly sele
t an expert It ∈ {1, . . . , N} a

ording to the proba-bility distribution pt = (p1,t, . . . , pN,t).(2) Update the weights wi,t = wi,t−1e

−ηℓi,t .(3) Cal
ulate the updated probability distribution
pi,t+1 =

wi,t∑N
j=1 wj,t

, for i = 1, . . . , N.Figure 2.4: Exponentially weighted average algorithm.The maximum di�eren
e between the 
umulative loss of the above de�ned algorithmand 
umulative loss of the best expert is O(
√

n ln N) was proved by Littlestone and War-muth [53℄:Theorem 2.2. Let n,N ≥ 1, 0 < δ < 1 and ℓi,t ∈ [0, 1]. The exponentially weightedaverage algorithm with η =
√

8 ln N/n satis�es, with probability at least 1 − δ,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤
√

ln N

2n
+

√
1

2n
ln

1

δ
.If the a
tion spa
e is 
onvex and loss is 
onvex in its �rst argument, then we may usedeterministi
 algorithm in non-adversary environment (see Se
tion 2.1). That is, wherethe de
isions of the algorithm is a 
onvex 
ombination of the expert advi
e a

ordingdistribution pt at time t.



2.2. Algorithms 14Theorem 2.3. Let n,N ≥ 1, ℓi,t ∈ [0, 1] and it is 
onvex in its �rst argument then thenon-randomized exponentially weighted average algorithm with η =
√

8 ln N/n satis�es,
1

n

(
n∑

t=1

N∑

i=1

pi,tℓi,t − min
i=1,...,N

Li,n

)
≤
√

ln N

2n
.Note that it is not a probabilisti
 statement, it holds for any sequen
e y1, y2, . . . , yn for a�x n.However the above regret bounds do not hold uniformly over sequen
es of any length

n, sin
e the parameter η = ηn depends on n. In many appli
ations, in
luding parametersetting in TCP variants and routing in 
ommuni
ation network the time horizon is not�xed and not available for the algorithm. To �x this problem the simplest idea is thedoubling tri
k whi
h appears in Cesa-Bian
hi et al. [20℄. The idea is to partition thetime into periods of exponentially in
reasing length. At the beginning of ea
h period, thealgorithm 
hooses the optimal η for the length of the interval and when the periods end,reset the whole �xed-horizon algorithm, and the new value of η is sele
ted optimally forthe next period. This method give a √
2/(

√
2−1) multipli
ative fa
tor to the upper boundof the theorem. However, it is obvious that this method is not pra
ti
al, be
ause it resetsits previously gathered knowledge time after time and therefore its appli
ation for a realproblem is doubtful. Another more attra
tive method is that at ea
h time instant t thealgorithm 
hooses an η = ηt whi
h depends on t. It was proved by Auer et al. [7℄ thatsetting ηt =

√
8 ln N/t results in a regret bound that is only twi
e as mu
h as the original(time dependent) bound.2.2.3 Countably many expertsIf the (in�nite) a
tion spa
e is 
onvex, then the de
ision maker 
an 
ombine the advi
e ofthe expert a

ording to a distribution {pi,t}:

at =
N∑

i=1

pi,tfi,t .Under 
onvexity 
ondition on the loss fun
tion, the regret of this 
ombination is boundedby O(1/
√

n). It is easy to prove that this regret bound holds for 
ountably many experts,too. The only ne
essary modi�
ation in the algorithm is that we have to de�ne probabilitydistribution over the set of positive integers {qi : i = 1, 2, . . .}, where wi,0 = qi representsthe initial weight of expert i.Theorem 2.4. Under the assumptions on Theorem 2.3, for any 
ountable 
lass of experts,for ℓi,t ∈ [0, 1] and for any probability distribution {qi : i = 1, 2, . . .} over the set of positiveintegers, su
h that qi > 0, the non-randomized exponentially weighted average predi
tionfor all n ≥ 1
1

n
L̂n ≤ inf

i≥1

1

n

(
Li,n − 1

η
ln

1

qi

)
+

η

8
.



2.3. Partial monitoring problems 152.3 Partial monitoring problemsIn this se
tion we overview expert algorithms for situations where the whole information onits own performan
e and on the past performan
e of the experts is not available to the de-
ision maker. The algorithms presented here follow the idea of estimating the performan
eof the experts based on the available information, and then run the exponentially weightedaverage de
ision algorithm using the estimated losses. In general, the normalized regret ofthe algorithms 
an be bounded by O
(√

N ln N/(nM)
) where M is the average numberof experts whose performan
e are revealed to the de
ision maker at ea
h time instant. Weprovide algorithms for the label e�
ient de
ision and multi-armed bandit problems.To ease the notation throughout this se
tion we also assume that the loss is upperbounded with 1.2.3.1 Label e�
ient predi
tionIn the label e�
ient de
ision problem, after 
hoosing its a
tion at time t, the de
isionmaker has the option to query the �label� yt of the environment. The de
ision maker isallowed to make (average) m queries out of the n time instants, where m ≤ n. To makethe algorithm universal, the querying has to be randomized. In the sequel we will see thata simple biased 
oin does the job.More pre
isely, to query a label, the de
ision maker uses an independent, identi
allydistributed sequen
e S1, S2, . . . , Sn of Bernoulli random variables with P(St = 1) = ε andasks label yt if St = 1. If yt is known, the de
ision maker 
an 
al
ulate the losses ℓi,t forall i = 1, . . . , N . If ε = m/n, then the number of the revealed labels during n roundsis approximately m for large n, and the proportion of labels queried 
onverges to ε withprobability 1 as n in
reases.In order to apply the exponentially weighted average de
ision method in this 
ase, thelosses have to be substituted with its estimate. It is shown in Figure 2.5, estimated lossesare used instead of the observed losses:

ℓ̃i,t =

{
ℓi,t

ε
, if St = 1,

0, otherwise.Note that ℓ̃i,t is an unbiased estimate of the true loss ℓi,t, as
E

[
ℓ̃i,t

∣∣∣(S1, I1), . . . , (St−1, It−1)
]

= ℓi,t .The following upper bound on the normalized regret of algorithm in Figure 2.5 is due toCesa-Bian
hi et al. [22℄. Note that this upper bound 
oin
ides with the previously provedupper bound for full information 
ase if m = n .



2.3. Partial monitoring problems 16Exponential weighting for label effi
ient predi
tionParameters: Fix η > 0 and 0 < ǫ ≤ 1.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Sele
t an a
tion It ∈ {1, . . . , N} a

ording to the probability distri-bution pt = (p1,t, . . . , pN,t).(2) Draw a Bernoulli random variable St su
h that P(St = 1) = ǫ.(3) if St = 1 then obtain ℓi,t for all i and 
ompute the estimated loss
ℓ̃i,t =

{
ℓi,t

ε
, if St = 1;

0, otherwise.(4) Update the weights wi,t = wi,t−1e
−ηeℓi,t .(5) Cal
ulate the updated probability distribution

pi,t+1 =
wi,t∑N
j=1 wj,t

i = 1, . . . , N.Figure 2.5: Exponentially weighted average de
ision algorithm in the label e�
ient setting.Theorem 2.5. Assume n,N ≥ 1, ℓi,t ∈ [0, 1] and 0 < δ < 1. If the above de�ned algorithmis run with parameters
ε = max

{
0,

m −
√

2m ln(4/δ)

n

} and η =

√
2ε ln N

n
,then the normalized regret of the de
ision maker 
an be bounded with probability at least

1 − δ as
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
ln N

m
+ 6

√
ln(4N/δ)

m
,where m is the average number of the revealed labels.2.3.2 The multi-armed bandit problemIn the multi-armed bandit problem, the de
ision maker learns its own loss ℓIt,t after 
hoosingan a
tion (expert) It, but not the value ℓi,t of the other losses for i 6= It. Thus, the de
ision



2.3. Partial monitoring problems 17maker does not have a

ess to the losses it would have su�ered if it had 
hosen a di�erenta
tion. The la
k of information implies a natural strategy: namely, �rst the de
ision makerhas to explore the losses of the experts (exploration phase) and then it may keep 
hoosingthe a
tion with smallest estimated loss for the remaining time (the exploitation phase).In the 
lassi
al formulation of multi-armed bandit problems (see, e.g., Robbins [63℄), itis assumed that, for ea
h a
tion, the losses are randomly and independently drawn withrespe
t to a �xed but unknown distribution. This version is 
alled the sto
hasti
 multi-armed bandit problem (for a re
ent e�
ient solution, see Auer et al. [4℄). Here we 
onsidera non-sto
hasti
 (or worst-
ase) version of this problem where the sequen
e y1, . . . , yn,des
ribing the state of the environment, is generated by a non-sto
hasti
 opponent (non-sto
hasti
 or adversarial multi-armed bandit problem) [6℄. This non-sto
hasti
 approa
h isextremely useful in 
ase of rea
tive environment e.g. in parameter setting of TCP variants,where the de
ision of the algorithm in�uen
es the losses (delays) of the other users, andvi
e versa.There are some modi�
ations relative to the full information 
ase. First, the modi�edmethod uses gains instead of losses, de�ned as
gi,t = 1 − ℓi,t ,where we used 0 ≤ ℓi,t ≤ 1 assumption.Moreover, in 
ontrast with the label e�
ient 
ase, we use biased estimates of the gainsde�ned as

g̃i,t =

{
gi,t+β

pi,t
, if It = i,

β
pi,t

, otherwisewhere the role of parameter β is to 
ontrol the bias (for β = 0 we obtain unbiased estimatesof the true gains, sin
e then E[g̃i,t|I1, I2, . . . , It−1] = gi,t) and we update the weights using
g̃i,t in the following form

wi,t = wi,t−1e
ηg̃i,t .Finally, a new parameter 0 < γ < 1 is introdu
ed that is used in the exploration phase:for It+1 a
tion i is 
hosen a

ording to the probability

pi,t+1 = (1 − γ)
wi,t∑N
j=1 wj,t

+
γ

N
, i = 1, . . . , N.The role of γ is to ensure that pi,t+1 ≥ γ/N for all i = 1, . . . , N . That is, instead of thepure probability distribution generated by exponential weighting, the de
ision maker usesa mixture of the exponentially weighted average distribution and the uniform distribution,where the latter allows the de
ision maker to 
onstantly explore all possible a
tions. Theresulting algorithm is given in Figure 2.6. The algorithm as well as the following boundon its performan
e is due to Auer et al. [6℄.



2.3. Partial monitoring problems 18Exponential weighting in the multi-armed bandit settingParameters: Fix η > 0, 0 < β < 1 and 0 < γ < 1.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Sele
t an a
tion It ∈ {1, . . . , N} a

ording to the probability distri-bution pt = (p1,t, . . . , pN,t).(2) Cal
ulate the estimated gains
g̃i,t =

{
gi,t+β

pi,t
, if It = i;

β
pi,t

, otherwise.(3) Update the weights wi,t = wi,t−1e
ηg̃i,t .(4) Cal
ulate the updated probability distribution

pi,t+1 = (1 − γ)
wi,t∑N
j=1 wj,t

+
γ

N
, i = 1, . . . , N.Figure 2.6: Exponentially weighted average de
ision algorithm for the multi-armed banditproblem.Theorem 2.6. For any 0 < δ < 1, for any ℓi,t ∈ [0, 1] and for any n ≥ 8N ln (N/δ), ifalgorithm in Figure 2.6 is run for the multi-armed bandit problem with parameters

β =

√
ln(N/δ)

nN
, γ =

4Nβ

3 + β
, and η =

γ

2N
,then, with probability at least 1 − δ,

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 5.5

√
N ln(N/δ)/n +

ln N

2n
.Note that the bound of the theorem, unlike to the full information 
ase, grows with√

N ln N instead of √ln N . Hen
e, the bound is not really useful if the number of theexperts N is large. The other disadvantages of this bound is that it holds only for boundedloss (ℓi,t ∈ [0, 1]), sin
e the algorithm is de�ned via gains. In Chapter 4 below some re
entresults are presented to handle this problem for the spe
ial 
ase when the 
lass of theexperts has some stru
ture.In Chapter 3 as well as in Chapter 4 we introdu
e a 
ombination of the label e�
ientproblem and the multi-armed bandit problems. The 
ombination was motivated by the



2.4. Sequential predi
tion in stationary and ergodi
 environment 19routing problem in Cognitive Pa
ket Networks des
ribed in Example 4.1 (in Se
tion 4.4).In this 
ombined problem, the de
ision maker learns its own loss only if it 
hooses to queryit (whi
h is allowed only for a limited number of times), and it 
annot obtain informationon the performan
e of any other a
tion.2.4 Sequential predi
tion in stationary and ergodi
 en-vironmentIn this se
tion we fo
us on the setting when y1, y2, . . . are realizations of random variables
Y1, Y2, . . .. Under this assumption the performan
e of the de
ision maker (strategy) hasa well-de�ned optimum, whi
h 
an be a
hieved in full knowledge of the underlying dis-tribution generating the out
ome sequen
es. This property - that the loss of a strategy
onverges to the loss of the Bayes optimal predi
tor - is 
alled universal 
onsisten
y andit is going to de�ne rigorously in the sequel.At ea
h time instant t = 1, 2, . . ., the predi
tor is asked to guess the value of thenext out
ome yt of a sequen
e of real numbers y1, y2, . . . with knowledge of the pasts
yt−1

1 = (y1, . . . , yt−1) (where y0
1 denotes the empty string) and the side information ve
tors

xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the predi
tor's estimate, at time t, is based onthe value of xt
1 and yt−1

1 . A predi
tion strategy is a sequen
e g = {gt}∞t=1 of fun
tions
gt :

(
R

d
)t × R

t−1 → Rso that the predi
tion formed at time t is gt(x
t
1, y

t−1
1 ).In this se
tion as well as in Chapter 5 we assume that (x1, y1), (x2, y2), . . . are realizationsof the random variables (X1, Y1), (X2, Y2), . . . su
h that {(Xn, Yn)}∞−∞ is a jointly stationaryand ergodi
 pro
ess. Furthermore, in these parts of the thesis we use a little bit di�erentnotation for the 
umulative loss, on the one hand to emphasize that here we have strongerassumptions on the out
ome sequen
e on the other hand to suit the notations extensivelyused in the literature.After n time instants, the normalized 
umulative predi
tion error is

Ln(g) =
1

n

n∑

t=1

ℓ
(
gt(X

t
1, Y

t−1
1 ), Yt

)where ℓ(·, ·) is a nonnegative loss fun
tion.The fundamental limit for the predi
tability of the sequen
e 
an be determined basedon a result of Algoet [2℄, who showed that for any predi
tion strategy g and stationaryergodi
 pro
ess {(Xn, Yn)}∞−∞, in 
ase of squared loss (ℓ(x, y) = (x − y)2)
lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (2.1)where
L∗ = E

[
ℓ
(
E
[
Y0

∣∣X0
−∞, Y −1

−∞
]
, Y0

)]



2.4. Sequential predi
tion in stationary and ergodi
 environment 20is the minimal error of any predi
tion for the value of Y0 based on the in�nite past
X0

−∞, Y −1
−∞. Note that it follows by stationarity and the martingale 
onvergen
e theorem(see, e.g., Stout [67℄) that

L∗ = lim
n→∞

E
[
ℓ
(
E
[
Yn

∣∣Xn
1 , Y n−1

1

]
, Yn

)]
.This lower bound gives sense to the following de�nition:De�nition 2.1. A predi
tion strategy g is 
alled universally 
onsistent with respe
t to a
lass C of stationary and ergodi
 pro
esses {(Xn, Yn)}∞−∞, if for ea
h pro
ess in the 
lass,

lim
n→∞

Ln(g) = L∗ almost surely.Universally 
onsistent strategies asymptoti
ally a
hieve the best possible loss for allergodi
 pro
esses in the 
lass. In the '90s Algoet [1℄ and Morvai, Yakowitz, and Györ�[57℄ proved that there exists a predi
tion strategy universal with respe
t to the 
lass of allbounded ergodi
 pro
esses. However, the predi
tion strategies exhibited in these papers areeither very 
omplex or have an unreasonably slow rate of 
onvergen
e even for well-behavedpro
esses. For square loss, Györ� and Lugosi [32℄ introdu
ed several simple predi
tionstrategies, whi
h are universally 
onsistent with respe
t to the 
lass of bounded, stationaryand ergodi
 pro
esses.



Chapter 3
Hannan Consisten
y under Partial Monitoring for Unbounded Losses

In this 
hapter we analyze the sequential de
ision problem when the loss is unboundedunder partial monitoring s
enarios. We introdu
e a wide 
lass of the partial monitoringproblems: the 
ombination of the label e�
ient problem and multi-armed bandit problem,that is, where the algorithm is only informed about the performan
e of the 
hosen expertwith probability ε ≤ 1. For this general setup a new algorithm (Green) is given andshown its Hannan 
onsisten
y.In Se
tion 3.1 we introdu
e the 
ombination of the label e�
ient and multi-armedbandit problems whi
h was originally motivated by adaptive routing (in details see inSe
tion 4.4). In Se
tion 3.2 we de�ne Green algorithm. In the next se
tion (Theorem3.1) we show that the expe
ted regret of the algorithm s
ales with the square root of theloss of the best expert. The main result of the 
hapter is stated and proved in Se
tion3.4; it shows that Hannan 
onsisten
y 
an be a
hieved, depending the growth rate of theworst expert's average loss. The above �unbounded� results 
an be utilized for the spe
ialproblem when the loss is bounded. In Theorem 3.3 we o�er an improvement for smalllosses in expe
ted regret and a high-probability bound for the regret of a slightly modi�edalgorithm (Green.Shift) is proved in Theorem 3.4.3.1 Combination of the label e�
ient and multi-armedbandit problemsIn this se
tion we introdu
e a re
ent 
ombination of the label e�
ient and the multi-armedbandit (LE+MAB) problems due to Ottu
sák and György [61℄. This 
ombination wasmotivated by the routing problem in Cognitive Pa
ket Networks (CPN) due to Gelenbe(Imperial College) et al. in [27, 28℄. CPN model is implemented and integrated into Linuxkernel 2.2.x and it is also the obje
t of a US Patent (No. 6804201). CPN is des
ribed indetails in Se
tion 4.4 (Example 4.1 ).In this 
ombined problem, the de
ision maker learns its own loss only if it 
hoosesto query it (whi
h is allowed only for a limited number of times), and it 
annot obtain21



3.2. Green algorithm 22information on the performan
e of any other a
tion. More pre
isely, for querying its lossthe de
ision maker uses a binary sequen
e S1, S2, . . .; If St = 1 then it queries its lossotherwise not. The following �gure gives the pre
ise de�nition of randomized predi
tion in
ase of the problem LE+MAB.Randomized predi
tion with expert advi
e in problemle+mabParameters: number N of experts, state spa
e Y , a
tion spa
e A, non-negative loss fun
tion ℓ : A× Y → R, number n of rounds (n 
an be ∞)and µ : N → N. At time instants t = 1, . . . , n,(1) ea
h expert forms its a
tion fi,t ∈ A, i = 1, . . . , N ;(2) the de
ision maker observes the a
tions of the experts and 
hoosesan expert It ∈ {1, . . . , N};(3) the de
ision maker in
urs loss ℓ(fIt,t, yt) and ea
h expert in
urs loss
ℓ(fi,t, yt);(4) if St = 1 then the de
ision maker issues a new query to obtain itsown loss ℓ(fIt,t, yt); if no query is issued then ℓ(fIt,t, yt) as well asthe losses of the experts remain unknown.Figure 3.1: Randomized predi
tion with expert advi
e in 
ombination of the label e�
ientand the multi-armed bandit problems.3.2 Green algorithmIn problem LE+MAB, it is easy to see (similarly to the LE 
ase) that in order to a
hievea nontrivial performan
e, the algorithm must use randomization.For querying its loss the algorithm uses a sequen
e S1, S2, . . . of independent Bernoullirandom variables su
h that

P(St = 1) = εt,and asks for the loss ℓIt,t of the 
hosen expert It if St = 1, whi
h for 
onstant εt = ε isidenti
al to the label e�
ient algorithms in Cesa-Bian
hi et al. [22℄.For problem LE+MAB we use Green algorithm with time-varying parameters intro-du
ed in Allenberg et al. [3℄. Green algorithm is a variant of the exponentially weightedaverage algorithm of Littlestone and Warmuth [53℄ and it was named after the known id-iom: �The grass is always greener on the other side�, sin
e Green assumes that the expertsit did not 
hoose had the best possible payo� (the zero loss).



3.2. Green algorithm 23Denote by pi,t the probability of 
hoosing a
tion i at time t in 
ase of the originalexponentially weighted average algorithm (predi
tor), that is,
pi,t =

e−ηt
eLi,t−1

∑N
j=1 e−ηt

eLj,t−1

,where L̃i,t−1 is so 
alled 
umulative estimated loss, whi
h will be updated later. Greenalgorithm uses modi�ed probabilities p̃i,t whi
h 
an be 
al
ulated from pi,t,
p̃i,t =

{
0 if pi,t < γt;
ct · pi,t if pi,t ≥ γt,where ct is the normalizing fa
tor (see Step (2) of the algorithm) and γt ≥ 0 is a time-varying threshold. Finally, the algorithm uses estimated losses whi
h are given by

ℓ̃i,t =

{
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise.Therefore, the estimated loss is an unbiased estimate of the true loss with respe
t to itsnatural �ltration, that is,
Et

[
ℓ̃i,t

] def
= E

[
ℓ̃i,t

∣∣∣(I1, S1), (I2, S2), . . . , (It−1, St−1)
]

= ℓi,t .The 
umulative estimated loss of expert i is given by
L̃i,t = L̃i,t−1 + ℓ̃i,t .The resulting algorithm is given in Figure 3.2.



