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Abstrat
In this thesis e�ient algorithms for sequential predition (deision) problems are studied.In general, the algorithm has to guess the next element of an unknown sequene using someknowledge about the past of the sequene and other side information. In this model thegoal of the algorithm is to minimize its umulative loss, whih is aumulated from roundto round (in eah round one deision is made) where the loss is sored by some �xed lossfuntion. The sequene of the outomes is a produt of some unspei�ed mehanism, whihould be deterministi, stohasti or even adversarially adaptive to our own behavior.As the �rst result of the thesis, an algorithm is given for the problem when the loss isunbounded and its performane is studied under various partial information (also alledpartial monitoring) settings. A wide lass of partial monitoring problems are introdued:the ombination of the label e�ient and multi-armed bandit problems. In this setting thealgorithm is only informed about the performane of its deision with probability ε ≤ 1 anddoes not have aess to the losses it would have su�ered if it had made a di�erent deision.It is shown that onsisteny an be ahieved for unbounded losses, too, depending on thegrowth rate of the overall �worst� deision's average loss. Moreover, the above result anbe applied to solve the speial problem, when the loss is bounded. For bounded lossesa simple modi�ation of the previous algorithm is o�ered; its onvergene rate oinideswith that of the best �earlier algorithms�, but it an be applied more easily for real lifeproblems.In the next part, the on-line shortest path problem is onsidered under various modelsof partial monitoring. Given a weighted direted ayli graph whose edge weights anhange in an arbitrary (adversarial) way, an algorithm (deision maker) has to hoose ineah round of a game a path between two distinguished verties suh that the loss of thehosen path (de�ned as the sum of the weights of its omposing edges) be as small aspossible. In a setting generalizing the multi-armed bandit problem, after hoosing a path,the algorithm learns only the weights of those edges that belong to the hosen path. Forthis problem, an algorithm is given whose average umulative loss in n rounds exeeds thatof the best path, mathed o�-line to the entire sequene of the edge weights, by a quantitythat is proportional to 1/

√
n and depends only polynomially on the number of edges of thei



Abstrat iigraph. The algorithm an be implemented with omplexity that is linear in the number ofrounds n (i.e., the average omplexity per round is onstant) and in the number of edges.An extension to the so-alled label e�ient setting is also given, in whih the algorithmis informed about the weights of the edges orresponding to the hosen path at a total of
m ≪ n time instanes. Another extension is shown, where the algorithm ompetes againsta time-varying path, a generalization of the problem of traking the best expert. A versionof the multi-armed bandit setting for shortest path is also disussed where the algorithmlearns only the total weight of the hosen path but not the weights of the individual edgeson the path. Appliations to routing in paket swithed networks along with simulationresults are also presented.Finally, a predition strategy is introdued for unbounded stationary and ergodi real-valued proesses and show that the average of squared errors of the algorithm onverges,almost surely, to that of the optimum, given by the Bayes preditor. The algorithm is basedon a ombination of several simple preditors, where for this ombination the methodologyand results of the previous parts of the thesis are used. Furthermore an extension for thenoisy setting is o�ered, that is when the algorithm has aess only to the noisy version ofthe outome sequene e.g. the �lean� proess is passed through a �xed binary memorylesshannel. A simple universally onsistent lassi�ation sheme is provided for zero-one lossin this noisy setting.
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Chapter 1
Introdution

