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Abstract

In this thesis efficient algorithms for sequential prediction (decision) problems are studied.
In general, the algorithm has to guess the next element of an unknown sequence using some
knowledge about the past of the sequence and other side information. In this model the
goal of the algorithm is to minimize its cumulative loss, which is accumulated from round
to round (in each round one decision is made) where the loss is scored by some fixed loss
function. The sequence of the outcomes is a product of some unspecified mechanism, which
could be deterministic, stochastic or even adversarially adaptive to our own behavior.

As the first result of the thesis, an algorithm is given for the problem when the loss is
unbounded and its performance is studied under various partial information (also called
partial monitoring) settings. A wide class of partial monitoring problems are introduced:
the combination of the label efficient and multi-armed bandit problems. In this setting the
algorithm is only informed about the performance of its decision with probability ¢ < 1 and
does not have access to the losses it would have suffered if it had made a different decision.
It is shown that consistency can be achieved for unbounded losses, too, depending on the
growth rate of the overall “worst” decision’s average loss. Moreover, the above result can
be applied to solve the special problem, when the loss is bounded. For bounded losses
a simple modification of the previous algorithm is offered; its convergence rate coincides
with that of the best “earlier algorithms”, but it can be applied more easily for real life
problems.

In the next part, the on-line shortest path problem is considered under various models
of partial monitoring. Given a weighted directed acyclic graph whose edge weights can
change in an arbitrary (adversarial) way, an algorithm (decision maker) has to choose in
each round of a game a path between two distinguished vertices such that the loss of the
chosen path (defined as the sum of the weights of its composing edges) be as small as
possible. In a setting generalizing the multi-armed bandit problem, after choosing a path,
the algorithm learns only the weights of those edges that belong to the chosen path. For
this problem, an algorithm is given whose average cumulative loss in n rounds exceeds that
of the best path, matched off-line to the entire sequence of the edge weights, by a quantity
that is proportional to 1/4/n and depends only polynomially on the number of edges of the
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graph. The algorithm can be implemented with complexity that is linear in the number of
rounds n (i.e., the average complexity per round is constant) and in the number of edges.
An extension to the so-called label efficient setting is also given, in which the algorithm
is informed about the weights of the edges corresponding to the chosen path at a total of
m < n time instances. Another extension is shown, where the algorithm competes against
a time-varying path, a generalization of the problem of tracking the best expert. A version
of the multi-armed bandit setting for shortest path is also discussed where the algorithm
learns only the total weight of the chosen path but not the weights of the individual edges
on the path. Applications to routing in packet switched networks along with simulation
results are also presented.

Finally, a prediction strategy is introduced for unbounded stationary and ergodic real-
valued processes and show that the average of squared errors of the algorithm converges,
almost surely, to that of the optimum, given by the Bayes predictor. The algorithm is based
on a combination of several simple predictors, where for this combination the methodology
and results of the previous parts of the thesis are used. Furthermore an extension for the
noisy setting is offered, that is when the algorithm has access only to the noisy version of
the outcome sequence e.g. the “clean” process is passed through a fixed binary memoryless
channel. A simple universally consistent classification scheme is provided for zero-one loss
in this noisy setting.
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Chapter 1

Introduction

In this chapter the framework of sequential decision problems is introduced. Section 1.1
describes the main concepts and motivation of the sequential decision problems. In Section
1.2 literature overview is given. Our contribution is described in Section 1.3, as well as a
detailed overview of the thesis.

1.1 Motivation

The goal of this thesis is to design general purpose, efficient algorithms for sequential pre-
diction (decision) problems. Prediction, as we understand it in this thesis, is concerned
with guessing the short term evolution of certain phenomena. Examples include forecasting
whether tomorrow will be rainy or not, or guessing the route with lowest traffic between
our home and our workplace on the following working time period. These tasks look similar
at an abstract level: one has to guess the next element of an unknown sequence using some
knowledge about the past of the sequence and other side information available. Such prob-
lems naturally arise in real-world applications from portfolio selection in financial market
through real-time optimization of websites to routing in the communication networks.

In the classical statistical theory of sequential prediction, the sequence of the elements,
so called outcomes, is assumed to be a realization of a stationary stochastic process. In
such a setup, the statistical property of the process based on past observations can be
estimated and using this estimation efficient prediction strategies can be constructed. In
that case, the performance of a prediction strategy is usually evaluated by expected value
of some loss function which measures the “distance” between the predicted value and the
true outcome.

However, in a large part of this thesis we use a different viewpoint. We abandon the
assumption that the outcomes are generated by a well-behaved stochastic process and view
the sequence of the outcomes as a product of some unspecified mechanism, which could be
deterministic, stochastic or even adversarially adaptive to our own behavior. This setup



1.1. MOTIVATION 2

where no probabilistic assumption is made on how the sequence is generated is often referred
to as prediction of individual sequences.

In this model the goal of the algorithm is to minimize its cumulative loss, which is
accumulated from round to round (in each round one decision is made) where the loss
is scored by some fixed loss function. At the same time, without a probabilistic model
it is non-obvious how to measure the performance of the algorithm. There is no natural
baseline as in the stochastic case, and for example it is easy to see that it is not possible
to minimize the cumulative loss simultaneously for all possible sequences. To provide such
a baseline one of the possible way is to define a set of reference forecasters (prediction
rules), so called ezperts. Then the performance of the algorithm is evaluated relative to
this set of experts, and the goal is to perform asymptotically as well as the best expert
from the reference class matched to the observed outcome sequence off-line. The experts
make their decisions available to the algorithm before the next outcome is revealed, and
based on these “pieces of advices” the algorithm forms its own decision to keep close its
cumulative loss to the cumulative loss of the best expert.

The difference between the cumulative loss of the algorithm to that of the best expert
is called regret, as it measures how much the algorithm regrets, in hindsight, of not having
followed the advice of the best expert.

On the one hand for “small” expert classes the regret of the algorithm converges “fast”
to zero, however, the cumulative loss of the best expert may be “large”. Borrowing an
analogy from nonparametric statistics the first error criterion is called estimation error of
the algorithm and the second one is the approzimation error of the expert class. On the
other hand for “large” expert classes it is vice versa, the convergence of the regret of the
algorithm is slower, at the same time the cumulative loss of the best expert is smaller. In
most of this thesis we focus on the minimization of the regret.

The advantage of this novel technique, prediction for individual sequences is twofold.
On the one hand it is able to handle the case when the sequence of the outcomes are
generated by an adversarial mechanism. In that case one cannot assume any stationary
and probabilistic mechanism for the sequence. Indeed, that is realistic in e.g. reactive
environments where the choice of the algorithm influences the behaviour of the environment
(see below for real-world problems). On the other hand it has huge increment in the field of
non-parametric statistics. Namely, one may have a probabilistic model, however, there is a
need to construct prediction with good rates, i.e., to adapt the parameters of the algorithm.
There are such adaptations: splitting, cross validation, complexity regularization, etc., but
they work well only for memoryless sequences, which restricts seriously their applicability.
Another important problem is the universally consistent prediction of ergodic sequence.
The concept of individual sequence is extremely efficient such that the choices of the
parameters of the algorithm are considered as experts, and the bounds on the performance
of the combined (aggregated) algorithm does not depend on the properties of the actual
sequence, and so these bounds result in optimal adaptation both for memoryless sequences
or in universal consistency for ergodic sequences.

The concrete interpretation of the “experts” depends on the specific application. In
the sequel some important problems which naturally cast as experts’ advice (sequential
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decision) problems are shown mostly from the framework of info-communication systems.

Let us see first an example for the above mentioned adaptation from the field of pattern
recognition. We have a k-NN (Nearest Neighbor) classifier and our goal is to find the best
value of the number of k. In that case each expert can run a k-NN classifier with different
values of k. Another typical choice of the number of the neighbors is: ¢;n'/(@+?), where d
is the dimension of the samples. In that case each expert can use different parameters cy.

Second, let us see some examples from info-communication systems. In these problems,
the parameters of the networks and protocols are needed to be well tuned to ensure that
the networks operate at the desired Quality of Service (QoS) level. For instance, the class
of the experts can be some Transmission Control Protocol (TCP) variants that may use
different parameter settings and the algorithm competes with the TCP variant which has
the best parameters in hindsight. In particular, this setup is reasonable when the TCP
variant has to provide good performance in a heterogeneous environment or in case of
delay based TCP variants, like TCP Vegas and FAST TCP, whose performance are ultra-
sensitive to the value of the parameters controlling the number of backlogged packets in
the buffers of the routers on the path. These parameters are responsible for the long run
performance of the flow (as throughput and fairness) and since Vegas and FAST keep these
parameters constant, they cannot adapt well to the current characteristics of the network.

Another extensively studied issue is the estimation of the available bandwidth in high
speed networks where the previously developed TCP variants (e.g: Reno) do not provide
good utilization of the link or they may find available bandwidth too slowly. In that case
each bandwidth estimation technique or protocol can be considered as an expert.

This approach also could be used for modeling the bidding strategy of participants of
an auction. In Dynamic Spectrum Access networks where the allocation of the spectrum
is based on an auction mechanism (e.g: English or Vickrey auction) the set of experts
contains some fixed price or more complex bidding strategies and the goal of the algorithm
is that its expense do not exceed too much the costs of the best bidding strategy.

Other interesting applications are in adaptive routing, which is of great importance
in the maintenance of packet switched communication networks. A sufficiently flexible
algorithm can yield increased QoS, such as reduced packet loss ratio or delay, even in case
of link failures or substantially varying traffic scenarios. These algorithms require constant
monitoring of the network state, and the measured information is combined to update
the routing tables. Such combination can be done, for instance, with a combination of
the experts’ advice. More precisely, for each packet the routing algorithm has to choose
an expert (path) from source to destination on which the packet is to be sent. The loss
corresponding to the decision is the value of the QoS parameter we wish to optimize, such
as the delay, or the number of hops on the path, or the packet loss ratio due to insufficient
buffer size.

The performance of any algorithm obviously depends on how much information is avail-
able to the algorithm (the decision maker) about the experts’ and its own performance.
Often, only partial information is available to the algorithm, this is the so called partial
monitoring setting. For example, in case of adaptive routing, it is not feasible to assume
that the algorithm knows the delays of each path in the network in each moment. It is
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more natural to assume that at each moment the algorithm learns information about the
delay of the path its packet is sent on, and no information is available about the delay it
would have suffered had it chosen a different path (e.g., this feedback is available through
acknowledgments). Another example when the decision maker has the option to query the
delays at a certain moments, e.g., with flooding.

Both full information (when the performance of each expert is available for the algo-
rithm) and partial monitoring problems are well-studied in case when the experts class is
“small” and the loss function is bounded. In these settings good convergence rates and also
consistency results are considered. The extensions of these results to “large” expert classes
or to unbounded loss functions are important open-questions, but unfortunately usually
they make difficulties. For a general class of experts the computational complexity of the
expert algorithms available in the literature usually grows linearly with time and with the
number of the experts. This complexity may be prohibitive for large classes of experts, e.g.,
when an expert is a path in a network (the number of such paths is typically exponential
in the size of the network). Finally, in most cases, one assumes that the loss is bounded,
and such a bound is known in advance, during the design of the algorithm, which is not
acceptable in case of many real-life applications. For instance, in case of adaptive routing,
the algorithm has no information about the maximum value of the delay.

At this point some questions arise in connection with the above applications. Is it
possible to construct an algorithm whose performance achieves asymptotically the perfor-
mance of the best expert (consistency) if the bound of the loss is unknown? If yes, then is
there a way to somehow extend the result for the case of partial monitoring? Furthermore,
do consistent algorithms exist with low time and space complexity if the number of the
experts is large (e.g., the number of the paths in a network) under partial monitoring? If
we have some (stochastic) assumptions about the behavior of the outcome sequence (e.g.,
the delays on the links are realizations of stationary and ergodic processes in the routing
problem) is it possible to improve in some sense the convergence of the algorithm? Most of
the material in this thesis is devoted to provide answers to these and to related questions.

1.2 Literature overview

Research on sequential decision problems started in the 1950s, see, for example, Blackwell
[15] and Hannan [43] for some of the basic results, and gained new life in the 1990s following
the work of Vovk [70], Littlestone and Warmuth |53|, and Cesa-Bianchi et al. [20]. These
results show that for any bounded loss function, if the decision maker has access to the
past losses of all experts, then it is possible to construct on-line algorithms that perform,
for any possible behavior of the environment, almost as well as the best expert. For a good
survey on prediction of individual sequences, the reader is referred to, e.g., the recent book
of Cesa-Bianchi and Lugosi |21].

The theory has been extended to different directions, considering complexity issues or
the amount of available information.

A representative example of the partial monitoring problem is the multi-armed bandit
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problem where the algorithm has only information on the loss of the chosen expert. This
problem was originally considered in the stochastic setting — it was assumed that the losses
are randomly and independently drawn with respect to a fixed but unknown distribution
— by Robbins [63] and Lai and Robbins [52| (for a recent efficient solution, see Auer et al.
[4]). For the non-stochastic setting consistent algorithms are given in Auer et al. [6], [5]
and Hart and Mas Colell [44]. Auer et al. [5] gave an algorithm whose average cumulative
loss in n rounds exceeds that of the best expert by a quantity that is proportional to
/N/n, where N is the number of the experts. Another example of partial monitoring
problems is the label efficient prediction problem, where it is expensive to obtain the losses
of the experts, and therefore the algorithm has the option to query this information (see
Helmbold and Panizza [45] and Cesa-Bianchi et. al [22]). The main open problem left is
to extend these results to unbounded losses.

For large classes of experts, such as the shortest path problem in graphs, the special
structure of the experts allows to implement the algorithms with significantly lower com-
plexity in the full information case, see, e.g., Helmbold and Schapire [64], Mohri [55], Auer
and Warmuth [9], Helmbold and Warmuth [46|, Takimoto and Warmuth [68], [69], Kalai
and Vempala [49] and Gyorgy et al. [36]. However, in case of the multi-armed bandit
problem, if one applies the general bandit algorithm of Auer et al. [5], the resulting regret
bound (on the average excess loss relative to the best expert) will be unacceptably large
to be of practical use because of its square-root-type dependence on the number of expert.
The most important issues here are the improvement of the algorithms in multi-armed ban-
dit problem to achieve better regret bounds and further reduction of the computational
complexity.

One may wonder whether it is possible to improve the above results if we have some
probabilistic assumptions about the behavior of the outcome sequence. If the outcome
sequence is a realization of a stationary and ergodic random process then one can show
an algorithm (strategy) whose performance converges not only to the performance of the
best expert, but in case of a carefully defined class of the experts, it also converges to the
theoretical optimum that can be achieved in full knowledge of the underlying distribution
generating the outcome sequence. A strategy is called universally consistent if it achieves
asymptotically this optimum. In case of squared loss, Algoet [1] and Morvai, Yakowitz, and
Gyorfi [57] proved that there exists a prediction strategy that can achieve this well-defined
optimum. Gyorfi and TLugosi [32] introduced a simple universally consistent prediction
strategy. We refer to Nobel [58|, Singer and Feder [65], [66] and Yang [74] for closely
related recent works. In case of 0—1 loss, Ornstein |59] and Bailey [12] proved the existence
of universally consistent predictors. This was later generalized by Algoet [1]. A simpler
estimator with the same convergence property was introduced by Morvai, Yakowitz, and
Gyorfi [57]. Motivated by the need for a practical estimator, Morvai, Yakowitz, and Algoet
[56] introduced an even simpler algorithm. However, it is not known whether their predictor
is universally consistent. Gyorfi, Lugosi, and Morvai |33| introduced a simple randomized
universally consistent procedure with a practical appeal. Weissman and Merhav [72|, [73]
studied consistency in noisy environment.
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1.3 Contribution and thesis overview

In this thesis we address some fundamental open questions of the sequential decision prob-
lems.

In Chapter 2 we introduce the general model of sequential decision problems and
accurately define specialized problems and algorithms of which we make extensive use later
in this thesis. Moreover, this chapter also contains a more detailed literature overview.

As mentioned before, if the bound of the loss is unknown beforehand or if it can slowly
grow with time, most of the existing algorithms are not applicable. In Chapter 3 we give a
new algorithm for this situation and study its performance under various partial observation
settings. We introduce a wide class of partial monitoring problems: the combination of the
label efficient problem and the multi-armed bandit problem. In the label efficient setting the
algorithm is informed about the experts’ performance only with probability ¢ < 1, while
in the model of multi-armed bandit, only the performance of the chosen expert is known.
In the combination of the label efficient problem and the multi-armed bandit problem the
algorithm is only informed about the performance of the chosen expert with probability
¢ < 1. We show that consistency can be achieved for unbounded losses, if the growth rate
of the worst expert’s average square of the losses is sublinear in the number of rounds.
Moreover, the above result can be applied to solve the special problem when the loss is
bounded. For bounded losses a simple modification of the previous algorithm is offered;
its convergence rate coincides with that of an earlier algorithm due to Auer et al. [5], but
it can be applied more easily to practical problems.

In many applications the set of experts has a certain structure that may be exploited
to construct efficient on-line decision algorithms. Construction of such algorithms has
been of great interest in computational learning theory. In Chapter 4 we study the on-
line shortest path problem, a representative example of structured expert classes that has
received attention in the literature for its many applications, including, among others,
routing in communication networks and data compression. In this problem, a weighted
directed (acyclic) graph is given whose edge weights can change in an arbitrary manner,
and in each round the decision maker has to choose a path between two distinguished
vertices such that the loss of the chosen path (defined as the sum of the weights of its
composing edges) be as small as possible. In the multi-armed bandit setting, after choosing
a path, the decision maker learns only the weights of those edges that belong to the chosen
path. For this problem, an algorithm is given whose average cumulative loss in n rounds
exceeds that of the best path, matched off-line to the entire sequence of the edge weights,
by a quantity that is proportional to 1/4/n and depends only polynomially on the size of
the graph. The algorithm has linear complexity in the number of rounds n and in the
number of edges. Motivated by Cognitive Packet Networks [28], an extension to the label
efficient setting is also given, in which the decision maker is informed about the weights
of the edges corresponding to the chosen path in only a fraction m < n of the rounds.
Another extension is shown where the decision maker competes against a time-varying
path, a generalization of the problem of tracking the best expert. A version of the multi-
armed bandit setting for shortest path is also discussed where the decision maker learns
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only the total weight of the chosen path but not those of the individual edges on the path.
This model is particularly important for routing minimizing the packet loss ratio.

In Chapter 5 we provide a simple on-line procedure for the prediction of a stationary
and ergodic processes. The proposed procedure does not only minimize the estimation
error but also guarantees that the approximation error vanishes asymptotically. First a
prediction strategy (algorithm) is given for unbounded stationary and ergodic real-valued
processes and it is shown that the algorithm is universally consistent in case of the squared
loss. Furthermore, we offer an extension for this setting, where the algorithm has access
only to a noisy version of the original sequence. This setup was introduced and studied by
Weissman and Merhav |72, 73]. We show a universally consistent algorithm in the noisy
setting for convex loss functions (e.g., squared loss, absolute loss, etc.) and finally a simple
universally consistent classification scheme is provided for 0 — 1 loss both in the noiseless
and in the noisy settings.



Chapter 2

Sequential Prediction

In this chapter the terminology and the introduction to the theory of sequential prediction
are presented. The aim is to provide the reader with the necessary background material
needed for this thesis.

2.1 Sequential prediction of individual sequences

The sequential (often referred also as on-line) decision problem considered in this thesis
is described as follows. Suppose a decision maker has to make a sequence of actions. At
each time instant ¢t = 1,2,...,n, an action a; € A is made, where A denotes the action
space and n is the number of rounds the algorithm is run for. Then, based on the state of
the environment g, € ), where ) is some state space, the decision maker suffers some loss
l(ay,y¢) with a nonnegative loss function ¢ : 4 x ) — R. In some special cases we take
A =), but in general A may be different from ). The action at time ¢ may depend on
all previous actions a4, ..., a;—1, and on all the information available to the decision maker
about the past behavior of the environment. This information, for example, may consist
of the past environment states yq,...,v:_1; however, the decision maker may not be able
to observe the state y; of the environment, where ¢ = 1,...,¢ — 1. The goal of the decision
maker is to minimize the average loss of the algorithm in the long run, that is, to minimize

1 n
E Z E(atv yt) 9
t=1

for large n. Since no probabilistic assumption is made on how the sequence {y;} is gener-
ated, it is not possible to minimize the cumulative loss of the algorithm

En = Z Ua, yr)
t=1

simultaneously for all v, ...y, sequence.
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For predicting individual sequences, a possible problem formulation is that we evaluate
the performance of the algorithm with respect to a reference class of prediction rules,
called experts such that the goal of the algorithm is to perform as well as the best expert.
Formally, given N experts, at each time instant ¢, for every ¢ = 1,..., N, expert ¢ chooses
its action f;; € A and suffers loss ¢(f;;, y:). The decision maker is allowed to make its own
decision a; using the experts’ advice fi4,..., fn:, however, without knowing the experts’
loss in advance. Formally, the sequential prediction problem is given in Figure 2.1.