3.3. Bounds on the expe
ted regret 24Green algorithm for problem le+mabParameters: Let η1, η2, . . . > 0, ε1, ε2, . . . > 0 and γ1, γ2, . . . ≥ 0.Initialization: Set L̃i,0 = 0 for all i = 1, . . . , N .For ea
h round t = 1, 2, . . .(1) Cal
ulate the probability distribution
pi,t =

e−ηt
eLi,t−1

∑N
i=1 e−ηt

eLi,t−1

i = 1, . . . , N .(2) Cal
ulate the modi�ed probabilities
p̃i,t =

{
0 if pi,t < γt,
ct · pi,t if pi,t ≥ γt,where ct = 1/

∑
pi,t≥γt

pi,t .(3) Sele
t an a
tion It ∈ {1, . . . , N} a

ording to p̃t = (p̃1,t, . . . , p̃N,t).(4) Draw a Bernoulli random variable St su
h that P(St = 1) = εt.(5) Compute the estimated loss for all i = 1, . . . , N

ℓ̃i,t =

{
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise.(6) For all i = 1, . . . , N update the 
umulative estimated loss
L̃i,t = L̃i,t−1 + ℓ̃i,t.Figure 3.2: Green algorithm for label e�
ient and multi-armed bandit problem.3.3 Bounds on the expe
ted regretIn this se
tion an O(1/

√
n) bound is shown for the expe
ted normalized regret of Greenalgorithm .Theorem 3.1. (Allenberg, Auer, Györfi and Ottu
sák [3℄). If ℓ2

i,t ≤ tν and
εt ≥ t−β for all t, then for all n the expe
ted loss of Green algorithm with γt = 0 and
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ted regret 25
ηt = 2

√
ln N
N

· t−(1+ν+β)/2 is bounded by
E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ 2

√
(N ln N)(n + 1)(1+ν+β)/2.For the proofs we introdu
e the notations

ℓ̌t =
N∑

i=1

p̃i,tℓ̃i,t, ℓt =
N∑

i=1

pi,tℓ̃i,t, and Ln =
n∑

t=1

ℓtand we split the statement into the following teles
opes
L̂n − min

i=1,...,N
Li,n =

(
L̂n − Ln

)
+

(
Ln − min

i=1,...,N
L̃i,n

)
+

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)
. (3.1)Lemma 3.1. For any sequen
e of losses ℓi,t ≥ 0,

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.Proof. Sin
e pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γt
pj,t = 1 −

∑
j:pj,t<γt

pj,t ≥ 1 − Nγt we have
ℓt =

N∑

i=1

pi,tℓ̃i,t = pIt,tℓ̃It,t ≥ (1 − Nγt)p̃It,tℓ̃It,t = (1 − Nγt)ℓ̌t.Thus
L̂n − Ln =

n∑

t=1

ℓIt,t −
n∑

t=1

ℓt ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.

2For bounding Ln − mini=1,...,N L̃i,n we use the following lemma due to Cesa-Bian
hi etal. [23℄.Lemma 3.2. Consider any non-in
reasing sequen
e of η1, η2, . . . positive learning rates andany nonnegative sequen
es ℓ̃1, ℓ̃2, . . . ∈ R
N of loss ve
tors, where ℓ̃t = (ℓ̃1,t, ℓ̃2,t, . . . , ℓ̃N,t).De�ne the fun
tion Φ by

Φ(pt, ηt,−ℓ̃t) =
N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,te
−ηt

eℓi,t ,where pt = (p1,t, p2,t, . . . , pN,t) is the probability ve
tor of the exponentially weighted averagealgorithm. Then, for Green algorithm
Ln − min

i=1,...,N
L̃i,n ≤

(
2

ηn+1

− 1

η1

)
ln N +

n∑

t=1

Φ(pt, ηt,−ℓ̃t).
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ted regret 26Lemma 3.3. With the notation of Lemma 3.2 we get for Green algorithm,
Φ(pt, ηt,−ℓ̃t) ≤

ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t.Proof. With straightforward 
al
ulation we obtain
Φ(pt, ηt,−ℓ̃t) =

N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,te
−ηt

eℓi,t

≤
N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,t

(
1 − ηtℓ̃i,t +

η2
t ℓ̃

2
i,t

2

) (3.2)
≤

N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln

(
1 − ηt

N∑

i=1

pi,tℓ̃i,t +
η2

t

2

N∑

i=1

pi,tℓ̃
2
i,t

)

≤ ηt

2

N∑

i=1

pi,tℓ̃
2
i,t ≤ ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t (3.3)where (3.2) holds be
ause of e−x ≤ 1 − x + x2/2 for x ≥ 0, and (3.3) follows from the fa
tthat ln(1 + x) ≤ x for all x > −1, and from the de�nition of ℓ̃i,t in Green algorithm. 2Proof of Theorem 3.1. From (3.1) and Lemmas 3.1�3.3, we get
L̂n − min

i=1,...,N
Li,n ≤

n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t +

(
2

ηn+1

− 1

η1

)
ln N

+
n∑

t=1

ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t +

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)
.Note that

Et[ℓIt,t] =
N∑

i=1

p̃i,tℓi,t =
N∑

i=1

p̃i,tEt

[
ℓ̃i,t

]
= Et

[
ℓ̌t

]and
E

[
min

i=1,...,N
L̃i,n

]
≤ min

i=1,...,N
E

[
L̃i,n

]
= min

i=1,...,N
E[Li,n] ,then taking expe
tations we obtain

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1

+
N∑

i=1

n∑

t=1

ηtE

[
ℓi,tℓ̃i,t

]

2εt

. (3.4)
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y 27Now using Et

[
ℓ̃i,t

]
= ℓi,t and assumptions of the theorem we have

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1

+
N∑

i=1

n∑

t=1

ηtE
[
ℓ2
i,t

]

2εt

≤
√

N ln N(n + 1)(1+ν+β)/2 +
√

N ln N

n∑

t=1

t(−1+ν+β)/2as desired. 23.4 Hannan 
onsisten
yIn this se
tion we derive su�
ient 
onditions of Hannan 
onsisten
y under partial moni-toring for Green algorithm using time-varying parameters in 
ase when the bound of theloss is unknown in advan
e, or when the loss is unbounded.Theorem 3.2. (Allenberg, Auer, Györfi and Ottu
sák [3℄). Algorithm Greenis run for the 
ombination of the label e�
ient and multi-armed bandit problem. Assumethat there exist universal 
onstants c < ∞ and 0 ≤ ν < 1 su
h that for ea
h n

max
i=1,...,N

1

n

n∑

t=1

ℓ2
i,t < cnν .For some 
onstant ρ > 0 
hoose the parameters of the algorithm as:

γt = t−α/N ; (ν + ρ)/2 ≤ α ≤ 1,

ηt = t−1+δ; 0 < δ ≤ 1 − ν − α − β − ρand
εt = ε0t

−β; 0 < ε0 ≤ 1 and 0 ≤ β ≤ 1 − ν − α − δ − ρ.Then Green algorithm is Hannan 
onsistent, that is,
lim sup

n→∞

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 0 a.s.Remark 3.1. We derive the 
onsequen
es of the theorem in spe
ial 
ases:

• Full information: With a slight modi�
ation of the proof and �xing β = 0 (εt = 1)and γt = 0 we get the following 
ondition for the losses in full information 
ase:
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n1−δ−ρ

)
.
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• Multi-armed bandit problem: we �x β = 0 (εt = 1). Choose γt = t−1/3 for all t.Then the 
ondition is for the losses

max
i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n2/3−δ−ρ

)
.

• Label e�
ient setting with time-varying query rate (εt): With a modi�
ationof the proof and �xing γt = 0 we get the following 
ondition for the loss fun
tion inlabel e�
ient 
ase:
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n1−β−δ−ρ

)
.

• Combination of the label e�
ient and multi-armed bandit setting: This isthe most general 
ase. Let γt = t−1/3. Then the bound is
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n2/3−β−δ−ρ

)
.Remark 3.2. (Convergen
e rate) With an extension of Lemma 3.4 below we 
an retrievethe ν dependent almost sure 
onvergen
e rate of the algorithm. The rate is

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ O(nν/2−1/2) a.s.in the full information and the label e�
ient 
ases with optimal 
hoi
e of the parametersand in the multi-armed bandit and �
ombined� 
ases it is

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ O(nν/2−1/3) a.s.Remark 3.3. (Minimum amount of query rate in label e�
ient setting) Denote

µ(n) =
n∑

t=1

εtthe expe
ted query rate, that is, the expe
ted number of queries that 
an be issued up totime n. Assume that the average of the loss fun
tion has a 
onstant (unknown) bound,i.e., ν = 0. With a slight modi�
ation of the proof of Theorem 3.2 and 
hoosing
ηt =

log log log t

t
and εt =

log log t

twe obtain the 
ondition for Hannan 
onsisten
y, su
h that
µ(n) = log n log log n,whi
h is the same as that of Cesa-Bian
hi et al. [22℄.
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onsisten
y 29In order to prove Theorem 3.2, we split the proof into three lemmas by teles
ope:
1

n
L̂n − 1

n
min

i=1,...,N
Li,n

=
1

n

(
L̂n − Ln

)

︸ ︷︷ ︸Lemma 3.5 +
1

n

(
Ln − min

i=1,...,N
L̃i,n

)

︸ ︷︷ ︸Lemma 3.6 +
1

n

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)

︸ ︷︷ ︸Lemma 3.7 . (3.5)Combining sequentially Lemma 3.5, Lemma 3.6 and Lemma 3.7 Theorem 3.2 is proved.We will show separately the almost sure 
onvergen
e of the three lemmas on the right-handside. In the sequel, we need the following lemma whi
h is the key of the proof of Theorem3.2:Lemma 3.4. Let {Zt} be a martingale di�eren
e sequen
e. Let
htE[kt] ≥ Var(Zt)where

ht = 1/tafor all t = 1, 2, . . . and
Kn =

1

n

n∑

t=1

kt ≤ Cnband 0 ≤ b < 1 and b − a < 1. Then
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.Proof. By the strong law of large numbers for martingale di�eren
es due to Chow [24℄,if {Zt} a martingale di�eren
e sequen
e with
∞∑

t=1

Var(Zt)

t2
< ∞ (3.6)then

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.
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onsisten
y 30We have to verify (3.6). Be
ause of kt = tKt − (t − 1)Kt−1, and ht

t
− ht+1t

(t+1)2
≥ 0 we havethat

n∑

t=1

Var(Zt)

t2
≤

n∑

t=1

htE[kt]

t2
=

n∑

t=1

htE[(tKt − (t − 1)Kt−1)]

t2

=
hnE[Kn]

n
+

n−1∑

t=1

(
ht

t
− ht+1t

(t + 1)2

)
E[Kt]

≤ n−aCnb

n
+

n−1∑

t=1

(
t−a

t
− (t + 1)−at

(t + 1)2

)
Ctbwhi
h is bounded by 
onditions. 2Now we are ready to prove one by one the almost sure 
onvergen
e of the terms in(3.5).Lemma 3.5. Under the 
onditions of the Theorem 3.2,

lim
n→∞

1

n

(
L̂n − Ln

)
= 0 a.s.Proof. First we use Lemma 3.1, that is

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t =
n∑

t=1

Zt +
n∑

t=1

Nγtℓ̌t. (3.7)Below we show separately, that both sums in (3.7) divided by n 
onverge to zero al-most surely. First observe that {Zt} is a martingale di�eren
e sequen
e with respe
t to
(I1, S1), . . . , (It−1, St−1). Observe that It is independent from St therefore we get the fol-lowing bound for the varian
e of Zt:

Var(Zt) = E
[
Z2

t

]
= E

[
(ℓIt,t − ℓ̌t)

2
]
≤ 1

εt

E

[
N∑

i=1

ℓ2
i,t

]
def
= htE[kt] ,where ht = 1/εt and kt =

∑N
i=1 ℓ2

i,t. Then applying Lemma 3.4 we obtain
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.Next we show that the se
ond sum in (3.7) divided by n goes to zero almost surely, thatis,
1

n

n∑

t=1

Nγtℓ̌t =
1

n

n∑

t=1

St

εt

ℓIt,tNγt =
1

n

n∑

t=1

Rt +
1

n

n∑

t=1

ℓIt,tNγt → 0 (n → ∞) (3.8)
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onsisten
y 31where Rt is a martingale di�eren
e sequen
e respe
t to (I1, S1), . . . , (It−1, St−1). Boundingthe varian
e of Rt, we obtain
Var(Rt) ≤ N2γ2

t

εt

E

[
N∑

i=1

ℓ2
i,t

]
.Then using Lemma 3.4 with parameters ht = γ2

t /εt and kt =
∑N

i=1 ℓ2
i,t we get

lim
n→∞

1

n

n∑

t=1

Rt = 0 a.s.The proof is �nished by showing, that the se
ond sum in (3.8) goes to zero, i.e.,
lim

n→∞
1

n

n∑

t=1

ℓIt,tNγt = lim
n→∞

N
N∑

i=1

1

n

n∑

t=1

ℓi,tγt = 0.Introdu
e Ki,n = 1
n

∑n
t=1 ℓi,t then for all i

1

n

n∑

t=1

ℓi,tγt =
1

n

n∑

t=1

(tKi,t − (t − 1)Ki,t−1)γt

= Ki,nγn +
1

n

n−1∑

t=1

(γt − γt+1) tKi,t

≤ Ki,nγn +
1

n

n−1∑

t=1

γtKi,t (3.9)
≤

√
c

1

N
nν/2−α +

1

nN

n−1∑

t=1

tν/2−α
√

c → 0 (3.10)where the (3.9) holds be
ause (γt − γt+1)t ≤ γt and (3.10) follows from Ki,n ≤
√

cnν , thede�nition of the parameters and α ≥ (ν + ρ)/2. 2Lemma 3.6 yields the relation between Ln and mini=1,...,N L̃i,n.Lemma 3.6. Under the 
onditions of Theorem 3.2,
lim sup

n→∞

1

n

(
Ln − min

i=1,...,N
L̃i,n

)
≤ 0 a.s.Proof. We start by applying Lemma 3.2, that is,

Ln − min
i=1,...,N

L̃i,n ≤ 2 ln N

ηn+1

+
n∑

t=1

Φ(pt, ηt,−ℓ̃t). (3.11)
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onsisten
y 32To bound the quantity of Φ(pt, ηt,−ℓ̃t), our starting point is (3.3). Moreover,
ηt

2

N∑

i=1

pi,tℓ̃
2
i,t =

ηt

2

N∑

i=1

pi,t

ℓ2
i,t

p̃2
i,tε

2
t

StI{It=i} ≤
ηt

2γtεt

St

εt

ℓ2
It,t ≤

ηt

2γtεt

St

εt

N∑

i=1

ℓ2
i,t (3.12)where the �rst inequality 
omes from pIt,t ≥ γt. Combining this bound with (3.11), dividingby n and taking the limit superior we get

lim sup
n→∞

1

n

(
Ln − min

i=1,...,N
L̃i,n

)
≤ lim sup

n→∞

2 ln N

nηn+1

+ lim sup
n→∞

1

n

n∑

t=1

ηt

2γtεt

St

εt

N∑

i=1

ℓ2
i,t.Let analyze separately the two terms on the right-hand side. The �rst term is zero be
auseof the assumption of the Theorem 3.2. Con
erning the se
ond term, similarly to Lemma3.5 we 
an split St/εt as follows: let us

St

εt

ηt

2γtεt

N∑

i=1

ℓ2
i,t = Zt +

ηt

2γtεt

N∑

i=1

ℓ2
i,t, (3.13)where Zt is a martingale di�eren
e sequen
e. The varian
e is

Var(Zt) = E

[
η2

t St

γ2
t ε

2
t

(∑N
i=1 ℓ2

i,t

)2
]

=
η2

t

εtγ2
t

E

[(∑N
i=1 ℓ2

i,t

)2
]

.Appli
ation of Lemma 3.4 with ht =
η2

t

εtγ2
t
and kt =

(∑N
i=1 ℓ2

i,t

)2 yields
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.where we used that
1

n

n∑

t=1

kt ≤
1

n

(
n∑

t=1

√
kt

)2

≤ N2c2n1+2ν .Finally, we have to prove that the sum of the se
ond term in (3.13) goes to zero, that is,
lim sup

n→∞

1

n

n∑

t=1

N∑

i=1

ηt

2γtεt

ℓ2
i,t = 0for whi
h we use same argument as in Lemma 3.5. Introdu
e Ki,n = 1

n

∑n
t=1 ℓ2

i,t then weget
1

n

n∑

t=1

ℓ2
i,t

ηt

2γtεt

= Ki,n
ηn

2γnεn

+
1

n

n−1∑

t=1

(
ηt

2γtεt

− ηt+1

2γt+1εt+1

)
tKi,t

≤ Ki,n
ηn

2γnεn

+
1

n

n−1∑

t=1

ηt

2γtεt

Ki,t

≤ Ncnν−1+α+β+δ +
1

n

n−1∑

t=1

Nctν−1+α+β+δ → 0
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ause of Ki,n ≤ cnν and ν < 1 − α − β − δ − ρ. 2Finally, the last step is to analyze the di�eren
e between the estimated loss and thetrue loss.Lemma 3.7. Under the 
onditions of Theorem 3.2,
lim

n→∞
1

n

(
min

i=1,...,N
L̃i,n − min

j=1,...,N
Lj,n

)
= 0 a.s.Proof. First, bound the di�eren
e of the minimum of the true and the estimated loss.Obviously,

1

n

(
min

i=1,...,N
L̃i,n − min

j=1,...,N
Lj,n

)
≤

N∑

i=1

∣∣∣∣∣
1

n

(
L̃i,n − Li,n

) ∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

(ℓ̃i,t − ℓi,t)

∣∣∣∣∣

=
N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣,where Zi,t is martingale di�eren
e sequen
e for all i. As earlier, we use Lemma 3.4. Firstwe bound Var(Zi,t) as follows
Var(Zi,t) = Eℓ̃2

i,t ≤
E

[∑N
i=1 ℓ2

i,t

]

εtγt

. (3.14)Applying Lemma 3.4 with parameters kt =
∑N

i=1 ℓ2
i,t and ht = 1

εtγt
, for ea
h i

lim
n→∞

1

n

n∑

t=1

Zi,t = 0 a.s.therefore
lim

n→∞

N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣ = 0 a.s.

23.5 Bounded lossIf the individual losses are bounded by a 
onstant, mu
h stronger results 
an be obtainedfor Green algorithm. On the one hand, we give an improvement for small losses forexpe
ted regret. On the other hand, O(1/
√

n) regret bound is shown for high-probabilityregret.



3.5. Bounded loss 34Theorem 3.3. (Allenberg, Auer, Györfi and Ottu
sák [3℄). If ℓi,t ∈ [0, 1] and
εt = ε for all t, then for all n with mini=1,...,N Li,n ≤ B the expe
ted loss of Greenalgorithm with γt = γ = 1

N(Bε+2)
and ηt = η = 2

√
ln N
N

ε
B
is bounded by

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ 4

√
B

ε
N ln N +

N ln N + 2

ε
+

N ln(εB + 1)

ε
.Remark 3.4. The improvement in Theorem 3.3 is signi�
ant, sin
e it bounds the regretof the algorithm in terms of the loss of the best a
tion and not in respe
t to the number ofrounds. For example, Theorem 3.1 is void for mini=1,...,N Li,n ≪ √

n whereas Theorem 3.3still gives a nearly optimal bound1.Proof. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round whi
h 
ontributes to L̃i,n.Therefore,
γ ≤ pi,Ti

=
e−ηeLi,Ti

∑N
j=1 e−ηeLj,Ti

<
e−ηeLi,Ti

e−ηeLi∗,n

,where i∗ = arg mini Li,n. After rearranging we obtain
L̃i,Ti

≤ L̃i∗,n +
ln(1/γ)

ηand sin
e L̃i,n = L̃i,Ti
we get that L̃i,n ≤ L̃i∗,n + ln(1/γ)

η
. Plugging this bound into (3.4) andusing ℓi,t ∈ [0, 1] we get

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ γNE

[
L̂n

]
+

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)
.Solving for E

[
L̂n

] we �nd
E

[
L̂n

]
≤ 1

1 − γN

[
min

i=1,...,N
E[Li,n] +

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)]
.For γ = 1

N(εB+2)
we have mini E[Li,n]

1−γN
≤ mini E[Li,n] + 1

ε
and 1

1−γN
≤ 2, whi
h implies

E

[
L̂n

]
≤ min

i=1,...,N
E[Li,n] +

1

ε
+

4 ln N

η
+ N

η

ε

(
E[Li∗,n] +

ln N

η
+

ln(εB + 2)

η

)and, by simple 
al
ulation, the statement of the theorem. 2In the rest of this se
tion we introdu
e a slightly modi�ed version of Green algo-rithm for multi-armed bandit problem, so 
alled Green.Shift. One 
an easily extend1For ε = 1 optimality follows from the lower bound on the regret in [6℄.



3.5. Bounded loss 35the Green.Shift algorithm for problem LE+MAB based on Se
tion 4.4. The proposedalgorithm is a �shifted� version of Green algorithm .As earlier let ℓ̃i,t denote the 
onditional unbiased estimation of the true loss of ea
ha
tion with respe
t to its natural �ltration. Instead of the unbiased estimate, a slightlysmaller quantity is used by the algorithm. The (biased) estimated loss is
ℓ′i,t = ℓ̃i,t −

β

max{p̃i,t, γ}
,where β is a positive parameter and the maximum is ne
essary to avoid dividing by zero.Then the 
umulative estimated loss of an a
tion is given by

L′
i,n =

n∑

t=1

ℓ′i,t .The resulting algorithm is given in Figure 3.3.Theorem 3.4. (Auer and Ottu
sák [8℄). For any 0 < δ < 1 and parameters
√

ln (N/δ)

nN
≤ β ≤ 1

N
, β ≤ γ ≤ 1

N
and 0 < η ≤

√
ln N

nN
,the performan
e of Green.Shift algorithm 
an be bounded with probability at least 1 − δas

L̂n ≤ NγL̂n + 2βnN + (1 + ηN) min
i=1,...,N

Li,n + ηβnN2 + N ln(1/γ) + 2Nη +
ln N

η
.In parti
ular, 
hoosing β =

√
ln(N/δ)

nN
, γ = β, η =

√
ln N
nN

and if n ≥ N ln(N/δ) then wehave
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 7
√

N ln(N/δ)/n +
1

2n
N ln(nN) .