In this hapter the framework of sequential deision problems is introdued. Setion 1.1desribes the main onepts and motivation of the sequential deision problems. In Setion1.2 literature overview is given. Our ontribution is desribed in Setion 1.3, as well as adetailed overview of the thesis.1.1 MotivationThe goal of this thesis is to design general purpose, e�ient algorithms for sequential pre-dition (deision) problems. Predition, as we understand it in this thesis, is onernedwith guessing the short term evolution of ertain phenomena. Examples inlude foreastingwhether tomorrow will be rainy or not, or guessing the route with lowest tra� betweenour home and our workplae on the following working time period. These tasks look similarat an abstrat level: one has to guess the next element of an unknown sequene using someknowledge about the past of the sequene and other side information available. Suh prob-lems naturally arise in real-world appliations from portfolio seletion in �nanial marketthrough real-time optimization of websites to routing in the ommuniation networks.In the lassial statistial theory of sequential predition, the sequene of the elements,so alled outomes, is assumed to be a realization of a stationary stohasti proess. Insuh a setup, the statistial property of the proess based on past observations an beestimated and using this estimation e�ient predition strategies an be onstruted. Inthat ase, the performane of a predition strategy is usually evaluated by expeted valueof some loss funtion whih measures the �distane� between the predited value and thetrue outome.However, in a large part of this thesis we use a di�erent viewpoint. We abandon theassumption that the outomes are generated by a well-behaved stohasti proess and viewthe sequene of the outomes as a produt of some unspei�ed mehanism, whih ould bedeterministi, stohasti or even adversarially adaptive to our own behavior. This setup1



1.1. Motivation 2where no probabilisti assumption is made on how the sequene is generated is often referredto as predition of individual sequenes.In this model the goal of the algorithm is to minimize its umulative loss, whih isaumulated from round to round (in eah round one deision is made) where the lossis sored by some �xed loss funtion. At the same time, without a probabilisti modelit is non-obvious how to measure the performane of the algorithm. There is no naturalbaseline as in the stohasti ase, and for example it is easy to see that it is not possibleto minimize the umulative loss simultaneously for all possible sequenes. To provide suha baseline one of the possible way is to de�ne a set of referene foreasters (preditionrules), so alled experts. Then the performane of the algorithm is evaluated relative tothis set of experts, and the goal is to perform asymptotially as well as the best expertfrom the referene lass mathed to the observed outome sequene o�-line. The expertsmake their deisions available to the algorithm before the next outome is revealed, andbased on these �piees of advies� the algorithm forms its own deision to keep lose itsumulative loss to the umulative loss of the best expert.The di�erene between the umulative loss of the algorithm to that of the best expertis alled regret, as it measures how muh the algorithm regrets, in hindsight, of not havingfollowed the advie of the best expert.On the one hand for �small� expert lasses the regret of the algorithm onverges �fast�to zero, however, the umulative loss of the best expert may be �large�. Borrowing ananalogy from nonparametri statistis the �rst error riterion is alled estimation error ofthe algorithm and the seond one is the approximation error of the expert lass. On theother hand for �large� expert lasses it is vie versa, the onvergene of the regret of thealgorithm is slower, at the same time the umulative loss of the best expert is smaller. Inmost of this thesis we fous on the minimization of the regret.The advantage of this novel tehnique, predition for individual sequenes is twofold.On the one hand it is able to handle the ase when the sequene of the outomes aregenerated by an adversarial mehanism. In that ase one annot assume any stationaryand probabilisti mehanism for the sequene. Indeed, that is realisti in e.g. reativeenvironments where the hoie of the algorithm in�uenes the behaviour of the environment(see below for real-world problems). On the other hand it has huge inrement in the �eld ofnon-parametri statistis. Namely, one may have a probabilisti model, however, there is aneed to onstrut predition with good rates, i.e., to adapt the parameters of the algorithm.There are suh adaptations: splitting, ross validation, omplexity regularization, et., butthey work well only for memoryless sequenes, whih restrits seriously their appliability.Another important problem is the universally onsistent predition of ergodi sequene.The onept of individual sequene is extremely e�ient suh that the hoies of theparameters of the algorithm are onsidered as experts, and the bounds on the performaneof the ombined (aggregated) algorithm does not depend on the properties of the atualsequene, and so these bounds result in optimal adaptation both for memoryless sequenesor in universal onsisteny for ergodi sequenes.The onrete interpretation of the �experts� depends on the spei� appliation. Inthe sequel some important problems whih naturally ast as experts' advie (sequential