SEQUENTIAL PREDICTION PROBLEM

Parameters: number N of experts, state space ), action space A, non-
negative loss function ¢ : A x ) — R, number n of rounds (n can be
00).

At time instants t = 1,...,n,
(1) each expert forms its action f;; € A, i=1,...,N;

(2) the decision maker observes the actions of the experts and forms it
own prediction a; € A;

(3) the state of the environment y; € ) may or may not be revealed;

(4) the decision maker incurs loss ¢(a;,y;) and each expert incurs loss

g(fi,tayt)'

Figure 2.1: Sequential prediction problem.

Denote the cumulative loss of expert ¢ up to time n by

Lin =Y {(fis,t).
t=1

Let us define the normalized regret as the difference between the average loss of the algo-
rithm and that of the best expert, that is,

1/~
— (Ln — min Li,n)
n i=1,..,N

The goal of the learning algorithm is to combine the experts’ decisions such that the
normalized regret, be universally small for all possible sequences of {y;}.

If the action space is convex (in this case obviously an infinite action space is required),
then the decision maker can combine the advice of the experts according to a distribution
{pi+} as follows:

N
ay = E pz‘,tfi,t .
i=1
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If the loss function £(-,-) is convex in its first argument, then such deterministic algorithms
can be applied (see e.g. Cesa-Bianchi and Lugosi [21]), which will be introduced in Subsec-
tion 2.2.2. For general action space, the combination of the experts’ advice is formulated
by randomization.

2.1.1 Randomized prediction

It can be shown that under general conditions on the loss function and on the finite action
space, excluding such simple situations when, for example, the loss of the experts are the
same, no deterministic algorithm can perform well for all possible sequence {y;}. This
is because for each deterministic algorithm one can construct a “bad” sequence on which
the actual algorithm performs poorly, but the best expert does not. (At the end of this
subsection a simple example is presented.)

Therefore, in case of finite action space we consider randomized algorithms. Without
loss of generality we may assume that the decision maker always follows the advice of one
of the experts. Let I; be the (random) index of the expert was chosen by the algorithm at
round ¢, that is, a; = fy,; for some I, € {1,..., N}. Note that for each ¢, I; is a random
variable, as well as the cumulative loss of the randomized algorithm En Therefore, we
can assume that the decision of the decision maker is to choose an expert I; and follow its
decision f7,;. Formally, the randomized prediction model is defined as follows:

RANDOMIZED PREDICTION WITH EXPERT ADVICE

Parameters: number N of experts, state space ), action space A, non-
negative loss function ¢ : A x ) — R, number n of rounds (n can be co).
At time instants t = 1,...,n,

(1) each expert forms its action f;; € A, i=1,...,N;

(2) the decision maker observes the actions of the experts and chooses
an expert I, € {1,..., N} randomly;

(3) the state of the environment y, € ) may or may not be revealed;

(4) the decision maker incurs loss ¢(fr, +,y:) and each expert incurs loss

g(fi,tayt)-

Figure 2.2: Randomized prediction using expert advice.

For convenience we use the notations ¢; ; instead of ¢( f; +, y:) and ¢y, ; instead of (f1, +, ).
Then the cumulative loss of the decision maker up to time n is

n
L?’L = E Eft7t7
t=1
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and the cumulative loss of expert 7 is

n
Li,n = E Ei,t .
t=1

The goal of the learning algorithm is the same like in non-randomized setting such
that the normalized regret, that is the difference between the average loss of the algorithm
and that of the best expert, be universally small for all possible sequences of {y,}. More
precisely, to ensure

lim sup l (Zn — min Lm) <0
nooo N i=1,..,N
with probability 1 for every sequence {y;}. Such an algorithm is called Hannan consistent
[21].

In most of the cases we allow that the actions of the environment depend on the past
choice of the decision maker and also on its own (independent) randomization; this is the
so called non-oblivious (adaptive) adversaries.

As an example to show that deterministic algorithms do not work in general, consider
the following example.

Example 2.1. Assume that we would like to predict a binary sequence and we have two
different constant experts. The first one always predicts 0 and the second one always
predicts 1. Formally, f;;, = 0 and fo, = 1 for all £ = 1,2,.... Let the outcome sequence
be {1,0,1,0,1,0,1,...}, that is y, = ¢t mod 2 for all t = 1,2,.... Then the loss sequences
of the experts are {1,0,1,0,1,0,...} and {0,1,0,1,0,1,...}, respectively. Let the decision
maker’s strategy be that it always uses the advice of the expert that has been best so far.
In case of tie it chooses randomly. This is the so called follow-the-leader strategy. This
strategy chooses uniform randomly at time ¢ if ¢ is odd, and it chooses the second expert
is chosen if ¢ is even, resulting in choosing the worse expert. Then the average loss of the
algorithm converges to 3/4, while the loss of both actions are asymptotically 1/2; thus the
performance of the algorithm is far from optimal.

2.2 Algorithms

In this section we provide an overview of the most well-known algorithms in sequential
decision problems. Mostly two types of algorithms are used: The so called “follow-the-
perturbed-leader”-type algorithms employ the principle (with some additional randomiza-
tion) that the so far best expert should perform well in the future, too, while weighted
average algorithms choose experts randomly such that the ones with better past perfor-
mance are chosen with higher probability. In what follows both types of algorithms are
briefly introduced, but throughout the thesis we consider only weighted average type al-
gorithms, as for these algorithms better regret bounds are available in case of partial
monitoring scenarios. Throughout this section we show results in case when the losses are
bounded with 1, that is ¢;; € [0, 1] for all ¢ and t.
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2.2.1 Follow-the-perturbed-leader algorithm

It was shown at the end of Subsection 2.1.1 that the follow-the-leader strategy is not
optimal. However, a simple randomization suffices to achieve a significantly improved
performance. The idea is to add small random perturbations to the cumulative losses
and then follow the “perturbed leader” with best “perturbed” past performance. The first
Hannan consistent algorithm which used this idea was given by Hannan [43|, but here we
show a recent version of this algorithm due to Kalai and Vempala [49].

FOLLOW-THE-PERTURBED-LEADER ALGORITHM

Parameters: Fix R > 0.
Initialization: Set L,y =0 for¢=1,..., V.
At time instants t = 1,2,...

(1) Select the random N-vector Z, with components Z;;, i =1,...
uniformly from [0, R].

(2) Select an expert

Iy = argmin(L; ;1 + Z; ;)
i=1,..,N

(ties are broken in favor of the smallest index).

(3) Update the loss of each expert i

Liy=1Liy1+ Uiy

Figure 2.3: The follow-the-perturbed-leader algorithm in full information case.

The following theorem gives an upper bound on the normalized regret of the follow-
the-perturbed-leader algorithm given in Figure 2.3 due to [49].

Theorem 2.1. Assumen, N >1,0<d <1, ¥;, €[0,1] for alli andt , and let R = vVnN.
Then the follow-the-perturbed leader algorithm satisfies, with probability at least 1 — ¢,

n i=1,.,.N \/ n \/ n

The weakness of this algorithm is that the upper bound has square-root-type dependence
on the number N of experts. However, Kalai and Vempala [50] proposed a follow-the-
perturbed-leader type algorithm which use exponential distribution instead of the uniform
distribution to generate the perturbation and it obtains the “right” logarithmic dependence
on N.
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2.2.2 Exponentially weighted average prediction

In the “weighted average decision”type algorithms at time instant ¢ an expert 7 is chosen
with probability that increases with the past performance of the expert. That is, P(1; = i)
is proportional to r(L;;—1), where r is a non-increasing function. The most popular choice
of ris r(z) = e, leading to the exponentially weighted average prediction, where n > 0
is tuning parameter. In that case the probability that choosing action ¢ at round ¢ > 2

exp(—n 0 )
S exp(—n Yl )

Formally, the algorithm for bounded losses is given in Figure 2.4.

Dit = fori=1,...,N .

EXPONENTIALLY WEIGHTED AVERAGE PREDICTOR

Parameters: Fix n > 0.
Initialization: Set w;o =1 and p;; =1/N fori=1,...,N.
For each round t =1,2,...

(1) Randomly select an expert I, € {1,..., N} according to the proba-
bility distribution p; = (p14,...,PN1)-

(2) Update the weights w;; = w; ;e ",

(3) Calculate the updated probability distribution

Wi ¢

- fori=1,...,N.
Zj:1wj7t

Pit+1 =

Figure 2.4: Exponentially weighted average algorithm.

The maximum difference between the cumulative loss of the above defined algorithm
and cumulative loss of the best expert is O(v/nlIn N) was proved by Littlestone and War-
muth [53]:

Theorem 2.2. Let n,N > 1, 0 < 6 < 1 and ¢;; € [0,1]. The exponentially weighted
average algorithm with n = \/81n N/n satisfies, with probability at least 1 — 4,

l Zn— min L, , g\/M+ ilnl.
n i=1,..N 2n 2n 0

If the action space is convex and loss is convex in its first argument, then we may use
deterministic algorithm in non-adversary environment (see Section 2.1). That is, where
the decisions of the algorithm is a convex combination of the expert advice according
distribution p; at time ¢.
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Theorem 2.3. Let n,N > 1, {;;, € [0,1] and it is convez in its first argument then the
non-randomized exponentially weighted average algorithm with n = \/81n N/n satisfies,

n N
1 . In N
(3t i ) < B

t=1 =1

Note that it is not a probabilistic statement, it holds for any sequence ¥y, vs, ..., y, for a
fix n.

However the above regret bounds do not hold uniformly over sequences of any length
n, since the parameter n = 7, depends on n. In many applications, including parameter
setting in TCP variants and routing in communication network the time horizon is not
fixed and not available for the algorithm. To fix this problem the simplest idea is the
doubling trick which appears in Cesa-Bianchi et al. [20]. The idea is to partition the
time into periods of exponentially increasing length. At the beginning of each period, the
algorithm chooses the optimal n for the length of the interval and when the periods end,
reset the whole fixed-horizon algorithm, and the new value of n is selected optimally for
the next period. This method give a v/2/(y/2 — 1) multiplicative factor to the upper bound
of the theorem. However, it is obvious that this method is not practical, because it resets
its previously gathered knowledge time after time and therefore its application for a real
problem is doubtful. Another more attractive method is that at each time instant ¢ the
algorithm chooses an 7 = 7, which depends on ¢. It was proved by Auer et al. |7]| that
setting 7, = 1/81n N/t results in a regret bound that is only twice as much as the original
(time dependent) bound.

2.2.3 Countably many experts

If the (infinite) action space is convex, then the decision maker can combine the advice of
the expert according to a distribution {p;,}:

N
ay = g pi,tfi,t .
i=1

Under convexity condition on the loss function, the regret of this combination is bounded
by O(1/+/n). Tt is easy to prove that this regret bound holds for countably many experts,
too. The only necessary modification in the algorithm is that we have to define probability
distribution over the set of positive integers {¢; : i = 1,2,...}, where w;y = ¢; represents
the initial weight of expert i.

Theorem 2.4. Under the assumptions on Theorem 2.3, for any countable class of experts,
for L;y € [0,1] and for any probability distribution {q; : i = 1,2,...} over the set of positive
integers, such that q; > 0, the non-randomized exponentially weighted average prediction
for allmn > 1
17 <t (Ln Ly 1) -
n izln n G

0|3
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2.3 Partial monitoring problems

In this section we overview expert algorithms for situations where the whole information on
its own performance and on the past performance of the experts is not available to the de-
cision maker. The algorithms presented here follow the idea of estimating the performance
of the experts based on the available information, and then run the exponentially weighted
average decision algorithm using the estimated losses. In general, the normalized regret of

the algorithms can be bounded by O <N/Nln N/(nM)) where M is the average number

of experts whose performance are revealed to the decision maker at each time instant. We
provide algorithms for the label efficient decision and multi-armed bandit problems.

To ease the notation throughout this section we also assume that the loss is upper
bounded with 1.

2.3.1 Label efficient prediction

In the label efficient decision problem, after choosing its action at time ¢, the decision
maker has the option to query the “label” y; of the environment. The decision maker is
allowed to make (average) m queries out of the n time instants, where m < n. To make
the algorithm universal, the querying has to be randomized. In the sequel we will see that
a simple biased coin does the job.

More precisely, to query a label, the decision maker uses an independent, identically
distributed sequence Si,Ss, ..., S, of Bernoulli random variables with P(S; = 1) = ¢ and
asks label y, if S; = 1. If y, is known, the decision maker can calculate the losses ¢;; for
alli = 1,...,N. If ¢ = m/n, then the number of the revealed labels during n rounds
is approximately m for large n, and the proportion of labels queried converges to £ with
probability 1 as n increases.

In order to apply the exponentially weighted average decision method in this case, the
losses have to be substituted with its estimate. It is shown in Figure 2.5, estimated losses
are used instead of the observed losses:

EJ:{ b i s, =1,

0, otherwise.
Note that lz’t is an unbiased estimate of the true loss ¢;;, as

E|fie|(S1, 1), - (St )| = b

The following upper bound on the normalized regret of algorithm in Figure 2.5 is due to
Cesa-Bianchi et al. [22]. Note that this upper bound coincides with the previously proved
upper bound for full information case if m =n .
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EXPONENTIAL WEIGHTING FOR LABEL EFFICIENT PREDICTION

Parameters: Fix n >0 and 0 <e < 1.
Initialization: Set w;o =1 and p;; =1/N fori=1,...,N.
At time instants ¢t = 1,2,...

(1) Select an action [; € {1,..., N} according to the probability distri-
bution p: = (P14, ... PNy)-

(2) Draw a Bernoulli random variable S; such that P(S; = 1) = e.

(3) if Sy =1 then obtain ¢;, for all i and compute the estimated loss

Zit:{ g?’ it 5, =1;

’ 0, otherwise.

(4) Update the weights w;; = w;, e .
(5) Calculate the updated probability distribution

Wi ¢ .
pi,t—‘rl:N— Z:]_,...,N.
Zj:l Wit

Figure 2.5: Exponentially weighted average decision algorithm in the label efficient setting.

Theorem 2.5. Assumen, N > 1, 4;; € [0,1] and 0 < § < 1. If the above defined algorithm
18 run with parameters

—+/2mIn(4/5
EzmaX{O,m mn(/)} and 1 = 2¢In N

n n

Y

then the normalized regret of the decision maker can be bounded with probability at least

1—96 as
1/~ In N In(4N
_(Ln_,mm Lm>§2 n_+6\/M,

n i=1,..., m m

where m s the average number of the revealed labels.

2.3.2 The multi-armed bandit problem

In the multi-armed bandit problem, the decision maker learns its own loss ¢;, , after choosing
an action (expert) I;, but not the value ¢;; of the other losses for i # I;. Thus, the decision
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maker does not have access to the losses it would have suffered if it had chosen a different
action. The lack of information implies a natural strategy: namely, first the decision maker
has to explore the losses of the experts (exploration phase) and then it may keep choosing
the action with smallest estimated loss for the remaining time (the exploitation phase).

In the classical formulation of multi-armed bandit problems (see, e.g., Robbins [63]), it
is assumed that, for each action, the losses are randomly and independently drawn with
respect to a fixed but unknown distribution. This version is called the stochastic multi-
armed bandit problem (for a recent efficient solution, see Auer et al. [4]). Here we consider
a non-stochastic (or worst-case) version of this problem where the sequence y,..., yn,
describing the state of the environment, is generated by a non-stochastic opponent (non-
stochastic or adversarial multi-armed bandit problem) [6]. This non-stochastic approach is
extremely useful in case of reactive environment e.g. in parameter setting of TCP variants,
where the decision of the algorithm influences the losses (delays) of the other users, and
vice versa.

There are some modifications relative to the full information case. First, the modified
method uses gains instead of losses, defined as

iy =1— gi,t )

where we used 0 < ¢;; <1 assumption.
Moreover, in contrast with the label efficient case, we use biased estimates of the gains

defined as
~ gi,t.+ﬁ7 lf [t — i7
Git = P 5"

e otherwise
(2

where the role of parameter (3 is to control the bias (for 5 = 0 we obtain unbiased estimates
of the true gains, since then E[g;4|]1, I, ..., [;_1] = ¢;;) and we update the weights using
gi¢ in the following form

Wiy = wiy_1€"

Finally, a new parameter 0 < v < 1 is introduced that is used in the exploration phase:
for I, action ¢ is chosen according to the probability
Wi ¢ Y

Pt =1 =)=+
23:1 wie NV

The role of 7 is to ensure that p; ;41 > v/N for all i = 1,..., N. That is, instead of the
pure probability distribution generated by exponential weighting, the decision maker uses
a mixture of the exponentially weighted average distribution and the uniform distribution,
where the latter allows the decision maker to constantly explore all possible actions. The
resulting algorithm is given in Figure 2.6. The algorithm as well as the following bound
on its performance is due to Auer et al. [6].

i=1,...,N.
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EXPONENTIAL WEIGHTING IN THE MULTI-ARMED BANDIT SETTING

Parameters: Fixn >0, 0<f<land 0 <y <1.
Initialization: Set w;o =1 and p;; =1/N fori=1,...,N.
At time instants ¢t = 1,2,...

(1) Select an action [; € {1,..., N} according to the probability distri-
bution p: = (P14, ... PNy)-

(2) Calculate the estimated gains
] 2 T, = s
Jit = _i, otherwise.
Dit
(3) Update the weights w;; = w;; 1€+,
(4) Calculate the updated probability distribution

w;, Y .
pi,t+1:(1_7>N—t+N, t=1,...,N.

23:1 Wit

Figure 2.6: Exponentially weighted average decision algorithm for the multi-armed bandit
problem.

Theorem 2.6. For any 0 < 6 < 1, for any {;; € [0,1] and for any n > 8N In (N/J), if

algorithm in Figure 2.6 is run for the multi-armed bandit problem with parameters

In(N/6)  4Np
nN T3+ B’

v

ﬁ: ﬁa

and n =

then, with probability at least 1 — 6,

1/~ In N
- <Ln min Lz,n) < 5.5y NIn(N/d)/n + 5

Note that the bound of the theorem, unlike to the full information case, grows with
VN 1In N instead of vIn N. Hence, the bound is not really useful if the number of the
experts NN is large. The other disadvantages of this bound is that it holds only for bounded
loss (¢;; € [0, 1]), since the algorithm is defined via gains. In Chapter 4 below some recent
results are presented to handle this problem for the special case when the class of the
experts has some structure.

In Chapter 3 as well as in Chapter 4 we introduce a combination of the label efficient
problem and the multi-armed bandit problems. The combination was motivated by the
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routing problem in Cognitive Packet Networks described in Example 4.1 (in Section 4.4).
In this combined problem, the decision maker learns its own loss only if it chooses to query
it (which is allowed only for a limited number of times), and it cannot obtain information
on the performance of any other action.

2.4 Sequential prediction in stationary and ergodic en-

vironment
In this section we focus on the setting when y;, ys, ... are realizations of random variables
Y1,Ys,.... Under this assumption the performance of the decision maker (strategy) has

a well-defined optimum, which can be achieved in full knowledge of the underlying dis-
tribution generating the outcome sequences. This property - that the loss of a strategy
converges to the loss of the Bayes optimal predictor - is called universal consistency and
it is going to define rigorously in the sequel.

At each time instant t = 1,2,..., the predictor is asked to guess the value of the

next outcome y; of a sequence of real numbers yq,ys,... with knowledge of the pasts
Yy = (y1,...,—1) (where y{ denotes the empty string) and the side information vectors
i = (z1,...,2;), where 2, € R? . Thus, the predictor’s estimate, at time ¢, is based on

the value of 2} and yi~'. A prediction strategy is a sequence g = {g;}>°, of functions
g (Rd)t xR - R

so that the prediction formed at time ¢ is g,(2}, 37 1).

In this section as well as in Chapter 5 we assume that (x1,y;), (22, ¥2), . . . are realizations
of the random variables (X1,Y7), (X2, Y2), ... such that {(X,,, Y,)}>, is a jointly stationary
and ergodic process. Furthermore, in these parts of the thesis we use a little bit different
notation for the cumulative loss, on the one hand to emphasize that here we have stronger
assumptions on the outcome sequence on the other hand to suit the notations extensively
used in the literature.

After n time instants, the normalized cumulative prediction error is

Lu(g) == 32 (alX1, ), 7))

t=1

where /(-,-) is a nonnegative loss function.

The fundamental limit for the predictability of the sequence can be determined based
on a result of Algoet |2|, who showed that for any prediction strategy g and stationary
ergodic process {(X,,Y,)}>., in case of squared loss ({(x,y) = (z — y)?)

liminf L, (¢g) > L* almost surely, (2.1)

n—oo

where

L = E[ (E[Yo| X0, V2] . Y0)]
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is the minimal error of any prediction for the value of Y based on the infinite past
X9 ,Y~L. Note that it follows by stationarity and the martingale convergence theorem

(see, e.g., Stout |67]) that

L* = lim E[¢ (E]Y,|X7, Y], Y.)] .

n—oo

This lower bound gives sense to the following definition:

Definition 2.1. A prediction strategy g is called universally consistent with respect to a
class C of stationary and ergodic processes {( X, Y,)}>, if for each process in the class,

—0o07

lim L,(g) = L* almost surely.

n—oo

Universally consistent strategies asymptotically achieve the best possible loss for all
ergodic processes in the class. In the '90s Algoet [1] and Morvai, Yakowitz, and Gyorfi
[57| proved that there exists a prediction strategy universal with respect to the class of all
bounded ergodic processes. However, the prediction strategies exhibited in these papers are
either very complex or have an unreasonably slow rate of convergence even for well-behaved
processes. For square loss, Gyorfi and Lugosi [32] introduced several simple prediction
strategies, which are universally consistent with respect to the class of bounded, stationary
and ergodic processes.