3.5. Bounded loss 36Green.Shift algorithm for multi-armed bandit problemParameters: Let η > 0, β > 0 and γ > 0.Initialization: L′
i,0 = 0 for all i = 1, . . . , N .For ea
h round t = 1, 2, . . .(1) Cal
ulate the weights of the a
tions

wi,t = e−ηL′
i,t−1 i = 1, . . . , N and Wt =

N∑

i=1

wi,t .(2) Cal
ulate the probability distribution
pi,t =

wi,t

Wt

i = 1, . . . , N .(3) Cal
ulate the modi�ed probabilities
p̃i,t =

{
0 if pi,t < γ,
ct · pi,t if pi,t ≥ γ,where ct = 1/

∑
pi,t≥γ pi,t .(4) Compute the estimated loss for all i = 1, . . . , N

ℓ′i,t = ℓ̃i,t −
β

max{p̃i,t, γ}
=

{
ℓi,t

epi,t
− β

max{epi,t,γ} if It = i;

− β
max{epi,t,γ} otherwise.(5) For all i = 1, . . . , N update the 
umulative estimated loss

L′
i,t = L′

i,t−1 + ℓ′i,t.Figure 3.3: Green.Shift algorithm for multi-armed bandit problem.For the proof of the theorem we need the following 2 lemmas. The �rst lemma is asimple modi�
ation of [21, Lemma 6.7℄.Lemma 3.8. Under the assumptions of Theorem 3.4 for any 0 < δ < 1 we have
P
(
L′

i,n > Li,n + βnN
)
≤ δ

N
, i ∈ {1, . . . , N}.



3.5. Bounded loss 37Proof. For any u > 0 and c > 0 the Cherno� bounding te
hnique (see, e.g., [25℄) implies
P
(
L′

i,n > Li,n + u
)
≤ e−cu

Eec(L′
i,n−Li,n) . (3.15)Letting u = βnN and c = β, therefore from (3.15):

e−cu
Eec(L′

i,n−Li,n) = e−β2nN
Eeβ(L′

i,n−Li,n) ≤ δ

N
Eeβ(L′

i,n−Li,n) ,where the inequality 
omes from √
ln (N/δ)

nN
≤ β. Thus it su�
es to prove that

Eeβ(L′
i,n−Li,n) ≤ 1.For t = 1, . . . , n, introdu
ing, a random variable Zt = eβ(L′

i,t−Li,t) we 
learly have
Zt = eβ(ℓ′i,t−ℓi,t)Zt−1.Note that β(ℓ′i,t − ℓi,t) ≤ 1 be
ause

β

(
ℓi,tI{It=i}

p̃i,t

− β

max{p̃i,t, γt}
− ℓi,t

)
≤ βℓIt,t

p̃It,t

≤ βℓIt,t

γ
≤ 1where the se
ond inequality 
omes from β ≤ γ. Let Et[Zt] = E[Zt|Zt−1, . . . , Z1] and using

ex ≤ 1 + x + x2 for x ≤ 1 we have
Et[Zt] = Zt−1Et

[
e

β

„
eℓi,t− β

max{epi,t,γ}
−ℓi,t

«]

= Zt−1e
− β2

max{epi,t,γ}
Et

[
eβ(eℓi,t−ℓi,t)

]

≤ Zt−1e
− β2

max{epi,t,γ}
Et

[
1 + β

(
ℓ̃i,t − ℓi,t

)
+ β2

(
ℓ̃i,t − ℓi,t

)2
]

= Zt−1e
− β2

max{epi,t,γ}
Et

[
1 + β2

(
ℓ̃i,t − ℓi,t

)2
]

≤ Zt−1e
− β2

max{epi,t,γ}

(
1 +

β2ℓ2
i,t

max{p̃i,t, γ}

)

≤ Zt−1 ,where we used Et

[
ℓ̃i,t − ℓi,t

]
= 0 and 1 + x ≤ ex. Taking expe
ted values of both sides ofthe inequality we have EtZt ≤ EtZt−1 and sin
e EtZ1 ≤ 1 the proof is 
on
luded. 2The following lemma is a variant of Theorem 3.3.Lemma 3.9. Under the assumptions of Theorem 3.4 for the 
umulative estimated loss wehave
L′

i,n ≤ min
j=1,...,N

L′
j,n +

ln(1/γ)

η
.



3.5. Bounded loss 38Proof. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round where p̃i,t > 0. Therefore,
γ ≤ pi,Ti

=
e−ηL′

i,Ti

∑N
j=1 e−ηL′

j,Ti

<
e−ηL′

i,Ti

e
−ηL′

i∗,Ti

,where i∗ = arg mini=1,...,N L′
i,n. After rearranging we obtain

L′
i,Ti

≤ L′
i∗,Ti

+
ln(1/γ)

η
.Sin
e L′

i,Ti
= L′

i,n + β(n−Ti−1)
γ

and L′
i∗,Ti

≤ L′
i∗,n +

∑n
t=Ti+1

β
max{epi,t,γ} we get that

L′
i,n ≤ L′

i∗,n + β

n∑

t=Ti+1

(
1

max{p̃i,t, γ}
− 1

γ

)
+

ln(1/γ)

η
≤ L′

i∗,n +
ln(1/γ)

η
.

2Proof of Theorem 3.4. For the proof of theorem the quantity of ln Wn

W0
is bounded,where

Wt =
N∑

i=1

wi,t, t ≥ 1 and W0 = N .The lower bound is
ln

Wn

W0

= ln

(
N∑

i=1

e−ηL′
i,n

)
− ln N ≥ ln

(
max

i=1,...,N
e−ηL′

i,n

)
− ln N = −η min

i=1,...,N
L′

i,n − ln N .(3.16)For the upper bound note that −ηℓ′i,t ≤ 1 for all i and t, therefore
ln

Wt

Wt−1

= ln
N∑

i=1

pi,te
−ηℓ′i,t ≤ ln

N∑

i=1

pi,t

(
1 − ηℓ′i,t + η2ℓ′i,t

)
≤ −η

N∑

i=1

pi,tℓ
′
i,t + η2

N∑

i=1

pi,tℓ
′2
i,t .(3.17)Next we bound the sums in (3.17). On the one hand,

N∑

i=1

pi,tℓ
′
i,t =

pIt,t

p̃It,t

ℓIt,t − β
N∑

i=1

pi,t

max{p̃i,t, γ}
≥ pIt,t

p̃It,t

ℓIt,t − βN ≥ (1 − Nγ)ℓIt,t − βN ,sin
e pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γ pj,t = 1 −∑j:pj,t<γ pj,t ≥ 1 − Nγ.
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N∑

i=1

pi,tℓ
′2
i,t =

N∑

i=1

pi,t

(
ℓ̃i,t −

β

max{p̃i,t, γ}

)
ℓ′i,t ≤ ℓIt,tℓ

′
It,t − β

N∑

i=1

pi,tℓ
′
i,t

max{p̃i,t, γ}

≤ ℓIt,tℓ
′
It,t + β2

N∑

i=1

1

max{p̃i,t, γ}

≤ ℓIt,tℓ
′
It,t +

β2N

γ

≤
N∑

i=1

ℓ′i,t +
βN

γ
+

β2N

γ

≤
N∑

i=1

ℓ′i,t + N + βN ,where the last inequality follows from β ≤ γ. Summing over t = 1, . . . , n, we have that
ln

Wn

W0

≤ −ηL̂n + NηγL̂n + ηβnN + η2
∑N

i=1 L′
i,n + η22N . (3.18)Plug the results of Lemma 3.9 into (3.18) we get

ln
Wn

W0

≤ −ηL̂n + NηγL̂n + ηβnN + η2N min
i=1,...,N

L′
i,n + ηN ln(1/γ) + η22N . (3.19)Combining (3.16) and (3.19) we obtain

L̂n ≤ NγL̂n + βnN + (1 + ηN) min
i=1,...,N

L′
i,n + N ln(1/γ) + 2ηN +

ln N

η
.By Lemma 3.8 and the union bound we have at least 1 − δ

L̂n ≤ NγL̂n + 2βnN + (1 + ηN) min
i=1,...,N

Li,n + ηβnN2 + N ln(1/γ) + 2ηN +
ln N

ηas desired. 2



Chapter 4
Shortest Path Problem under Partial Monitoring

As mentioned before, the basi
 theoreti
al results of sequential de
ision problem werepioneered by Bla
kwell [15℄ and Hannan [43℄, and brought to the attention of the ma
hinelearning 
ommunity in the 1990's by Vovk [70℄, Littlestone and Warmuth [53℄, and Cesa-Bian
hi et al. [20℄. These results show that for any bounded loss fun
tion, if the de
isionmaker has a

ess to the past losses of all experts, then it is possible to 
onstru
t on-linealgorithms that perform, for any possible behavior of the environment, almost as well asthe best of N experts. More pre
isely, re
alling the results are presented in Chapter 2,the per round 
umulative loss of these algorithms is at most as large as that of the bestexpert plus a quantity proportional to √ln N/n for any bounded loss fun
tion, where n isthe number of rounds in the de
ision game. The logarithmi
 dependen
e on the number ofexperts makes it possible to obtain meaningful bounds even if the pool of experts is verylarge. However, the basi
 predi
tion algorithms, su
h as exponentially weighted averagefore
asters, have a 
omputational 
omplexity that is proportional to the number of experts,and they are therefore pra
ti
ally infeasible when the number of experts is very large.As it is des
ribed in details in Se
tion 2.3 in 
ertain situations the de
ision maker hasonly limited knowledge about the losses of all possible a
tions. For example, it is oftennatural to assume that the de
ision maker gets to know only the loss 
orresponding tothe a
tion it has made, and has no information about the loss it would have su�ered hadit made a di�erent de
ision. This setup is referred to as the multi-armed bandit problem,and was 
onsidered, in the adversarial setting, by Auer et al. [5℄ who gave an algorithmwhose normalized regret (the di�eren
e of the algorithm's average loss and that of thebest expert) is upper bounded by a quantity whi
h is proportional to √N ln N/n. Notethat, 
ompared to the full information 
ase des
ribed above where the losses of all possiblea
tions are revealed to the de
ision maker, there is an extra √
N fa
tor in the performan
ebound, whi
h seriously limits the usefulness of the bound if the number of experts is large.Another interesting example for the limited information 
ase is the so-
alled label e�-
ient de
ision problem (see Helmbold and Panizza [45℄) in whi
h it is too 
ostly to observethe state of the environment, and so the de
ision maker 
an query the losses of all possible40
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tions for only a limited number of times. A re
ent result of Cesa-Bian
hi, Lugosi, andStoltz [22℄ shows that in this 
ase, if the de
ision maker 
an query the losses m timesduring a period of length n, then it 
an a
hieve O(
√

ln N/m) normalized regret relative tothe best expert.In many appli
ations the set of experts has a 
ertain stru
ture that may be exploitedto 
onstru
t e�
ient on-line de
ision algorithms. The 
onstru
tion of su
h algorithms hasbeen of great interest in 
omputational learning theory. A partial list of works dealing withthis problem in
ludes Herbster and Warmuth [46℄, Vovk [71℄, Bousquet and Warmuth [17℄,Helmbold and S
hapire [64℄, Takimoto and Warmuth [69℄, Kalai and Vempala [49℄, Györgyet al. [36, 37, 38℄. For a more 
omplete survey, we refer to Cesa-Bian
hi and Lugosi [21,Chapter 5℄.In this 
hapter we study the on-line shortest path problem, a representative exam-ple of stru
tured expert 
lasses that has re
eived attention in the literature for its manyappli
ations, in
luding, among others, routing in 
ommuni
ation networks; see, e.g., Taki-moto and Warmuth [69℄, Awerbu
h et al. [10℄, or György and Ottu
sák [42℄, and adaptivequantizer design in zero-delay lossy sour
e 
oding; see, György et al. [36, 37, 39℄. In thisproblem, a weighted dire
ted (a
y
li
) graph is given whose edge weights 
an 
hange in anarbitrary manner, and the de
ision maker has to pi
k in ea
h round a path between twogiven verti
es, su
h that the weight of this path (the sum of the weights of its 
omposingedges) be as small as possible.E�
ient solutions, with time and spa
e 
omplexity proportional to the number of edgesrather than to the number of paths (the latter typi
ally being exponential in the numberof edges), have been given in the full information 
ase, where in ea
h round the weightsof all the edges are revealed after a path has been 
hosen; see, for example, Mohri [55℄,Takimoto and Warmuth [69℄, Kalai and Vempala [49℄, and György et al. [38℄.In the bandit setting only the weights of the edges or just the sum of the weights ofthe edges 
omposing the 
hosen path are revealed to the de
ision maker. If one applies thegeneral bandit algorithm of Auer et al. [5℄, the resulting bound will be too large to be ofpra
ti
al use be
ause of its square-root-type dependen
e on the number of paths N . Onthe other hand, using the spe
ial graph stru
ture in the problem, Awerbu
h and Kleinberg[11℄ and M
Mahan and Blum [54℄ managed to get rid of the exponential dependen
e onthe number of edges in the performan
e bound. They a
hieved this by extending theexponentially weighted average predi
tor and the follow-the-perturbed-leader algorithm ofHannan [43℄ to the generalization of the multi-armed bandit setting for shortest paths,when only the sum of the weights of the edges is available for the algorithm. However,the dependen
e of the bounds obtained in [11℄ and [54℄ on the number of rounds n issigni�
antly worse than the O(1/
√

n) bound of Auer et al. [5℄. Awerbu
h and Kleinberg[11℄ 
onsider the model of �non-oblivious� adversaries for shortest path (i.e., the lossesassigned to the edges 
an depend on the previous a
tions of the fore
aster) and provean O(n−1/3) bound for the expe
ted normalized regret. M
Mahan and Blum [54℄ give asimpler algorithm than in [11℄ however obtain a bound of the order of O(n−1/4) for theexpe
ted regret.In this 
hapter we provide an extension of the bandit algorithm of Auer et al. [5℄ unifying



4.1. The shortest path problem 42the advantages of the above approa
hes, with a performan
e bound that is polynomial inthe number of edges, and 
onverges to zero at the right O(1/
√

n) rate as the numberof rounds in
reases. We a
hieve this bound in a model whi
h assumes that the lossesof all edges on the path 
hosen by the fore
aster are available separately after makingthe de
ision. We also dis
uss the 
ase (
onsidered by [11℄ and [54℄) in whi
h only thetotal loss (i.e., the sum of the losses on the 
hosen path) is known to the de
ision maker.We exhibit a simple algorithm whi
h a
hieves an O(n−1/3) normalized regret with highprobability against �non-oblivious� adversary. In this 
ase it remains an open problem to�nd an algorithm whose 
umulative loss is polynomial in the number of edges of the graphand de
reases as O(n−1/2) with the number of rounds. Throughout the 
hapter we assumethat the number of rounds n in the predi
tion game is known in advan
e to the de
isionmaker.In Se
tion 4.1 we formally de�ne the on-line shortest path problem, whi
h is extendedto the multi-armed bandit setting in Se
tion 4.2. Our new algorithm for the shortestpath problem in the bandit setting is given in Se
tion 4.3 together with its performan
eanalysis. The algorithm is extended to solve the shortest path problem in a 
ombinedlabel e�
ient and multi-armed bandit setting in Se
tion 4.4. Another extension, when thealgorithm 
ompetes against a time-varying path is studied in Se
tion 4.5. An algorithmfor the �restri
ted� multi-armed bandit setting (when only the sums of the losses of theedges are available) is given in Se
tion 4.6. Simulation results are presented in Se
tion 4.7.4.1 The shortest path problemConsider a network represented by a set of verti
es 
onne
ted by edges, and assume thatwe have to send a stream of pa
kets from a distinguished vertex, 
alled sour
e, to anotherdistinguished vertex, 
alled destination. At ea
h time slot a pa
ket is sent along a 
hosenroute (path) 
onne
ting sour
e and destination. Depending on the tra�
, ea
h edge in thenetwork may have a di�erent delay, and the total delay the pa
ket su�ers on the 
hosenpath is the sum of delays of the edges 
omposing the route. The delays may 
hangefrom one time slot to the next one in an arbitrary way, and our goal is to �nd a way of
hoosing the path in ea
h time slot su
h that the sum of the total delays over time isnot signi�
antly more than that of the best �xed path in the network. This adversarialversion of the routing problem is most useful when the delays on the edges 
an 
hangedynami
ally, even depending on our previous routing de
isions. This is the situation inthe 
ase of ad-ho
 networks, where the network topology 
an 
hange rapidly, or in 
ertainse
ure networks, where the algorithm has to be prepared to handle denial of servi
e atta
ks,that is, situations where willingly malfun
tioning verti
es and links in
rease the delay; see,e.g., Awerbu
h et al. [10℄.This problem 
an be 
ast naturally as a sequential de
ision problem in whi
h ea
hpossible path is represented by an a
tion (expert). However, the number of paths istypi
ally exponentially large in the number of edges, and therefore 
omputationally e�
ientalgorithms are 
alled for. Two solutions of di�erent �avor have been proposed. One of them



4.1. The shortest path problem 43is based on a follow-the-perturbed-leader fore
aster, see Kalai and Vempala [49℄, while theother is based on an e�
ient 
omputation of the exponentially weighted average fore
aster,see, for example, Takimoto and Warmuth [69℄. Both solutions have di�erent advantagesand may be generalized in di�erent dire
tions.To formalize the problem, 
onsider a (�nite) dire
ted a
y
li
 graph with a set of edges
E = {e1, . . . , e|E|} and a set of verti
es V . Thus, ea
h edge e ∈ E is an ordered pairof verti
es (v1, v2). Let u and v be two distinguished verti
es in V . A path from u to
v is a sequen
e of edges e(1), . . . , e(k) su
h that e(1) = (u, v1), e(j) = (vj−1, vj) for all
j = 2, . . . , k−1, and e(k) = (vk−1, v). Let P = {i1, . . . , iN} denote the set of all su
h paths.For simpli
ity, we assume that every edge in E is on some path from u to v and everyvertex in V is an endpoint of an edge (see Figure 4.1 for examples).
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Figure 4.1: Two examples of dire
ted a
y
li
 graphs for the shortest path problem.(a) (b)
In ea
h round t = 1, . . . , n of the de
ision game, the de
ision maker 
hooses a path I tamong all paths from u to v. Then a loss ℓe,t ∈ [0, 1] is assigned to ea
h edge e ∈ E. Wewrite e ∈ i if the edge e ∈ E belongs to the path i ∈ P, and with a slight abuse of notationthe loss of a path i at time slot t is also represented by ℓi,t. Then ℓi,t is given as

ℓi,t =
∑

e∈i

ℓe,tand therefore the 
umulative loss up to time t of ea
h path i takes the additive form
Li,t =

t∑

s=1

ℓi,s =
∑

e∈i

t∑

s=1

ℓe,swhere the inner sum on the right-hand side is the loss a

umulated by edge e during the�rst t rounds of the game. The 
umulative loss of the algorithm is
L̂t =

t∑

s=1

ℓIs,s =
t∑

s=1

∑

e∈Is

ℓe,s .



4.2. The multi-armed bandit setting 44It is well known that for a general loss sequen
e, the de
ision maker must be allowedto use randomization to be able to approximate the performan
e of the best expert (see,e.g., Cesa-Bian
hi and Lugosi [21℄). Therefore, the path I t is 
hosen randomly a

ordingto some distribution pt over all paths from u to v. We study the normalized regret over nrounds of the game
1

n

(
L̂n − min

i∈P
Li,n

)where the minimum is taken over all paths i from u to v.In the full information 
ase, for example, the exponentially weighted average fore
aster([70℄, [53℄, [20℄), 
al
ulated over all possible paths, has regret
1

n

(
L̂n − min

i∈P
Li,n

)
≤ K

(√
ln N

2n
+

√
ln(1/δ)

2n

)with probability at least 1 − δ, where N is the total number of paths from u to v in thegraph and K is the length of the longest path.4.2 The multi-armed bandit settingIn this se
tion we dis
uss the �bandit� version of the shortest path problem. In this setup,whi
h is more realisti
 in many appli
ations, the de
ision maker has only a

ess to thelosses 
orresponding to the paths it has 
hosen. For example, in the routing problem thismeans that information is available on the delay of the path the pa
ket is sent on, and noton other paths in the network.We distinguish between two types of bandit problems, both of whi
h are natural gener-alizations of the simple bandit problem to the shortest path problem. In the �rst variant,the de
ision maker has a

ess to the losses of those edges that are on the path it has 
ho-sen. That is, after 
hoosing a path I t at time t, the value of the loss ℓe,t is revealed to thede
ision maker if and only if e ∈ I t. We study this 
ase and its extensions in Se
tions 4.3,4.4, and 4.5.The se
ond variant is a more restri
ted version in whi
h the loss of the 
hosen path isobserved, but no information is available on the individual losses of the edges belongingto the path. That is, after 
hoosing a path I t at time t, only the value of the loss of thepath ℓIt,t is revealed to the de
ision maker. Further on we 
all this setting as the restri
tedbandit problem for shortest path. We 
onsider this restri
ted problem in Se
tion 4.6.Formally, the on-line shortest path problem in the multi-armed bandit setting is de-s
ribed as follows: at ea
h time instan
e t = 1, . . . , n, the de
ision maker pi
ks a path
I t ∈ P from u to v. Then the environment assigns loss ℓe,t ∈ [0, 1] to ea
h edge e ∈ E, andthe de
ision maker su�ers loss ℓIt,t =

∑
e∈It

ℓe,t. In the unrestri
ted 
ase the losses ℓe,t arerevealed for all e ∈ I t, while in the restri
ted 
ase only ℓIt,t is revealed. Note that in both
ases ℓe,t may depend on I1, . . . , I t−1, the earlier 
hoi
es of the de
ision maker.