1.1. Motivation 3deision) problems are shown mostly from the framework of info-ommuniation systems.Let us see �rst an example for the above mentioned adaptation from the �eld of patternreognition. We have a k-NN (Nearest Neighbor) lassi�er and our goal is to �nd the bestvalue of the number of k. In that ase eah expert an run a k-NN lassi�er with di�erentvalues of k. Another typial hoie of the number of the neighbors is: ckn
1/(d+2), where dis the dimension of the samples. In that ase eah expert an use di�erent parameters ck.Seond, let us see some examples from info-ommuniation systems. In these problems,the parameters of the networks and protools are needed to be well tuned to ensure thatthe networks operate at the desired Quality of Servie (QoS) level. For instane, the lassof the experts an be some Transmission Control Protool (TCP) variants that may usedi�erent parameter settings and the algorithm ompetes with the TCP variant whih hasthe best parameters in hindsight. In partiular, this setup is reasonable when the TCPvariant has to provide good performane in a heterogeneous environment or in ase ofdelay based TCP variants, like TCP Vegas and FAST TCP, whose performane are ultra-sensitive to the value of the parameters ontrolling the number of baklogged pakets inthe bu�ers of the routers on the path. These parameters are responsible for the long runperformane of the �ow (as throughput and fairness) and sine Vegas and FAST keep theseparameters onstant, they annot adapt well to the urrent harateristis of the network.Another extensively studied issue is the estimation of the available bandwidth in highspeed networks where the previously developed TCP variants (e.g: Reno) do not providegood utilization of the link or they may �nd available bandwidth too slowly. In that aseeah bandwidth estimation tehnique or protool an be onsidered as an expert.This approah also ould be used for modeling the bidding strategy of partiipants ofan aution. In Dynami Spetrum Aess networks where the alloation of the spetrumis based on an aution mehanism (e.g: English or Vikrey aution) the set of expertsontains some �xed prie or more omplex bidding strategies and the goal of the algorithmis that its expense do not exeed too muh the osts of the best bidding strategy.Other interesting appliations are in adaptive routing, whih is of great importanein the maintenane of paket swithed ommuniation networks. A su�iently �exiblealgorithm an yield inreased QoS, suh as redued paket loss ratio or delay, even in aseof link failures or substantially varying tra� senarios. These algorithms require onstantmonitoring of the network state, and the measured information is ombined to updatethe routing tables. Suh ombination an be done, for instane, with a ombination ofthe experts' advie. More preisely, for eah paket the routing algorithm has to hoosean expert (path) from soure to destination on whih the paket is to be sent. The lossorresponding to the deision is the value of the QoS parameter we wish to optimize, suhas the delay, or the number of hops on the path, or the paket loss ratio due to insu�ientbu�er size.The performane of any algorithm obviously depends on how muh information is avail-able to the algorithm (the deision maker) about the experts' and its own performane.Often, only partial information is available to the algorithm, this is the so alled partialmonitoring setting. For example, in ase of adaptive routing, it is not feasible to assumethat the algorithm knows the delays of eah path in the network in eah moment. It is