Chapter 3

Hannan Consistency under Partial Monitoring for Unbounded Losses

In this chapter we analyze the sequential decision problem when the loss is unbounded
under partial monitoring scenarios. We introduce a wide class of the partial monitoring
problems: the combination of the label efficient problem and multi-armed bandit problem,
that is, where the algorithm is only informed about the performance of the chosen expert
with probability e < 1. For this general setup a new algorithm (GREEN) is given and
shown its Hannan consistency.

In Section 3.1 we introduce the combination of the label efficient and multi-armed
bandit problems which was originally motivated by adaptive routing (in details see in
Section 4.4). In Section 3.2 we define GREEN algorithm. In the next section (Theorem
3.1) we show that the expected regret of the algorithm scales with the square root of the
loss of the best expert. The main result of the chapter is stated and proved in Section
3.4; it shows that Hannan consistency can be achieved, depending the growth rate of the
worst expert’s average loss. The above “unbounded” results can be utilized for the special
problem when the loss is bounded. In Theorem 3.3 we offer an improvement for small
losses in expected regret and a high-probability bound for the regret of a slightly modified
algorithm (GREEN.SHIFT) is proved in Theorem 3.4.

3.1 Combination of the label efficient and multi-armed
bandit problems

In this section we introduce a recent combination of the label efficient and the multi-armed
bandit (LE+MAB) problems due to Ottucsdk and Gyorgy [61]. This combination was
motivated by the routing problem in Cognitive Packet Networks (CPN) due to Gelenbe
(Imperial College) et al. in [27, 28]. CPN model is implemented and integrated into Linux
kernel 2.2.x and it is also the object of a US Patent (No. 6804201). CPN is described in
details in Section 4.4 (Example 4.1 ).

In this combined problem, the decision maker learns its own loss only if it chooses
to query it (which is allowed only for a limited number of times), and it cannot obtain

3

21
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information on the performance of any other action. More precisely, for querying its loss
the decision maker uses a binary sequence Si,Ss,...; If S; = 1 then it queries its loss

otherwise not. The following figure gives the precise definition of randomized prediction in
case of the problem LE-+MAB.

RANDOMIZED PREDICTION WITH EXPERT ADVICE IN PROBLEM
LE+MAB

Parameters: number N of experts, state space ), action space A, non-
negative loss function ¢ : A x Y — R, number n of rounds (n can be oo)
and g : N — N. At time instants t = 1,...,n,

(1) each expert forms its action f;; € A, i=1,...,N;

(2) the decision maker observes the actions of the experts and chooses
an expert I, € {1,...,N};

(3) the decision maker incurs loss (f, 1, y:) and each expert incurs loss

g(fi,tayt)Q

(4) if S; = 1 then the decision maker issues a new query to obtain its
own loss £(fr,+,y); if no query is issued then ¢(fr,;,y) as well as
the losses of the experts remain unknown.

Figure 3.1: Randomized prediction with expert advice in combination of the label efficient
and the multi-armed bandit problems.

3.2 GREEN algorithm

In problem LE+MAB, it is easy to see (similarly to the LE case) that in order to achieve
a nontrivial performance, the algorithm must use randomization.

For querying its loss the algorithm uses a sequence Sy, .5, ... of independent Bernoulli
random variables such that

P(St = 1) = &¢,

and asks for the loss ¢j,; of the chosen expert I, if S, = 1, which for constant ¢, = ¢ is
identical to the label efficient algorithms in Cesa-Bianchi et al. [22].

For problem LE-+MAB we use GREEN algorithm with time-varying parameters intro-
duced in Allenberg et al. [3|. GREEN algorithm is a variant of the exponentially weighted
average algorithm of Littlestone and Warmuth [53| and it was named after the known id-
iom: “The grass is always greener on the other side”, since GREEN assumes that the experts
it did not choose had the best possible payoff (the zero loss).
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Denote by p;; the probability of choosing action 7 at time ¢ in case of the original
exponentially weighted average algorithm (predictor), that is,

e_ntzi,tfl

N 7. !
—neLj -1
Do €M

Dit =

where Zi,t_l is so called cumulative estimated loss, which will be updated later. GREEN
algorithm uses modified probabilities p;,; which can be calculated from p;,

~ 0 if piy <y
Dit = .
¢ pix i pie >,

where ¢ is the normalizing factor (see Step (2) of the algorithm) and v > 0 is a time-
varying threshold. Finally, the algorithm uses estimated losses which are given by

7 {;Z—t; if I, =7 and S; = 1;
it = 4.

0 otherwise.

Therefore, the estimated loss is an unbiased estimate of the true loss with respect to its
natural filtration, that is,

B [i.] B[,

(]17 Sl)a (]27 52)7 ey (It—la St—l):| = g’i,t .

The cumulative estimated loss of expert ¢ is given by

Liy =Lz 1+ 4y .

The resulting algorithm is given in Figure 3.2.
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GREEN ALGORITHM FOR PROBLEM LE-+MAB

Parameters: Let 1y,7m9,... >0, €1,€9,... >0 and ~,7,... > 0.
Initialization: Set zw =0forallz=1,...,N.

For each round t = 1,2, ...
(1) Calculate the probability distribution

G*ntzi,tfl

ZN 1 e_ntzi,tfl

1=

Dix = Z:]_,,N

(2) Calculate the modified probabilities

~ 0 if Dit <V,
Dig = .
¢ pip i pie >,

where ¢, =1/ meZ% Dit -
(3) Select an action I; € {1,..., N} according to py = (P14, .-, PNt)-
(4) Draw a Bernoulli random variable S; such that P(S; = 1) = «,.
(5) Compute the estimated loss for alli =1,... N
E"t: {z% if I, =i and S; =1,

0 otherwise.

(6) For all i =1,..., N update the cumulative estimated loss

L, = Zi,tfl + Zzt

Figure 3.2: GREEN algorithm for label efficient and multi-armed bandit problem.

3.3 Bounds on the expected regret

In this section an O(1/y/n) bound is shown for the expected normalized regret of GREEN
algorithm .

Theorem 3.1. (ALLENBERG, AUER, GYORFI AND OTTUCSAK [3]). If €;, < t” and
g, > t77 for all t, then for all n the expected loss of GREEN algorithm with v, = 0 and
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ne = 24/ B =02 s bounded by

E[En] — min E[L;,] <2/(NInN)(n+ )(FvB)/2,

i=1,...,N

For the proofs we introduce the notations

N N .
gt = Z@ﬂt‘&,tu Zt = Zpi,t&,t, and Zn = Zzt
= =1 t=1

and we split the statement into the following telescopes

i=1,....N i=1,..N i=1,....N i=1,...,

En — min L;, = <En — fn) + (fn — min L; n) + ( min Zm — min Li,n> . (3.1)

Lemma 3.1. For any sequence of losses {;; > 0,
L,—L,< Z (glt,t - gt) + Z N,y
t=1 t=1
Proof.  Since py,+/prr = 1/ct = Zjipj,tz')/t pie=1-— Zj:pj,tqt Pt > 1 — N~ we have

N
Zt = Zpi,tgi,t = plt,tglt,t > (1 - N'Vt)ﬁlt,tglt,t = (1 - N%)gt-

=1

Thus
En - Zn = Zglt,t - Zzt < Z (flt,t - ét) + Z N’Ytét-
t=1 t=1 t=1 t=1

O
For bounding L, — min;—; Zm we use the following lemma due to Cesa-Bianchi et
al. [23].

Lemma 3.2. Consider any non-increasing sequence of 11,1z, . . . positive learning rates and
any nonnegative sequences €y, Ly, ... € RN of loss vectors, where £ = ((14,0ay, ..., ln4).
Define the function ® by

N N
)= 3+ L3 e,
i=1 t =

where py = (P14, Pat, - - -, PNt) 1S the probability vector of the exponentially weighted average
algorithm. Then, for GREEN algorithm

_ ~ 2 1 - 5
L,— min L;, < ( — —) In N + Zq)(Ptﬂ?t; —£;).

i=1,....,N nn+1 ’]71 =1
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Lemma 3.3. With the notation of Lemma 3.2 we get for GREEN algorithm,
O(pe, gy, =) < —= > Ly iliy.
(Pt Tt t) =9, ; it
Proof. With straightforward calculation we obtain

N N
(pe, 1, —&:) = E pitlis + 17_ IHE :pz‘,te et
i—1 t —1

al ~ 1 al = n?zzt
< Zpi,tfi,tﬂLn—lnzpi,t 1 — sy + 21’ (3.2)

i=1 t =1

n? N N
> zpmm " (1—m2pm&t+ tzpi,tezt)
i=1

Ui - Ui a

¢ = t =
< = il < = 0; ; 3.3
= 2;p7t27t_25t; it (3.3)

where (3.2) holds because of e < 1 — z + 22/2 for > 0, and (3.3) follows from the fact
that In(1 +2) < z for all x > —1, and from the definition of ¢;; in GREEN algorithm. O

Proof of Theorem 3.1. From (3.1) and Lemmas 3.1 3.3, we get

- _ LI 2 1
Ln = P Lin < Z (r0 =) + Z Naebe + <77n+1 - E) A

Z Zﬁlt&t + ( IIllIl Lm _Z—I:{llnNLG> )

7777777777

Note that

N
i?‘
F
-

)
&

-

Il
N
o
-
=
LY

|_|

s
@F

—_
|
Ll
N<
I_l

and
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Now using [E, [Zt] = {;; and assumptions of the theorem we have

- - 2In N E[¢
E[Ln] — min E[L;,] < N Z%E[&,t] - sz d

i=1,....N
t=1 i=1 t=1

IN

NInN(n+ 1)(1+u+6)/2 ++vVNInN Zt(—1+u+ﬂ)/2
t=1

as desired. O

3.4 Hannan consistency

In this section we derive sufficient conditions of Hannan consistency under partial moni-
toring for GREEN algorithm using time-varying parameters in case when the bound of the
loss is unknown in advance, or when the loss is unbounded.

Theorem 3.2. (ALLENBERG, AUER, GYORFI AND OTTUCSAK [3]). Algorithm GREEN
15 run for the combination of the label efficient and multi-armed bandit problem. Assume
that there exist universal constants ¢ < oo and 0 < v < 1 such that for each n

max —ZEM <cn”

i=1,..,N N

For some constant p > 0 choose the parameters of the algorithm as:
nw=t"*/N;, (v+p)/2<a<l,

ny =t~ 0<do<l—-v—a—0F—p
and
g = got P 0<e<1 and 0<fG<l—-v—a—40—p.

Then GREEN algorithm is Hannan consistent, that is,
n—oo i=1,...,N

1/~
lim sup — (Ln — min Lm> <0 a.s.
n

Remark 3.1. We derive the consequences of the theorem in special cases:

e Full information: With a slight modification of the proof and fixing § =0 (g, = 1)
and v, = 0 we get the following condition for the losses in full information case:

max_— E Elt_ n'~ ‘;*p).
i=1,...,.N N
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e Multi-armed bandit problem: we fix 3 =0 (¢, = 1). Choose v, = t~'/3 for all ¢.
Then the condition is for the losses

max — Z I 2/3_5_’)) )

77Nn

e Label efficient setting with time-varying query rate (¢;): With a modification
of the proof and fixing 7, = 0 we get the following condition for the loss function in

label efficient case:
- é nt=P=o-rY
L Z )

e Combination of the label efficient and multi-armed bandit setting: This is
the most general case. Let ~, = ¢t~%/3. Then the bound is

max —Z€ < 2/3*ﬂ*57").

7 7Nn

Remark 3.2. (Convergence rate) With an extension of Lemma 3.4 below we can retrieve
the v dependent almost sure convergence rate of the algorithm. The rate is

i=1,....N

- (En — min Li,n> < O(n"/*71/2) a.s.

in the full information and the label efficient cases with optimal choice of the parameters
and in the multi-armed bandit and “combined” cases it is

1/~
— (Ln — min Li’n> < O(n”/2_1/3) a.s.

n i=1,...,N

Remark 3.3. (Minimum amount of query rate in label efficient setting) Denote
n
=2 =
t=1

the expected query rate, that is, the expected number of queries that can be issued up to
time n. Assume that the average of the loss function has a constant (unknown) bound,
i.e., v = 0. With a slight modification of the proof of Theorem 3.2 and choosing

log log log t q loglogt

=—— and g =
ur ; t :

we obtain the condition for Hannan consistency, such that
p(n) = lognloglogn,
which is the same as that of Cesa-Bianchi et al. [22].



3.4. HANNAN CONSISTENCY 29

In order to prove Theorem 3.2, we split the proof into three lemmas by telescope:

1~ 1 .

—L, —— min L;,

n n i=1,...,.N
(PO - 1/ .~ .

= —(L,—L,)+—(Ly,— min L;,, | +—| min L;, — min L;, |. (3.5)
n n i=1,..., n \i=1,.,.N i=1,...,N
%/_1 N J N J/
Vo vV
Lemma 3.5 Lemma 3.6 Lemma 3.7

Combining sequentially Lemma 3.5, Lemma 3.6 and Lemma 3.7 Theorem 3.2 is proved.
We will show separately the almost sure convergence of the three lemmas on the right-hand
side. In the sequel, we need the following lemma which is the key of the proof of Theorem
3.2:

Lemma 3.4. Let {Z;} be a martingale difference sequence. Let
htE[kt] 2 Var(Zt)

where

ht - 1/ta
forallt=1,2,... and
1 n
K,==Y k<Cn
n
t=1

and 0 <b<1landb—a<1. Then
li ! E Z; =0
im — = a.s.
n—oo M t

Proof. By the strong law of large numbers for martingale differences due to Chow [24],
if {Z;} a martingale difference sequence with

> V%Q%) < 0 (3.6)

then
1 n
lim — Z Zy =0 a.s.
t=1

n—o0 1,



3.4. HANNAN CONSISTENCY 30

V}\lfe have to verify (3.6). Because of ky = tK; — (t — 1)K, 1, and % — (}ijll)g > (0 we have
that

" Var(Z, " hE[k, " mE[(tK, — (t— 1)K, 4
3 ()SZ H—Z [( (t —1)K-1)]

12 2 12

t=1 t=1 t=1
n—1
ht+1t
+ EK
t:l( (t+1)2 ) K]

neCnt e [t (t+ 1)\ .,
n +;(7_ (t+1)2 )Ct

which is bounded by conditions. O

Now we are ready to prove one by one the almost sure convergence of the terms in
(3.5).

Lemma 3.5. Under the conditions of the Theorem 3.2,

lim l (En — Zn> =0 a.s.

n—oo N

Proof. First we use Lemma 3.1, that is

w—1L, < Z o —0) +ZN%& Zzt+ZN%et (3.7)

Below we show separately, that both sums in (3.7) divided by n converge to zero al-
most surely. First observe that {Z;} is a martingale difference sequence with respect to
(I1,51),. .., (L;—1,5:—1). Observe that I; is independent from S; therefore we get the fol-
lowing bound for the variance of Z;:

Var(Z,) =E[Z7] =E[({1,. — )] < E

Ze ] hE[k]

where h; = 1/¢; and k; = Zfil ¢2,. Then applying Lemma 3.4 we obtain

n

Next we show that the second sum in (3.7) divided by n goes to zero almost surely, that
is,

Z Z S Z” 1 Z"
— N’Ytgt —tgjt tN’Yt Rt -+ 5 glt,thyt — 0 (TL — OO) (38)
=1 t=1 t=1
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where R, is a martingale difference sequence respect to (I1,51), ..., (Il;_1,S;_1). Bounding
the variance of R;, we obtain

2
Var(R,) < N2 LE
&t

1=1
Then using Lemma 3.4 with parameters h, = 77/, and k, = Zf\; Eit we get

1 n
lim — E R,=0 a.s.
n—oo 1,
t=1

The proof is finished by showing, that the second sum in (3.8) goes to zero, i.e.,

n N n
tim > tnaNoe = Jim N3 LSt =0

=1 =1
Introduce K;,, = %2?:1 l;; then for all ¢
n

1 & 1
- ;gi,t'yt =— Z(tKi,t —(t—1)Kit—1)n

n

t=1
1 n—1
= KinVn + - Z (Ve = Ye1) tKi
t=1
1 n—1
< Kinvn + o Z Ve ki (3.9)
t=1
1 1 =
< - I//27CM - tll/Qfa O 310
< Ven T+ — ; Ve — (3.10)

where the (3.9) holds because (y; — vi+1)t < ¥ and (3.10) follows from K, < v/cn¥, the
definition of the parameters and o > (v + p)/2. O

Lemma 3.6 yields the relation between L,, and min,—; _y Lip.

Lemma 3.6. Under the conditions of Theorem 3.2,

1 /— ~
lim sup — (Ln — min Li,n> <0 a.s.
noo M i=1,..,N

Proof. We start by applying Lemma 3.2, that is,

n

+> Oy —4y). (3.11)

t=1

_ ~ 2In N
L,— min L;, < -
i=1,..., N 77n+1
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To bound the quantity of ®(py,n, —Zt), our starting point is (3.3). Moreover,
N N

N
~ S S
SO rilli=5 > p ”;;z D DL I GE L)

i <
i=1 i=1 1151 2vEr & 2ner e i

where the first inequality comes from py, ; > 7. Combining this bound with (3.11), dividing
by n and taking the limit superior we get

n N
1 /= ~ 2In N 1 M St
limsup—( L, — min L;, | <limsu + lim su E 02

,Hoop n ( i=1,..N ) - nﬂoop NMp+1 nﬂoop ns 2%5,5 €t “— bt

20ty

Let analyze separately the two terms on the right-hand side. The ﬁrst term is zero because
of the assumption of the Theorem 3.2. Concerning the second term, similarly to Lemma
3.5 we can split S;/e; as follows: let us

N N
S SN gy Ze?t, (3.13)
Et 2715515 i—1 271581% ’

where Z; is a martingale difference sequence. The variance is
2 2
77t5t< N 2)2} Ua {( 2> ]
Var(Z,) =E 0 =— i1 Ui .
( t) |:%26% 21_1 )t 51&%2 Z 1%t
= (Zl 16%) yields

Application of Lemma 3.4 with h; =

1 n
lim — Z Zy =0 a.s.
n—oo M,
t=1
where we used that
lzktél Z\/E <N22 wn
ni4 n\i4

Finally, we have to prove that the sum of the second term in (3.13) goes to zero, that is,

lim sup — Z Z

i:
n—oeo nt 1 i=1 ’tht

for which we use same argument as in Lemma 3.5. Introduce K;, = %Z?:l E?}t then we
get

n—1
1 Tt+1
Z 27 & 2%8n T Zl (2%& ) !

¢ 2i4+1€141
n—1
n 1
<K, nn— + - I it
’ 2771571, n —1 2/Yt5t ’
n—1

< Ncnu71+a+ﬂ+5 + l Zthu—HaHHé —~0
n
t=1
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because of K;,, <cnandv <1—a—03—4§ —p. O

Finally, the last step is to analyze the difference between the estimated loss and the
true loss.

Lemma 3.7. Under the conditions of Theorem 3.2,

1 ~
lim —( min_L;, — min Lj,n) =0 a.s.

n—oo N \i=1,....N j=1,...,N

Proof. First, bound the difference of the minimum of the true and the estimated loss.
Obviously,

1/ . = _ aly e Al g
- (i:rg}gN Lin — min Lj,n) < ; - <Li,n - Li,n) = ; - ;(fi,t — i)
N 1 n
= Zl o ; Zitls

where Z;, is martingale difference sequence for all 7. As earlier, we use Lemma 3.4. First
we bound Var(Z; ;) as follows

E[LY, 2]

Var(Z;,) = Ef?, < (3.14)
’ EtVe
Applying Lemma 3.4 with parameters k; = Zf\il E?}t and h; = 5,517’ for each 7
lim — Zizy =10 a.s.
n—oo M,
t=1
therefore
N 1 n
711130102 - Z Zit| =0 a.s
=1 t=1
O

3.5 Bounded loss

If the individual losses are bounded by a constant, much stronger results can be obtained
for GREEN algorithm. On the one hand, we give an improvement for small losses for
expected regret. On the other hand, O(1/4/n) regret bound is shown for high-probability
regret.
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Theorem 3.3. (ALLENBERG, AUER, GYORFI AND OTTUCSAK [3]). If ¢;; € [0,1] and

er = € for all t, then for all n with min,—y N L;, < B the expected loss of GREEN
algorithm with v, = v = m and ny =n =2 %% 15 bounded by

> B NInN+2 Nln(eB+1
E[Ln]—.qﬂnNE[Li,n]SZL By NnN+2  Nin(eB+1)
1=1,..., £ € c

Remark 3.4. The improvement in Theorem 3.3 is significant, since it bounds the regret
of the algorithm in terms of the loss of the best action and not in respect to the number of
rounds. For example, Theorem 3.1 is void for min;,—y _x L;, < y/n whereas Theorem 3.3
still gives a nearly optimal bound®.