4.3. A bandit algorithm for shortest paths 45For the basi
 multi-armed bandit problem, Auer et al. [5℄ gave an algorithm, based onexponential weighting with a biased estimate of the gains 
ombined with uniform explo-ration. Applying their algorithm to the on-line shortest path problem in the bandit settingresults in a performan
e that 
an be bounded, for any 0 < δ < 1 and �xed time horizon n,with probability at least 1 − δ, by
1

n

(
L̂n − min

i∈P
Li,n

)
≤ 11K

2

√
N ln(N/δ)

n
+

K ln N

2n
.(The 
onstants follow from a slightly improved version; see Cesa-Bian
hi and Lugosi [21℄.)However, for the shortest path problem this bound is una

eptably large be
ause, unlikein the full information 
ase, here the dependen
e on the number of all paths N is not merelylogarithmi
, while N is typi
ally exponentially large in the size of the graph (as in the twosimple examples of Figure 4.1). Note that this bound also holds for the restri
ted settingas only the total losses on the paths are used. In order to a
hieve a bound that does notgrow exponentially with the number of edges of the graph, it is imperative to make useof the dependen
e stru
ture of the losses of the di�erent a
tions (i.e., paths). Awerbu
hand Kleinberg [11℄ and M
Mahan and Blum [54℄ do this by extending low 
omplexitypredi
tors, su
h as the follow-the-perturbed-leader fore
aster [43℄, [49℄ to the restri
tedbandit setting. However, in both 
ases the pri
e to pay for the polynomial dependen
e onthe number of edges is a worse dependen
e on the length n of the game.4.3 A bandit algorithm for shortest pathsIn this se
tion we des
ribe a variant of the bandit algorithm of [5℄ whi
h a
hieves thedesired performan
e for the shortest path problem. The new algorithm uses the fa
t thatwhen the losses of the edges of the 
hosen path are revealed, then this also provides someinformation about the losses of ea
h path sharing 
ommon edges with the 
hosen path.For ea
h edge e ∈ E, and t = 1, 2, . . ., introdu
e the gain ge,t = 1 − ℓe,t, and for ea
hpath i ∈ P , let the gain be the sum of the gains of the edges on the path, that is,

gi,t =
∑

e∈i

ge,t .The 
onversion from losses to gains is done in order to fa
ilitate the subsequent performan
eanalysis. This has te
hni
al reasons. For the ordinary bandit problem the regret boundsof the order of O(
√

n−1N log N) were proved based on gains by Auer et al. [5℄ and it wasonly re
ently shown by Auer and Ottu
sák [8℄ that it is possible to a
hieve the same typeof bound for an algorithm based on losses. However, we do not know how to 
onvert thelatter algorithm into one that is e�
iently 
omputable for the shortest path problem.To simplify the 
onversion, we assume that ea
h path i ∈ P is of the same length K forsome K > 0. Note that although this assumption may seem to be restri
tive at the �rstglan
e, from ea
h a
y
li
 dire
ted graph (V,E) one 
an 
onstru
t a new graph by adding at



4.3. A bandit algorithm for shortest paths 46most (K−2)(|V |−2)+1 verti
es and edges (with 
onstant loss zero) to the graph withoutmodifying the losses of the paths su
h that ea
h path from u to v will be of length K, where
K denotes the length of the longest path of the original graph. If the number of edges isquadrati
 in the number of verti
es, the size of the graph is not in
reased substantially.A main feature of the algorithm below is that the gains are estimated for ea
h edgeand not for ea
h path. This modi�
ation results in an improved upper bound on theperforman
e with the number of edges in pla
e of the number of paths. Moreover, usingdynami
 programming as in Takimoto and Warmuth [69℄, the algorithm 
an be 
omputede�
iently. Another important ingredient of the algorithm is that one needs to make surethat every edge is sampled (�saw�) su�
iently often. To this end, we introdu
e a set C of
overing paths with the property that for ea
h edge e ∈ E there is a path i ∈ C su
h that
e ∈ i. Observe that one 
an always �nd su
h a 
overing set of 
ardinality |C| ≤ |E|.We note that the algorithm of [5℄ is a spe
ial 
ase of the algorithm below: For anymulti-armed bandit problem with N experts, one 
an de�ne a graph with two verti
es uand v, and N dire
ted edges from u to v with weights 
orresponding to the losses of theexperts. The solution of the shortest path problem in this 
ase is equivalent to that of theoriginal bandit problem with 
hoosing expert i if the 
orresponding edge is 
hosen. Forthis graph, our algorithm redu
es to the original algorithm of [5℄.Note that the algorithm 
an be e�
iently implemented using dynami
 programming,similarly to Takimoto and Warmuth [28℄. See the up
oming Theorem 4.1 for the formalstatement.The main result of this 
hapter is the following performan
e bound for the shortest-pathbandit algorithm. It states that the normalized regret of the algorithm, after n rounds ofplay, is, roughly, of the order of K

√
|E| ln N/n where |E| is the number of edges of thegraph, K is the length of the paths, and N is the total number of paths.



4.3. A bandit algorithm for shortest paths 47A BANDIT ALGORITHM FOR SHORTEST PATHSParameters: real numbers β > 0, 0 < η, γ < 1.Initialization: Set we,0 = 1 for ea
h e ∈ E, w̄i,0 = 1 for ea
h i ∈ P , and
W 0 = N . For ea
h round t = 1, 2, . . .(a) Choose a path I t at random a

ording to the distribution pt on P ,de�ned by

pi,t =

{
(1 − γ)

w̄i,t−1

W t−1
+ γ

|C| if i ∈ C
(1 − γ)

w̄i,t−1

W t−1
if i 6∈ C.(b) Compute the probability of 
hoosing ea
h edge e as

qe,t =
∑

i:e∈i

pi,t = (1 − γ)

∑
i:e∈i w̄i,t−1

W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C| .(
) Cal
ulate the estimated gains
g′

e,t =

{
ge,t+β

qe,t
if e ∈ I t

β
qe,t

otherwise.(d) Compute the updated weights
we,t = we,t−1e

ηg′e,t

w̄i,t =
∏

e∈i

we,t = w̄i,t−1e
ηg′

i,twhere g′
i,t =

∑
e∈i g′

e,t, and the sum of the total weights of the paths
W t =

∑

i∈P
w̄i,t.Figure 4.2: Bandit algorithm for shortest path problem.Theorem 4.1. (György, Linder and Ottu
sák [41℄). For any δ ∈ (0, 1) and pa-rameters 0 ≤ γ < 1/2, 0 < β ≤ 1, and η > 0 satisfying 2ηK|C| ≤ γ, the performan
e ofthe algorithm de�ned above 
an be bounded, with probability at least 1 − δ, as

1

n

(
L̂n − min

i∈P
Li,n

)
≤ Kγ + 2ηK2|C| + K

nβ
ln

|E|
δ

+
ln N

nη
+ |E|β.In parti
ular, 
hoosing β =

√
K

n|E| ln
|E|
δ
, γ = 2ηK|C|, and η =

√
ln N

4nK2|C| yields for all
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n ≥ max

{
K
|E| ln

|E|
δ

, 4|C| ln N
},

1

n

(
L̂n − min

i∈P
Li,n

)
≤ 2

√
K

n

(
√

4K|C| ln N +

√
|E| ln |E|

δ

)
.The proof of the theorem is based on the analysis of the original algorithm of [5℄ withne
essary modi�
ations required to transform parts of the argument from paths to edges,and to use the 
onne
tion between the gains of paths sharing 
ommon edges.For the analysis we introdu
e some notation:

Gi,n =
n∑

t=1

gi,t and G′
i,n =

n∑

t=1

g′
i,tfor ea
h i ∈ P and

Ge,n =
n∑

t=1

ge,t and G′
e,n =

n∑

t=1

g′
e,tfor ea
h e ∈ E, and

Ĝn =
n∑

t=1

gIt,t.Note that g′
e,t, g′

i,t, G′
e,n, and G′

i,n are random variables that depend on I t.The following lemma, shows that the deviation of the true 
umulative gain from theestimated 
umulative gain is of the order of √n. The proof is a modi�
ation of [21, Lemma6.7℄.Lemma 4.1. For any δ ∈ (0, 1), 0 ≤ β < 1 and e ∈ E we have
P

[
Ge,n > G′

e,n +
1

β
ln

|E|
δ

]
≤ δ

|E| .Proof. Fix e ∈ E. For any u > 0 and c > 0, by the Cherno� bound we have
P[Ge,n > G′

e,n + u] ≤ e−cu
Eec(Ge,n−G′

e,n) . (4.1)Letting u = ln(|E|/δ)/β and c = β, we get
e−cu

Eec(Ge,n−G′
e,n) = e− ln(|E|/δ)

Eeβ(Ge,n−G′
e,n) =

δ

|E|Eeβ(Ge,n−G′
e,n) ,so it su�
es to prove that Eeβ(Ge,n−G′

e,n) ≤ 1 for all n. To this end, introdu
e
Zt = eβ(Ge,t−G′

e,t) .



4.3. A bandit algorithm for shortest paths 49Below we show that Et[Zt] ≤ Zt−1 for t ≥ 2 where Et denotes the 
onditional expe
tation
E[·|I1, . . . , I t−1] . Clearly,

Zt = Zt−1 exp

(
β

(
ge,t −

I{e∈It}ge,t + β

qe,t

))
.Taking 
onditional expe
tations, we obtain

Et[Zt]

= Zt−1Et

[
exp

(
β

(
ge,t −

I{e∈It}ge,t + β

qe,t

))]

= Zt−1e
− β2

qe,t Et

[
exp

(
β

(
ge,t −

I{e∈It}ge,t

qe,t

))]

≤ Zt−1e
− β2

qe,t Et

[
1 + β

(
ge,t −

I{e∈It}ge,t

qe,t

)
+ β2

(
ge,t −

I{e∈It}ge,t

qe,t

)2
] (4.2)

= Zt−1e
− β2

qe,t Et

[
1 + β2

(
ge,t −

I{e∈It}ge,t

qe,t

)2
] (4.3)

≤ Zt−1e
− β2

qe,t Et

[
1 + β2

(
I{e∈It}ge,t

qe,t

)2
]

≤ Zt−1e
− β2

qe,t

(
1 +

β2

qe,t

)

≤ Zt−1. (4.4)Here (4.2) holds sin
e β ≤ 1, ge,t − I{e∈It}
ge,t

qe,t
≤ 1 and ex ≤ 1 + x + x2 for x ≤ 1. (4.3)follows from Et

[
I{e∈It}

ge,t

qe,t

]
= ge,t. Finally, (4.4) holds by the inequality 1 + x ≤ ex. Takingexpe
tations on both sides proves E[Zt] ≤ E[Zt−1]. A similar argument shows that E[Z1] ≤

1, implying E[Zn] ≤ 1 as desired. 2Proof of Theorem 4.1. As usual in the analysis of exponentially weighted averagefore
asters, we start with bounding the quantity ln W n

W 0
. On the one hand, we have thelower bound

ln
W n

W 0

= ln
∑

i∈P
eηG′

i,n − ln N ≥ η max
i∈P

G′
i,n − ln N . (4.5)To derive a suitable upper bound, �rst noti
e that the 
ondition η ≤ γ

2K|C| implies
ηg′

i,t ≤ 1 for all i and t, sin
e
ηg′

i,t = η
∑

e∈i

g′
e,t ≤ η

∑

e∈i

1 + β

qe,t

≤ ηK(1 + β)|C|
γ

≤ 1



4.3. A bandit algorithm for shortest paths 50where the se
ond inequality follows be
ause qe,t ≥ γ/|C| for ea
h e ∈ E.Therefore, using the fa
t that ex ≤ 1 + x + x2 for all x ≤ 1, for all t = 1, 2, . . . we have
ln

W t

W t−1

= ln
∑

i∈P

w̄i,t−1

W t−1

eηg′
i,t

= ln

(
∑

i∈P

pi,t − γ
|C|I{i∈C}

1 − γ
eηg′

i,t

) (4.6)
≤ ln

(
∑

i∈P

pi,t − γ
|C|I{i∈C}

1 − γ

(
1 + ηg′

i,t + η2g′2
i,t

))

≤ ln

(
1 +

∑

i∈P

pi,t

1 − γ

(
ηg′

i,t + η2g′2
i,t

))

≤ η

1 − γ

∑

i∈P
pi,tg

′
i,t +

η2

1 − γ

∑

i∈P
pi,tg

′2
i,t (4.7)where (4.6) follows form the de�nition of pi,t, and (4.7) holds by the inequality ln(1+x) ≤ xfor all x > −1.Next we bound the sums in (4.7). On the one hand,

∑

i∈P
pi,tg

′
i,t =

∑

i∈P
pi,t

∑

e∈i

g′
e,t =

∑

e∈E

g′
e,t

∑

i∈P:e∈i

pi,t

=
∑

e∈E

g′
e,tqe,t = gIt,t + |E|β.On the other hand,

∑

i∈P
pi,tg

′2
i,t =

∑

i∈P
pi,t

(
∑

e∈i

g′
e,t

)2

≤
∑

i∈P
pi,tK

∑

e∈i

g′2
e,t

= K
∑

e∈E

g′2
e,t

∑

i∈P:e∈i

pi,t

= K
∑

e∈E

g′2
e,tqe,t

= K
∑

e∈E

qe,tg
′
e,t

β + I{e∈It}ge,t

qe,t

≤ K(1 + β)
∑

e∈E

g′
e,t



4.3. A bandit algorithm for shortest paths 51where the �rst inequality is due to the inequality between the arithmeti
 and quadrati
mean, and the se
ond one holds be
ause ge,t ≤ 1. Therefore,
ln

W t

W t−1

≤ η

1 − γ
(gIt,t + |E|β) +

η2K(1 + β)

1 − γ

∑

e∈E

g′
e,t .Summing for t = 1, . . . , n, we obtain

ln
W n

W 0

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ

∑

e∈E

G′
e,n

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ
|C|max

i∈P
G′

i,n (4.8)where the se
ond inequality follows sin
e ∑e∈E G′
e,n ≤ ∑

i∈C G′
i,n. Combining the upperbound with the lower bound (4.5), we obtain

Ĝn ≥ (1 − γ − ηK(1 + β)|C|) max
i∈P

G′
i,n − 1 − γ

η
ln N − n|E|β. (4.9)Now using Lemma 4.1 and applying the union bound, for any δ ∈ (0, 1) we have that, withprobability at least 1 − δ,

Ĝn ≥ (1 − γ − ηK(1 + β)|C|)
(

max
i∈P

Gi,n − K

β
ln

|E|
δ

)
− 1 − γ

η
ln N − n|E|β ,where we used 1−γ−ηK(1+β)|C| ≥ 0 whi
h follows from the assumptions of the theorem.Sin
e Ĝn = Kn − L̂n and Gi,n = Kn − Li,n for all i ∈ P, we have

L̂n ≤ Kn (γ + η(1 + β)K|C|) + (1 − γ − η(1 + β)K|C|) min
i∈P

Li,n

+ (1 − γ − η(1 + β)K|C|) K

β
ln

|E|
δ

+
1 − γ

η
ln N + n|E|βwith probability at least 1 − δ. This implies

L̂n − min
i∈P

Li,n ≤ Knγ + η(1 + β)nK2|C| + K

β
ln

|E|
δ

+
1 − γ

η
ln N + n|E|β

≤ Knγ + 2ηnK2|C| + K

β
ln

|E|
δ

+
ln N

η
+ n|E|βwith probability at least 1 − δ, whi
h is the �rst statement of the theorem. Setting

β =

√
K

n|E| ln
|E|
δ

and γ = 2ηK|C|
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L̂n − min

i∈P
Li,n ≤ 4ηnK2|C| + ln N

η
+ 2

√
nK|E| ln |E|

δwhi
h holds with probability at least 1 − δ if n ≥ (K/|E|) ln(|E|/δ) (to ensure β ≤ 1).Finally, setting
η =

√
ln N

4nK2|C|yields the last statement of the theorem (n ≥ 4 ln N |C| is required to ensure γ ≤ 1/2). 2Next we analyze the 
omputational 
omplexity of the algorithm. The next result showsthat the algorithm is feasible as its 
omplexity is linear in the size (number of edges) ofthe graph.Theorem 4.2. (György, Linder and Ottu
sák [41℄). The proposed algorithm 
anbe implemented e�
iently with time 
omplexity O(n|E|) and spa
e 
omplexity O(|E|).Proof. The two 
omplex steps of the algorithm are steps (a) and (b), both of whi
h 
anbe 
omputed, similarly to Takimoto and Warmuth [69℄, using dynami
 programming. Toperform these steps e�
iently, �rst we order the verti
es of the graph. Sin
e we have ana
y
li
 dire
ted graph, its verti
es 
an be labeled (in O(|E|) time) from 1 to |V | su
h that
u = 1, v = |V |, and if (v1, v2) ∈ E, then v1 < v2. For any pair of verti
es u1 < v1 let Pu1,v1denote the set of paths from u1 to v1, and for any vertex s ∈ V , let

Ht(s) =
∑

i∈Ps,v

∏

e∈i

we,tand
Ĥt(s) =

∑

i∈Pu,s

∏

e∈i

we,t .Given the edge weights {we,t}, Ht(s) 
an be 
omputed re
ursively for s = |V | − 1, . . . , 1,and Ĥt(s) 
an be 
omputed re
ursively for s = 2, . . . , |V | in O(|E|) time (letting Ht(v) =

Ĥt(u) = 1 by de�nition). In step (a), �rst one has to de
ide with probability γ whether I tis generated a

ording to the graph weights, or it is 
hosen uniformly from C. If I t is tobe drawn a

ording to the graph weights, it 
an be shown that its verti
es 
an be 
hosenone by one su
h that if the �rst k verti
es of I t are v0 = u, v1, . . . , vk−1, then the nextvertex of I t 
an be 
hosen to be any vk > vk−1, satisfying (vk−1, vk) ∈ E, with probability
w(vk−1,vk),t−1Ht−1(vk)/Ht−1(vk−1). The other 
omputationally demanding step, namely step(b), 
an be performed easily by noting that for any edge (v1, v2),

q(v1,v2),t = (1 − γ)
Ĥt−1(v1)w(v1,v2),t−1Ht−1(v2)

Ht−1(u)
+ γ

|{i ∈ C : (v1, v2) ∈ i}|
|C|as desired. 2
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ombination of the label effi
ient and bandit settings 534.4 A 
ombination of the label e�
ient and bandit set-tingsIn this se
tion we investigate a 
ombination of the multi-armed bandit and the label e�
ientproblems. This means that the de
ision maker only has a

ess to the loss of all the edgeson the 
hosen path upon request and the total number of requests must be bounded bya 
onstant m. This 
ombination is motivated by some appli
ations, in whi
h feedba
kinformation is 
ostly to obtain.In the general label e�
ient de
ision problem, after taking an a
tion, the de
ision makerhas the option to query the losses of all possible a
tions. For this problem, Cesa-Bian
hiet al. [22℄ proved an upper bound on the normalized regret of order O(K
√

ln(4N/δ)/(m))whi
h holds with probability at least 1 − δ, where K is the length of the longest path inthe graph.Our model of the label-e�
ient bandit problem for shortest paths is motivated byan appli
ation to a parti
ular pa
ket swit
hed network model. This model, 
alled theCognitive Pa
ket Network (CPN), was introdu
ed by Gelenbe et al. [27, 28℄.Example 4.1. (Cognitive Pa
ket Network) CPN is a spe
i�
 autonomi
 te
hniquethat o�ers adaptive routing as a way to better QoS to users and it is oriented toward touse of self-awareness in the network and it is based on stri
tly automati
 defen
e withouthuman intervention.In these networks a parti
ular type of pa
kets, 
alled smart pa
kets, are used to explorethe network (e.g., the delay of the 
hosen path). These pa
kets do not 
arry any usefuldata; they are merely used for exploring the network. The other type of pa
kets arethe data pa
kets, whi
h do not 
olle
t any information about their paths. The task ofthe de
ision maker is to send pa
kets from the sour
e to the destination over paths withminimum average transmission delay (or pa
ket loss rate). In this s
enario, smart pa
ketsare used to query the delay (or loss) of the 
hosen path. However, as these pa
kets do nottransport information, there is a trade-o� between the number of queries and the usage ofthe network. If data pa
kets are on the average α times larger than smart pa
kets (notethat typi
ally α ≫ 1) and ε is the proportion of time instan
es when smart pa
kets areused to explore the network, then ε/(ε + α(1 − ε)) is the proportion of the bandwidthsa
ri�
ed for well informed routing de
isions.The CPN model is implemented and integrated into Linux kernel 2.2.x and it is theobje
t of the US Patent No. 6804201. The performan
e of the CPN is extensively studiedexperimentally in a test-bed (with 80 nodes) [26℄ in Imperial College. These experimentalmeasurements are fo
used on the te
hniques using geneti
 algorithm [29℄ and neural net-work [27℄ to 
hoose the next path. However, these papers do not tou
h on the theoreti
aloptimality of the proposed methods.We study a 
ombined algorithm whi
h, at ea
h time slot t, queries the loss of the 
hosenpath with probability ε (as in the solution of the label e�
ient problem proposed in [22℄),and, similarly to the multi-armed bandit 
ase, 
omputes biased estimates g′
i,t of the true
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ient and bandit settings 54gains gi,t. Just as in the previous se
tion, it is assumed that ea
h path of the graph is ofthe same length K.The algorithm di�ers from our bandit algorithm of the previous se
tion only in step(
), whi
h is modi�ed in the spirit of [22℄. The modi�ed step is given below:MODIFIED STEP FOR THE LABEL EFFICIENT BANDITALGORITHM FOR SHORTEST PATHS(
') Draw a Bernoulli random variable St with P((St = 1)) = ε, and
ompute the estimated gains
g′

e,t =

{
ge,t+β

εqe,t
St if e ∈ I t

β
εqe,t

St if e /∈ I t .Figure 4.3: The modi�ed step for the LE+MAB problem for shortest path.The performan
e of the algorithm is analyzed in the next theorem, whi
h 
an be viewedas a 
ombination of Theorem 4.1 in the pre
eding se
tion and Theorem 2 of [22℄.Theorem 4.3. (György, Linder and Ottu
sák [41℄). For any δ ∈ (0, 1), ε ∈ (0, 1],parameters η =
√