1.2. Literature overview 4more natural to assume that at eah moment the algorithm learns information about thedelay of the path its paket is sent on, and no information is available about the delay itwould have su�ered had it hosen a di�erent path (e.g., this feedbak is available throughaknowledgments). Another example when the deision maker has the option to query thedelays at a ertain moments, e.g., with �ooding.Both full information (when the performane of eah expert is available for the algo-rithm) and partial monitoring problems are well-studied in ase when the experts lass is�small� and the loss funtion is bounded. In these settings good onvergene rates and alsoonsisteny results are onsidered. The extensions of these results to �large� expert lassesor to unbounded loss funtions are important open-questions, but unfortunately usuallythey make di�ulties. For a general lass of experts the omputational omplexity of theexpert algorithms available in the literature usually grows linearly with time and with thenumber of the experts. This omplexity may be prohibitive for large lasses of experts, e.g.,when an expert is a path in a network (the number of suh paths is typially exponentialin the size of the network). Finally, in most ases, one assumes that the loss is bounded,and suh a bound is known in advane, during the design of the algorithm, whih is notaeptable in ase of many real-life appliations. For instane, in ase of adaptive routing,the algorithm has no information about the maximum value of the delay.At this point some questions arise in onnetion with the above appliations. Is itpossible to onstrut an algorithm whose performane ahieves asymptotially the perfor-mane of the best expert (onsisteny) if the bound of the loss is unknown? If yes, then isthere a way to somehow extend the result for the ase of partial monitoring? Furthermore,do onsistent algorithms exist with low time and spae omplexity if the number of theexperts is large (e.g., the number of the paths in a network) under partial monitoring? Ifwe have some (stohasti) assumptions about the behavior of the outome sequene (e.g.,the delays on the links are realizations of stationary and ergodi proesses in the routingproblem) is it possible to improve in some sense the onvergene of the algorithm? Most ofthe material in this thesis is devoted to provide answers to these and to related questions.1.2 Literature overviewResearh on sequential deision problems started in the 1950s, see, for example, Blakwell[15℄ and Hannan [43℄ for some of the basi results, and gained new life in the 1990s followingthe work of Vovk [70℄, Littlestone and Warmuth [53℄, and Cesa-Bianhi et al. [20℄. Theseresults show that for any bounded loss funtion, if the deision maker has aess to thepast losses of all experts, then it is possible to onstrut on-line algorithms that perform,for any possible behavior of the environment, almost as well as the best expert. For a goodsurvey on predition of individual sequenes, the reader is referred to, e.g., the reent bookof Cesa-Bianhi and Lugosi [21℄.The theory has been extended to di�erent diretions, onsidering omplexity issues orthe amount of available information.A representative example of the partial monitoring problem is the multi-armed bandit



1.2. Literature overview 5problem where the algorithm has only information on the loss of the hosen expert. Thisproblem was originally onsidered in the stohasti setting � it was assumed that the lossesare randomly and independently drawn with respet to a �xed but unknown distribution� by Robbins [63℄ and Lai and Robbins [52℄ (for a reent e�ient solution, see Auer et al.[4℄). For the non-stohasti setting onsistent algorithms are given in Auer et al. [6℄, [5℄and Hart and Mas Colell [44℄. Auer et al. [5℄ gave an algorithm whose average umulativeloss in n rounds exeeds that of the best expert by a quantity that is proportional to√
N/n, where N is the number of the experts. Another example of partial monitoringproblems is the label e�ient predition problem, where it is expensive to obtain the lossesof the experts, and therefore the algorithm has the option to query this information (seeHelmbold and Panizza [45℄ and Cesa-Bianhi et. al [22℄). The main open problem left isto extend these results to unbounded losses.For large lasses of experts, suh as the shortest path problem in graphs, the speialstruture of the experts allows to implement the algorithms with signi�antly lower om-plexity in the full information ase, see, e.g., Helmbold and Shapire [64℄, Mohri [55℄, Auerand Warmuth [9℄, Helmbold and Warmuth [46℄, Takimoto and Warmuth [68℄, [69℄, Kalaiand Vempala [49℄ and György et al. [36℄. However, in ase of the multi-armed banditproblem, if one applies the general bandit algorithm of Auer et al. [5℄, the resulting regretbound (on the average exess loss relative to the best expert) will be unaeptably largeto be of pratial use beause of its square-root-type dependene on the number of expert.The most important issues here are the improvement of the algorithms in multi-armed ban-dit problem to ahieve better regret bounds and further redution of the omputationalomplexity.One may wonder whether it is possible to improve the above results if we have someprobabilisti assumptions about the behavior of the outome sequene. If the outomesequene is a realization of a stationary and ergodi random proess then one an showan algorithm (strategy) whose performane onverges not only to the performane of thebest expert, but in ase of a arefully de�ned lass of the experts, it also onverges to thetheoretial optimum that an be ahieved in full knowledge of the underlying distributiongenerating the outome sequene. A strategy is alled universally onsistent if it ahievesasymptotially this optimum. In ase of squared loss, Algoet [1℄ and Morvai, Yakowitz, andGyör� [57℄ proved that there exists a predition strategy that an ahieve this well-de�nedoptimum. Györ� and Lugosi [32℄ introdued a simple universally onsistent preditionstrategy. We refer to Nobel [58℄, Singer and Feder [65℄, [66℄ and Yang [74℄ for loselyrelated reent works. In ase of 0−1 loss, Ornstein [59℄ and Bailey [12℄ proved the existeneof universally onsistent preditors. This was later generalized by Algoet [1℄. A simplerestimator with the same onvergene property was introdued by Morvai, Yakowitz, andGyör� [57℄. Motivated by the need for a pratial estimator, Morvai, Yakowitz, and Algoet[56℄ introdued an even simpler algorithm. However, it is not known whether their preditoris universally onsistent. Györ�, Lugosi, and Morvai [33℄ introdued a simple randomizeduniversally onsistent proedure with a pratial appeal. Weissman and Merhav [72℄, [73℄studied onsisteny in noisy environment.