.....

Proof. Let T, = max{0 <t <n:p;; >~} be the last round which contributes to Zm
Therefore, - N
e~ LT, e~ LT
< mp,p = — < —
7 — pZ,Tz Z“;Vzl e—ﬂLj,Ti e_nLi*,n bl

where ¢* = arg min; L, ,. After rearranging we obtain

~ ~ In(1
Lim < L, + M

Ui

and since Zi,n = ZzTZ we get that Zm < Zzn + % Plugging this bound into (3.4) and
using £;¢ € [0, 1] we get

7 - 2In N In(1
E[Ln} — min E[L;,] §7NIE[Ln] LMY VA (E[Li* 1+ n( /7)).
i=1,....N ’ n ¢ ) n

E[En} < L {minNE[Li,n] + 2 N +NL (E[Li*m] + W)] .

For v = §prgy We have mlT_EILV nl < min; E[L;,,] + 1 and 1_le < 2, which implies
~ 1 4InN InN In(eB+2
E[Ln} < min E[Lin]+ -+ 22 ¢ NY (E[LZ-*7 |+ BN (B ))
=1, n € Ul U
and, by simple calculation, the statement of the theorem. O

In the rest of this section we introduce a slightly modified version of GREEN algo-
rithm for multi-armed bandit problem, so called GREEN.SHIFT. One can easily extend

'For ¢ = 1 optimality follows from the lower bound on the regret in [6].
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the GREEN.SHIFT algorithm for problem LE-+MAB based on Section 4.4. The proposed
algorithm is a “shifted” version of GREEN algorithm .

As earlier let ¢;; denote the conditional unbiased estimation of the true loss of each
action with respect to its natural filtration. Instead of the unbiased estimate, a slightly
smaller quantity is used by the algorithm. The (biased) estimated loss is

&

g{b - Ez - T~ 3
! ! maX{pi,ta v}

where (3 is a positive parameter and the maximum is necessary to avoid dividing by zero.
Then the cumulative estimated loss of an action is given by

n
/ _2 : /
Li,n - gi,t .

t=1

The resulting algorithm is given in Figure 3.3.
Theorem 3.4. (AUER AND OTTUCSAK [8]). For any 0 < 0 < 1 and parameters

—ln(N/§)< <i g% and 0<n< _ln]]v\f’
n

the performance of GREEN.SHIFT algorithm can be bounded with probability at least 1 — ¢
as
~ ~ ) 5 In N
L, < NyL,+206nN + (1 +nN) mNLi,n +npnN*+ Nln(1/y) +2Nn + — .
b b n

i=1,...

In particular, choosing 8 = ln(N/é), v=p0,n= \/% and if n > N1n(N/§) then we

niN
have

1/~ 1
— (Ln — min Li,n> < T7V/NIn(N/d)/n + 2—N1n(nN) :
n

n i=1,..,N
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GREEN.SHIFT ALGORITHM FOR MULTI-ARMED BANDIT PROBLEM

Parameters: Let n >0, § > 0 and v > 0.
Initialization: L;, =0 foralli=1,... N.

For each round t = 1,2, ...

(1) Calculate the weights of the actions

N
—nl/ .
Wi =€ nlie 1 1=1,...,N and W, = E Wit -
i=1

(2) Calculate the probability distribution

Wiy

W

pivt Z:1,7N

(3) Calculate the modified probabilities

~ 0 if piy <7,
Dit = .
¢ pig i pie >,

where ¢; =1/ Zm’tm Dit -

(4) Compute the estimated loss for alli =1,... N

bie _ B e -
l ;= Zit — Lﬁ/ B 7 max{pi.¢,v} if I, = 1
) e otherwise.

" max{p;,c.}

(5) For all i =1,..., N update the cumulative estimated loss

r_ 7 /
Li,t = Li,t—l + Ei,t'

Figure 3.3: GREEN.SHIFT algorithm for multi-armed bandit problem.

For the proof of the theorem we need the following 2 lemmas. The first lemma is a
simple modification of [21, Lemma 6.7|.

Lemma 3.8. Under the assumptions of Theorem 3.4 for any 0 < 6 < 1 we have

5
P(Liy > Lin+ AnN) < . i€{l,....N}.
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Proof. For any u > 0 and ¢ > 0 the Chernoff bounding technique (see, e.g., [25]) implies

P(L;, > Lin+u) < e~ R Fin—Lin) (3.15)
Letting u = fnN and ¢ = 3, therefore from (3.15):

- L), ~Lin —B*nN L, —Lin 0 L), —Lin
e~ R LinTlin) = o= nNEALin—Lin) < _Feflin=lin)

where the inequality comes from % < (. Thus it suffices to prove that
EefLinLin) < 1.
For t =1,..., n, introducing, a random variable 7, = P Lilit) e clearly have
Z, = P latid) 7, .

Note that 3(¢;, — ¢; ;) < 1 because
7,0 )

G (f"tﬂi“} I E— &,t) < Bt Pl
Dit maX{pi,t, ’Yt}

p[t,t 7

where the second inequality comes from 3 < ~. Let E,[Z;] = E[Z;|Z;_1, ..., Z1] and using
e <1+ x4+ 2% for x < 1 we have

7. . B _0:
6’6(6” max{p; ¢,7} é“t)]

52

— Zt—le_ max{p; .7} ]Et 65(E,t*ei,t>i|

EiZi] = ZiE,

2

-2 T ~ ~ 2
Zyqe "R 1+ 8 (&,t - Ez’,t) + 5 (Ei,t - éi,t) }

IN

e 7 i
Zt_le max{p; ¢,7} ]Et ]_ —|— /82 <£i’t - Ei,t) :|

52 262
Zy e =iy (1 + +,t>
maX{pi,z‘J’Y}

IN

where we used E, [&t — E,;7t] =0 and 1+ x < ¢e”. Taking expected values of both sides of
the inequality we have E;Z; < [E;Z;_; and since E;Z; < 1 the proof is concluded. d
The following lemma is a variant of Theorem 3.3.

Lemma 3.9. Under the assumptions of Theorem 3.4 for the cumulative estimated loss we

have (1
L;, < min L] —|—M :

n
j=1,...,.N J n
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Proof. Let 7; = max{0 <t <mn:p;; >~} be the last round where p;; > 0. Therefore,
e_nLé,Ti
’Y S pi,Ti - N L’ nL! )

< —

where 7* = argmin,;—; _y L;n After rearranging we obtain

e_nLé,Ti

In(1/7)
Lip < Liq + :

Since Lj 5, = Lj,, + w and Lj. g < Liw, + >0 0 m we get that

_ Y W@/ _ o, In(3/9)
+ﬁz(mw{pm} ’7)+ " = it no

t=T;+1

O

Proof of Theorem 3.4. For the proof of theorem the quantity of In % e s bounded,
where

:Zwm, tZl and W():N

The lower bound is

N
W , ;
In e =In ( g e"Lm> —InN >1n (Z max e"Lm> —InN=-n min L; —InN .

0 — =1,...,.N i=1,....N
(3.16)
For the upper bound note that —77@71& < 1 for all 2 and ¢, therefore
N N
Wt : =1In sz e e <In szt 1 772€;,t) <7 sz‘,tgg,t +7 sz‘,tfft :
i=1 i=1
(3.17)
Next we bound the sums in (3.17). On the one hand,
p Y Di p
sz ol == ol = ﬁz = " s — BN > (1= Ny)ly,. — BN |

max{p;, 7} T Dot

Slnce p[t,t/i)/lt7t = 1/Ct = Zj:thZ’ypj»t = 1 - Ejipj,t<’}/ pjzt Z 1 - ny
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On the other hand,

3 g il
2l szt(zt )fé,t < Ll ﬁz —
1=1

max{p;, v} max{p;, v}

1
< g g/ 2 T TE——
< by, + 0 Z max{pi¢, 7}
i=1 ’
2
N
< lp d
N 2\
S Zgzt + B_ 6

v

S Z‘ez,t+N+ﬁN7

where the last inequality follows from § < . Summing over ¢t = 1,...,n, we have that
Wn T T 2 N / 2
n v < =nLa+ NipyL + 080N +17° 55y Ly + 072N (3.18)
0

Plug the results of Lemma 3.9 into (3.18) we get

Wi
In W S < —nL, + NnyL, + nBnN + n°N r{un Li, +nNIn(1/v) + n*2N . (3.19)
o T =,
Combining (3.16) and (3.19) we obtain

~ ~ In N
L, < NvL,+ fnN+ (1+nN) 1{1111 L; +N1n(1/7)+2nN+n—.
n

.....

By Lemma 3.8 and the union bound we have at least 1 — 9

.....

~ ~ In N
L, < NyL,+26nN + (1+nN) r{un Lin +npnN?+ NIn(1/v) +2nN + —
n

as desired. O



Chapter 4

Shortest Path Problem under Partial Monitoring

As mentioned before, the basic theoretical results of sequential decision problem were
pioneered by Blackwell [15] and Hannan [43|, and brought to the attention of the machine
learning community in the 1990’s by Vovk [70], Littlestone and Warmuth [53|, and Cesa-
Bianchi et al. [20]. These results show that for any bounded loss function, if the decision
maker has access to the past losses of all experts, then it is possible to construct on-line
algorithms that perform, for any possible behavior of the environment, almost as well as
the best of N experts. More precisely, recalling the results are presented in Chapter 2,
the per round cumulative loss of these algorithms is at most as large as that of the best
expert plus a quantity proportional to /In N/n for any bounded loss function, where n is
the number of rounds in the decision game. The logarithmic dependence on the number of
experts makes it possible to obtain meaningful bounds even if the pool of experts is very
large. However, the basic prediction algorithms, such as exponentially weighted average
forecasters, have a computational complexity that is proportional to the number of experts,
and they are therefore practically infeasible when the number of experts is very large.

As it is described in details in Section 2.3 in certain situations the decision maker has
only limited knowledge about the losses of all possible actions. For example, it is often
natural to assume that the decision maker gets to know only the loss corresponding to
the action it has made, and has no information about the loss it would have suffered had
it made a different decision. This setup is referred to as the multi-armed bandit problem,
and was considered, in the adversarial setting, by Auer et al. [5] who gave an algorithm
whose normalized regret (the difference of the algorithm’s average loss and that of the
best expert) is upper bounded by a quantity which is proportional to /N In N/n. Note
that, compared to the full information case described above where the losses of all possible
actions are revealed to the decision maker, there is an extra v/N factor in the performance
bound, which seriously limits the usefulness of the bound if the number of experts is large.

Another interesting example for the limited information case is the so-called label effi-
cient decision problem (see Helmbold and Panizza [45]) in which it is too costly to observe
the state of the environment, and so the decision maker can query the losses of all possible

40
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actions for only a limited number of times. A recent result of Cesa-Bianchi, Lugosi, and
Stoltz [22] shows that in this case, if the decision maker can query the losses m times
during a period of length n, then it can achieve O(4/In N/m) normalized regret relative to
the best expert.

In many applications the set of experts has a certain structure that may be exploited
to construct efficient on-line decision algorithms. The construction of such algorithms has
been of great interest in computational learning theory. A partial list of works dealing with
this problem includes Herbster and Warmuth [46], Vovk [71], Bousquet and Warmuth [17],
Helmbold and Schapire [64], Takimoto and Warmuth |69], Kalai and Vempala 49|, Gyorgy
et al. [36, 37, 38]. For a more complete survey, we refer to Cesa-Bianchi and Lugosi |21,
Chapter 5].

In this chapter we study the on-line shortest path problem, a representative exam-
ple of structured expert classes that has received attention in the literature for its many
applications, including, among others, routing in communication networks; see, e.g., Taki-
moto and Warmuth [69], Awerbuch et al. [10], or Gyorgy and Ottucsak [42], and adaptive
quantizer design in zero-delay lossy source coding; see, Gyorgy et al. |36, 37, 39]. In this
problem, a weighted directed (acyclic) graph is given whose edge weights can change in an
arbitrary manner, and the decision maker has to pick in each round a path between two
given vertices, such that the weight of this path (the sum of the weights of its composing
edges) be as small as possible.

Efficient solutions, with time and space complexity proportional to the number of edges
rather than to the number of paths (the latter typically being exponential in the number
of edges), have been given in the full information case, where in each round the weights
of all the edges are revealed after a path has been chosen; see, for example, Mohri |55],
Takimoto and Warmuth 69|, Kalai and Vempala 49|, and Gyorgy et al. |38|.

In the bandit setting only the weights of the edges or just the sum of the weights of
the edges composing the chosen path are revealed to the decision maker. If one applies the
general bandit algorithm of Auer et al. [5], the resulting bound will be too large to be of
practical use because of its square-root-type dependence on the number of paths N. On
the other hand, using the special graph structure in the problem, Awerbuch and Kleinberg
[11] and McMahan and Blum [54] managed to get rid of the exponential dependence on
the number of edges in the performance bound. They achieved this by extending the
exponentially weighted average predictor and the follow-the-perturbed-leader algorithm of
Hannan [43] to the generalization of the multi-armed bandit setting for shortest paths,
when only the sum of the weights of the edges is available for the algorithm. However,
the dependence of the bounds obtained in [11] and [54] on the number of rounds n is
significantly worse than the O(1/y/n) bound of Auer et al. [5]. Awerbuch and Kleinberg
[11] consider the model of “non-oblivious” adversaries for shortest path (i.e., the losses
assigned to the edges can depend on the previous actions of the forecaster) and prove
an O(n~'/3) bound for the expected normalized regret. McMahan and Blum [54] give a
simpler algorithm than in [11] however obtain a bound of the order of O(n=1/%) for the
expected regret.

In this chapter we provide an extension of the bandit algorithm of Auer et al. [5] unifying
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the advantages of the above approaches, with a performance bound that is polynomial in
the number of edges, and converges to zero at the right O(1/y/n) rate as the number
of rounds increases. We achieve this bound in a model which assumes that the losses
of all edges on the path chosen by the forecaster are available separately after making
the decision. We also discuss the case (considered by [11] and [54]) in which only the
total loss (i.e., the sum of the losses on the chosen path) is known to the decision maker.
We exhibit a simple algorithm which achieves an O(n~'/3) normalized regret with high
probability against “non-oblivious” adversary. In this case it remains an open problem to
find an algorithm whose cumulative loss is polynomial in the number of edges of the graph
and decreases as O(n~'/2) with the number of rounds. Throughout the chapter we assume
that the number of rounds n in the prediction game is known in advance to the decision
maker.

In Section 4.1 we formally define the on-line shortest path problem, which is extended
to the multi-armed bandit setting in Section 4.2. Our new algorithm for the shortest
path problem in the bandit setting is given in Section 4.3 together with its performance
analysis. The algorithm is extended to solve the shortest path problem in a combined
label efficient and multi-armed bandit setting in Section 4.4. Another extension, when the
algorithm competes against a time-varying path is studied in Section 4.5. An algorithm
for the “restricted” multi-armed bandit setting (when only the sums of the losses of the
edges are available) is given in Section 4.6. Simulation results are presented in Section 4.7.

4.1 The shortest path problem

Consider a network represented by a set of vertices connected by edges, and assume that
we have to send a stream of packets from a distinguished vertex, called source, to another
distinguished vertex, called destination. At each time slot a packet is sent along a chosen
route (path) connecting source and destination. Depending on the traffic, each edge in the
network may have a different delay, and the total delay the packet suffers on the chosen
path is the sum of delays of the edges composing the route. The delays may change
from one time slot to the next one in an arbitrary way, and our goal is to find a way of
choosing the path in each time slot such that the sum of the total delays over time is
not significantly more than that of the best fixed path in the network. This adversarial
version of the routing problem is most useful when the delays on the edges can change
dynamically, even depending on our previous routing decisions. This is the situation in
the case of ad-hoc networks, where the network topology can change rapidly, or in certain
secure networks, where the algorithm has to be prepared to handle denial of service attacks,
that is, situations where willingly malfunctioning vertices and links increase the delay; see,
e.g., Awerbuch et al. [10].

This problem can be cast naturally as a sequential decision problem in which each
possible path is represented by an action (expert). However, the number of paths is
typically exponentially large in the number of edges, and therefore computationally efficient
algorithms are called for. Two solutions of different flavor have been proposed. One of them
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is based on a follow-the-perturbed-leader forecaster, see Kalai and Vempala [49], while the
other is based on an efficient computation of the exponentially weighted average forecaster,
see, for example, Takimoto and Warmuth [69]|. Both solutions have different advantages
and may be generalized in different directions.

To formalize the problem, consider a (finite) directed acyclic graph with a set of edges

E = {e1,...,ep} and a set of vertices V. Thus, each edge e € E is an ordered pair
of vertices (v1,vs). Let w and v be two distinguished vertices in V. A path from u to
v is a sequence of edges e ... e® such that e = (u,v;), eV = (vj_1,v;) for all

j=2,...,k—1,and e® = (v,_1,v). Let P = {41,...,ix} denote the set of all such paths.
For simplicity, we assume that every edge in F is on some path from u to v and every
vertex in V' is an endpoint of an edge (see Figure 4.1 for examples).

(%

(a) (b)

Figure 4.1: Two examples of directed acyclic graphs for the shortest path problem.

In each round ¢t = 1,...,n of the decision game, the decision maker chooses a path I
among all paths from u to v. Then a loss ¢.; € [0, 1] is assigned to each edge e € E. We
write e € ¢ if the edge e € E belongs to the path ¢ € P, and with a slight abuse of notation
the loss of a path % at time slot ¢ is also represented by ¢;,. Then ¢;, is given as

‘gi,t = E ge,t
e€l

and therefore the cumulative loss up to time ¢ of each path ¢ takes the additive form

t t
Li,t = Zgi,s = Z de,s
s=1

ect s=1

where the inner sum on the right-hand side is the loss accumulated by edge e during the
first ¢t rounds of the game. The cumulative loss of the algorithm is

t t
L= trs=3 3 les-
s=1

s=1 el
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It is well known that for a general loss sequence, the decision maker must be allowed
to use randomization to be able to approximate the performance of the best expert (see,
e.g., Cesa-Bianchi and Lugosi |21|). Therefore, the path I; is chosen randomly according
to some distribution p; over all paths from u to v. We study the normalized regret over n

rounds of the game
1/~
— (Ln — min Li,n)
n icP

where the minimum is taken over all paths ¢ from u to v.
In the full information case, for example, the exponentially weighted average forecaster
([70], [53], [20]), calculated over all possible paths, has regret

%(Z _mme> <K(\/1n]\7 \/m 1/5)

with probability at least 1 — 9§, where N is the total number of paths from u to v in the
graph and K is the length of the longest path.

4.2 The multi-armed bandit setting

In this section we discuss the “bandit” version of the shortest path problem. In this setup,
which is more realistic in many applications, the decision maker has only access to the
losses corresponding to the paths it has chosen. For example, in the routing problem this
means that information is available on the delay of the path the packet is sent on, and not
on other paths in the network.

We distinguish between two types of bandit problems, both of which are natural gener-
alizations of the simple bandit problem to the shortest path problem. In the first variant,
the decision maker has access to the losses of those edges that are on the path it has cho-
sen. That is, after choosing a path I, at time ¢, the value of the loss ., is revealed to the
decision maker if and only if e € I;. We study this case and its extensions in Sections 4.3,
4.4, and 4.5.

The second variant is a more restricted version in which the loss of the chosen path is
observed, but no information is available on the individual losses of the edges belonging
to the path. That is, after choosing a path I, at time ¢, only the value of the loss of the
path /y, + is revealed to the decision maker. Further on we call this setting as the restricted
bandit problem for shortest path. We consider this restricted problem in Section 4.6.

Formally, the on-line shortest path problem in the multi-armed bandit setting is de-
scribed as follows: at each time instance ¢t = 1,...,n, the decision maker picks a path
I, € P from u to v. Then the environment assigns loss /., € [0, 1] to each edge e € E, and
the decision maker suffers loss (1, ; = Zeeh le+. In the unrestricted case the losses /., are
revealed for all e € I, while in the restricted case only (y, ; is revealed. Note that in both
cases (., may depend on Iy,..., I, 4, the earlier choices of the decision maker.
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For the basic multi-armed bandit problem, Auer et al. [5] gave an algorithm, based on
exponential weighting with a biased estimate of the gains combined with uniform explo-
ration. Applying their algorithm to the on-line shortest path problem in the bandit setting
results in a performance that can be bounded, for any 0 < § < 1 and fixed time horizon n,
with probability at least 1 — ¢, by

1/~
— | L, —minL;, | < 1K NIH(N/5)+KlnN ‘
n iepP 9 n on

(The constants follow from a slightly improved version; see Cesa-Bianchi and Lugosi [21].)