ε ln N
4nK2|C| , γ = 2ηK|C|

ε
≤ 1/2, and β =

√
K

n|E|ε ln 2|E|
δ

≤ 1, and for all
n ≥ 1

ε
max

{
K2 ln2(2|E|/δ)

|E| ln N
,
|E| ln(2|E|/δ)

K
, 4|C| ln N

}the performan
e of the algorithm de�ned above 
an be bounded, with probability at least
1 − δ, as

1

n

(
L̂n − min

i∈P
Li,t

)

≤
√

K

nε

(
4
√

K|C| ln N + 5

√
|E| ln 2|E|

δ
+

√
8K ln

2

δ

)
+

4K

3nε
ln

2N

δ

≤ 27K

2

√
|E| ln 2N

δ

nε
.If ε is 
hosen as (m −

√
2m ln(1/δ))/n then, with probability at least 1 − δ, the totalnumber of queries is bounded by m (see [21, Lemma 6.1℄) and the performan
e boundabove is of the order of K

√
|E| ln(N/δ)/m.For the proof we need the following two lemmas. The �rst is the Bernstein's inequalityfor martingales di�eren
es [13℄.
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ient and bandit settings 55Lemma 4.2. Let X1, . . . , Xn be a martingale di�eren
e sequen
e su
h that Xt ∈ [a, b] withprobability one (t = 1, . . . , n). Assume that, for all t,
E
[
X2

t |Xt−1, . . . , X1

]
≤ σ2 a.s.Then, for all ε > 0,

P

{
n∑

t=1

Xt > ε

}
≤ e

−ε2

2nσ2+2ε(b−a)/3and therefore
P

{
n∑

t=1

Xt >
√

2nσ2 ln δ−1 + 2 ln δ−1(b − a)/3

}
≤ δ.Similarly to Theorem 4.1, we need a lemma whi
h reveals the 
onne
tion between thetrue and the estimated 
umulative losses. However, here we need a more 
areful analysisbe
ause the �shifting term� β

εqe,t
St, is a random variable.Lemma 4.3. For any 0 < δ < 1, 0 < ε ≤ 1, for any

n ≥ 1

ε
max

{
K2 ln2(2|E|/δ)

|E| ln N
,
K ln(2|E|/δ)

|E|

}
,parameters

2ηK|C|
ε

≤ γ, η =

√
ε ln N

4nK2|C| and β =

√
K

n|E|ε ln
2|E|

δ
≤ 1 ,and e ∈ E, we have

P

[
Ge,n > G′

e,n +
4

βε
ln

2|E|
δ

]
≤ δ

2|E| .Proof. Fix e ∈ E. Using (4.1) with u = 4
βε

ln 2|E|
δ

and c = βε
4
, it su�
es to prove for all

n that
E

[
ec(Ge,n−G′

e,n)
]
≤ 1 .Similarly to Lemma 4.1 we introdu
e Zt = ec(Ge,t−G′
e,t) and we show that Z1, . . . , Zn is a su-permartingale, that is Et[Zt] ≤ Zt−1 for t ≥ 2 where Et denotes E[·|(I1,S1), . . . , (I t−1,St−1)].Taking 
onditional expe
tations, we obtain

Et[Zt] = Zt−1Et

[
e

c

„
ge,t−

I{e∈It}
Stge,t+Stβ

qe,tε

«]

≤ Zt−1Et

[
1 + c

(
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

)

+c2

(
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

)2
]

. (4.10)



4.4. A 
ombination of the label effi
ient and bandit settings 56Sin
e
Et

[
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

]
= − β

qe,tand
Et

[(
ge,t −

I{e∈It}Stge,t

qe,tε

)2
]
≤ Et

[(
I{e∈It}Stge,t

qe,tε

)2
]
≤ 1

qe,tεwe get from (4.10) that
Et[Zt]

≤ Zt−1Et

[
1 − cβ

qe,t

+
c2

qe,tε
+ c2

(
2I{e∈It}Stge,tβ

q2
e,tε

2
− 2ge,tStβ

qe,tε
+

Stβ
2

q2
e,tε

2

)]

≤ Zt−1

(
1 +

c

qe,t

(
−β +

c

ε
+ cβ

(
2

ε
+

β

qe,tε

)))
. (4.11)Sin
e c = βε/4 we have

−β +
c

ε
+ cβ

(
2

ε
+

β

qe,tε

)
= −3β

4
+

β2ε

4

(
2

ε
+

β

qe,tε

)

= −3β

4
+

β2

2
+

β3

4qe,t

≤ −β

4
+

β3

4qe,t

≤ −β

4
+

β3|C|
4γ

(4.12)
≤ 0, (4.13)where (4.12) follows from qe,t ≥ γ

|C| and (4.13) holds sin
e β ≤ 1 and by
β2|C|

γ
≤ β2ε

2ηK
≤ 1 ,and the last inequality is ensured by n ≥ K2 ln2(2|E|/δ)

ε|E| ln N
, the assumption of the lemma.Combining (4.11) and (4.13) we get that Et[Zt] ≤ Zt−1. Taking expe
tations on bothsides of the inequality, we get E[Zt] ≤ E[Zt−1] and sin
e E[Z1] ≤ 1, we obtain E[Zn] ≤ 1as desired. 2Proof of Theorem 4.3. The proof of the theorem is a generalization of that of Theo-rem 4.1, and follows the same lines with some extra te
hni
alities to handle the e�e
ts of
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ient and bandit settings 57the modi�ed step (
'). Therefore, in the following we emphasize only the di�eren
es. Firstnote that (4.5) and (4.7) also hold in this 
ase. Bounding the sums in (4.7), one obtains
∑

i∈P
pi,tg

′
i,t =

St

ε
(gIt,t + |E|β)and ∑

i∈P
pi,tg

′2
i,t ≤

1

ε
K(1 + β)

∑

e∈E

g′
e,t .Plugging these bounds into (4.7) and summing for t = 1, . . . , n, we obtain

ln
W n

W 0

≤ η

1 − γ

n∑

t=1

St

ε
(gIt,t + |E|β ) +

η2K(1 + β)

(1 − γ)ε
|C|max

i∈P
G′

i,n .Combining the upper bound with the lower bound (4.5), we obtain
n∑

t=1

St

ε
(gIt,t + |E|β ) ≥

(
1−γ− ηK(1 + β)|C|

ε

)
max
i∈P

G′
i,n−

ln N

η
. (4.14)To relate the left-hand side of the above inequality to the real gain∑n

t=1 gIt,t, noti
e that
Xt =

St

ε
(gIt,t + |E|β) − (gIt,t + |E|β)is a martingale di�eren
e sequen
e with respe
t to (I1, S1), (I2, S2), . . .. Now for all t =

1, . . . , n, we have the bound
E
[
X2

t |(I1, S1), . . . , (I t−1, St−1)
]

≤ E

[
St

ε2
(gIt,t + |E|β)2

∣∣∣∣(I1, S1), . . . , (I t−1, St−1)

]

≤ (K + |E|β)2

ε

≤ 4K2

ε
def
= σ2, (4.15)where (4.15) holds by n ≥ |E| ln(2|E|/δ)

Kε
(to ensure β|E| ≤ K). We know that

Xt ∈
[
−2K,

(
1

ε
− 1

)
2K

]for all t. Now apply Bernstein's inequality for martingale di�eren
es (see Lemma 4.2 inthe Appendix) to obtain
P

[
n∑

t=1

Xt > u

]
≤ δ

2
, (4.16)
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u =

√
2n

4K2

ε
ln

(
2

δ

)
+

4K

3ε
ln

(
2

δ

)
.From (4.16) we get

P

[
n∑

t=1

St

ε
(gIt,t + |E|β) ≥ Ĝn + βn|E| + u

]
≤ δ

2
. (4.17)Now Lemma 4.3, the union bound, and (4.17) 
ombined with (4.14) yield, with proba-bility at least 1 − δ,

Ĝn ≥
(

1 − γ − ηK(1 + β)|C|
ε

)(
max
i∈P

Gi,n − 4K

βε
ln

2|E|
δ

)

− ln N

η
− βn|E| − usin
e the 
oe�
ient of G′

i,n is greater than zero by the assumptions of the theorem.Sin
e Ĝn = Kn − L̂n and Gi,n = Kn − Li,n, we have
L̂n ≤

(
1 − γ − K(1 + β)η|C|

ε

)
min
i∈P

Li,n + Kn

(
γ +

K(1 + β)η|C|
ε

)

+

(
1 − γ − K(1 + β)η|C|

ε

)
4K

βε
ln

2|E|
δ

+ βn|E| + ln N

η
+ u

≤ min
i∈P

Li,n + Kn

(
γ +

K(1 + β)η|C|
ε

)
+ 5βn|E| + ln N

η
+ u ,where we used the fa
t that K

βε
ln 2|E|

δ
= βn|E|.Substituting the value of β, η and γ, we have

L̂n − min
i∈P

Li,n ≤Kn
2Kη|C|

ε
+ Kn

2Kη|C|
ε

+
ln N

η
+ 5βn|E| + u

≤4K

√
n|C| ln N

ε
+ 5

√
n|E|K ln(2|E|/δ)

ε
+ u

≤
√

nK

ε

(
4
√

K|C| ln N + 5
√

|E| ln(2|E|/δ) +
√

8K ln (2/δ)
)

+
4K

3ε
ln (2/δ)as desired. 2



4.5. A bandit algorithm for tra
king the shortest path 594.5 A bandit algorithm for tra
king the shortest pathOur goal in this se
tion is to extend the bandit algorithm so that it is able to 
ompetewith time-varying paths under small 
omputational 
omplexity. This is a variant of theproblem known as tra
king the best expert ; see, for example, Herbster and Warmuth [46℄,Vovk [71℄, Auer and Warmuth [9℄, Bousquet and Warmuth [17℄, Herbster and Warmuth[47℄.To des
ribe the loss the de
ision maker is 
ompared to, 
onsider the following �m-partition� predi
tion s
heme: the sequen
e of paths is partitioned into m + 1 
ontiguoussegments, and on ea
h segment the s
heme assigns exa
tly one of the N paths. Formally,an m-partition Part(n,m, t, i) of the n paths is given by an m-tuple t = (t1, . . . , tm) su
hthat t0 = 1 < t1 < · · · < tm < n + 1 = tm+1, and an (m + 1)-ve
tor i = (i0, . . . , im) where
ij ∈ P . At ea
h time instant t, tj ≤ t < tj+1, path ij is used to predi
t the best path. The
umulative loss of a partition Part(n,m, t, i) is

L(Part(n,m, t, i)) =
m∑

j=0

tj+1−1∑

t=tj

ℓij ,t =
m∑

j=0

tj+1−1∑

t=tj

∑

e∈ij

ℓe,t.The goal of the de
ision maker is to perform as well as the best time-varying path(partition), that is, to keep the normalized regret
1

n

(
L̂n − min

t,i
L(Part(n,m, t, i))

)as small as possible (with high probability) for all possible out
ome sequen
es.In the �
lassi
al� tra
king problem there is a relatively small number of �base� expertsand the goal of the de
ision maker is to predi
t as well as the best �
ompound� expert(i.e., time-varying expert). However in our 
ase, base experts 
orrespond to all paths ofthe graph between sour
e and destination whose number is typi
ally exponentially large inthe number of edges, and therefore we 
annot dire
tly apply the 
omputationally e�
ientmethods for tra
king the best expert. György, Linder, and Lugosi [38℄ develop e�
ientalgorithms for tra
king the best expert for 
ertain large and stru
tured 
lasses of baseexperts, in
luding the shortest path problem. The purpose of the following algorithm isto extend the methods of [38℄ to the bandit setting when the fore
aster only observes thelosses of the edges on the 
hosen path.The following performan
e bounds shows that the normalized regret with respe
t tothe best time-varying path whi
h is allowed to swit
h paths m times is roughly of the orderof K
√

(m/n)|C| ln N .
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A BANDIT ALGORITHM FOR TRACKING SHORTEST PATHSParameters: real numbers β > 0, 0 < η, γ < 1, 0 ≤ α ≤ 1.Initialization: Set we,0 = 1 for ea
h e ∈ E, w̄i,0 = 1 for ea
h i ∈ P , and

W 0 = N . For ea
h round t = 1, 2, . . .(a) Choose a path I t a

ording to the distribution pt de�ned by
pi,t =

{
(1 − γ)

w̄i,t−1

W t−1
+ γ

|C| if i ∈ C;
(1 − γ)

w̄i,t−1

W t−1
if i 6∈ C.(b) Compute the probability of 
hoosing ea
h edge e as

qe,t =
∑

i:e∈i

pi,t = (1 − γ)

∑
i:e∈i w̄i,t−1

W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C| .(
) Cal
ulate the estimated gains
g′

e,t =

{
ge,t+β

qe,t
if e ∈ I t;

β
qe,t

otherwise.(d) Compute the updated weights
v̄i,t = w̄i,t−1e

ηg′
i,t

w̄i,t = (1 − α)v̄i,t +
α

N
W twhere g′

i,t =
∑

e∈i g′
e,t and W t is the sum of the total weights of thepaths, that is,

W t =
∑

i∈P
v̄i,t =

∑

i∈P
w̄i,t.Figure 4.4: Bandit algorithm for tra
king the shortest path.
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king the shortest path 61Theorem 4.4. (György, Linder, Lugosi and Ottu
sák [40℄). For any δ ∈ (0, 1)and parameters 0 ≤ γ < 1/2, α, β ∈ [0, 1], and η > 0 satisfying 2ηK|C| ≤ γ, the per-forman
e of the algorithm de�ned above 
an be bounded, with probability at least 1 − δ,as
1

n

(
L̂n − min

t,i
L(Part(n,m, t, i))

)

≤ K (γ + η(1 + β)K|C|) +
K(m + 1)

nβ
ln

|E|(m + 1)

δ

+ β|E| + 1

nη
ln

(
Nm+1

αm(1 − α)n−m−1

)
.In parti
ular, 
hoosing

β =

√
K(m + 1)

n|E| ln
|E|(m + 1)

δ
, γ = 2ηK|C|, α =

m

n − 1
,and

η =

√
(m + 1) ln N + m ln e(n−1)

m

4nK2|C|we have, for all n ≥ max
{

K(m+1)
|E| ln |E|(m+1)

δ
, 4|C|D

},
L̂n − min

t,i
L(Part(n,m, t, i)) ≤ 2

√
K

n

(
√

4K|C|D +

√
|E|(m + 1) ln

|E|(m + 1)

δ

)
,where

D = (m + 1) ln N + m

(
1 + ln

n − 1

m

)
.The proof of the theorem is a 
ombination of that of our Theorem 4.1 and Theorem 1of [38℄. We will need the following three lemmas.Lemma 4.4. For any 1 ≤ t ≤ t′ ≤ n and any i ∈ P,

v̄i,t′

w̄i,t−1

≥ e
ηG′

i,[t,t′](1 − α)t′−twhere G′
i,[t,t′] =

∑t′

τ=t g
′
i,τ .Proof. The proof is a straightforward modi�
ation of the one in Herbster and Warmuth[46℄. From the de�nitions of vi,t and wi,t (see step (d) of the algorithm) it is 
lear that forany τ ≥ 1,

w̄i,τ = (1 − α)v̄i,τ +
α

N
W τ ≥ (1 − α)eηg′

i,τ w̄i,τ−1 .
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king the shortest path 62Applying this equation iteratively for τ = t, t + 1, . . . , t′ − 1, and the de�nition of v̄i,t (step(d)) for τ = t′, we obtain
v̄i,t′ = w̄i,t′−1e

ηg′
i,t′ ≥ e

ηg′
i,t′

t′−1∏

τ=t

(
(1 − α)eηg′

i,τ

)
w̄i,t−1

= e
ηG′

i,[t,t′](1 − α)t′−tw̄i,t−1whi
h implies the statement of the lemma. 2Lemma 4.5. For any t ≥ 1 and i, j ∈ P, we have
w̄i,t

v̄j,t

≥ α

NProof. By the de�nition of w̄i,t we have
w̄i,t = (1 − α)v̄i,t +

α

N
W t ≥

α

N
W t ≥

α

N
v̄j,t .This 
ompletes the proof of the lemma. 2The next lemma is a simple 
orollary of Lemma 4.1.Lemma 4.6. For any δ ∈ (0, 1), 0 ≤ β ≤ 1, t ≥ 1 and e ∈ E we have

P

[
Ge,t > G′

e,t +
1

β
ln

|E|(m + 1)

δ

]
≤ δ

|E|(m + 1)
.Proof of Theorem 4.4. Again, we upper bound ln W n/W 0 the same way as in Theorem4.1. Then we get

ln
W n

W 0

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ
|C|max

i∈P
G′

i,n . (4.18)Let Part(n,m, t, i) be an arbitrary partition. Then the lower bound is obtained as
ln

W n

W 0

= ln
∑

j∈P

w̄j,n

N
= ln

∑

j∈P

v̄j,n

N
≥ ln

v̄im,n

N
(4.19)(re
all that im denotes the path used in the last segment of the partition). Now vim,n 
anbe rewritten in the form of the following teles
oping produ
t

v̄im,n = w̄i0,t0−1
v̄i0,t1−1

w̄i0,t0−1

m∏

j=1

(
w̄ij ,tj−1

v̄ij−1,tj−1

v̄ij ,tj+1−1

w̄ij ,tj−1

)
.
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king the shortest path 63Therefore, applying Lemmas 4.4 and 4.5, we have
v̄im,n ≥ w̄i0,t0−1

( α

N

)m
m∏

j=0

(
(1 − α)tj+1−1−tje

ηG′
ij ,[tj ,tj+1−1]

)

=
( α

N

)m

eηG′(Part(n,m,t,i))(1 − α)n−m−1.Combining the lower bound with the upper bound (4.18), we have
ln

(
αm(1 − α)n−m−1

Nm+1

)
+ max

t,i
ηG′(Part(n,m, t, i))

≤ η
1−γ

(
Ĝn + n|E|β

)
+ η2K(1+β)

1−γ
|C|maxi∈P G′

i,n ,where we used the fa
t that Part(n,m, t, i) is an arbitrary partition. After rearrangingand using maxi∈P G′
i,n ≤ maxt,i G′(Part(n,m, t, i)) we get

Ĝn ≥ (1 − γ − ηK(1 + β)|C|) max
t,i

G′(Part(n,m, t, i))

−n|E|β − 1 − γ

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.Now sin
e 1−γ−ηK(1+β)|C| ≥ 0, by the assumptions of the theorem and from Lemma 4.6with an appli
ation of the union bound we obtain that, with probability at least 1 − δ,

Ĝn ≥ (1 − γ − ηK(1 + β)|C|)
(

max
t,i

G(Part(n,m, t, i)) − K(m + 1)

β
ln

|E|(m + 1)

δ

)

− n|E|β − 1 − γ

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.Sin
e Ĝn = Kn − L̂n and G(Part(n,m, t, i)) = Kn − L(Part(n,m, t, i)), we have

L̂n ≤ (1 − γ − ηK(1 + β)|C|) min
t,i

L(Part(n,m, t, i)) + Kn (γ + η(1 + β)K|C|)

+ (1 − γ − η(1 + β)K|C|) K(m + 1)

β
ln

|E|(m + 1)

δ
+ n|E|β

+
1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.This implies that, with probability at least 1 − δ,

L̂n − min
t,i

L(Part(n,m, t, i))

≤ Kn (γ + η(1 + β)K|C|) +
K(m + 1)

β
ln

|E|(m + 1)

δ

+ n|E|β +
1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
. (4.20)
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king the shortest path 64To prove the se
ond statement, let H(p) = −p ln p − (1 − p) ln(1 − p) and D(p ‖ q) =
p ln p

q
+ (1 − p) ln 1−p

1−q
. Optimizing the value of α in the last term of (4.20) gives

1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)

=
1

η

(
(m + 1) ln (N) + m ln

1

α
+ (n − m − 1) ln

1

1 − α

)

=
1

η

(
(m + 1) ln (N) + (n − 1)(Db(α

∗ ‖ α) + Hb(α
∗))
)where α∗ = m

n−1
. For α = α∗ we obtain

1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)

=
1

η
((m + 1) ln (N) + (n − 1)(Hb(α

∗)))

=
1

η
((m + 1) ln (N) + m ln((n − 1)/m)

+(n − m − 1) ln(1 + m/(n − m − 1)))

≤ 1

η
((m + 1) ln (N) + m ln((n − 1)/m) + m)

=
1

η

(
(m + 1) ln (N) + m ln

e(n − 1)

m

) def
=

1

η
Dwhere the inequality follows sin
e ln(1 + x) ≤ x for x > 0. Therefore

L̂n − min
t,i

L(Part(n,m, t, i))

≤ Kn (γ + η(1 + β)K|C|) +
K(m + 1)

β
ln

|E|(m + 1)

δ
+ n|E|β +

1

η
D .whi
h is the �rst statement of the theorem. Setting

β =

√
K(m + 1)

n|E| ln
|E|(m + 1)

δ
, γ = 2ηK|C|, and η =

√
D

4nK2|C|results in the se
ond statement of the theorem, that is,
L̂n − min

t,i
L(Part(n,m, t, i))

≤ 2
√

nK

(
√

4K|C|D +

√
|E|(m + 1) ln

|E|(m + 1)

δ

)
. 2Similarly to [38℄, the proposed algorithm has an alternative version, whi
h is e�
iently
omputable:
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AN ALTERNATIVE BANDIT ALGORITHM FOR TRACKINGSHORTEST PATHSFor t = 1, 
hoose I1 uniformly from the set P . For t ≥ 2,(a) Draw a Bernoulli random variable Γt with P(Γt = 1) = γ.(b) If Γt = 1, then 
hoose I t uniformly from C.(
) If Γt = 0,(
1) 
hoose τt randomly a

ording to the distribution
P{τt = t′} =

{
(1−α)t−1Z1,t−1

Wt−1
for t′ = 1

α(1−α)t−t′Wt′Zt′,t−1

NWt
for t′ = 2, . . . , twhere Zt′,t−1 =

∑
i∈P e

ηG′
i,[t′,t−1] for t′ = 1, . . . , t − 1, and

Zt,t−1 = N ;(
2) given τt = t′, 
hoose I t randomly a

ording to the probabilities
P{It = i|τt = t′} =





e
ηG′

i,[t′,t−1]

Zt′,t−1
for t′ = 1, . . . , t − 1

1
N

for t′ = t.Figure 4.5: An alternative version of the bandit algorithm for tra
king shortest path.