1.3. Contribution and thesis overview 61.3 Contribution and thesis overviewIn this thesis we address some fundamental open questions of the sequential deision prob-lems.In Chapter 2 we introdue the general model of sequential deision problems andaurately de�ne speialized problems and algorithms of whih we make extensive use laterin this thesis. Moreover, this hapter also ontains a more detailed literature overview.As mentioned before, if the bound of the loss is unknown beforehand or if it an slowlygrow with time, most of the existing algorithms are not appliable. In Chapter 3 we give anew algorithm for this situation and study its performane under various partial observationsettings. We introdue a wide lass of partial monitoring problems: the ombination of thelabel e�ient problem and the multi-armed bandit problem. In the label e�ient setting thealgorithm is informed about the experts' performane only with probability ε ≤ 1, whilein the model of multi-armed bandit, only the performane of the hosen expert is known.In the ombination of the label e�ient problem and the multi-armed bandit problem thealgorithm is only informed about the performane of the hosen expert with probability
ε ≤ 1. We show that onsisteny an be ahieved for unbounded losses, if the growth rateof the worst expert's average square of the losses is sublinear in the number of rounds.Moreover, the above result an be applied to solve the speial problem when the loss isbounded. For bounded losses a simple modi�ation of the previous algorithm is o�ered;its onvergene rate oinides with that of an earlier algorithm due to Auer et al. [5℄, butit an be applied more easily to pratial problems.In many appliations the set of experts has a ertain struture that may be exploitedto onstrut e�ient on-line deision algorithms. Constrution of suh algorithms hasbeen of great interest in omputational learning theory. In Chapter 4 we study the on-line shortest path problem, a representative example of strutured expert lasses that hasreeived attention in the literature for its many appliations, inluding, among others,routing in ommuniation networks and data ompression. In this problem, a weighteddireted (ayli) graph is given whose edge weights an hange in an arbitrary manner,and in eah round the deision maker has to hoose a path between two distinguishedverties suh that the loss of the hosen path (de�ned as the sum of the weights of itsomposing edges) be as small as possible. In the multi-armed bandit setting, after hoosinga path, the deision maker learns only the weights of those edges that belong to the hosenpath. For this problem, an algorithm is given whose average umulative loss in n roundsexeeds that of the best path, mathed o�-line to the entire sequene of the edge weights,by a quantity that is proportional to 1/

√
n and depends only polynomially on the size ofthe graph. The algorithm has linear omplexity in the number of rounds n and in thenumber of edges. Motivated by Cognitive Paket Networks [28℄, an extension to the labele�ient setting is also given, in whih the deision maker is informed about the weightsof the edges orresponding to the hosen path in only a fration m ≪ n of the rounds.Another extension is shown where the deision maker ompetes against a time-varyingpath, a generalization of the problem of traking the best expert. A version of the multi-armed bandit setting for shortest path is also disussed where the deision maker learns



1.3. Contribution and thesis overview 7only the total weight of the hosen path but not those of the individual edges on the path.This model is partiularly important for routing minimizing the paket loss ratio.In Chapter 5 we provide a simple on-line proedure for the predition of a stationaryand ergodi proesses. The proposed proedure does not only minimize the estimationerror but also guarantees that the approximation error vanishes asymptotially. First apredition strategy (algorithm) is given for unbounded stationary and ergodi real-valuedproesses and it is shown that the algorithm is universally onsistent in ase of the squaredloss. Furthermore, we o�er an extension for this setting, where the algorithm has aessonly to a noisy version of the original sequene. This setup was introdued and studied byWeissman and Merhav [72, 73℄. We show a universally onsistent algorithm in the noisysetting for onvex loss funtions (e.g., squared loss, absolute loss, et.) and �nally a simpleuniversally onsistent lassi�ation sheme is provided for 0 − 1 loss both in the noiselessand in the noisy settings.