However, for the shortest path problem this bound is unacceptably large because, unlike
in the full information case, here the dependence on the number of all paths NV is not merely
logarithmic, while N is typically exponentially large in the size of the graph (as in the two
simple examples of Figure 4.1). Note that this bound also holds for the restricted setting
as only the total losses on the paths are used. In order to achieve a bound that does not
grow exponentially with the number of edges of the graph, it is imperative to make use
of the dependence structure of the losses of the different actions (i.e., paths). Awerbuch
and Kleinberg [11] and McMahan and Blum [54]| do this by extending low complexity
predictors, such as the follow-the-perturbed-leader forecaster [43|, [49] to the restricted
bandit setting. However, in both cases the price to pay for the polynomial dependence on
the number of edges is a worse dependence on the length n of the game.

4.3 A bandit algorithm for shortest paths

In this section we describe a variant of the bandit algorithm of [5] which achieves the
desired performance for the shortest path problem. The new algorithm uses the fact that
when the losses of the edges of the chosen path are revealed, then this also provides some
information about the losses of each path sharing common edges with the chosen path.

For each edge e € E, and ¢t = 1,2,..., introduce the gain g., = 1 — {.;, and for each
path ¢ € P, let the gain be the sum of the gains of the edges on the path, that is,

Jit = de,t .

ect

The conversion from losses to gains is done in order to facilitate the subsequent performance
analysis. This has technical reasons. For the ordinary bandit problem the regret bounds
of the order of O(y/n~'Nlog N) were proved based on gains by Auer et al. [5] and it was
only recently shown by Auer and Ottucsak |8| that it is possible to achieve the same type
of bound for an algorithm based on losses. However, we do not know how to convert the
latter algorithm into one that is efficiently computable for the shortest path problem.

To simplify the conversion, we assume that each path ¢ € P is of the same length K for
some K > 0. Note that although this assumption may seem to be restrictive at the first
glance, from each acyclic directed graph (V, E') one can construct a new graph by adding at
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most (K —2)(|V]|—2)+1 vertices and edges (with constant loss zero) to the graph without
modifying the losses of the paths such that each path from u to v will be of length K, where
K denotes the length of the longest path of the original graph. If the number of edges is
quadratic in the number of vertices, the size of the graph is not increased substantially.

A main feature of the algorithm below is that the gains are estimated for each edge
and not for each path. This modification results in an improved upper bound on the
performance with the number of edges in place of the number of paths. Moreover, using
dynamic programming as in Takimoto and Warmuth [69], the algorithm can be computed
efficiently. Another important ingredient of the algorithm is that one needs to make sure
that every edge is sampled (“saw”) sufficiently often. To this end, we introduce a set C of
covering paths with the property that for each edge e € E there is a path ¢z € C such that
e € i. Observe that one can always find such a covering set of cardinality |C| < |E|.

We note that the algorithm of [5] is a special case of the algorithm below: For any
multi-armed bandit problem with N experts, one can define a graph with two vertices u
and v, and N directed edges from u to v with weights corresponding to the losses of the
experts. The solution of the shortest path problem in this case is equivalent to that of the
original bandit problem with choosing expert 2 if the corresponding edge is chosen. For
this graph, our algorithm reduces to the original algorithm of [5].

Note that the algorithm can be efficiently implemented using dynamic programming,
similarly to Takimoto and Warmuth [28]. See the upcoming Theorem 4.1 for the formal
statement.

The main result of this chapter is the following performance bound for the shortest-path
bandit algorithm. It states that the normalized regret of the algorithm, after n rounds of
play, is, roughly, of the order of K+/|F|Iln N/n where |E| is the number of edges of the
graph, K is the length of the paths, and IV is the total number of paths.
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A BANDIT ALGORITHM FOR SHORTEST PATHS

Parameters: real numbers § >0, 0 < n,v < 1.
Initialization: Set w.o = 1 for each e € E, w;p = 1 for each 2 € P, and
Wy = N. For each round t =1,2, ...

(a) Choose a path I, at random according to the distribution p, on P,
defined by

(1 — ) Bt ifi¢cC.

p_t:{a—y)v;: g ifiec
Wi_1

(b) Compute the probability of choosing each edge e as

Z Wi t—1 {i € C:eci}
ot = — 1_ 1:e€19 .
et = E Pit = Wt ) ’y |C|

1:e€1

(c) Calculate the estimated gains

, {M lf e E It
— Ge,t
ge,t -

B otherwise.
Ge,t

(d) Compute the updated weights

!
— ng
Wet = Wet—1€ et
/
Wity = | | Wet = Wig—1€7%1
ect

where g;, = > _; 9., and the sum of the total weights of the paths

Figure 4.2: Bandit algorithm for shortest path problem.

Theorem 4.1. (GYORGY, LINDER AND OTTUCSAK [41]). For any § € (0,1) and pa-
rameters 0 < v < 1/2, 0 < 8 < 1, and n > 0 satisfying 2nK|C| < , the performance of
the algorithm defined above can be bounded, with probability at least 1 — 0, as

1

~ K FE In N
1 (Ln ~ i L) < Ky + i)+ 1Bl I
€

n nﬂ Il +_77+|E|B

In particular, choosing B = n|E‘ In ‘E| , v = 2nK|C|, and n = ,/#{X‘C' yields for all
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n > max{%lln%,él]dln]\f},

1/~ K E
—(Ln—mian)SZ\/—( AK|C|In N + |E|lnu>
n icP n 4]

The proof of the theorem is based on the analysis of the original algorithm of [5] with
necessary modifications required to transform parts of the argument from paths to edges,
and to use the connection between the gains of paths sharing common edges.

For the analysis we introduce some notation:

Gi,n = Zgi,t and G;,n = Zg'li,t
=1 =1
for each 7 € P and

n n
!/ /
Ge,n = § Gept and Ge,n = § et
t=1 t=1

for each e € F, and

n
Gn=> grt-
t=1
Note that g, g;,, G.,, and G are random variables that depend on I;.
The following lemma, shows that the deviation of the true cumulative gain from the
estimated cumulative gain is of the order of y/n. The proof is a modification of [21, Lemma
6.7].

Lemma 4.1. For any § € (0,1), 0 < 3 <1 and e € E we have

1. |E]T _ 6
P|Gep>G., +-In 2 < =
’ "B 0] T E|

Proof. Fixe € E. For any u > 0 and ¢ > 0, by the Chernoff bound we have
PlGen > G, +u] < e~ UEeACGenCen) (4.1)

Letting u = In(|E|/d) /5 and ¢ = 3, we get

U Gen—Cln) _ o= (B/O) [ H(Cen—Clr) — O p B(Gen—GCly)

|E| ’
so it suffices to prove that Ee®(Gen=Gen) < 1 for all n. To this end, introduce

7, = ePGer=GLy) |
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Below we show that E,[Z,] < Z, ; for t > 2 where E, denotes the conditional expectation
E['lIl, R 7It—1] . Clearly,

Zy = Zy_1exp (ﬂ <ge7t _ w)) '

Qe7t

Taking conditional expectations, we obtain

E:[Z]

o )

_ﬁ [ e &
— thle ‘Ze,tEt exp (/8 (ge’t J— M))}
L Qe,t
_ﬁ [ e € e (& 2
< Zpae By |14 06 (ge,t - w) + 3 (ge,t - w) ] (4.2)
Qe,t Qe,t
2 [ 2 H{eEIt}get 2
= Zyge “tEy |14 67| Ges — q— (4.3)
et
Ll [ H{eEI 19e,t 2
< Zy e iR, |1 4_52 (é)
qe,t
_ 8 2
S thle de,t (1 + ﬁ_>
Qe,t
< Zi4. (4.4)
Here (4.2) holds since 8 < 1, goy — H%igm <land e* < 1+x+2a?forz < 1. (4.3)
follows from E, [H{ee+}tge’t} = g Finally, (4.4) holds by the inequality 1 4 x < e®. Taking
expectations on both sides proves E[Z;] < E[Z;_;]. A similar argument shows that E[Z;] <
1, implying E[Z,] < 1 as desired. O

Proof of Theorem 4.1. As usual in the analysis of exponentially weighted average
forecasters, we start with bounding the quantity In %—g On the one hand, we have the
lower bound

W /
In— =1In E ¢"%in —In N > nmaxG}, —InN . (4.5)
Wo icP e

To derive a suitable upper bound, first notice that the condition n < 21;*'0' implies

ng;,; < 1 for all 4 and ¢, since

1+8 _ nK(+B)C|
ngé,t=n§ gé,tSHE 7 < 5 <1
et

e€d ect



4.3. A BANDIT ALGORITHM FOR SHORTEST PATHS 50

where the second inequality follows because ¢.;, > v/|C| for each e € E.
Therefore, using the fact that e* <1+ 2+ 22 forall x < 1, for all t = 1,2, ... we have

In _I/Vt = In %ewé,t
Pit — & 1eC ’
(o) “
icP -7
Pit — lH{'eC}
< In Z % (1 +ng;. + 7729/?,1‘,)
icP 7
D, 2
< hnf1+) (ngé,t + 7729/i,t>
wep -
< n Z o 772 12 4.7
S 7o, 2 PitGie T T sz,tg it (4.7)
Ve 7 iep

where (4.6) follows form the definition of p; ¢, and (4.7) holds by the inequality In(1+z) < z
for all z > —1.
Next we bound the sums in (4.7). On the one hand,

S picdis = > P 0= Gt > Pi

eP eP ect eck 1€P:eci
/
= E GerGes = 91,1 + | E|B.
ecF

On the other hand,

2
Zpi,tglf,t = sz’,t (Z 92,1&)

icP icP ect

< Zpi,tKZg,zt

i€P ect

= Kzgli,t Z Pit

ecF 1€EP:e€1

= K Zg,i,th,t

ecE

ﬁ—i_ ecl ge,
_ queytg;tw

eckE Qe,t

K(1+p5) Zg:iﬂf

eeE

IN
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where the first inequality is due to the inequality between the arithmetic and quadratic
mean, and the second one holds because g.; < 1. Therefore,

Wt n 772K<1 +ﬁ) /
In = < a1, + Eﬁ + et -
Wt_l 1 — ( t | | ) 1 — GEZE St

Summing for t = 1,...,n, we obtain

W no(A " K(1+ 3) )
In— < Gn+n|E +—§ G .

(1+ﬁ)

n ~ 77 !
< — IIl .
< T (Gu+nlBI) + T2 (Cl max G, (4.8)

1

where the second inequality follows since ) .. G, < Ziec G- Combining the upper
bound with the lower bound (4.5), we obtain

G2 (1= 7 = nK(1+ B)[C]) max i, 1;71nN—n|Eyﬁ. (4.9)

Now using Lemma 4.1 and applying the union bound, for any ¢ € (0, 1) we have that, with
probability at least 1 — 6,

~ K |E]| 11—
> —_ J— . JR— _ —_ —
G, > (1 v —nk (1 + 13)|C|) (mieé%)XGm 3 In 5 ) ; In N n|E|13 ,

where we used 1 —~ —nK(1+3)|C| = 0 which follows from the assumptions of the theorem.
Since G =Kn— L and G;,, = Kn — L;,, for all © € P, we have

Lo < Kn(y+n(l+B)KIC) + (15— (1 + HKIC) min L,

K. |E 1—
+(1—7—77(1+5)K|C|)E1n%+TfylnN+n|E|ﬁ

with probability at least 1 — . This implies

~ K,  |El 1-
L, —m171;1Lm < Kn’y~|—17(1—|—ﬁ)nK2|C|—!—Eln%—l——vln]\f%—mE]ﬁ
ic n

K E In N
< Kny+ 2mE’lC) + 5 n |5|+HT+ B|8

with probability at least 1 — 9, which is the first statement of the theorem. Setting

|E‘
= d = 2K
6= n]E| an vy nK|C|
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results in the inequality

El

~ In N
Ln—minLin§4nnK2|C|—|—n—+2 nK|E|ln—
icp n )

which holds with probability at least 1 — ¢ if n > (K/|E|)In(|E|/d) (to ensure § < 1).

Finally, setting
B In N
"=\ anK2|C]

yields the last statement of the theorem (n > 41In N|C| is required to ensure v < 1/2). O

Next we analyze the computational complexity of the algorithm. The next result shows
that the algorithm is feasible as its complexity is linear in the size (number of edges) of
the graph.

Theorem 4.2. (GYORGY, LINDER AND OTTUCSAK [41]). The proposed algorithm can
be implemented efficiently with time complezity O(n|E|) and space complezity O(|E]).

Proof. The two complex steps of the algorithm are steps (a) and (b), both of which can
be computed, similarly to Takimoto and Warmuth [69], using dynamic programming. To
perform these steps efficiently, first we order the vertices of the graph. Since we have an
acyclic directed graph, its vertices can be labeled (in O(]E|) time) from 1 to |V| such that
u=1,v=|V|, and if (v1,v9) € E, then v; < vy. For any pair of vertices u; < vy let Py, 4,
denote the set of paths from u; to vy, and for any vertex s € V, let

Hi(s) = Z Hw&t

1€Ps,v e€l
and
Ht<5) = E H’U)e’t .
1€Py,s €€

Given the edge weights {w.,}, H(s) can be computed recursively for s = |[V| —1,...,1,
and }AIt(s) can be computed recursively for s = 2,...,|V| in O(|E|) time (letting H;(v) =
H,(u) = 1 by definition). In step (a), first one has to decide with probability v whether I,
is generated according to the graph weights, or it is chosen uniformly from C. If I, is to
be drawn according to the graph weights, it can be shown that its vertices can be chosen
one by one such that if the first k& vertices of I, are vg = wu,v1,...,v,_1, then the next
vertex of Iy can be chosen to be any vy, > vj_1, satisfying (vi_1,vx) € E, with probability
Wiy op)t—1H1—1(Vk)/ Hi—1(vp—1). The other computationally demanding step, namely step
(b), can be performed easily by noting that for any edge (vq,vs),

ﬁt—l(vl)w(m,vz),tlet—l(UQ) |{7’ €C: (Ul’ 02) < Z}|
o) = (1=7) Hy 1 (u) . €

as desired. O
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4.4 A combination of the label efficient and bandit set-
tings

In this section we investigate a combination of the multi-armed bandit and the label efficient
problems. This means that the decision maker only has access to the loss of all the edges
on the chosen path upon request and the total number of requests must be bounded by
a constant m. This combination is motivated by some applications, in which feedback
information is costly to obtain.

In the general label efficient decision problem, after taking an action, the decision maker
has the option to query the losses of all possible actions. For this problem, Cesa-Bianchi
et al. [22] proved an upper bound on the normalized regret of order O(K+/In(4N/d)/(m))
which holds with probability at least 1 — §, where K is the length of the longest path in
the graph.

Our model of the label-efficient bandit problem for shortest paths is motivated by
an application to a particular packet switched network model. This model, called the
Cognitive Packet Network (CPN), was introduced by Gelenbe et al. [27, 28|.

Example 4.1. (COGNITIVE PACKET NETWORK) CPN is a specific autonomic technique
that offers adaptive routing as a way to better QoS to users and it is oriented toward to
use of self-awareness in the network and it is based on strictly automatic defence without
human intervention.

In these networks a particular type of packets, called smart packets, are used to explore
the network (e.g., the delay of the chosen path). These packets do not carry any useful
data; they are merely used for exploring the network. The other type of packets are
the data packets, which do not collect any information about their paths. The task of
the decision maker is to send packets from the source to the destination over paths with
minimum average transmission delay (or packet loss rate). In this scenario, smart packets
are used to query the delay (or loss) of the chosen path. However, as these packets do not
transport information, there is a trade-off between the number of queries and the usage of
the network. If data packets are on the average « times larger than smart packets (note
that typically o > 1) and ¢ is the proportion of time instances when smart packets are
used to explore the network, then ¢/(¢ + a(l — ¢)) is the proportion of the bandwidth
sacrificed for well informed routing decisions.

The CPN model is implemented and integrated into Linuz kernel 2.2.z and it is the
object of the US Patent No. 6804201. The performance of the CPN is extensively studied
experimentally in a test-bed (with 80 nodes) [26] in Imperial College. These experimental
measurements are focused on the techniques using genetic algorithm [29] and neural net-
work [27] to choose the next path. However, these papers do not touch on the theoretical
optimality of the proposed methods.

We study a combined algorithm which, at each time slot ¢, queries the loss of the chosen
path with probability e (as in the solution of the label efficient problem proposed in [22]),
and, similarly to the multi-armed bandit case, computes biased estimates g;, of the true
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gains g;;. Just as in the previous section, it is assumed that each path of the graph is of
the same length K.

The algorithm differs from our bandit algorithm of the previous section only in step
(¢), which is modified in the spirit of |22]. The modified step is given below:

MODIFIED STEP FOR THE LABEL EFFICIENT BANDIT
ALGORITHM FOR SHORTEST PATHS

(¢’) Draw a Bernoulli random variable S; with P((S; =1)) = ¢, and
compute the estimated gains

Eqe,t

5.g,  ifedI, .

Eqe,t

, MS} if e € It
ge,t =

Figure 4.3: The modified step for the LE-++MAB problem for shortest path.

The performance of the algorithm is analyzed in the next theorem, which can be viewed
as a combination of Theorem 4.1 in the preceding section and Theorem 2 of |22].

Theorem 4.3. (GYORGY, LINDER AND OTTUCSAK [41]). For any § € (0,1), € € (0,1],
parameters n = ,/i}?ﬁc', v = %'C‘ <1/2, and f = ,/né‘a ln@ <1, and for all

1 {K2 In?(2|E|/8) |E|In(2|E|/s)

>
PE T T BN K

,4|C|lnN}

the performance of the algorithm defined above can be bounded, with probability at least

1—9, as
1/~
— (Ln — min Li,t)
n icP

< \/E <4\/K‘CHHN+5\/|EHH@+\/8[(111%) +gln¥
ne

3ne

21K [|E|In2¥
- 2 ne

If € is chosen as (m — y/2m1In(1/0))/n then, with probability at least 1 — §, the total
number of queries is bounded by m (see |21, Lemma 6.1]) and the performance bound
above is of the order of K+/|E|In(N/§)/m.

For the proof we need the following two lemmas. The first is the Bernstein’s inequality
for martingales differences [13].
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Lemma 4.2. Let Xi,..., X, be a martingale difference sequence such that X, € |a, b] with
probability one (t =1,...,n). Assume that, for all t,

E |:Xt2|Xt,1, c. ;Xl] < 0'2 a.s.
Then, for all € > 0,

2
—e
{ E Xt > 5} 62n02+25(b a)/3

and therefore

IP’{ZXt > V2no?lnd—1 +2Ind (b — a)/B} < 4.
t=1

Similarly to Theorem 4.1, we need a lemma which reveals the connection between the
true and the estimated cumulative losses. However, here we need a more careful analysis

because the “shifting term” af tSt’ is a random variable.
e,

Lemma 4.3. Forany 0 <d <1, 0<e <1, for any
K?In*(2|E|/§) K1n(2|E|/6)
N IR CLILYS

|E|InN |E|
parameters
2nK|C| eln N K 2|F|
< = —— d = In— <1
: =7 1 4nK2|C| and n|Ele BTy =
and e € E, we have
4 2|F] )
P|G., > G —In—| < —
[ 7 en 5 ] = 3]

Proof. Fix e € E. Using (4.1) with u = % In 2'5' and ¢ = ﬁs, it suffices to prove for all
n that
E [ec(Ge’"_G’Ev”)} <1.

Similarly to Lemma 4.1 we introduce Z; = e“(Ger=Ge) and we show that Z1, ..., 2Ly, 18 asu-

permartingale, that is E,[Z;] < Z; 4 for t > 2 where E,; denotes E[-|(I1,51), ..., T¢-1,5:-1)]-
Taking conditional expectations, we obtain

Iecr,}St9e,t+5t8
ANIet™ " Taee
e =

]I € S e + S
< ZiaEy [1 +c <ge,t _ le€h} qtg ; tﬁ)
et

+CQ (g - H{eelt}Stge,t + Stﬁ) 2
’ Qe,tg

EZ)] = ZE,

(4.10)
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Since

Lieer,3Stger + St6:| _ s

QG,t€ qf:,t

E, |:ge7t -

and

E, < E;

( ]I{eEIt}Stge,t ) 2
Jet — =
Qe,t5

<]I{e€Iz}Stge,t)2 < 1
Qe t€ S

we get from (4.10) that

E[Zi]
2 2 tecr 1 Sige 20+ S S, 32
< 7, E, [1 B ﬁ N c ny < { 612} ;g B _ 20et 3 " 2t»32>]
Ge,t Qe t€ qe € Get€ Qe +€
c c 2 15}
< Zi1 |1+ OB+ —-+cOB|-+ . (4.11)
Qe,t € € Qe,tg

Since ¢ = /4 we have

—ﬁ+§+cﬁ<§+ ﬁ) = —%—Fﬁ—%(gﬁ- ﬂ)

Qe,t&j 4 4 € Qe,tg
3 2 3
4 2 4Gy
3
< B.P
a 4 4(]e,t
B B
< 4.12
<1t h (4.12)
< 0, (4.13)
where (4.12) follows from ¢.; > % and (4.13) holds since # < 1 and by
2 2
3 C| < e |
y 2nK

and the last inequality is ensured by n > %, the assumption of the lemma.