4.6. An algorithm for the restri
ted multi-armed bandit problem 66With a slight modi�
ation of the proof of Theorem 2 in [38℄, it 
an be shown thatthe alternative and the original algorithms are equivalent. Moreover, in a way 
ompletelyanalogous to [38℄, in this alternative formulation of the algorithm one 
an 
ompute theprobabilities the normalization fa
tors Zt′,t−1 e�
iently, as the baseline bandit algorithmfor shortest paths has an O(n|E|) time 
omplexity by Theorem 4.2. Therefore the fa
tors
W t and hen
e the probabilities P{I t = i|τt = t′} 
an also be 
omputed e�
iently as in [38℄.In parti
ular, it follows from Theorem 3 of [38℄ that the time 
omplexity of the alternativebandit algorithm for tra
king the shortest path is O(n2|E|).4.6 An algorithm for the restri
ted multi-armed banditproblemIn this se
tion we 
onsider the situation where the de
ision maker re
eives informationonly about the performan
e of the whole 
hosen path, but the individual edge losses arenot available. That is, the fore
aster has a

ess to the sum ℓIt,t of losses over the 
hosenpath I t but not to the losses {ℓe,t}e∈It of the edges belonging to I t.This is the problem formulation 
onsidered by M
Mahan and Blum [54℄ and Awerbu
hand Kleinberg [11℄. M
Mahan and Blum provided a relatively simple algorithm whoseregret is at most of the order of n−1/4, while Awerbu
h and Kleinberg gave a more 
omplexalgorithm to a
hieve O(n−1/3) regret. In this se
tion we 
ombine the strengths of thesepapers, and propose a simple algorithm with regret at most of the order of n−1/3. Moreover,our bound holds with high probability, while the above-mentioned papers prove boundsfor the expe
ted regret only. The proposed algorithm uses ideas very similar to thoseof M
Mahan and Blum [54℄. The algorithm alternates between 
hoosing a path from a�basis� B to obtain unbiased estimates of the loss (exploration step), and 
hoosing a patha

ording to exponential weighting based on these estimates.A simple way to des
ribe a path i ∈ P is a binary row ve
tor with |E| 
omponentswhi
h are indexed by the edges of the graph su
h that, for ea
h e ∈ E, the eth entry of theve
tor is 1 if e ∈ i and 0 otherwise. With a slight abuse of notation we will also denote by ithe binary row ve
tor representing path i. In the previous se
tions, where the loss of ea
hedge along the 
hosen path is available to the de
ision maker, the 
omplexity stemmingfrom the large number of paths was redu
ed by representing all information in terms ofthe edges, as the set of edges spans the set of paths. That is, the ve
tor 
orrespondingto a given path 
an be expressed as the linear 
ombination of the unit ve
tors asso
iatedwith the edges (the eth 
omponent of the unit ve
tor representing edge e is 1, while theother 
omponents are 0). While the losses 
orresponding to su
h a spanning set are notobservable in the restri
ted setting of this se
tion, one 
an 
hoose a subset of P that formsa basis, that is, a 
olle
tion of b paths whi
h are linearly independent and ea
h path in P
an be expressed as a linear 
ombination of the paths in the basis. We denote by B the
b× |E| matrix whose rows b1, . . . , bb represent the paths in the basis. Note that b is equalto the maximum number of linearly independent ve
tors in {i : i ∈ P}, so b ≤ |E|.



4.6. An algorithm for the restri
ted multi-armed bandit problem 67Let ℓ
(E)
t denote the (
olumn) ve
tor of the edge losses {ℓe,t}e∈E at time t, and let

ℓ
(B)
t = (ℓb1,t, . . . , ℓbb,t)

T be a b-dimensional 
olumn ve
tor whose 
omponents are the lossesof the paths in the basis B at time t. If α
(i,B)

b1 , . . . , α
(i,B)

bb are the 
oe�
ients in the linear
ombination of the basis paths expressing path i ∈ P , that is, i =
∑b

j=1 α
(i,B)

bj bj, then theloss of path i ∈ P at time t is given by
ℓi,t = 〈i, ℓ(E)

t 〉 =
b∑

j=1

α
(i,B)

bj 〈bj, ℓ
(E)
t 〉 =

b∑

j=1

α
(i,B)

bj ℓbj ,t (4.21)where 〈·, ·〉 denotes the standard inner produ
t in R
|E|. In the algorithmwe obtain estimates

ℓ̃bj ,t of the losses of the basis paths and use (4.21) to estimate the loss of any i ∈ P as
ℓ̃i,t =

b∑

j=1

α
(i,B)

bj ℓ̃bj ,t . (4.22)It is algorithmi
ally advantageous to 
al
ulate the estimated path losses ℓ̃i,t from anintermediate estimate of the individual edge losses. Let B+ denote the Moore-Penroseinverse of B de�ned by B+ = BT (BBT )−1, where BT denotes the transpose of B and
BBT is invertible sin
e the rows of B are linearly independent. (Note that BB+ = Ib,the b× b identity matrix, and B+ = B−1 if b = |E|.). Then letting ℓ̃

(B)

t = (ℓ̃b1,t, . . . , ℓ̃bb,t)
Tand

ℓ̃
(E)

t = B+ℓ̃
(B)

tit is easy to see that ℓ̃i,t in (4.22) 
an be obtained as ℓ̃i,t = 〈i, ℓ̃(E)

t 〉, or equivalently
ℓ̃i,t =

∑

e∈i

ℓ̃e,t.This form of the path losses allows for an e�
ient implementation of exponential weightingvia dynami
 programming [69℄.To analyze the algorithm we need an upper bound on the magnitude of the 
oe�
ients
α

(i,B)

bj . For this, we invoke the de�nition of a bary
entri
 spanner from [11℄: the basis B is
alled a C-bary
entri
 spanner if |α(i,B)

bj | ≤ C for all i ∈ P and j = 1, . . . , b. Awerbu
h andKleinberg [11℄ show that a 1-bary
entri
 spanner exists if B is a square matrix (i.e., b = |E|)and give a low-
omplexity algorithm whi
h �nds a C-bary
entri
 spanner for C > 1. Weuse their te
hnique to show that a 1-bary
entri
 spanner also exists in 
ase of a non-square
B, when the basis is 
hosen to maximize the absolute value of the determinant of BBT .As before, b denotes the maximum number of linearly independent ve
tors (paths) in P .Lemma 4.7. For a dire
ted a
y
li
 graph, the set of paths P between two dedi
ated nodeshas a 1-bary
entri
 spanner. Moreover, let B be a b × |E| matrix with rows from P su
h
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ted multi-armed bandit problem 68that det[BBT ] 6= 0. If B−j,i is the matrix obtained from B by repla
ing its jth row by
i ∈ P and ∣∣det

[
B−j,iB

T
−j,i

]∣∣ ≤ C2
∣∣det

[
BBT

]∣∣ (4.23)for all j = 1, . . . , b and i ∈ P, then B is a C-bary
entri
 spanner.Proof. Let B be a basis of P with rows b1, . . . , bb ∈ P that maximizes | det[BBT ]|.Then, for any path i ∈ P , we have i =
∑b

j=1 α
(i,B)

bj bj for some 
oe�
ients {α(i,B)

bj }. Nowfor the matrix B−1,i = [iT , (b2)T , . . . , (bb)T ]T we have
∣∣det

[
B−1,iB

T
−1,i

]∣∣

=
∣∣det

[
B−1,ii

T ,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T
]∣∣

=

∣∣∣∣∣∣
det



(

b∑

j=1

α
(i,B)

bj B−1,ib
j

)T

,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T




∣∣∣∣∣∣

=

∣∣∣∣∣

b∑

j=1

α
(i,B)

bj det
[
B−1,i(b

j)T ,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T
]
∣∣∣∣∣

= |α(i,B)

b1 |
∣∣det

[
B−1,iB

T
]∣∣

=
(
α

(i,B)

b1

)2 ∣∣det
[
BBT

]∣∣where last equality follows by the same argument the penultimate equality was obtained.Repeating the same argument for B−j,i, j = 2, . . . , b we obtain
∣∣det

[
B−j,iB

T
−j,i

]∣∣ =
(
α

(i,B)

bj

)2 ∣∣det
[
BBT

]∣∣ . (4.24)Thus the maximal property of | det[BBT ]| implies |α(i,B)

bj | ≤ 1 for all j = 1, . . . , b. These
ond statement follows trivially from (4.23) and (4.24). 2Awerbu
h and Kleinberg [11, Proposition 2.4℄ also present an iterative algorithm to�nd a C-bary
entri
 spanner if B is a square matrix. Their algorithm has two parts.First, starting from the identity matrix, the algorithm repla
es sequentially the rows of thematrix in ea
h step by maximizing the determinant with respe
t to the given row. Thisis done by 
alling b times an optimization ora
le, to 
ompute arg maxi∈P | det [B−j,i] | for
j = 1, 2, . . . , b. In the se
ond part the algorithm repla
es an arbitrarily row j of the matrixin ea
h iteration with some i ∈ P if | det [B−j,i] | > C| det [B] |. It is shown that the ora
leis 
alled in the se
ond part O(b logC b) times for C > 1. In 
ase B is not a square matrix,the algorithm 
arries over if we have a

ess to an alternative optimization ora
le that 
an
ompute arg maxi∈P | det[B−j,iB

T
−j,i]|: In the �rst b steps, all the rows of the matrix arerepla
ed (�rst part), then we 
an iteratively repla
e one row in ea
h step, using the ora
le,to maximize the determinant | det[B−j,iB

T
−j,i]| in i until (4.23) is satis�ed for all j and i.By Lemma 4.7, this results is a C-bary
entri
 spanner. Similarly to [11, Lemma 2.5℄, it
an be shown that the alternative optimization ora
le is 
alled O(b logC b) times for C > 1.
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ted multi-armed bandit problem 69For simpli
ity (to avoid 
arrying the 
onstant C), assume that we have a 2-bary
entri
spanner B. Based on the ideas of label e�
ient predi
tion, the next algorithm gives asimple solution to the restri
ted shortest path problem. The algorithm is very similar tothat of the algorithm in the label e�
ient 
ase, but here we 
annot estimate the edge lossesdire
tly. Therefore, we query the loss of a (random) basis ve
tor from time to time, and
reate unbiased estimates ℓ̃bj ,t of the losses of basis paths ℓbj ,t, whi
h are then transformedinto edge-loss estimates.The performan
e of the algorithm is analyzed in the next theorem. The proof followsthe argument of Cesa-Bian
hi et al. [22℄, but we also have to deal with some additionalte
hni
al di�
ulties. Note that in the theorem we do not assume that all paths between uand v have equal length.Theorem 4.5. (György, Linder, Lugosi and Ottu
sák [40℄). Let K denote the lengthof the longest path in the graph. For any δ ∈ (0, 1), parameters 0 < ε ≤ 1
K

and η > 0satisfying η ≤ ε2, and n ≥ 8b
ε2 ln 4bN

δ
, the performan
e of the algorithm de�ned above 
an bebounded, with probability at least 1 − δ, as

L̂n − min
i∈P

Li,n ≤ K


ηb

ε
Kn +

√
n

2
ln

4

δ
+ nε +

√
2nε ln 4

δ

K
+

16

3
b

√
2n

b

ε
ln

4bN

δ


+

ln N

ηIn parti
ular, 
hoosing
ε =

(
Kb

n
ln

4bN

δ

)1/3 and η = ε2we obtain
L̂n − min

i∈P
Li,n ≤ 9.1K2b (Kb ln(4bN/δ))1/3 n2/3 .The theorem is proved using the following two lemmas. The �rst one is an easy 
onse-quen
e of Bernstein's inequality:Lemma 4.8. Under the assumptions of Theorem 4.5, the probability that the algorithmqueries the basis more than nε +
√

2nε ln 4
δ
times is at most δ/4.Using the estimated loss of a path i ∈ P given in (4.22), we 
an estimate the 
umulativeloss of i up to time n as

L̃i,n =
n∑

t=1

ℓ̃i,t .The next lemma demonstrates the quality of these estimates.
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ted multi-armed bandit problem 70
A BANDIT ALGORITHM FOR THE RESTRICTED SHORTESTPATH PROBLEMParameters: 0 < ε, η ≤ 1.Initialization: Set we,0 = 1 for ea
h e ∈ E, w̄i,0 = 1 for ea
h i ∈ P ,

W 0 = N . Fix a basis B, whi
h is a 2-bary
entri
 spanner. For ea
h round
t = 1, 2, . . .(a) Draw a Bernoulli random variable St su
h that P(St = 1) = ε;(b) If St = 1, then 
hoose the path I t uniformly from the basis B. If

St = 0, then 
hoose I t a

ording to the distribution {pi,t}, de�nedby
pi,t =

w̄i,t−1

W t−1

.(
) Cal
ulate the estimated loss of all edges a

ording to
ℓ̃

(E)

t = B+ℓ̃
(B)

t ,where ℓ̃
(E)

t = {ℓ̃(E)
e,t }e∈E, and ℓ̃

(B)

t = (ℓ̃
(B)

b1,t
, . . . , ℓ̃

(B)

bb,t
) is the ve
tor ofthe estimated losses

ℓ̃bj ,t =
St

ε
ℓbj ,tI{It=bj}bfor j = 1, . . . , b.(d) Compute the updated weights

we,t = we,t−1e
−ηℓ̃e,t ,

w̄i,t =
∏

e∈i

we,t = w̄i,t−1e
−η

P
e∈i ℓ̃e,t ,and the sum of the total weights of the paths

W t =
∑

i∈P
w̄i,t .Figure 4.6: Bandit algorithm for the restri
ted shortest path problem.
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ted multi-armed bandit problem 71Lemma 4.9. Let 0 < δ < 1 and assume n ≥ 8b
ε

ln 4bN
δ
. For any i ∈ P, with probability atleast 1 − δ/4,

n∑

t=1

∑

i∈P
pi,tℓi,t −

n∑

t=1

∑

i∈P
pi,tℓ̃i,t ≤

8

3
b

√
2n

bK2

ε
ln

4b

δ
.Furthermore, with probability at least 1 − δ/(4N),

L̃i,n − Li,n ≤ 8

3
b

√
2n

bK2

ε
ln

4bN

δ
.Proof. We may write

n∑

t=1

∑

i∈P
pi,tℓi,t −

n∑

t=1

∑

i∈P
pi,tℓ̃i,t =

n∑

t=1

∑

i∈P
pi,t

b∑

j=1

α
(i,B)

bj

(
ℓbj ,t − ℓ̃bj ,t

)

=
b∑

j=1

n∑

t=1

[
∑

i∈P
pi,tα

(i,B)

bj

(
ℓbj ,t − ℓ̃bj ,t

)]def
=

b∑

j=1

n∑

t=1

Xbj ,t . (4.25)Note that for any bj, Xbj ,t, t = 1, 2, . . . is a martingale di�eren
e sequen
e with respe
t to
(I t, St), t = 1, 2, . . . as Etℓ̃b,t = ℓb,t. Also,

Et[X
2
bj ,t

] ≤
(
∑

i∈P
pi,tα

(i,B)

bj

)2

Et

[(
ℓ̃bj ,t

)2
]
≤
∑

i∈P
pi,t

(
α

(i,B)

bj

)2 K2b

ε
≤ 4

K2b

ε
(4.26)and

|Xbj ,t| ≤
∣∣∣∣∣
∑

i∈P
pi,tα

(i,B)

bj

∣∣∣∣∣
∣∣∣ℓbj ,t − ℓ̃bj ,t

∣∣∣ ≤
∑

i∈P
pi,t

∣∣∣α(i,B)

bj

∣∣∣
Kb

ε
≤ 2

Kb

ε
(4.27)where the last inequalities in both 
ases follow from the fa
t that B is a 2-bary
entri
spanner. Then, using Bernstein's inequality for martingale di�eren
es (Lemma 4.2), wehave, for any �xed bj,

P

[
n∑

t=1

Xbj ,t ≥
8

3

√
2n

bK2

ε
ln

4b

δ

]
≤ δ

4b
(4.28)where we used (4.26), (4.27) and the assumption of the lemma on n. The proof of the�rst statement is �nished with an appli
ation of the union bound and its 
ombination with(4.25).
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ted multi-armed bandit problem 72For the se
ond statement we use a similar argument, that is,
n∑

t=1

(ℓ̃i,t − ℓi,t) =
b∑

j=1

α
(i,B)

bj

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t) ≤
∑

j=1

∣∣∣α(i,B)

bj

∣∣∣
∣∣∣∣∣

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t)

∣∣∣∣∣

≤ 2
b∑

j=1

∣∣∣∣∣

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t)

∣∣∣∣∣ . (4.29)Now applying Lemma 4.2 for a �xed bj we get
P

[
n∑

t=1

(ℓ̃bj ,t − ℓbj ,t) ≥
4

3

√
2n

K2b

ε
ln

4bN

δ

]
≤ δ

4bN
(4.30)be
ause of Et[(ℓ̃bj ,t − ℓbj ,t)

2] ≤ K2b
ε

and −K ≤ ℓ̃bj ,t − ℓbj ,t ≤ K
(

b
ε
− 1
). The proof is
ompleted by applying the union bound to (4.30) and 
ombining the result with (4.29). 2Proof of Theorem 4.5. Similarly to earlier proofs, we follow the evolution of the term

ln W n

W 0
. In the same way as we obtained (4.5) and (4.7), we have

ln
W n

W 0

≥ −η min
i∈P

L̃i,n − ln Nand
ln

W n

W 0

≤
n∑

t=1

(
−η
∑

i∈P
pi,tℓ̃i,t +

η2

2

∑

i∈P
pi,tℓ̃

2
i,t

)
.Combining these bounds, we obtain

−min
i∈P

L̃i,n − ln N

η
≤

n∑

t=1

(
−
∑

i∈P
pi,tℓ̃i,t +

η

2

∑

i∈P
pi,tℓ̃

2
i,t

)

≤
(
−1 +

ηKb

ε

) n∑

t=1

∑

i∈P
pi,tℓ̃i,t ,be
ause 0 ≤ ℓ̃i,t ≤ 2Kb

ε
. Applying the results of Lemma 4.9 and the union bound, we have,with probability 1 − δ/2,

−min
i∈P

Li,n − 8

3
b

√
2n

K2b

ε
ln

4bN

δ

≤
(
−1 +

ηKb

ε

)( n∑

t=1

∑

i∈P
pi,tℓi,t −

8

3
b

√
2n

K2b

ε
ln

4b

δ

)
+

ln N

η

≤
(
−1 +

ηKb

ε

) n∑

t=1

∑

i∈P
pi,tℓi,t +

8

3
b

√
2n

K2b

ε
ln

4b

δ
+

ln N

η
. (4.31)
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e the sets
Tn

def
= {t : 1 ≤ t ≤ n and St = 0} and T n

def
= {t : 1 ≤ t ≤ n and St = 1}of �exploitation� and �exploration� steps, respe
tively. Then, by the Hoe�ding-Azumainequality [48℄ we obtain that, with probability at least 1 − δ/4,

∑

t∈Tn

∑

i∈P
pi,tℓi,t ≥

∑

t∈Tn

ℓIt,t −
√

|Tn|K2

2
ln

4

δ
.Note that for the exploration steps t ∈ T n, as the algorithm plays a

ording to a uniformdistribution instead of pi,t, we 
an only use the trivial lower bound zero on the losses, thatis, ∑

t∈T n

∑

i∈P
pi,tℓi,t ≥

∑

t∈T n

ℓIt,t − K|T n| .The last two inequalities imply
n∑

t=1

∑

i∈P
pi,tℓi,t ≥ L̂n −

√
|Tn|K2

2
ln

4

δ
− K|T n| . (4.32)Then, by (4.31), (4.32) and Lemma 4.8 we obtain, with probability at least 1 − δ,