Chapter 2
Sequential Predition

In this hapter the terminology and the introdution to the theory of sequential preditionare presented. The aim is to provide the reader with the neessary bakground materialneeded for this thesis.2.1 Sequential predition of individual sequenesThe sequential (often referred also as on-line) deision problem onsidered in this thesisis desribed as follows. Suppose a deision maker has to make a sequene of ations. Ateah time instant t = 1, 2, . . . , n, an ation at ∈ A is made, where A denotes the ationspae and n is the number of rounds the algorithm is run for. Then, based on the state ofthe environment yt ∈ Y , where Y is some state spae, the deision maker su�ers some loss
ℓ(at, yt) with a nonnegative loss funtion ℓ : A × Y → R. In some speial ases we take
A = Y , but in general A may be di�erent from Y . The ation at time t may depend onall previous ations a1, . . . , at−1, and on all the information available to the deision makerabout the past behavior of the environment. This information, for example, may onsistof the past environment states y1, . . . , yt−1; however, the deision maker may not be ableto observe the state yi of the environment, where i = 1, . . . , t− 1. The goal of the deisionmaker is to minimize the average loss of the algorithm in the long run, that is, to minimize

1

n

n∑

t=1

ℓ(at, yt) ,for large n. Sine no probabilisti assumption is made on how the sequene {yt} is gener-ated, it is not possible to minimize the umulative loss of the algorithm
L̂n

def
=

n∑

t=1

ℓ(at, yt)simultaneously for all y1, . . . , yn sequene. 8



2.1. Sequential predition of individual sequenes 9For prediting individual sequenes, a possible problem formulation is that we evaluatethe performane of the algorithm with respet to a referene lass of predition rules,alled experts suh that the goal of the algorithm is to perform as well as the best expert.Formally, given N experts, at eah time instant t, for every i = 1, . . . , N , expert i hoosesits ation fi,t ∈ A and su�ers loss ℓ(fi,t, yt). The deision maker is allowed to make its owndeision at using the experts' advie f1,t, . . . , fN,t, however, without knowing the experts'loss in advane. Formally, the sequential predition problem is given in Figure 2.1.Sequential predition problemParameters: number N of experts, state spae Y , ation spae A, non-negative loss funtion ℓ : A × Y → R, number n of rounds (n an be
∞).At time instants t = 1, . . . , n,(1) eah expert forms its ation fi,t ∈ A, i = 1, . . . , N ;(2) the deision maker observes the ations of the experts and forms itown predition at ∈ A;(3) the state of the environment yt ∈ Y may or may not be revealed;(4) the deision maker inurs loss ℓ(at, yt) and eah expert inurs loss

ℓ(fi,t, yt).Figure 2.1: Sequential predition problem.Denote the umulative loss of expert i up to time n by
Li,n =

n∑

t=1

ℓ(fi,t, t) .Let us de�ne the normalized regret as the di�erene between the average loss of the algo-rithm and that of the best expert, that is,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
.The goal of the learning algorithm is to ombine the experts' deisions suh that thenormalized regret, be universally small for all possible sequenes of {yt}.If the ation spae is onvex (in this ase obviously an in�nite ation spae is required),then the deision maker an ombine the advie of the experts aording to a distribution

{pi,t} as follows:
at =

N∑

i=1

pi,tfi,t .