Combining (4.11) and (4.13) we get that E,[Z,] < Z, ;. Taking expectations on both
sides of the inequality, we get E[Z;] < E[Z,_ 4] and since E[Z;] < 1, we obtain E[Z,] < 1
as desired. O

Proof of Theorem 4.3. The proof of the theorem is a generalization of that of Theo-
rem 4.1, and follows the same lines with some extra technicalities to handle the effects of
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the modified step (c¢’). Therefore, in the following we emphasize only the differences. First
note that (4.5) and (4.7) also hold in this case. Bounding the sums in (4.7), one obtains

sztgzt gItt+|E|/6)

i€P
and
> piagi, < K L+8)D g,
icP eck
Plugging these bounds into (4.7) and summing for ¢ = 1,...,n, we obtain
Wn _n St 77 K(1+ 6) /
In— < | B ——|C maXG
TS T 7 e VB9 T

Combining the upper bound with the lower bound (4.5), we obtain

S, K(1 C In N
Z ; (9r,.+ +|E|IB) > (1—7—M) mE%XG;’n—n— . (4.14)

t=1 € U]
To relate the left-hand side of the above inequality to the real gain >} | g, +, notice that

S
X (gItt+ |E|ﬁ) (gIt7t+ |E|ﬁ)

is a martingale difference sequence with respect to (I,51), (Is,52),.... Now for all ¢t =
1,...,n, we have the bound

S,
B (X205 (T S0)] < B | Slan o+ E19)

(K +|E|B)?
19

AK? g4,
= 2 (4.15)

(Ib Sl)7 ey (Itfla Stfl)

IN

€

where (4.15) holds by n > w (to ensure B|E| < K). We know that

el (o

for all £. Now apply Bernstein’s inequality for martingale differences (see Lemma 4.2 in

the Appendix) to obtain
- )
P X < = 4.16
e (116
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where

From (4.16) we get

[\DIOw

P [Z it (91,4 + |E|B) > +ﬁn\E| +u (4.17)

t=1

Now Lemma 4.3, the union bound, and (4.17) combined with (4.14) yield, with proba-
bility at least 1 — 9,

> — - L ~ 7 1 . - '
G, (1 y IzneaXGm - 5

since the coefficient of G, is greater than zero by the assumptions of the theorem.
Since G =Kn— L and Gin = Kn — L;,, we have

i< (1 o K(1 +€ﬁ)n\0\) min L, + Kn (,H K(1 +€B)n\0\)

K@+ pulel) 4K | 2|E]| In N
+(1 7y . 55 5 + pn|E| + p +u

K(1 C In N
< minL;, + Kn <fy+ (+—mn||) +506n|E| + kAR :
icP £ n
where we used the fact that K - In 2|E| = fOn|E|.
Substituting the value of 5 n and v, we have
2K nIC | gen2E 77|C .

L —min L; , <Kn
1€P

—|— 56n|E| +u

<k /n|C|lnN \/n|E|Kln 2|E|/5)
</ = - (4\/K\C\lnN~|—5\/|E]1n 2|E]/5) + /8K In 2/5))

4K
—1In(2/0
+ 5= In(2/9)

as desired. O



4.5. A BANDIT ALGORITHM FOR TRACKING THE SHORTEST PATH 59
4.5 A bandit algorithm for tracking the shortest path

Our goal in this section is to extend the bandit algorithm so that it is able to compete
with time-varying paths under small computational complexity. This is a variant of the
problem known as tracking the best expert; see, for example, Herbster and Warmuth [46],
Vovk [71], Auer and Warmuth [9]|, Bousquet and Warmuth [17], Herbster and Warmuth
[47].

To describe the loss the decision maker is compared to, consider the following “m-
partition” prediction scheme: the sequence of paths is partitioned into m + 1 contiguous
segments, and on each segment the scheme assigns exactly one of the N paths. Formally,
an m-partition Part(n,m,t,%) of the n paths is given by an m-tuple t = (¢1,...,t,,) such
that to=1<t; <--- <t, <n+1=ty,, and an (m + 1)-vector ¢ = (2,...,%,,) where
1; € P. At each time instant ¢, t; <t < ¢;41, path 2; is used to predict the best path. The
cumulative loss of a partition Part(n,m,t, 1) is

m tj+1—1 m tj+1—1
Leart(mm.t.0) =3 3 =3 S Ya.
j=0 t=t; j=0 t=t; e€i;

The goal of the decision maker is to perform as well as the best time-varying path
(partition), that is, to keep the normalized regret

1/~
— (Ln — min L(Part(n,m,t,i)))

n t

as small as possible (with high probability) for all possible outcome sequences.

In the “classical” tracking problem there is a relatively small number of “base” experts
and the goal of the decision maker is to predict as well as the best “compound” expert
(i.e., time-varying expert). However in our case, base experts correspond to all paths of
the graph between source and destination whose number is typically exponentially large in
the number of edges, and therefore we cannot directly apply the computationally efficient
methods for tracking the best expert. Gyorgy, Linder, and Lugosi [38] develop efficient
algorithms for tracking the best expert for certain large and structured classes of base
experts, including the shortest path problem. The purpose of the following algorithm is
to extend the methods of [38] to the bandit setting when the forecaster only observes the
losses of the edges on the chosen path.

The following performance bounds shows that the normalized regret with respect to
the best time-varying path which is allowed to switch paths m times is roughly of the order

of Kv/(m/n)|C|In N.
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A BANDIT ALGORITHM FOR TRACKING SHORTEST PATHS
Parameters: real numbers 3> 0,0<n,7<1,0<a < 1.

Initialization: Set w., = 1 for each e € F, w;o = 1 for each 2 € P, and
Wo = N. For each round t = 1,2, ...

(a) Choose a path I, according to the distribution p; defined by

&

s

. (1—7)%"’:11+% ifi €C;
R ifi &C.

1—7)

=

(b) Compute the probability of choosing each edge e as

Z~, Wit |{’L€C€€’L}|
— § R 1 o 1.e€7 s + )
q@,t i:eeiplat ( ’7) Wt,1 ’Y |C|
(c) Calculate the estimated gains
ettB s .
g, _ ng—,t if e S It,
o q:% otherwise.

(d) Compute the updated weights
Vi = Wig1e"%
_ _ O —
Wiy = (1—a)v+ Nwt

where g;, = > ., 9., and W, is the sum of the total weights of the

paths, that is,
W, = Z@i,t = sz‘,t-
icP icP

Figure 4.4: Bandit algorithm for tracking the shortest path.

60
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Theorem 4.4. (GYORGY, LINDER, LUGOST AND OTTUCSAK [40]). For any § € (0,1)
and parameters 0 < v < 1/2, o, 8 € [0,1], and n > 0 satisfying 2nK|C| < =, the per-
formance of the algorithm defined above can be bounded, with probability at least 1 — 0,
as

1/~
— (Ln - ntlin L(Part(n,m,t,g')))

n
< K+ pric) + S0 D

1 Nt
E —1 .
s “(am<1—a>nm1)

In particular, choosing

K 1) |E 1
BZ\/ (m 1), [Eltm +1) y=2K|C),  a=—",

n|E| ) ’ n—1

and,

_ [(m+ 1)lnN+mln%
= inK2|C]

we have, for all n > maX{K(ITZ,Tl) In ‘El(?ﬂ) : 4]C]D},

\I n

t?l:

where

-1
D:(m+1)lnN+m(1—|—1nn >
m

The proof of the theorem is a combination of that of our Theorem 4.1 and Theorem 1
of [38]. We will need the following three lemmas.

Lemma 4.4. For any 1 <t <t <n and anyi € P,

Vit ’
_1—’t > enGi’[t’t/](l - O‘)t/_t
Wi,t—1

/ o t/ /
where G,y =3y Yi 7

Proof. The proof is a straightforward modification of the one in Herbster and Warmuth
[46]. From the definitions of v;; and w;; (see step (d) of the algorithm) it is clear that for
any 7 > 1,

Wir = (1 —a)v;, + %WT > (1 — a)e™ir;,; .
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Applying this equation iteratively for 7 = ¢,¢t+1,...,t — 1, and the definition of v;; (step
(d)) for 7 =t', we obtain

t'—1

_ _ 4 ! 4 _
Ti = Wiyt > i H <(1 _ a)g&;) Wig—1
T=t
G’ ¢ _
=" i) (1 — ) g,

which implies the statement of the lemma. O

Lemma 4.5. For anyt>1 and 1,5 € P, we have

£

it

>

Vst

=2

Proof. By the definition of w;; we have

_ _ o — o — o
Wit = (1 — OZ)U“ + NW,: Z NWt Z iji .

This completes the proof of the lemma. O

The next lemma is a simple corollary of Lemma 4.1.

Lemma 4.6. For any § € (0,1),0< 3<1,t>1 and e € E we have

1. |E|(m+1) 5
P —1 .
[Gevt > Geat 5 5 =~ |E|(m+1)

Proof of Theorem 4.4. Again, we upper bound In W, /W the same way as in Theorem
4.1. Then we get

In Y" < 1
W 1—

2K (1
TEAE5) 61 Gl . (4.18)

G, +n|E )
’Y< +nlEIB) + 1—7 icP

Let Part(n, m,t,2) be an arbitrary partition. Then the lower bound is obtained as
Wn w:),n T}_’],n @im,’l’b
JEP JEP

(recall that ,, denotes the path used in the last segment of the partition). Now v;  , can
be rewritten in the form of the following telescoping product

— m — —
Vig,t1—1 ( Wijt—1 Uij,tj+1—1>

'l_)im,n - U_J’io,tofl —

ioito—1 27 \Vijo1t;—1 Wi ;-1
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Therefore, applying Lemmas 4.4 and 4.5, we have

m
_ _ a\™m L 1—¢. NGLo
iy, m Z Wiy 491 (N) H <(1 . a)t]+1 1 t3€ zj,[tj,tJJrlfl])

Jj=0

— <%>m enG’(Part(n,m,t,i))(l . a)n—m—l‘

Combining the lower bound with the upper bound (4.18), we have
am<1 _ a)n—m—l
In ( Nm+1

~ 2
< % (Gu+nlBIB) + TEEL 0l maxier G,

) +max G (Part(n,m, t, i)
T

where we used the fact that Part(n,m,t,2) is an arbitrary partition. After rearranging
and using max;ep G, < maxy; G'(Part(n, m,t,7)) we get

Gu > (1—7—nK(1+5)|C]) max ' (Part(n,m, t, 7))

1— Nm+1
—n|E|f — 777111( >

am(l _ a)n—m—l

Now since 1—y—nK(1+/3)|C| > 0, by the assumptions of the theorem and from Lemma 4.6
with an application of the union bound we obtain that, with probability at least 1 — 9,
qu+1)|Emn+n)
In
1G] )

G (1= = k(14 9iC) (max Glparsn,m,t.)) -

1— Nm—H
—n|E|pf — nfyln( )

am(l _ a)n—m—l

Since G,, = Kn — L, and G(Part(n,m,t,4)) = Kn — L(Part(n,m,t,1)), we have

~

Lo < (1=y—nK(1+8)[C])min L(Part(n,m,t,3)) + Kn (7 + (1 + §)KC])

K(7n+1)1 |E|(m+1)
g

+ (1 =y —n(+p)K[C))

1 Nm+1
~1 .
)

This implies that, with probability at least 1 — 9,

+n|E|3

L, — ngin L(Part(n,m,t,1))
i

Km+1), |E|(m+1)
3 In 5

1 Nl
+n|E|B + Eln (am(l — a)n_m_l) . (4.20)

< Kn(y+n(l+B)K|C]) +
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To prove the second statement, let H(p) = —plnp — (1 — p)In(1 — p) and D(p || q¢) =
plnf+(1—p)n %Z. Optimizing the value of « in the last term of (4.20) gives

1 Nm—H
—In
1 (o/”(l - 04)""”‘1)

1 1 1
— 7—]((m+1)ln(N)+mlna—i—(n—m—l)lnl )

—

_ %(<m+ 1)In(N) + (n = 1)(Dy(a* || a) + Hy(a®)))

where o* = . For a = o™ we obtain

1 N
—In
n (am(l _ a)n—m—l)

= L Dm@) + (0 - D(H0)

n
- %<<m+1> 0 () +mn((n - 1)/m)
+(n—m —1)In(1+m/(n —m —1)))
< %((m+1)ln(N)+m1n((n—1)/m)+m)

= 1 m n mn—e(n_l) d—efl
= 77(( +1)In(N)+ml - )_nD

where the inequality follows since In(1 + z) < z for z > 0. Therefore

L, — IrtunL(Part(n m,t,1))

K(m+1 El(m+1 1
< Kn(y+n(l+p)KI|C|)+ (ﬁ )1n| K(S )+n|E|5—|—5D.
which is the first statement of the theorem. Setting
Kim+1), |E|(m+1) D
= 1 = 2nK|C dn=4/—=

results in the second statement of the theorem, that is,

L, — mlnL(Part(n m,t,1))

’L

< 2vVnK <\/4K\C\D+\/|E]m+ 1)In M) m

J

Similarly to [38], the proposed algorithm has an alternative version, which is efficiently
computable:
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AN ALTERNATIVE BANDIT ALGORITHM FOR TRACKING
SHORTEST PATHS

For t = 1, choose I uniformly from the set P. For ¢t > 2,
(a) Draw a Bernoulli random variable I'; with P(I';, = 1) = .
(b) Tf Ty = 1, then choose I; uniformly from C.
(c) Ty, =0,

(c1) choose 7 randomly according to the distribution

(1—a)t=1Z1 41 f r_
P{r, =1t} = { (1 V[;ij'w o
all—a t/ A t—1 !
N fort' =2,...,t

G!,
where Zyy 1 = Y .p e for ¢ = 1,...,t — 1, and
Zt,t—l = N;

(c2) given 7 = t/, choose I; randomly according to the probabilities
6”%,[#,&1]
P{I, =i, =t'} = Zit 11
1
N

fort!=1,...,t—1
for t’' =t.

Figure 4.5: An alternative version of the bandit algorithm for tracking shortest path.
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With a slight modification of the proof of Theorem 2 in [38], it can be shown that
the alternative and the original algorithms are equivalent. Moreover, in a way completely
analogous to [38|, in this alternative formulation of the algorithm one can compute the
probabilities the normalization factors Z, ,_; efficiently, as the baseline bandit algorithm
for shortest paths has an O(n|E|) time complexity by Theorem 4.2. Therefore the factors
W, and hence the probabilities P{I, = i|r, = t'} can also be computed efficiently as in [38].
In particular, it follows from Theorem 3 of [38] that the time complexity of the alternative
bandit algorithm for tracking the shortest path is O(n? E|).

4.6 An algorithm for the restricted multi-armed bandit
problem

In this section we consider the situation where the decision maker receives information
only about the performance of the whole chosen path, but the individual edge losses are
not available. That is, the forecaster has access to the sum ¢r, ; of losses over the chosen
path I; but not to the losses {{.+}cer, of the edges belonging to I;.

This is the problem formulation considered by McMahan and Blum [54] and Awerbuch
and Kleinberg [11]. McMahan and Blum provided a relatively simple algorithm whose
regret is at most of the order of n=/4, while Awerbuch and Kleinberg gave a more complex
algorithm to achieve O(n~'/3) regret. In this section we combine the strengths of these
papers, and propose a simple algorithm with regret at most of the order of n=/3. Moreover,
our bound holds with high probability, while the above-mentioned papers prove bounds
for the expected regret only. The proposed algorithm uses ideas very similar to those
of McMahan and Blum [54]. The algorithm alternates between choosing a path from a
“basis” B to obtain unbiased estimates of the loss (exploration step), and choosing a path
according to exponential weighting based on these estimates.

A simple way to describe a path ¢ € P is a binary row vector with |E| components
which are indexed by the edges of the graph such that, for each e € E, the eth entry of the
vector is 1 if e € ¢ and 0 otherwise. With a slight abuse of notation we will also denote by 2
the binary row vector representing path 2. In the previous sections, where the loss of each
edge along the chosen path is available to the decision maker, the complexity stemming
from the large number of paths was reduced by representing all information in terms of
the edges, as the set of edges spans the set of paths. That is, the vector corresponding
to a given path can be expressed as the linear combination of the unit vectors associated
with the edges (the eth component of the unit vector representing edge e is 1, while the
other components are 0). While the losses corresponding to such a spanning set are not
observable in the restricted setting of this section, one can choose a subset of P that forms
a basis, that is, a collection of b paths which are linearly independent and each path in P
can be expressed as a linear combination of the paths in the basis. We denote by B the
b x |E| matrix whose rows b',....b" represent the paths in the basis. Note that b is equal
to the maximum number of linearly independent vectors in {¢: 4 € P}, so b < |E].
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Let EgE) denote the (column) vector of the edge losses {l.;}ecrp at time ¢, and let

KIEB) = (lpry, - - 7Ebz)’t)T be a b-dimensional column vector whose components are the losses
of the paths in the basis B at time t. If 045:1’3), . ,ozéf,’B) are the coefficients in the linear

combination of the basis paths expressing path ¢ € P, that is, ¢ = Z?’:l al(:,’B)bj, then the
loss of path ¢z € P at time t is given by

b

o= (.47) =3 albP W 67) =" altP, (4.21)

j=1 7=1
where (-, -) denotes the standard inner product in RI®l, In the algorithm we obtain estimates
ly; ; of the losses of the basis paths and use (4.21) to estimate the loss of any i € P as

b
lie=Y alPly, . (4.22)
j=1

It is algorithmically advantageous to calculate the estimated path losses !Z-}t from an
intermediate estimate of the individual edge losses. Let B denote the Moore-Penrose
inverse of B defined by BT = BY(BB")~', where B denotes the transpose of B and
BB is invertible since the rows of B are linearly independent. (Note that BB* = I,
the b x b identity matrix, and B* = B~V if b= |E|.). Then letting £ = (g1 1, )
and

5(E)

¢" = Bg”

it is easy to see that f;, in (4.22) can be obtained as f;, = <i,ZEE)>, or equivalently

g'll,t = Z Ze,t‘

ect

This form of the path losses allows for an efficient implementation of exponential weighting
via dynamic programming [69].
To analyze the algorithm we need an upper bound on the magnitude of the coefficients
(¢,B)

;. For this, we invoke the definition of a barycentric spanner from [11]: the basis B is

called a C-barycentric spanner if |a$’B)| < (Cforallz € Pand j=1,...,b. Awerbuch and
Kleinberg |11] show that a 1-barycentric spanner exists if B is a square matrix (i.e., b = | E|)
and give a low-complexity algorithm which finds a C-barycentric spanner for C' > 1. We
use their technique to show that a 1-barycentric spanner also exists in case of a non-square
B, when the basis is chosen to maximize the absolute value of the determinant of BBT.
As before, b denotes the maximum number of linearly independent vectors (paths) in P.

Lemma 4.7. For a directed acyclic graph, the set of paths P between two dedicated nodes
has a 1-barycentric spanner. Moreover, let B be a b x |E| matriz with rows from P such
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that det[BBT] # 0. If B_;; is the matriz obtained from B by replacing its jth row by
1€ P and
|det [B_;; B ;]| < C?|det [BB"]] (4.23)

forall j=1,...,b and ¢ € P, then B is a C-barycentric spanner.

Proof. Tet B be a basis of P with rows b',...,b" € P that maximizes | det[BB7]|.

Then, for any path ¢ € P, we have ¢ = Z;’.:l ozé;’B)bj for some coefficients {ag’B)}. Now
for the matrix B_,; = [i’, (b*)7,..., (b")7]" we have

det [B_1;B”, ]|
= |det [B_14i", B_1;(b>)", B_1;(b*)",..., B_1;(b")"]|

b T
= |det (Zag’mB_ubj) ,B_ (b)), B_,;(b*)7,...,B_1;(b")7
j=1

b
= D aliP det [B_yi(0)", B_13(b")", B_1;(b%)",..., B_1;(b")"]

J=1

= |alP)||det [B_,;B"]|
= (ozl(ﬁ’B)Y |det [BB™]|

where last equality follows by the same argument the penultimate equality was obtained.
Repeating the same argument for B_;;, 7 = 2,...,b we obtain
jdet [B_3B",]| = (afi®)" |det [BB"]| (4.24)
Thus the maximal property of | det[BB”]| implies |al(:;-’B)| < 1lforall j =1,...,b. The
second statement follows trivially from (4.23) and (4.24). O
Awerbuch and Kleinberg [11, Proposition 2.4| also present an iterative algorithm to
find a C-barycentric spanner if B is a square matrix. Their algorithm has two parts.
First, starting from the identity matrix, the algorithm replaces sequentially the rows of the
matrix in each step by maximizing the determinant with respect to the given row. This
is done by calling b times an optimization oracle, to compute arg max;ep | det [B_; ;] | for
7 =1,2,...,b. In the second part the algorithm replaces an arbitrarily row j of the matrix
in each iteration with some 2 € P if |det [B_;;] | > C|det [B]|. It is shown that the oracle
is called in the second part O(blog. b) times for C' > 1. In case B is not a square matrix,
the algorithm carries over if we have access to an alternative optimization oracle that can
compute arg max;ep | det[B_jviBTjJH: In the first b steps, all the rows of the matrix are
replaced (first part), then we can iteratively replace one row in each step, using the oracle,
to maximize the determinant |det[B_;;B”; ]| in ¢ until (4.23) is satisfied for all j and 4.
By Lemma 4.7, this results is a C-barycentric spanner. Similarly to [11, Lemma 2.5], it
can be shown that the alternative optimization oracle is called O(blog b) times for C' > 1.
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For simplicity (to avoid carrying the constant C'), assume that we have a 2-barycentric
spanner B. Based on the ideas of label efficient prediction, the next algorithm gives a
simple solution to the restricted shortest path problem. The algorithm is very similar to
that of the algorithm in the label efficient case, but here we cannot estimate the edge losses
directly. Therefore, we query the loss of a (random) basis vector from time to time, and
create unbiased estimates lej’t of the losses of basis paths £, ;,, which are then transformed
into edge-loss estimates.