L̂n − min
i∈P

Li,n

≤ K


ηb

ε
Kn +

√
n

2
ln

4

δ
+ nε +

√
2nε ln 4

δ

K
+

16

3
b

√
2n

b

ε
ln

4bN

δ


+

ln N

ηwhere we used L̂n ≤ Kn and |Tn| ≤ n. Substituting the values of ε and η gives
L̂n − min

i∈P
Li,n ≤ K2bnε +

1

4
Knε + Knε +

1

2
nε +

16

3
b
√

Knε + nε

≤ 9.1K2bnεwhere we used √n
2

ln 4
δ
≤ 1

4
nε, √2nε ln 4

δ
≤ 1

2
nε, √n bK

ε
ln 4N

δ
= nε, and ln N

η
≤ nε (fromthe assumptions of the theorem). 24.7 Simulation resultsTo further investigate our new algorithms, we have 
ondu
ted some simple simulations.As the main motivation of this work is to improve earlier algorithms in 
ase the number ofpaths is exponentially large in the number of edges, we tested the algorithms on the small



4.7. Simulation results 74graph shown in Figure 4.1 (b), whi
h has one of the simplest stru
tures with exponentiallymany (namely 2|E|/2) paths.The losses on the edges were generated by a sequen
e of independent and uniformrandom variables, with values from [0, 1] on the upper edges, and from [0.32, 1] on thelower edges, resulting in a (long-term) optimal path 
onsisting of the upper edges. Weran the tests for n = 10000 steps, with 
on�den
e value δ = 0.001. To establish baselineperforman
e, we also tested the EXP3 algorithm of Auer et al. [5℄ (note that this algorithmdoes not need edge losses, only the loss of the 
hosen path). For the version of our banditalgorithm that is informed of the individual edge losses (edge-bandit), we used the simple2-element 
over set of the paths 
onsisting of the upper and lower edges, respe
tively (other2-element 
over sets give similar performan
e). For our restri
ted shortest path algorithm(path-bandit) the basis {uuuuu, uuuul, uuull, uulll, ullll, lllll} was used, where u (resp.
l) in the kth position denotes the upper (resp. lower) edge 
onne
ting vk−1 and vk. Inthis example the performan
e of the algorithm appeared to be independent of the a
tual
hoi
e of the basis; however, in general we do not expe
t this behavior. Two versionsof the algorithm of Awerbu
h and Kleinberg [11℄ were also simulated. With its originalparameter setting (AwKl), the algorithm did not perform well. However, after optimizingits parameters o�-line (AwKl tuned), substantially better performan
e was a
hieved. Thenormalized regret of the above algorithms, averaged over 30 runs, as well as the regret ofthe �xed paths in the graph are shown in Figure 4.7.Although all algorithms showed better performan
e than the bound for the edge-banditalgorithm, the latter showed the expe
ted superior performan
e in the simulations. Fur-thermore, our algorithm for the restri
ted shortest path problem outperformed Awerbu
hand Kleinberg's (AwKl) algorithm, while being inferior to its o�-line tuned version (AwKltuned). It must be noted that similar parameter optimization did not improve the per-forman
e of our path-bandit algorithm, whi
h showed robust behavior with respe
t toparameter tuning.
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Chapter 5
On-line Predi
tion in 
ase of Stationary and Ergodi
 Pro
esses

One may wonder whether it is possible to improve the statements for individual sequen
esif we have some assumptions about the behavior of the out
ome sequen
es y1, y2, . . .. Tospot a possible way of the improvement we re
all our analogy with pattern re
ognition,whi
h was mentioned in Se
tion 1.1. In Chapter 3 and in Chapter 4 we have dealt withthe minimization of the estimation error, that is, that measures the di�eren
e between thenormalized regret of the best expert from a �xed expert 
lass and the normalized regret ofour algorithm. However, if we have e.g. stationary and ergodi
 assumption on the out
omesequen
e we 
an say also something about the approximation error, whi
h des
ribes how faris the performan
e of the best expert from the performan
e of the Bayes-optimal predi
tor,whi
h 
an be a
hieved only in full knowledge of the underlying distribution of the out
omepro
ess.In this 
hapter we provide simple on-line pro
edures for the predi
tion of a sequen
esin stationary and ergodi
 environment, whi
h not only minimize the estimation error butalso guarantee that the approximation error vanishes asymptoti
ally. The proposed al-gorithms are based on a 
ombination of several simple predi
tors (experts). One of thehuge in
rement using this �model-less� expert advi
e approa
h that it provides �adapta-tion� also in 
ase of dependent out
ome sequen
e, where the 
lassi
al methods (splittingand 
ross-validation) is not appli
able.In Se
tion 5.1 we introdu
e a predi
tion strategy (algorithm) for unbounded stationaryand ergodi
 real-valued pro
esses and show that the average of squared errors of the algo-rithm 
onverges, almost surely, to that of the optimum, given by the Bayes predi
tor. Thisproperty � that the loss of a strategy 
onverges to the loss of the theoreti
al optimum � is
alled universal 
onsisten
y. In Se
tion 5.2 we o�er an extension for the noisy setting, thatis when the algorithm has a

ess only to the noisy version of the original sequen
e. The�
lean� pro
ess is passed through a �xed binary memoryless 
hannel (e.g. Binary Symmet-ri
 Channel). This setup was introdu
ed and studied by Weissman and Merhav [72, 73℄.Theorem 5.2 proves the universal 
onsisten
y of an algorithm in the noisy setting for theloss fun
tion whi
h is 
onvex in its �rst argument (e.g.: squared loss, absolute loss, et
.).76



5.1. Universal predi
tion of unbounded time series:squared loss 77Finally, in Se
tion 5.3 we provide a simple universally 
onsistent 
lassi�
ation s
heme forzero-one loss in the noisy setting.5.1 Universal predi
tion of unbounded time series:squared lossThe problem of time series analysis and predi
tion has a long and ri
h history, probablydating ba
k to the pioneering work of Yule in 1927 [75℄. The appli
ation s
ope is vast, astime series modeling is routinely employed a
ross the entire and diverse range of appliedstatisti
s, in
luding problems in geneti
s, in info-
ommuni
ations systems, ma
hine 
ondi-tion monitoring, �nan
ial investments, marketing and e
onometri
s. Most of the resear
ha
tivity until the 1970s was 
on
erned with parametri
 approa
hes to the problem wherebya simple, usually linear model is �tted to the data or it was assumed that the pro
ess isthe sum of a sequen
e from a restri
ted 
lass or a Gaussian pro
ess (for a 
omprehensivea

ount we refer the reader to the monograph of Bro
kwell and Davies [19℄). While manyappealing mathemati
al properties of the parametri
 paradigm have been established, ithas be
ome 
lear over the years that the limitations of the approa
h may be rather severe,essentially due to overly rigid 
onstraints whi
h are imposed on the pro
esses. For example,it turned out that �nan
ial pro
esses 
annot be modeled by linear pro
esses. One of themore promising solutions to over
ome this problem has been the extension of 
lassi
 non-parametri
 methods to the time series framework (see for example Györ�, Härdle, Sardaand Vieu [30℄ and Bosq [16℄ for a review and referen
es).The present se
tion is devoted to the nonparametri
 problem of sequential predi
tionof unbounded, ergodi
 real valued sequen
es whi
h we do not require to ne
essarily satisfythe 
lassi
al statisti
al assumptions for bounded, autoregressive or Markovian pro
esses.Indeed, our goal is to show 
onsisten
y results under a stri
t minimum of 
onditions.Consisten
y for ergodi
 sequen
e 
an be proved using the powerful ma
hine learning boundsderived for individual sequen
es.To �x the 
ontext, we suppose that at ea
h time instant t = 1, 2, . . ., the predi
tor isasked to guess the value of the next out
ome yt of a sequen
e of real numbers y1, y2, . . . withknowledge of the past yt−1
1 = (y1, . . . , yt−1) (where y0

1 denotes the empty string) and the sideinformation ve
tors xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the predi
tor's estimate, attime t, is based on the value of xt
1 and yt−1

1 . A predi
tion strategy is a sequen
e g = {gt}∞t=1of fun
tions
gt : (Rd)t × R

t−1 → Rso that the predi
tion formed at time t is gt(x
t
1, y

t−1
1 ).Throughout the 
hapter we assume that (x1, y1), (x2, y2), . . . are realizations of the ran-dom variables (X1, Y1), (X2, Y2), . . . su
h that {(Xn, Yn)}∞−∞ is a jointly stationary andergodi
 pro
ess.
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tion of unbounded time series:squared loss 78After n time instants, the normalized 
umulative predi
tion error is
Ln(g) =

1

n

n∑

t=1

ℓ(gt(X
t
1, Y

t−1
1 ), Yt) =

1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 ) − Yt)

2,where ℓ : R × R → R now denotes the squared loss.The results of this 
hapter are given in an autoregressive (on-line learning) framework,that is, the value Yt is predi
ted based on the past observations (X t
1 and Y t−1

1 ). Thefundamental limit for the predi
tability of the sequen
e 
an be determined based on aresult of Algoet [2℄, who showed that for any predi
tion strategy g and stationary ergodi
pro
ess {(Xn, Yn)}∞−∞,
lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (5.1)where
L∗ = E

{(
Y0 − E

[
Y0

∣∣X0
−∞, Y −1

−∞
])2}is the minimal mean squared error of any predi
tion for the value of Y0 based on thein�nite past X0

−∞, Y −1
−∞. Note that it follows by stationarity and the martingale 
onvergen
etheorem (see, e.g., Stout [67℄) that

L∗ = lim
n→∞

E

{(
Yn − E

[
Yn

∣∣Xn
1 , Y n−1

1

])2}
.This lower bound gives sense to the following de�nition:De�nition 5.1. A predi
tion strategy g is 
alled universally 
onsistent with respe
t to a
lass C of stationary and ergodi
 pro
esses {(Xn, Yn)}∞−∞, if for ea
h pro
ess in the 
lass,

lim
n→∞

Ln(g) = L∗ almost surely.Universally 
onsistent strategies asymptoti
ally a
hieve the best possible loss for all ergodi
pro
esses in the 
lass.In 
ase of squared loss Algoet [1℄ proved that there exists a predi
tion strategy that 
ana
hieve this well-de�ned optimum. Using ma
hine learning prin
iples, Györ� and Lugosi[32℄ introdu
ed several simple predi
tion strategies, whi
h are universally 
onsistent withrespe
t to the 
lass of bounded, stationary and ergodi
 pro
esses. In this se
tion we extendthe results of [32℄ to unbounded pro
esses. We refer to Nobel [58℄, Singer and Feder [65℄,[66℄ and Yang [74℄ for 
losely related re
ent works.The predi
tion strategy g is de�ned, at ea
h time instant, as a 
onvex 
ombination ofelementary predi
tors, where the weighting 
oe�
ients depend on the past performan
e ofea
h elementary predi
tor.The goal of ea
h simple predi
tor is to estimate the regression fun
tion E
[
Yn

∣∣Xn
1 , Y n−1

1

]at time instan
e n. We de�ne an in�nite array of elementary predi
tors h(k,l), k, l = 1, 2, . . .as follows. Let Pl = {Al,j, j = 1, 2, . . . ,ml} be a sequen
e of �nite partitions of R, and let
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Ql = {Bl,j, j = 1, 2, . . . ,m′

l} be a sequen
e of �nite partitions of R
d. Introdu
e the 
orre-sponding quantizers:

Fl(y) = j, if y ∈ Al,jand
Gl(x) = j, if x ∈ Bl,j .With some abuse of notation, for any n and yn

1 ∈ R
n, we write Fl(y

n
1 ) for the se-quen
e Fl(y1), . . . , Fl(yn), and similarly, for xn

1 ∈ (Rd)n, we write Gl(x
n
1 ) for the sequen
e

Gl(x1), . . . , Gl(xn).Fix positive integers k, l, and for ea
h (k + 1)-long string z of positive integers, and forea
h k-long string s of positive integers, de�ne the partitioning regression fun
tion estimate
Ê(k,l)

n (xn
1 , y

n−1
1 , z, s) =

∑
{k<t<n:Gl(x

t
t−k)=z, Fl(y

t−1
t−k)=s} yt

∣∣{k < t < n : Gl(xt
t−k) = z, Fl(y

t−1
t−k) = s}

∣∣ ,for all n > k+1 where 0/0 is de�ned to be 0. Be
ause of the original sequen
e is unboundedwe have to 
ontrol (bound) the predi
ted value of ea
h expert. Therefore we introdu
e atrun
ation fun
tion to prevent from that the experts' predi
tion have �too big� values, thatis,
Tn(z) =





nδ if z > nδ;
z if |z| ≤ nδ;
−nδ if z < −nδ,where

0 < δ < 1/8.Now we are ready to de�ne the elementary predi
tor h(k,l) by
h(k,l)

n (xn
1 , y

n−1
1 ) = Tn

(
Ê(k,l)

n (xn
1 , y

n−1
1 , Gl(x

n
n−k), Fl(y

n−1
n−k))

)
,for n = 1, 2, . . . . That is, h

(k,l)
n quantizes the sequen
e xn

1 , y
n−1
1 a

ording to the partitions

Ql and Pl, and looks for all appearan
es of the last seen quantized strings Gl(x
n
n−k) oflength k + 1 and Fl(y

n−1
n−k) of length k in the past. Then it predi
ts a

ording to thetrun
ation of the average of the yt's following the string.The proposed predi
tion algorithm pro
eeds based on exponential weighting averagealgorithm. Formally, let {qk,l} be a probability distribution on the set of all pairs (k, l) ofpositive integers su
h that for all k, l, qk,l > 0. For ηt > 0, and de�ne the weights

wk,l,t = qk,le
−ηt(t−1)Lt−1(h(k,l))and their normalized values

pk,l,t =
wk,l,t

Wt

,where
Wt =

∞∑

i,j=1

wi,j,t .
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tion of unbounded time series:squared loss 80The predi
tion strategy g is de�ned by
gt(x

t
1, y

t−1
1 ) =

∞∑

k,l=1

pk,l,th
(k,l)
t (xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.2)Theorem 5.1. (Györfi and Ottu
sák [35℄). Assume that(a) the sequen
es of partition Pl is nested, that is, any 
ell of Pl+1 is a subset of a 
ell of

Pl, l = 1, 2, . . .;(b) the sequen
es of partition Ql is nested;(
) the sequen
es of partition Pl is asymptoti
ally �ne, i.e., if
diam(A) = sup

x,y∈A
‖x − y‖denotes the diameter of a set, then for ea
h sphere S 
entered at the origin

lim
l→∞

max
j:Al,j∩S 6=∅

diam(Al,j) = 0 ;(d) the sequen
es of partition Ql is asymptoti
ally �ne.Choose the parameter ηt of the algorithm as
ηt =

1√
t

.Then the predi
tion s
heme g de�ned above is universally 
onsistent with respe
t to the
lass of all ergodi
 pro
esses su
h that
E{Y 4

1 } < ∞.Here we des
ribe two results, whi
h are used in the analysis. The �rst lemma is amodi�
ation of the analysis of Auer et al. [7℄, whi
h allows of the handling the 
ase whenthe parameter of the algorithm (ηt) is time-dependent and the number of the elementarypredi
tors is in�nite.Lemma 5.1. (Györfi and Ottu
sák [35℄). Let h(1), h(2), . . . be a sequen
e of predi
-tion strategies (experts). Let {qk} be a probability distribution on the set of positive integers.Denote the normalized loss of the expert h = (h1, h2, . . . ) by
Ln(h) =

1

n

n∑

t=1

ℓt(h),where
ℓt(h) = ℓ(ht, Yt)and the loss fun
tion ℓ is 
onvex in its �rst argument h. De�ne

wk,t = qke
−ηt(t−1)Lt−1(h(k))
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tion of unbounded time series:squared loss 81where ηt > 0 is monotoni
ally de
reasing, and
pk,t =

wk,t

Wtwhere
Wt =

∞∑

k=1

wk,t .If the predi
tion strategy g = (g1, g2, . . . ) is de�ned by
gt =

∞∑

k=1

pk,th
(k)
t t = 1, 2, . . .then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pk,tℓ
2
t (h

(k)).Proof. Introdu
e some notations:
w′

k,t = qke
−ηt−1(t−1)Lt−1(h(k)),whi
h is the weight wk,t, where ηt is repla
ed by ηt−1 and the sum of these are

W ′
t =

∞∑

k=1

w′
k,t.We start the proof with the following 
hain of bounds:

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∑∞
k=1 wk,te

−ηtℓt(h(k))

Wt

=
1

ηt

ln
∞∑

k=1

pk,te
−ηtℓt(h(k))

≤ 1

ηt

ln
∞∑

k=1

pk,t

(
1 − ηtℓt(h

(k)) +
η2

t

2
ℓ2
t (h

(k))

)
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ause of e−x ≤ 1 − x + x2/2 for x ≥ 0. Moreover,
1

ηt

ln
W ′

t+1

Wt

≤ 1

ηt

ln

(
1 − ηt

∞∑

k=1

pk,tℓt(h
(k)) +

η2
t

2

∞∑

k=1

pk,tℓ
2
t (h

(k))

)

≤ −
∞∑

k=1

pk,tℓt(h
(k)) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.3)
= −

∞∑

k=1

pk,tℓ(h
(k)
t , Yt) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k))

≤ −ℓ

( ∞∑

k=1

pk,th
(k)
t , Yt

)
+

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.4)
= −ℓt(g) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.5)where (5.3) follows from the fa
t that ln(1+x) ≤ x for all x > −1 and in (5.4) we used the
onvexity of the loss ℓ(h, y) in its �rst argument h. From (5.5) after rearranging we obtain
ℓt(g) ≤ − 1

ηt

ln
W ′

t+1

Wt

+
ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) .Then write a teles
ope formula:
1

ηt

ln Wt −
1

ηt

ln W ′
t+1 =

(
1

ηt

ln Wt −
1

ηt+1

ln Wt+1

)

+

(
1

ηt+1

ln Wt+1 −
1

ηt

ln W ′
t+1

)

= (At) + (Bt).We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt

ln Wt −
1

ηt+1

ln Wt+1

)

=
1

η1

ln W1 −
1

ηn+1

ln Wn+1

= − 1

ηn+1

ln
∞∑

k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1

ln sup
k

qke
−ηn+1nLn(h(k))

= − 1

ηn+1

sup
k

(
ln qk − ηn+1nLn(h(k))

)

= inf
k

(
nLn(h(k)) − ln qk

ηn+1

)
.
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ηt+1

ηt
≤ 1, therefore applying Jensen's inequality for 
on
ave fun
tion, we get that

Wt+1 =
∞∑

i=1

qie
−ηt+1tLt(h(i))

=
∞∑

i=1

qi

(
e−ηttLt(h(i))

) ηt+1
ηt

≤
( ∞∑

i=1

qie
−ηttLt(h(i))

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt .Thus,

Bt =
1

ηt+1

ln Wt+1 −
1

ηt

ln W ′
t+1

≤ 1

ηt+1

ηt+1

ηt

ln W ′
t+1 −

1

ηt

ln W ′
t+1

= 0.We 
an summarize the bounds:
Ln(g) ≤ inf

k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pk,tℓ
2
t (h

(k)) .

2The next lemma is due to Breiman [18℄, and its proof may also be found in Györ� etal. [31℄.Lemma 5.2. Let Z = {Zi}∞−∞ be a stationary and ergodi
 time series. Let T denote theleft shift operator. Let fi be a sequen
e of real-valued fun
tions su
h that for some fun
tion
f , fi(Z) → f(Z) almost surely. Assume that E supi |fi(Z)| < ∞. Then

lim
n→∞

1

n

n∑

i=1

fi(T
iZ) = Ef(Z)almost surely.Proof of Theorem 5.1. Be
ause of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s. (5.6)
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tion of unbounded time series:squared loss 84By a double appli
ation of the ergodi
 theorem, as n → ∞, a.s.,
Ê(k,l)

n (Xn
1 , Y n−1

1 , z, s) =

1
n

∑
{k<t<n: Gl(X

t
t−k)=z, Fl(Y

t−1
t−k )=s} Yt

1
n

∣∣{k < t < n : Gl(X t
t−k) = z, Fl(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{Gl(X

0
−k)=z, Fl(Y

−1
−k )=s}}

P{Gl(X0
−k) = z, Fl(Y

−1
−k ) = s}

= E{Y0 | Gl(X
0
−k) = z, Fl(Y

−1
−k ) = s},and therefore for all z and s

Tn

(
Ê(k,l)

n (Xn
1 , Y n−1

1 , z, s)
)
→ E{Y0 | Gl(X

0
−k) = z, Fl(Y

−1
−k ) = s}.Now we 
an write

Ln(h(k,l)) =
1

n

n∑

t=1

(h(k,l)(X t
1, Y

t−1
1 ) − Yt)

2

=
1

n

n∑

t=1

(
Tt

(
Ê

(k,l)
t (X t

1, Y
t−1
1 , Gl(X

t
t−k), Fl(Y

t−1
t−k ))

)
−Yt

)2

. (5.7)To use Lemma 5.2 we have to verify E supi |fi(Y
∞
−∞, X∞

−∞)| < ∞, where
fi(X

∞
−∞, Y ∞

−∞) = (h(k,l)(X0
1−i, Y

−1
1−i) − Y0)

2.One 
an show that is enough to verify only the numerator of Ê
(k,l)
n (X0

1−k, Y
−1
1−k, z, s) dividedby n is �nite for ea
h individual z and s. For this we 
an apply maximal ergodi
 theorem(see Krengel [51℄ Theorem 6.3 with parameter p = 2). Now using Lemma 5.2, as n → ∞,almost surely, we get from (5.7)

Ln(h(k,l)) →E{(Y0 − E{Y0 | Gl(X
0
−k), Fl(Y

−1
−k )})2}def

= ǫk,l.