The performance of the algorithm is analyzed in the next theorem. The proof follows
the argument of Cesa-Bianchi et al. [22|, but we also have to deal with some additional
technical difficulties. Note that in the theorem we do not assume that all paths between
and v have equal length.

Theorem 4.5. (GYORGY, LINDER, LUGOSI AND OTTUCSAK [40]). Let K denote the length
of the longest path in the graph. For any 6 € (0,1), parameters 0 < ¢ < % and n > 0
satisfying n < €2, and n > 8b 2 In =~ 4bN , the performance of the algorithm defined above can be
bounded, with probability at least 1 — 9, as

~ b In \/ 2neln 3 / AN\ InN
Ln—mi}}Li,nSK 1 K + ln +n5—|— 5 2n ln— +n—
i€ n

In particular, choosing

Kb  4bN
5:(—blnb—) and 1 =¢c?
n o

we obtain R
Ly —min Ly, < 9.1K% (KbIn(4bN/8)) /2 n?/3 .
(S

The theorem is proved using the following two lemmas. The first one is an easy conse-
quence of Bernstein’s inequality:

Lemma 4.8. Under the assumptions of Theorem 4.5, the probability that the algorithm

queries the basis more than ne + {/2ne ln times is at most § /4.

Using the estimated loss of a path ¢ € P given in (4.22), we can estimate the cumulative
loss of 2 up to time n as
n
=2l
t=1

The next lemma demonstrates the quality of these estimates.
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AN ALGORITHM FOR THE RESTRICTED MULTI-ARMED BANDIT PROBLEM

A BANDIT ALGORITHM FOR THE RESTRICTED SHORTEST
PATH PROBLEM

Parameters: 0 <e,n < 1.

Initialization: Set w.o = 1 for each e € E, w;o = 1 for each i € P,
Wo = N. Fix a basis B, which is a 2-barycentric spanner. For each round
t=1,2,...

(a) Draw a Bernoulli random variable S; such that P(S; = 1) = ¢;

(b) If S; = 1, then choose the path I, uniformly from the basis B. If
Sy = 0, then choose I, according to the distribution {p;.}, defined
by

iy — Wi 41
it = = .
Wiy

(c) Calculate the estimated loss of all edges according to
1B

where ZEE) = {gg)}eeE, and ZEB) = (g(B) B

Ly bb,t) is the vector of

the estimated losses

S}
by s =ty dir—pyb

forj=1,...,b.

(d) Compute the updated weights

_ —nlet
Wet = Wer—1€ e )
_ - o — Doy
Wi = [[wes = wsyqe7nzeeiter,
e€t

and the sum of the total weights of the paths

Figure 4.6: Bandit algorithm for the restricted shortest path problem.

70



4.6. AN ALGORITHM FOR THE RESTRICTED MULTI-ARMED BANDIT PROBLEM 71
Lemma 4.9. Let 0 < 6 < 1 and assume n > %b In %. For any v € P, with probability at

least 1 — 0/4,
Zzpzt&t - Zszt&t < b\/2nb£1n%b .

t=1 ieP t=1 icP

Furthermore, with probability at least 1 — 6/(4N),

n—In— .

- 8 \/ bK2  4bN
- < Zhy/2
’ € )

Proof. We may write

n n n b
Z Zpi,tgi,t - Z Zpi,tzi,t = Z Zpi,t Z 04[(:;'73) (gbj,t - Zlﬂ',t)

t=1 icP t=1 icP t=1 4P  j=1
b n
. B ~
33 [t (10 )
j=1 t=1 LieP
b n
DD Xy (4.25)
j=1 t=1
Note that for any &, Xpigs t=1,2,... is a martingale difference sequence with respect to

(It7 St), t= 1, 2, ... as Etgb,t = gb,t- AlSO,

2
. - 2
b= (S ) ()] < S (o) 2 <42

eP ieP
and

(i.8 Kb Kb
Xl < eB| =

sztOé zB)

i€P

sz

where the last inequalities in both cases follow from the fact that B is a 2-barycentric
spanner. Then, using Bernstein’s inequality for martingale differences (Lemma 4.2), we
have, for any fixed &,

‘eb] = | < (4.27)

“ K2 4
Py Xy, zg an—l ;] <9 (4.28)
t=1

where we used (4.26), (4.27) and the assumption of the lemma on n. The proof of the
first statement is finished with an application of the union bound and its combination with
(4.25).



4.6. AN ALGORITHM FOR THE RESTRICTED MULTI-ARMED BANDIT PROBLEM 72

For the second statement we use a similar argument, that is,

n

St =Y LR SIETPIED by
t=1 j=1 j=1 t=1
Zfbu glﬂt

(Eﬂ,t - gbj,t)

b

szz

(4.29)

Now applying Lemma 4.2 for a fixed b’ we get

"~ 4 K2b . 4bN )
)y > - < .
JP[§ (Cyiy — Ly y) > 3\/2n . In 5 ] <N (4.30)

t=1

because of ]Et[(ijﬁt — Uy ,)?] < KTQZ’ and —K < Eﬂ,t — Uy, < K (2—1). The proof is
completed by applying the union bound to (4.30) and combining the result with (4.29). O

Proof of Theorem 4.5. Similarly to earlier proofs, we follow the evolution of the term
In &n - In the same way as we obtained (4.5) and (4.7), we have

In nmlan—lnN

ieP

5'\ =

and
W, " o i
=" < Y <—n > puslit Zpiﬁteit) |
Wo t=1 icP ieP

Combining these bounds, we obtain

~ In N &
—IzIélglen—— S < sztgzt_F sztg )

N t=1 €P iceP

§ ( 1+n_m)zzpzt€zta

t=1 z€P

because 0 < Zi,t < @ Applying the results of Lemma 4.9 and the union bound, we have,
with probability 1 —0/2,

K? 4bN
—mlan— \/2n—blnb—

Kb [ K?b 4D In N
< ( 1+ 1 ) (ZZplt&t——b 2n—lng> —|—n—
t=1 ieP N
nKb [y, K%, 4 N

t=1 2P
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Introduce the sets

— def

def T,={t:1<t<nandS; =1}

T, ={t:1<t<nandS; =0} and

of “exploitation” and “exploration” steps, respectively. Then, by the Hoeffding-Azuma
inequality [48] we obtain that, with probability at least 1 — §/4,

Zzpztezt>251t, |T‘K lng .

teT, i€P teTn

Note that for the exploration steps t € 7, as the algorithm plays according to a uniform
distribution instead of p;;, we can only use the trivial lower bound zero on the losses, that

is,
Z Zpi,tgi,t > Z lr,+ — K|T,| .

teT , €P teTn

The last two inequalities imply

- ~ T,|K?
> pislis > Ly - | l In L KT (4.32)

t=1 ieP

Then, by (4.31), (4.32) and Lemma 4.8 we obtain, with probability at least 1 — 9,

L —min L; ,,
i€P

«/2n51n—
< K ann—l—\/—ln——l—ng—l— ’ \/271 ln4b—N

where we used L, < Kn and |7,| < n. Substituting the values of € and 7 gives

1 1 16
L —minL;, < K2bn€+ZKn5+Kn8+—n€+?b\/?ng—i—ng

i€P 2
< 9.1K?%bne
where we used ,/%hl% < %ne, \/2ne lm‘g1 < %ns, @/nb?Kln% = ne, and IHTN < ne (from
the assumptions of the theorem). O

4.7 Simulation results

To further investigate our new algorithms, we have conducted some simple simulations.
As the main motivation of this work is to improve earlier algorithms in case the number of
paths is exponentially large in the number of edges, we tested the algorithms on the small
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graph shown in Figure 4.1 (b), which has one of the simplest structures with exponentially
many (namely 2!¥1/2) paths.

The losses on the edges were generated by a sequence of independent and uniform
random variables, with values from [0,1] on the upper edges, and from [0.32,1] on the
lower edges, resulting in a (long-term) optimal path consisting of the upper edges. We
ran the tests for n = 10000 steps, with confidence value 6 = 0.001. To establish baseline
performance, we also tested the EXP3 algorithm of Auer et al. [5] (note that this algorithm
does not need edge losses, only the loss of the chosen path). For the version of our bandit
algorithm that is informed of the individual edge losses (edge-bandit), we used the simple
2-element cover set of the paths consisting of the upper and lower edges, respectively (other
2-element cover sets give similar performance). For our restricted shortest path algorithm
(path-bandit) the basis {vuuuw, vuuul, vuull, vulll, wllll, 1111} was used, where u (resp.
[) in the kth position denotes the upper (resp. lower) edge connecting vy and vg. In
this example the performance of the algorithm appeared to be independent of the actual
choice of the basis; however, in general we do not expect this behavior. Two versions
of the algorithm of Awerbuch and Kleinberg [11] were also simulated. With its original
parameter setting (AwKIl), the algorithm did not perform well. However, after optimizing
its parameters off-line (AwKI tuned), substantially better performance was achieved. The
normalized regret of the above algorithms, averaged over 30 runs, as well as the regret of
the fixed paths in the graph are shown in Figure 4.7.

Although all algorithms showed better performance than the bound for the edge-bandit
algorithm, the latter showed the expected superior performance in the simulations. Fur-
thermore, our algorithm for the restricted shortest path problem outperformed Awerbuch
and Kleinberg’s (AwKl) algorithm, while being inferior to its off-line tuned version (AwKI
tuned). It must be noted that similar parameter optimization did not improve the per-
formance of our path-bandit algorithm, which showed robust behavior with respect to
parameter tuning.
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T
edge-bandit  =—te—
path-bandit ——
AwKI
AwKI tuned
EXP3 ---=m---
bound for edge-bandit -

15 | o

Normalized regret

. | | | |
0 2000 4000 6000 8000 10000

Number of packets

Figure 4.7: Normalized regret of several algorithms for the shortest path problem. The
gray dotted lines show the normalized regret of fixed paths in the graph.



Chapter 5

On-line Prediction in case of Stationary and Ergodic Processes

One may wonder whether it is possible to improve the statements for individual sequences
if we have some assumptions about the behavior of the outcome sequences y1,4s,.... To
spot a possible way of the improvement we recall our analogy with pattern recognition,
which was mentioned in Section 1.1. In Chapter 3 and in Chapter 4 we have dealt with
the minimization of the estimation error, that is, that measures the difference between the
normalized regret of the best expert from a fixed expert class and the normalized regret of
our algorithm. However, if we have e.g. stationary and ergodic assumption on the outcome
sequence we can say also something about the approximation error, which describes how far
is the performance of the best expert from the performance of the Bayes-optimal predictor,
which can be achieved only in full knowledge of the underlying distribution of the outcome
process.

In this chapter we provide simple on-line procedures for the prediction of a sequences
in stationary and ergodic environment, which not only minimize the estimation error but
also guarantee that the approrimation error vanishes asymptotically. The proposed al-
gorithms are based on a combination of several simple predictors (experts). One of the
huge increment using this “model-less” expert advice approach that it provides “adapta-
tion” also in case of dependent outcome sequence, where the classical methods (splitting
and cross-validation) is not applicable.

In Section 5.1 we introduce a prediction strategy (algorithm) for unbounded stationary
and ergodic real-valued processes and show that the average of squared errors of the algo-
rithm converges, almost surely, to that of the optimum, given by the Bayes predictor. This
property — that the loss of a strategy converges to the loss of the theoretical optimum — is
called universal consistency. In Section 5.2 we offer an extension for the noisy setting, that
is when the algorithm has access only to the noisy version of the original sequence. The
“clean” process is passed through a fixed binary memoryless channel (e.g. Binary Symmet-
ric Channel). This setup was introduced and studied by Weissman and Merhav [72, 73].
Theorem 5.2 proves the universal consistency of an algorithm in the noisy setting for the
loss function which is convex in its first argument (e.g.: squared loss, absolute loss, etc.).
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Finally, in Section 5.3 we provide a simple universally consistent classification scheme for
zero-one loss in the noisy setting.

5.1 Universal prediction of unbounded time series:
squared loss

The problem of time series analysis and prediction has a long and rich history, probably
dating back to the pioneering work of Yule in 1927 [75|. The application scope is vast, as
time series modeling is routinely employed across the entire and diverse range of applied
statistics, including problems in genetics, in info-communications systems, machine condi-
tion monitoring, financial investments, marketing and econometrics. Most of the research
activity until the 1970s was concerned with parametric approaches to the problem whereby
a simple, usually linear model is fitted to the data or it was assumed that the process is
the sum of a sequence from a restricted class or a Gaussian process (for a comprehensive
account we refer the reader to the monograph of Brockwell and Davies [19]). While many
appealing mathematical properties of the parametric paradigm have been established, it
has become clear over the years that the limitations of the approach may be rather severe,
essentially due to overly rigid constraints which are imposed on the processes. For example,
it turned out that financial processes cannot be modeled by linear processes. One of the
more promising solutions to overcome this problem has been the extension of classic non-
parametric methods to the time series framework (see for example Gyorfi, Hardle, Sarda
and Vieu [30] and Bosq [16] for a review and references).

The present section is devoted to the nonparametric problem of sequential prediction
of unbounded, ergodic real valued sequences which we do not require to necessarily satisfy
the classical statistical assumptions for bounded, autoregressive or Markovian processes.
Indeed, our goal is to show consistency results under a strict minimum of conditions.
Consistency for ergodic sequence can be proved using the powerful machine learning bounds
derived for individual sequences.

To fix the context, we suppose that at each time instant t = 1,2, ..., the predictor is
asked to guess the value of the next outcome y, of a sequence of real numbers y;, ys, ... with
knowledge of the past y'™' = (y1,...,5—1) (where ¥ denotes the empty string) and the side
information vectors !} = (xy,...,7;), where z; € R? . Thus, the predictor’s estimate, at
time ¢, is based on the value of 2} and y{~'. A prediction strategy is a sequence g = {g;}%°,

of functions
g : (R xR - R
so that the prediction formed at time ¢ is g, (%, 3™ ").
Throughout the chapter we assume that (z1,y1), (22,92), . .. are realizations of the ran-

dom variables (Xi,Y1),(Xs,Y2),... such that {(X,,Y,)}>, is a jointly stationary and
ergodic process.
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After n time instants, the normalized cumulative prediction error is

n

1 — B 1 _
Ln(g) = EZagt(Xf,Yf RO EZ(gt(Xf,Yf H—Y)?
t=1

t=1

where £ : R x R — R now denotes the squared loss.

The results of this chapter are given in an autoregressive (on-line learning) framework,
that is, the value Y; is predicted based on the past observations (X! and Y/™'). The
fundamental limit for the predictability of the sequence can be determined based on a
result of Algoet 2], who showed that for any prediction strategy g and stationary ergodic
process {(X,, Yn) >,

liminf L,,(g) > L* almost surely, (5.1)

n—oo

where

I — E{(Yo _ E[%\Xﬂm,le]f}

o0

is the minimal mean squared error of any prediction for the value of Y, based on the
infinite past X°__, Y_L. Note that it follows by stationarity and the martingale convergence
theorem (see, e.g., Stout [67]) that

L = lim B{ (v, — B[, |x7, v ])*}

n—oo

This lower bound gives sense to the following definition:

Definition 5.1. A prediction strategy g is called universally consistent with respect to a
class C of stationary and ergodic processes {(X,,Y,)}>°, if for each process in the class,

—0o07

lim L,(g) = L* almost surely.

Universally consistent strategies asymptotically achieve the best possible loss for all ergodic
processes in the class.

In case of squared loss Algoet [1] proved that there exists a prediction strategy that can
achieve this well-defined optimum. Using machine learning principles, Gyorfi and Lugosi
[32] introduced several simple prediction strategies, which are universally consistent with
respect to the class of bounded, stationary and ergodic processes. In this section we extend
the results of [32] to unbounded processes. We refer to Nobel |58], Singer and Feder [65],
[66] and Yang [74] for closely related recent works.

The prediction strategy g is defined, at each time instant, as a convex combination of
elementary predictors, where the weighting coefficients depend on the past performance of
each elementary predictor.

The goal of each simple predictor is to estimate the regression function E [Yn ‘X{”, Yln_l}
at time instance n. We define an infinite array of elementary predictors R0, k. 1 =1,2, ...
as follows. Let P, = {4,;,7 =1,2,...,m;} be a sequence of finite partitions of R, and let
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Q, = {By;,i =1,2,...,m]} be a sequence of finite partitions of R%. Introduce the corre-
sponding quantizers:
E(y) = j7 lfy € Al,j

and
Gi(z) =y, ifz e B; .

With some abuse of notation, for any n and y}' € R", we write Fj(y}) for the se-
quence Fy(y1),. .., Fi(y,), and similarly, for 27 € (R%)", we write G;(2%) for the sequence
Gl(ZL‘l), ceey Gl(ZL‘n).

Fix positive integers k, [, and for each (k4 1)-long string z of positive integers, and for
each k-long string s of positive integers, define the partitioning regression function estimate

Z{k<t<n:Gl(w§7k):z, F(y!=})=s} Y

Ew\T(Lk,l)(xn7 yn—17 2, S) _
Dot |{k<t<n:Gl(3:§_k) =z, Fl(yf:,i) = s}

Y

for all n > k+1 where 0/0 is defined to be 0. Because of the original sequence is unbounded
we have to control (bound) the predicted value of each expert. Therefore we introduce a
truncation function to prevent from that the experts’ prediction have “too big” values, that
is,
nd if 2 > nf;
T.(2) =1 =z if |z] < nf;
—n® if z < —n?,

where
0<d<1/8.

Now we are ready to define the elementary predictor ! by
PED (@, i) = T (B (@, g0, i), Flyih)) )

forn=1,2,.... That is, h%k’l) quantizes the sequence 27, y’f_l according to the partitions
Q; and P, and looks for all appearances of the last seen quantized strings Gy(x}_,) of
length £ 4+ 1 and Fl(ysj,i) of length k£ in the past. Then it predicts according to the
truncation of the average of the y;’s following the string.

The proposed prediction algorithm proceeds based on exponential weighting average
algorithm. Formally, let {g;;} be a probability distribution on the set of all pairs (k,1) of
positive integers such that for all k,1, gx; > 0. For 1, > 0, and define the weights

Wit = Gk lefm(t*l)Lt‘l(h(k’l))

and their normalized values
Wk, 1.t

w, ’

Pkt =

where

00
Wt = E wi?jvt .

4,j=1
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The prediction strategy g is defined by

g2ty Z pklth oyttt t=1,2,... (5.2)
k=1

Theorem 5.1. (GYORFI AND OTTUCSAK [35]). Assume that

(a) the sequences of partition Py is nested, that is, any cell of Py is a subset of a cell of
P,l=1,2,...;

(b) the sequences of partition Q, is nested;

(c) the sequences of partition Py is asymptotically fine, i.e., if

diam(A) = sup ||z —y|
z,y€A

denotes the diameter of a set, then for each sphere S centered at the origin

lim max diam(A;;)=0;
l—00 j:A; ;NSH#D

(d) the sequences of partition Q, is asymptotically fine.
Choose the parameter n, of the algorithm as

1
nt_\/g'

Then the prediction scheme g defined above is universally consistent with respect to the
class of all ergodic processes such that

E{Y}'} < co.

Here we describe two results, which are used in the analysis. The first lemma is a
modification of the analysis of Auer et al. 7], which allows of the handling the case when
the parameter of the algorithm (7,) is time-dependent and the number of the elementary
predictors is infinite.

Lemma 5.1. (GYORFI AND OTTUCSAK [35]). Let A, h® ... be a sequence of predic-
tion strategies (experts). Let {qy} be a probability distribution on the set of positive integers.
Denote the normalized loss of the expert h = (hy, ha,...) by

1 n
NI
n
t=1
where
gt(h) = €<ht) K)
and the loss function { is convex in its first argument h. Define

Wey = qke—nt(t—l)Lt,l(h(k))
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where ny > 0 is monotonically decreasing, and

Wit

Prt = Wt

where
oo
Wt = E Wit -
k=1

If the prediction strategy g = (g1, o, - .. ) 1s defined by
g= phi?  t=12 .
k=1

then for every n > 1,

. In gy, 1 ¢
(k)\ _ 2t 2 (k)
L.(g) < ugf (Ln(h ) > + on E Mt kglpk,tgt (h'™).