E{Y0 | Gl(X
0
−k), Fl(Y

−1
−k )} is a martingale indexed by the pair (k, l), sin
e the partitions

Pl and Ql are nested. Thus, the martingale 
onvergen
e theorem (see, e.g., Stout [67℄) andassumptions (
) and (d) for the sequen
es of partitions implies that
inf
k,l

ǫk,l = lim
k,l→∞

ǫk,l = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗(
f. Györ� and Lugosi [32℄).To prove (5.6) apply Lemma 5.1 with 
hoi
e ηt = 1√

t
and for the squared loss ℓt(h) =

(ht − Yt)
2, then the squared loss is 
onvex in its �rst argument h, so

Ln(g) ≤ inf
k,l

(
Ln(h(k,l)) − 2 ln qk,l√

n

)
+

1

2n

n∑

t=1

1√
t

∞∑

k,l=1

pk,l,t

(
h(k,l)(X t

1, Y
t−1
1 ) − Yt

)4
.(5.8)
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tion of unbounded time series:squared loss 85On the one hand, almost surely,
lim sup

n→∞
inf
k,l

(
Ln(h(k,l)) − 2 ln qk,l√

n

)
≤ inf

k,l
lim sup

n→∞

(
Ln(h(k,l)) − 2 ln qk,l√

n

)

= inf
k,l

lim sup
n→∞

Ln(h(k,l))

= inf
k,l

ǫk,l

= lim
k,l→∞

ǫk,l

= L∗.On the other hand,
1

n

n∑

t=1

1√
t

∑

k,l

pk,l,t(h
(k,l)(X t

1, Y
t−1
1 ) − Yt)

4 ≤ 8

n

n∑

t=1

1√
t

∑

k,l

pk,l,t

(
h(k,l)(X t

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑

t=1

1√
t

∑

k,l

pk,l,t

(
t4δ + Y 4

t

)

=
8

n

n∑

t=1

t4δ + Y 4
t√

t
,therefore, almost surely,

lim sup
n→∞

1

n

n∑

t=1

1√
t

∑

k,l

pk,l,t(h
(k,l)(X t

1, Y
t−1
1 ) − Yt)

4 ≤ lim sup
n→∞

8

n

n∑

t=1

Y 4
t√
t

= 0,where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8
. Summarizing these bounds, we getthat, almost surely,

lim sup
n→∞

Ln(g) ≤ L∗and the proof of the theorem is �nished. 2Remark 5.1. (Choi
e of qk,l) Theorem 5.1 is true independently of the 
hoi
e of the
qk,l's as long as these values are stri
tly positive for all k and l. In pra
ti
e, however, the
hoi
e of qk,l may have an impa
t on the performan
e of the predi
tor. For example, if thedistribution {qk,l} has a very rapidly de
reasing tail, then the term − ln qk,l/

√
n will belarge for moderately large values of k and l, and the performan
e of g will be determinedby the best of just a few of the elementary predi
tors h(k,l). Thus, it may be advantageousto 
hoose {qk,l} to be a large-tailed distribution. For example, qk,l = c0k

−2l−2 is a safe
hoi
e, where c0 is an appropriate normalizing 
onstant.Remark 5.2. (General losses) It is easy to extend Theorem 5.1 to the loss fun
tion
ℓ(x, y) = |x − y|r ,where r ≥ 1.



5.2. Univ. pred. for bin. memoryless 
hannel: general 
onvex loss 86Remark 5.3. (Implementation) The proposed algorithm in not 
omputationally fea-sible to implement it be
ause of the in�nite number of simple predi
tors. However, inpra
ti
al s
enarios e.g. in regression problem Biau, Bleakley, Györ� and Ottu
sák [14℄ orin portfolio sele
tion problems 
f. Györ�, Lugosi and Udina [34℄ and Ottu
sák and Vajda[62℄ it seems that a relatively small proportion of experts (k = 1, . . . , 5 and l = 1, . . . , 10)provides good experimental results. Moreover, for the higher values of k and l the a
hievedperforman
e is from bad to worse.5.2 Universal predi
tion for binary memoryless 
hannel:general 
onvex lossIn this se
tion we investigate the 
ase when the predi
tor has only in
omplete information.Here {(Xn, Yn)}∞−∞ is a jointly stationary and ergodi
 pro
ess and both Xt and Yt arebinary valued. The predi
tor's estimate, at time t, is based on the value of X t−1
1 and apredi
tion strategy is a sequen
e g = {gt}∞t=1 of fun
tions

gt : {0, 1}t−1 → Rso that the predi
tion formed at time t is gt(X
t−1
1 ).Obviously, on the one hand this model is a spe
ial 
ase of the previous setup (be
ausethe out
ome is a binary value sequen
e), on the other hand it handles a more general 
lassof loss fun
tions (
onvex losses) and takes less assumption on the amount of the information(uses only past side information).After n time instants, the normalized 
umulative loss is

Ln(g)
def
=

1

n

n∑

t=1

ℓ(gt(X
t−1
1 ), Yt)where ℓ : R × {0, 1} → [0, K] is a bounded loss fun
tion, whi
h is 
onvex in its �rstargument. This model was introdu
ed and studied in Weissman and Merhav [72, 73℄.The key property of the loss fun
tion, whi
h allows to obtain universal 
onsisten
y inthe 
ase noisy environment, is that the loss fun
tion 
an be �linearized� in Yt, that is,

Ln(g) =
1

n

n∑

t=1

[
(1 − Yt)ℓ(gt(X

t−1
1 ), 0) + Ytℓ(gt(X

t−1
1 ), 1)

]be
ause Yt is binary. This form allows us to estimate Yt mu
h easier (dire
tly) irrespe
tivelyof the loss fun
tion.The predi
tion with side information only is a deli
ate problem, be
ause Yt neither inthe learning, nor in the predi
tion is available. In that 
ase the fundamental limit for thepredi
tability of the sequen
e 
an be determined as follows. Let
g∗

t (X
t−1
1 ) = E(Yt|X t−1

1 )
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hannel: general 
onvex loss 87be the Bayes-optimal predi
tor and its normalized 
umulative loss is
Ln(g∗

t ) =
1

n

n∑

t=1

ℓ(g∗(X t−1
1 ), Yt) .Now de�ne

δt = ℓ(gt(X
t−1
1 ), Yt) − E

(
ℓ(gt(X

t−1
1 ), Yt)|X t−1

1

)then we 
an write
Ln(g) =

1

n

n∑

t=1

δt +
1

n

n∑

t=1

E
(
ℓ(gt(X

t−1
1 ), Yt)|X t−1

1

)

≥ 1

n

n∑

t=1

δt +
1

n

n∑

t=1

E
(
ℓ(g∗

t (X
t−1
1 ), Yt)|X t−1

1

)
.Weissman and Merhav [73, Lemma 1℄ proved

1

n

n∑

t=1

δt → 0 a.s.under the 
ondition that {(Xn, Yn)}∞n=−∞ is 
onditionally mixing in the sense that
∞∑

s=1

sup
t≥1

E
∣∣P{Yt+s = a|Yt = a,X t+s−1

1 } − P{Yt+s = a|X t+s−1
1 }

∣∣ < ∞, (5.9)where a ∈ {0, 1}. Therefore, we get
lim inf
n→∞

Ln(g) ≥ lim inf
n→∞

Ln(g∗) = R∗ , (5.10)with
R∗ = E

{
(1 − Y0)ℓ(E{Y0 | X−1

−∞}, 0) + Y0ℓ(E{Y0 | X−1
−∞}, 1)

}
. (5.11)Similarly to De�nition 5.1 we 
all a predi
tion strategy g universally 
onsistent with respe
tto a 
lass C of stationary and ergodi
 pro
esses {(Xn, Yn)}∞−∞ if for ea
h pro
ess in the
lass,

lim
n→∞

Ln(g) = R∗ almost surely.Hen
eforth, we assume that the 
onne
tion between Yt and Xt are 
hara
terized by anbinary memoryless 
hannel as, e.g., binary symmetri
 
hannel or binary erasure 
hannel.It means that Yt is the input of the 
hannel and Xt is the output of the 
hannel, andbased on the past outputs X t−1
1 we want to estimate the input Yt. We suppose also thatthe 
rossover probabilities of the 
hannel are known for the algorithm. This assumptionis indeed a realisti
 one in many appli
ations, where noisy medium is well-
hara
terizedstatisti
ally.
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hannel: general 
onvex loss 88Then the algorithm is able to 
onstru
t a random variable r̃(Xt,C) whi
h is an e�
ientestimate of original bit Yt where C is the 
hannel matrix:
C =

[
1 − p p

q 1 − q

]
,and 0 ≤ p, q < 1

2
are the 
rossover probabilities of the 
hannel. More pre
isely, let

r̃(Xt,C) =
Xt − p

1 − p − qwhi
h is a 
onditionally unbiased estimate of Yt respe
t to X t−1
1 . Namely,

E{Xt|Yt} = I{Yt=0}[(1 − p)Yt + p(1 − Yt)] + I{Yt=1}[(1 − q)Yt + q(1 − Yt)]

= I{Yt=0}[p(1 − Yt)] + I{Yt=1}[(1 − q)Yt]

= p + Yt(1 − p − q)and therefore
E{r̃(Xt,C)|X t−1

1 } = E

{
Xt − p

1 − p − q

∣∣∣∣X
t−1
1

}

= E

{
E
{
Xt|Yt, X

t−1
1

}
− p

1 − p − q

∣∣∣∣X
t−1
1

}

= E

{
E {Xt|Yt} − p

1 − p − q

∣∣∣∣X
t−1
1

}

= E{Yt|X t−1
1 } ,where the third equation follows from the memoryless property of the 
hannel.The algorithm is de�ned, at ea
h time instant, as a 
ombination of simple predi
tors,where the weighting 
oe�
ients depend on the past performan
e of ea
h simple predi
tor.We de�ne an in�nite array of elementary predi
tors h(k), k = 1, 2, . . . as follows. Let

J
(k)
n be the lo
ations of the mat
hes of the last seen binary string xn−1

n−k of length k in thepast:
J (k)

n = {k < t < n : xt−1
t−k = xn−1

n−k} .Now de�ne the elementary predi
tor h(k) by
h(k)(xn−1

1 ) = r̃

(∑
{t∈J

(k)
n } xt

|J (k)
n |

,C

)

n > k + 1, where 0/0 is de�ned to be 0. Note that h(k)(xn−1
1 ) ∈

[
−p

1−p−q
; 1−p

1−p−q

].Sin
e, the predi
tor has no a

ess to the �
lean� sequen
e Yt thus to measure its ownperforman
e (loss) it must use another type of the loss fun
tion based on Xt only. De�ne



5.2. Univ. pred. for bin. memoryless 
hannel: general 
onvex loss 89the following loss fun
tion introdu
ed by Weissman and Merhav [72℄: let ℓ̃ : R × {0, 1} →
[−pK
1−2p

, (1−p)K
1−2p

] be the estimated loss, where K is the upper bound of ℓ(·, ·). More pre
isely,let
ℓ̃(gt(X

t−1
1 ), Xt)

def
= r̃(1 − Xt,C)ℓ(gt(X

t−1
1 ), 0) + r̃(Xt,C)ℓ(gt(X

t−1
1 ), 1) ,whi
h is an (
onditionally) unbiased estimate of the k-th expert's true loss. The 
umulativeestimated loss of the k-th expert is given by

L̃n(h(k)) =
1

n

n∑

t=1

ℓ̃(h(k)(X t−1
1 ), Xt) .The proposed predi
tion algorithm pro
eeds as follows: let {qk} be a probability distri-bution on the set of all k of positive integers su
h that for all k, qk > 0. For ηt > 0, de�nethe weights

wk,t = qke
−ηt(t−1)L̃t−1(h(k))and their normalized values

pk,t =
wk,t∑∞
i=1 wi,t

.The predi
tion strategy g is de�ned by
gt(x

t−1
1 ) =

∞∑

k=1

pk,th
(k)(xt−1

1 ) , t = 1, 2, . . . . (5.12)Theorem 5.2. (Ottu
sák and Györfi [60℄). Assume that {Yt} is stationary ergodi
,and {Xt} is the output sequen
e of a binary memoryless 
hannel if {Yt} is the input se-quen
e. The predi
tion s
heme g de�ned above is universally 
onsistent with respe
t to the
lass of all ergodi
 pro
esses satisfying (5.9).For the proof of the theorem we use the next lemma is due to Weissman and Merhav [72℄(Lemma 2).Lemma 5.3. If ℓ(·, ·) ∈ [0, B] then for any predi
tor g

lim sup
n→∞

√
n|Ln(g) − L̃n(g)|√

log log n
≤ C(C) a.s.,where C(C) is a deterministi
 
onstant depending on the 
hannel matrix.Proof of Theorem 5.2. Be
ause of (5.9) we have (5.10), therefore it is enough to showthat

lim sup
n→∞

Ln(g) ≤ R∗ a.s.
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lim sup

n→∞
Ln(g) − R∗ ≤ lim sup

n→∞
|Ln(g) − L̃n(g)| (5.13)

+ lim sup
n→∞

L̃n(g) − inf
k

lim sup
n→∞

L̃n(h(k)) (5.14)
+ inf

k
lim sup

n→∞
L̃n(h(k)) − inf

k
lim sup

n→∞
Ln(h(k)) (5.15)

+ inf
k

lim sup
n→∞

Ln(h(k)) − R∗. (5.16)(5.13) and (5.15) goes to zero be
ause of Lemma 5.3. For (5.14), we 
an apply Lemma 5.1with ℓ(·, ·) = ℓ̃(·, ·) + pK
1−p−q

, where the last additive term ensures that ℓ(·, ·) ≥ 0. Then
ℓ(·, ·) ∈ [0, B], where B = K

1−p−q
and we have

lim sup
n→∞

L̃n(g) ≤ lim sup
n→∞

inf
k

(
L̃n(h(k)) − 2B ln qk√

n

)

≤ inf
k

lim sup
n→∞

(
L̃n(h(k)) − 2B ln qk√

n

)

≤ inf
k

lim sup
n→∞

L̃n(h(k)) .Thus it remains to show that (5.16) is smaller than zero:
inf
k

lim sup
n→∞

Ln(h(k)) − R∗ ≤ 0 .By an appli
ation of the ergodi
 theorem, as n → ∞, a.s.,
h(k)

n (Xn−1
1 ) = r̃

(∑
{t∈J

(k)
n } Xt

|J (k)
n |

,C

)

→ r̃
(
E{X0|X−1

−k},C
)

= E{r̃(X0,C)|X−1
−k}

= E{Y0|X−1
−k} .By Lemma 5.2, as n → ∞, almost surely,

Ln(h(k)) =
1

n

n∑

t=1

ℓ(h(k)(X t−1
1 ), Yt)

→ E{ℓ(E{Y0 | X−1
−k}, Y0)

= E{(1 − Y0)ℓ(E{Y0 | X−1
−k}, 0) + Y0ℓ(E{Y0 | X−1

−k}, 1)}def
= ǫk.Thus, the martingale 
onvergen
e theorem (see, e.g., Stout [67, Theorem 2.8.6.℄) impliesthat
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inf
k

ǫk = lim
k→∞

ǫk = E
{
(1 − Y0)ℓ(E{Y0 | X−1

−∞}, 0) +Y0ℓ(E{Y0 | X−1
−∞}, 1)

}
= R∗as desired. 2Remark 5.4. (Predi
tion under 
hannel un
ertainty) If we assume that some-times the algorithm has a

ess to the original bit Yt, then we may 
onstru
t a universal
onsistent predi
tion s
heme even if p and q are unknown for the algorithm. However in anumber of 
ases there are expensive to obtain Yt, therefore the fore
aster has the option toquery this information. For query it used i.i.d. sequen
e S1, S2, . . . , Sn of Bernoulli randomvariables su
h that P{St = 1} = ǫ and asks label Yt if St = 1. Then the algorithm 
an
onstru
t an e�
ient estimate of the 
rossover probabilities:

p̃n =

∑n
t=1 I{Xt=1,Yt=0}St∑n

t=1 I{Yt=0}Stand
q̃n =

∑n
t=1 I{Xt=0,Yt=1}St∑n

t=1 I{Yt=1}St

,where p̃n → p and q̃n → q. Now using these estimates in ℓ̃(·, ·) and r̃(·, ·) we obtain auniversal predi
tion s
heme. The above des
ribed situation appears when the algorithmis supported by a human expert or we have a se
ond no noisy-
hannel. For example, in
ase of natural language pro
essing (e.g. 8 bits represent a 
hara
ter), the human observersele
t the best possible re
onstru
tion, whi
h e.g, 
an be found in the �di
tionary� and �tsin with the 
ontext.5.3 Universal predi
tion for binary memoryless 
hannel:zero-one lossIn this se
tion we apply the same ideas to the seemingly more di�
ult 
lassi�
ation (orpattern re
ognition) problem. The strategy of the 
lassi�er is a sequen
e f = {f t}∞t=1 ofde
ision fun
tions
f t : {0, 1}t−1 → {0, 1}so that the 
lassi�
ation formed at time t is ft(X

t−1
1 ). The normalized 
umulative 0 − 1loss for any �xed pair of sequen
es Xn

1 , Y n
1 is now

Rn(f) =
1

n

n∑

t=1

I{f t(X
t−1
1 ) 6=Yt}.(5.9) implies (5.10) su
h that

lim inf
n→∞

Rn(f) ≥ R∗ (5.17)
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R∗ = E

{
min

(
P{Y0 = 1|X−1

−∞}, P{Y0 = 0|X−1
−∞}

)}
.Consider the predi
tion s
heme gt(X

t−1
1 ) with squared loss ℓ(x, y) = (x−y)2, introdu
edin the previous se
tion, and then introdu
e the 
orresponding 
lassi�
ation s
heme:

f t(X
t−1
1 ) =

{
1 if gt(X

t−1
1 ) > 1/2;

0 otherwise.The main result of this se
tion is the universal 
onsisten
y of this simple 
lassi�
ations
heme:Theorem 5.3. (Ottu
sák and Györfi [60℄). Assume that {Yt} is stationary ergodi
,and {Xt} is the output sequen
e of a binary memoryless 
hannel if {Yt} is the input se-quen
e. The 
lassi�
ation s
heme f de�ned above satis�es
lim

n→∞
Rn(f) = R∗ almost surelyfor any stationary and ergodi
 pro
ess {(Xn, Yn)}∞n=−∞ satisfying (5.9).For the proof we need the following 
orollary of Theorem 5.2.Corollary 5.1. Under the 
onditions of Theorem 5.2,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | X t−1

−∞} − gt(X
t−1
1 )

)2
= 0 a.s. (5.18)where gt is the predi
tor for squared loss ℓ(x, y) = (x − y)2 in noisy setting.Proof. The ergodi
 theorem implies that

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − E{Yt | X t−1

−∞}
)2 ∣∣∣X t−1

−∞

}
= L∗ a.s.and note that

E
{ (

Yt − gt(X
t−1
1 )

)2 ∣∣X t−1
−∞
}

= E{
(
Yt − E{Yt | X t−1

−∞}
)2 | X t−1

−∞}
+
(
E{Yt | X t−1

−∞} − gt(X
t−1
1 )

)2
,therefore in order to �nish the proof it su�
es to show

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − gt(X

t−1
1 )

)2 ∣∣∣X t−1
−∞

}
= L∗ a.s. (5.19)By Theorem 5.2 with squared loss, we have
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lim

n→∞
1

n

n∑

t=1

(
Yt − gt(X

t−1
1 )

)2
= L∗ a.s.Thus, for (5.19), we have to prove that

1

n

n∑

t=1

((
Yt − gt(X

t−1
1 )

)2 − E{
(
Yt − gt(X

t−1
1 )

)2 | X t−1
−∞}

)

=
1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | X t−1

−∞}
)

− 2
1

n

n∑

t=1

gt(X
t−1
1 )(Yt − E{Yt | X t−1

−∞}) → 0 a.s.By the ergodi
 theorem and the assumption (5.9) we have
1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | X t−1

−∞}
)
→ 0 a.s.and

1

n

n∑

t=1

(Yt − E{Yt | X t−1
−∞}) → 0 a.s.whi
h imply the assertion. 2Proof of Theorem 5.3. Be
ause of (5.17) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.Introdu
e the Bayes 
lassi�
ation s
heme using the in�nite past:
f ∗

t (X t−1
−∞) =

{
1 if P{Yt = 1 | X t−1

−∞} > 1/2;
0 otherwise,and its normalized 
umulative 0 − 1 loss:

Rn(f ∗) =
1

n

n∑

t=1

I{f∗
t (Xt−1

−∞) 6=Yt}.Put
R̄n(f) =

1

n

n∑

t=1

P{f t(X
t−1
1 ) 6= Yt | X t−1

−∞}
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R̄n(f ∗) =

1

n

n∑

t=1

P{f ∗
t (X t−1

−∞) 6= Yt | X t−1
−∞}.Be
ause of assumption (5.9) we have

Rn(f) − R̄n(f) → 0 a.s.and
Rn(f ∗) − R̄n(f ∗) → 0 a.s.,moreover, by the Breiman ergodi
 theorem

R̄n(f ∗) → R∗ a.s.so we have to show that
lim sup

n→∞
(R̄n(f) − R̄n(f ∗)) ≤ 0 a.s.Theorem 2.2 in Devroye, Györ� and Lugosi [25℄ implies that

R̄n(f) − R̄n(f ∗) =
1

n

n∑

t=1

(
P{f t(X

t−1
1 ) 6= Yt | X t−1

−∞}

−P{f ∗
t (X t−1

−∞) 6= Yt | X t−1
−∞}

)

≤ 2
1

n

n∑

t=1

∣∣E{Yt | X t−1
−∞} − gt(X

t−1
1 )

∣∣

≤ 2

√√√√1

n

n∑

t=1

∣∣E{Yt | X t−1
−∞} − gt(X

t−1
1 )

∣∣2

→ 0 a.s.,where in the last step we applied the result of Corollary 5.1. 2
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