Min+1 t=1

Proof. Introduce some notations:
I —np—1(t—=1)Ls_1 (R
wk,t = qre€ p=1 (=L ( ),

which is the weight wy;, where 7, is replaced by 7,_; and the sum of these are

o0
W, = Z Wi -
k=1
We start the proof with the following chain of bounds:

l In ﬁ — l In Zzozl wk’te_ﬁtet(h(k))
U W, m W,

1 o0
= Z prge )
K-

1 < 2
< LY (1) + L)

U —
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because of e™® < 1 — x + 2%/2 for z > 0. Moreover,

lln% <
U w, —
<
<

n—hl (1 — Zpk; e (hV) nt Zpk i€ (R )
t k=1

=3 peah) + 2 Z prsl2(hD)
k=1
- Zpk,tg(hg %kzpk i (h

_ét Z Dk, t£2 k)
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(5.3)

(5.4)

(5.5)

where (5.3) follows from the fact that ln(l —1—95) <z forall z > —1 and in (5.4) we used the
convexity of the loss ¢(h,y) in its first argument h. From (5.5) after rearranging we obtain

li(g9) < ——In

1 t+1 e 2
il (
o Z ot

Then write a telescope formula:

1
—In Wt -
Uz

We have that

1 1 1
n—ln Wi, = <—1nI/Vt — —lnI/VtH)
t

Nt Me+1

1 1
4+ — W,y — —InW/ )
(Utﬂ i u b

= (At) + (Bt).

ZAt = Z <—1nm — _ant+1)
t=1 t=1

ur Me+1

1
=—1In W1 — In Wn+1

m 77n+1

1 n(k)
— In qre —Nny1nLn (™))
nn-i-l Z

< — In sup C_Ike_"”“"L"(h(k))
Tt k

1
= ———sup (Ingx — Nup1n Ly (h™))
h+1 &

= ir]if <nLn(h(k)) — lnﬂ) .

TNn+1
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’72—:1 < 1, therefore applying Jensen’s inequality for concave function, we get that

o
—np1tLe(h®)
Wit = E gge~ M)

i=1
N4l

o
— Z qi (e‘”ttLt(h”))) t
=1

nt+1

oo nt
< (Z ql-e—mtmw))
=1

41

= (Wt,+1) "

Thus,

1
Bi=—mW,; — —InW/
' Nt+1 s Uz o

Te+1 / /
< ——InW,, - 77_111 t+1

T M1 M
= 0.

We can summarize the bounds:
) In g 1 « =
L,(q) <inf [ L, (A" ——) + — ()
O G e EE MW

O

The next lemma is due to Breiman [18|, and its proof may also be found in Gyorfi et
al. |31].

Lemma 5.2. Let Z = {Z;}* be a stationary and ergodic time series. Let T denote the
left shift operator. Let f; be a sequence of real-valued functions such that for some function
f, [i(Z) — f(Z) almost surely. Assume that Esup; |fi(Z)| < co. Then

lim — 3 f(T'2) = Bf(2)

n—oo 1 “
almost surely.

Proof of Theorem 5.1. Because of (5.1), it is enough to show that

limsup L, (g) < L* a.s. (5.6)

n—oo
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By a double application of the ergodic theorem, as n — oo, a.s.,
1
n Z{k<t<n: Gi(Xt_ )=z F (Y H=s} Yy
1 Hk <t<mn: Gl()gt k) =z E(Y::kl) = 3}’
]E{}/O[{Gl Xok) Z, Fl S}}

P{Gi(X2,) = 2, Fi(Y )—S}
= E{Yy| Gy(X°,) =z, F(YS) = s},

E\r(sz) (X?7 len_lv 2y S) =

and therefore for all z and s
T (B0, VP 2,8)) = B{Y | G(XY,) = 2, B(YT) = s}

Now we can write

1 n
La(0) =2 3 S0 V) = )?

:—Z(n( BXLYELGIXL ). YD) -Y) L 6)

To use Lemma 5.2 we have to verify Esup, | f;(Y°2,, X )| < oo, where
Fil X%, Y25) = (MMD(XT_;, VD)) — Yo)?.

One can show that is enough to verify only the numerator of E’,(Lk’l)(X?fk, Y\, 2,8) divided
by n is finite for each individual z and s. For this we can apply maximal ergodic theorem
(see Krengel [51] Theorem 6.3 with parameter p = 2). Now using Lemma 5.2, as n — oo,
almost surely, we get from (5.7)

Lo (h*) —E{(Yo — E{Yo | Gi(X%), R(YS)})?)
def
= €kl
E{Y, | Gi(X°,), Fi(Y;!)} is a martingale indexed by the pair (k, [), since the partitions
P, and Q; are nested. Thus, the martingale convergence theorem (see, e.g., Stout [67]) and
assumptions (c) and (d) for the sequences of partitions implies that

: . 12
1£lf€k,l = klllgloo €kl = E{(YO —E{Yo|X? ., Y L}) } =L

(cf. Gyorfi and Lugosi [32]).
To prove (5.6) apply Lemma 5.1 with choice n, = \/L{ and for the squared loss ¢;(h) =

(hy — Y;)?, then the squared loss is convex in its first argument h, so

n

, 21n gy 1 1 & _ 4
k.l : k.
Ly(g) < llgllf (Ln(h( )) - n ) +t5, Z 7i Z i (WXL, YY) = Y1) (5.8)

t=1 k=1
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On the one hand, almost surely,

: : 2Ing . 21ngq
(kDY _ Kl < (kD) k.l
hmn_igp ll?lf (Ln(h ) Tn ) < 1nlf hmnﬁsolip (Ln(h ) T )
= i]?f lim sup Ln(h(k’l))

) n—oo

= iIlekl
k ?

)

= lim €kl
k,l—o0

= L
On the other hand,

—Z \/—Zpk,l,t (RED(XE YT =)t < —Z Zpk,l,t (R0 (XT, v+ )

< —Z Zpk,l,t t4 +Y4)
8 o 4 + Yt4
"o = Vi 7
therefore, almost surely,
lim sup — Z Zpklt (RED(XE VITY) — Y))* < limsup — ZY4
nooo M . ’ nooo M\t 0

where we applied that E{Y;'} < oo and 0 < § < ;. Summarizing these bounds, we get
that, almost surely,
limsup L,(g) < L*

n—oo

and the proof of the theorem is finished. O

Remark 5.1. (CHOICE OF ¢;;) Theorem 5.1 is true independently of the choice of the
gr's as long as these values are strictly positive for all £ and [. In practice, however, the
choice of g;; may have an impact on the performance of the predictor. For example, if the
distribution {gx;} has a very rapidly decreasing tail, then the term —Ingg,;/\/n will be
large for moderately large values of k£ and [, and the performance of g will be determined
by the best of just a few of the elementary predictors h*%. Thus, it may be advantageous
to choose {qx;} to be a large-tailed distribution. For example, gr; = cok 2172 is a safe
choice, where ¢y is an appropriate normalizing constant.

Remark 5.2. (GENERAL LOSSES) It is easy to extend Theorem 5.1 to the loss function

Uz, y) = le =yl

where r > 1.
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Remark 5.3. (IMPLEMENTATION) The proposed algorithm in not computationally fea-
sible to implement it because of the infinite number of simple predictors. However, in
practical scenarios e.g. in regression problem Biau, Bleakley, Gyorfi and Ottucsék |14] or
in portfolio selection problems cf. Gyorfi, Lugosi and Udina [34| and Ottucsak and Vajda
[62] it seems that a relatively small proportion of experts (k =1,...,5and [ =1,...,10)
provides good experimental results. Moreover, for the higher values of k£ and [ the achieved
performance is from bad to worse.

5.2 Universal prediction for binary memoryless channel:
general convex loss

In this section we investigate the case when the predictor has only incomplete information.
Here {(X,,Y,)}>, is a jointly stationary and ergodic process and both X; and Y; are
binary valued. The predictor’s estimate, at time ¢, is based on the value of Xf_l and a
prediction strategy is a sequence g = {g,}:°, of functions

g : 10, 1}t_1 — R

so that the prediction formed at time ¢ is g,(X\™1).

Obviously, on the one hand this model is a special case of the previous setup (because
the outcome is a binary value sequence), on the other hand it handles a more general class
of loss functions (convex losses) and takes less assumption on the amount of the information
(uses only past side information).

After n time instants, the normalized cumulative loss is

: _Z th )

where ¢ : R x {0,1} — [0, K] is a bounded loss function, which is convex in its first
argument. This model was introduced and studied in Weissman and Merhav [72, 73|.

The key property of the loss function, which allows to obtain universal consistency in
the case noisy environment, is that the loss function can be “linearized” in Y;, that is,

n

La() = = [0 = Y@, (X{™),0) + Yil(g, (X ), 1)]

t=1

because Y} is binary. This form allows us to estimate Y; much easier (directly) irrespectively
of the loss function.

The prediction with side information only is a delicate problem, because Y; neither in
the learning, nor in the prediction is available. In that case the fundamental limit for the
predictability of the sequence can be determined as follows. Let

g/ (X7 =E(Y,[X] )



5.2. UNIV. PRED. FOR BIN. MEMORYLESS CHANNEL: GENERAL CONVEX LOSS 7

be the Bayes-optimal predictor and its normalized cumulative loss is

Ze (X1, Y) .
Now define
0 = (g, (X171, Y;) —E (U7, (X171), Vo) | X171)

then we can write
Ln@) = %zn:dt ZE gt Xt ! Y;t)|Xt 1)
t=1
> %anét ZE (g7 (XT7H, V)| Xi7Y)
=1
Weissman and Merhav |73, Lemma 1] proved

1 n
— g 0y — 0 a.s.
n

t=1

under the condition that {(X,,Y,)}52 . is conditionally mixing in the sense that

> supE [P{Yip. = al¥; = a, X{77'} = P{Ypy, = o] X{77'} < o0, (5.9)
s=1 t21
where a € {0,1}. Therefore, we get
liminf L, (g) > liminf L, (¢*) = R* , (5.10)
with
ZE{(1 = Yo U(E{Y | XL},0) + Yol(B{Yy | XL} 1)} (5.11)

Similarly to Definition 5.1 we call a prediction strategy g universally consistent with respect
to a class C of stationary and ergodic processes {(X,,Y,)}> if for each process in the
class,

lim L,(g) = R* almost surely.

n—oo

Henceforth, we assume that the connection between Y; and X; are characterized by an

binary memoryless channel as, e.g., binary symmetric channel or binary erasure channel.
It means that Y; is the input of the channel and X; is the output of the channel, and
based on the past outputs Xf_l we want to estimate the input Y;. We suppose also that
the crossover probabilities of the channel are known for the algorithm. This assumption
is indeed a realistic one in many applications, where noisy medium is well-characterized
statistically.
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Then the algorithm is able to construct a random variable 7(X;, C) which is an efficient
estimate of original bit Y; where C is the channel matrix:
oo ]

¢ 1—q
and 0 < p,qg < % are the crossover probabilities of the channel. More precisely, let

X, —

FX,C) = T

l=p—q

which is a conditionally unbiased estimate of Y; respect to X!~!. Namely,

E{XiVi} = Iyv—o)[(1 = p)Ye+ p(1 = Y)| + [iv—p3[(1 — @)Y + q(1 = V)]
= Iiy=oy[p(1 = Y))| + Iiyi=13[(1 — ¢)Y}]
= p+Yi(l-p—9q)

and therefore

X _
E{F(X,, C)|X"} = E{—p\x}

I—-p—gq
-1
_ o JE{XIY X }—p‘)q_1
I1—-p—gq
1—-p—gq
= E{Yv|X{'},

where the third equation follows from the memoryless property of the channel.
The algorithm is defined, at each time instant, as a combination of simple predictors,
where the weighting coefficients depend on the past performance of each simple predictor.
We define an infinite array of elementary predictors h®), k = 1,2,... as follows. Let
J) be the locations of the matches of the last seen binary string xZ:,lg of length k in the
past:
J,(Lk):{/’{:<t<n:x:§:,1€:x2:/,1C )

Now define the elementary predictor A*) by

2 ey T
—=1 _C
EA .

n >k + 1, where 0/0 is defined to be 0. Note that h*) (271) € [l;{q; lzfq]

Since, the predictor has no access to the “clean” sequence Y; thus to measure its own
performance (loss) it must use another type of the loss function based on X; only. Define

It

ROy t) =
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the following loss function introduced by Weissman and Merhav [72]: let £: R x {0,1} —

[;_Lg), (11__1’2)171(] be the estimated loss, where K is the upper bound of (-, ). More precisely,

let

Y def .

(G (X171, Xy) = 7(1 = X, C)(g,(XT71),0) + 7( Xy, C)(g,(X171), 1),

which is an (conditionally) unbiased estimate of the k-th expert’s true loss. The cumulative
estimated loss of the k-th expert is given by

- 1 o~ -
Lo(h®) = = S 6D (X[, X,) .
t=1

The proposed prediction algorithm proceeds as follows: let {gx} be a probability distri-
bution on the set of all k£ of positive integers such that for all &, g > 0. For n, > 0, define
the weights

Wit = C]ke_”t(t_l)itfl(h(k))

and their normalized values w
k.t

Pt = 00 .
The prediction strategy g is defined by

G = phW Ty =12, (5.12)
k=1

Theorem 5.2. (OTTUCSAK AND GYORFI [60]). Assume that {Y;} is stationary ergodic,
and {X,} is the output sequence of a binary memoryless channel if {Y;} is the input se-
quence. The prediction scheme G defined above is universally consistent with respect to the
class of all ergodic processes satisfying (5.9).

For the proof of the theorem we use the next lemma is due to Weissman and Merhav [72]
(Lemma 2).

Lemma 5.3. If {(-,-) € [0, B] then for any predictor g

n—00 Vloglogn -

where C'(C) is a deterministic constant depending on the channel matrix.

a.s.,

Proof of Theorem 5.2. Because of (5.9) we have (5.10), therefore it is enough to show
that
limsup L,(9) < R* a.s.

n—oo
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Now we can write

limsup L, (g) — R* < limsup|L,(g) — Ln(9)| (5.13)
+ lig:sogp Ln(g) — i%f h?—?ogp L, (h™®) (5.14)
+ irgf hiﬂ_}SOl;.p L (h®) — i%f ligl_)sogp L, (h*) (5.15)
+ inf lim sup L,(h®) — R*. (5.16)

n—oo

(5.13) and (5.15) goes to zero because of Lemma 5.3. For (5.14), we can apply Lemma 5.1
with £(-,-) = £(-,-) + 25— where the last additive term ensures that £(-,-) > 0. Then

1-p—q’

((-,-) € [0, B], where B = —£— and we have

1-p—¢q

n—oo n—oo

< inflimsup

= ~ 2B1
limsup L,(g) < limsup i%f (Ln(h(k)) _ HC_Ik)

< i%f lim sup L, (h*)) .

n—oo

Thus it remains to show that (5.16) is smaller than zero:

i%f limsup L, (h™) — R* <0 .

n—oo

By an application of the ergodic theorem, as n — oo, a.s.,

> X
MOXPT) = 7 (—{te"g,;)} e
| Jn]
— 7 (E{Xo|X_;}, C)
= E{f(Xo, C)|X 5}
= E{Yo|X7}.
By Lemma 5.2, as n — oo, almost surely,
1 n
Lo(h®) = = 0(M(X]™), 1)
n
t=1
— E{(E{Y: | X}, Y0)
= E{(1 - Yo)l(E{Yy | XZ;},0) + Yol(B{Yp | X7}, 1)}

= €.

Thus, the martingale convergence theorem (see, e.g., Stout [67, Theorem 2.8.6.]) implies
that
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inf e, = lim e = {(1 = Yo)U(E{Yy | X=2},0) +Yol(B{Yo | X_L}, 1)} = R*

k—o0

as desired. O

Remark 5.4. (PREDICTION UNDER CHANNEL UNCERTAINTY) If we assume that some-
times the algorithm has access to the original bit Y;, then we may construct a universal
consistent prediction scheme even if p and ¢ are unknown for the algorithm. However in a
number of cases there are expensive to obtain Y}, therefore the forecaster has the option to
query this information. For query it used i.i.d. sequence Si, Ss, ..., S, of Bernoulli random
variables such that P{S; = 1} = € and asks label Y; if S; = 1. Then the algorithm can
construct an efficient estimate of the crossover probabilities:

By = >t Lixi=1,vi=0p 5
! Z?:I ]{Yt=0} St

and §
~ thl I{XtZU,Yizl}St

n = Z?:l [{Yt:I}St ’

where p, — p and ¢, — ¢. Now using these estimates in ¢(-,-) and 7(-,-) we obtain a
universal prediction scheme. The above described situation appears when the algorithm
is supported by a human expert or we have a second no noisy-channel. For example, in
case of natural language processing (e.g. 8 bits represent a character), the human observer
select the best possible reconstruction, which e.g, can be found in the “dictionary” and fits
in with the context.

5.3 Universal prediction for binary memoryless channel:
zero-one loss

In this section we apply the same ideas to the seemingly more difficult classification (or
pattern recognition) problem. The strategy of the classifier is a sequence f = {f,}2, of
decision functions

715 : {07 1}t71 - {07 1}

so that the classification formed at time ¢ is f,(X!™!). The normalized cumulative 0 — 1
loss for any fixed pair of sequences X', Y|" is now

_ ] &
Ro(F) == g,xiemy-
t=1

(5.9) implies (5.10) such that _
liminf R,(f) > R (5.17)

n—oo
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where

R = E{ min (P{Yp = 1| X "1}, P{Y; = 0|X_}) } :

Consider the prediction scheme g,( X!~ 1) with squared loss £(z, y) = (z—y)?, introduced
in the previous section, and then introduce the corresponding classification scheme:

——— 1 if g (X171 > 1/2;
t—1\ _ g\ Aq ;
f(X7) = { 0 otherwise.

The main result of this section is the universal consistency of this simple classification
scheme:

Theorem 5.3. (OTTUCSAK AND GYORFI [60]). Assume that {Y;} is stationary ergodic,
and {X;} is the output sequence of a binary memoryless channel if {Y;} is the input se-
quence. The classification scheme f defined above satisfies

lim R,(f) = R* almost surely

for any stationary and ergodic process {(X,, Yn)}o2 . satisfying (5.9).

For the proof we need the following corollary of Theorem 5.2.

Corollary 5.1. Under the conditions of Theorem 5.2,

n

.1 _ vte1\)\2
Jim 2> (B X - g(XT) =0 as (5.18)

t=1

2

where G, is the predictor for squared loss ((x,y) = (x — y)* in noisy setting.

Proof. The ergodic theorem implies that

lim %ZE{(}Q—E{}Q | X1y Xt_;g} —L*  as
t=1

and note that

E{ (V; — (X)) X0} = B{(Yi—E{v; | X2)7 | x50y
+ (B{Y; | XUL — (X)),

therefore in order to finish the proof it suffices to show

1 n
lim ~ > jE{(Yt — g (X)) thog} — L'  as (5.19)
n—oo N
t=1

By Theorem 5.2 with squared loss, we have
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1 102 .
S DU AT
Thus, for (5.19), we have to prove that
2 _ 2 _
y Z ((% = (X)) = B{(% - a(X17))* | X1}

:-Z (Y2 —E{Y?| X"}

t=1

1 n
—2-3 g(X{HY BV, | X)) — 0 as
t=1
By the ergodic theorem and the assumption (5.9) we have

%Z (V2-E{V?| X!} -0 as
t=1

and

1

DV -E{Y [ X -0 as

n

which imply the assertion. O
Proof of Theorem 5.3. Because of (5.17) we have to show that

limsup R,(f) < R* as.

n—oo

Introduce the Bayes classification scheme using the infinite past:

crvieny [ 1P, =1 X0 > 1/2
fr(XZo) = { 0 otherwise,

and its normalized cumulative 0 — 1 loss:
1 n
_— [ * t—1 .
n Z {fE(XEL0)#Ye}
t=1

Put
Ra(f) = ZP{ft (XIH £, | Xt
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and
Ralf?) = - S (XE) £ Y | X5
t=1

Because of assumption (5.9) we have

R.(f) — R.(f) — 0 a.s.

and )
R.(f")—Rn.(f")—0 a.s.,
moreover, by the Breiman ergodic theorem

R.(f*) — R* a.s.

so we have to show that

limsup(R,(f) — Ra(f*)) <0 a.s.

n—oo

Theorem 2.2 in Devroye, Gyorfi and Lugosi [25] implies that

Rul) = Ralf?) = -3 (BIRG) # Vi) XL
—P{f (XD £ Y| XL

1 n
<23 [E{Y [ X0} - (X))
t=1

1 n
<2, (=30 (B | X - g
t=1

—0 a.s.,

where in the last step we applied the result of Corollary 5.1. O
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