2.1. Sequential predition of individual sequenes 10If the loss funtion ℓ(·, ·) is onvex in its �rst argument, then suh deterministi algorithmsan be applied (see e.g. Cesa-Bianhi and Lugosi [21℄), whih will be introdued in Subse-tion 2.2.2. For general ation spae, the ombination of the experts' advie is formulatedby randomization.2.1.1 Randomized preditionIt an be shown that under general onditions on the loss funtion and on the �nite ationspae, exluding suh simple situations when, for example, the loss of the experts are thesame, no deterministi algorithm an perform well for all possible sequene {yt}. Thisis beause for eah deterministi algorithm one an onstrut a �bad� sequene on whihthe atual algorithm performs poorly, but the best expert does not. (At the end of thissubsetion a simple example is presented.)Therefore, in ase of �nite ation spae we onsider randomized algorithms. Withoutloss of generality we may assume that the deision maker always follows the advie of oneof the experts. Let It be the (random) index of the expert was hosen by the algorithm atround t, that is, at = fIt,t for some It ∈ {1, . . . , N}. Note that for eah t, It is a randomvariable, as well as the umulative loss of the randomized algorithm L̂n. Therefore, wean assume that the deision of the deision maker is to hoose an expert It and follow itsdeision fIt,t. Formally, the randomized predition model is de�ned as follows:Randomized predition with expert advieParameters: number N of experts, state spae Y , ation spae A, non-negative loss funtion ℓ : A×Y → R, number n of rounds (n an be ∞).At time instants t = 1, . . . , n,(1) eah expert forms its ation fi,t ∈ A, i = 1, . . . , N ;(2) the deision maker observes the ations of the experts and hoosesan expert It ∈ {1, . . . , N} randomly;(3) the state of the environment yt ∈ Y may or may not be revealed;(4) the deision maker inurs loss ℓ(fIt,t, yt) and eah expert inurs loss
ℓ(fi,t, yt).Figure 2.2: Randomized predition using expert advie.For onveniene we use the notations ℓi,t instead of ℓ(fi,t, yt) and ℓIt,t instead of ℓ(fIt,t, yt).Then the umulative loss of the deision maker up to time n is

L̂n =
n∑

t=1

ℓIt,t,



2.2. Algorithms 11and the umulative loss of expert i is
Li,n =

n∑

t=1

ℓi,t .The goal of the learning algorithm is the same like in non-randomized setting suhthat the normalized regret, that is the di�erene between the average loss of the algorithmand that of the best expert, be universally small for all possible sequenes of {yt}. Morepreisely, to ensure
lim sup

n→∞

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 0with probability 1 for every sequene {yt}. Suh an algorithm is alled Hannan onsistent[21℄.In most of the ases we allow that the ations of the environment depend on the pasthoie of the deision maker and also on its own (independent) randomization; this is theso alled non-oblivious (adaptive) adversaries.As an example to show that deterministi algorithms do not work in general, onsiderthe following example.Example 2.1. Assume that we would like to predit a binary sequene and we have twodi�erent onstant experts. The �rst one always predits 0 and the seond one alwayspredits 1. Formally, f1,t = 0 and f2,t = 1 for all t = 1, 2, . . .. Let the outome sequenebe {1, 0, 1, 0, 1, 0, 1, . . .}, that is yt = t mod 2 for all t = 1, 2, . . .. Then the loss sequenesof the experts are {1, 0, 1, 0, 1, 0, . . .} and {0, 1, 0, 1, 0, 1, . . .}, respetively. Let the deisionmaker's strategy be that it always uses the advie of the expert that has been best so far.In ase of tie it hooses randomly. This is the so alled follow-the-leader strategy. Thisstrategy hooses uniform randomly at time t if t is odd, and it hooses the seond expertis hosen if t is even, resulting in hoosing the worse expert. Then the average loss of thealgorithm onverges to 3/4, while the loss of both ations are asymptotially 1/2; thus theperformane of the algorithm is far from optimal.2.2 AlgorithmsIn this setion we provide an overview of the most well-known algorithms in sequentialdeision problems. Mostly two types of algorithms are used: The so alled �follow-the-perturbed-leader�-type algorithms employ the priniple (with some additional randomiza-tion) that the so far best expert should perform well in the future, too, while weightedaverage algorithms hoose experts randomly suh that the ones with better past perfor-mane are hosen with higher probability. In what follows both types of algorithms arebrie�y introdued, but throughout the thesis we onsider only weighted average type al-gorithms, as for these algorithms better regret bounds are available in ase of partialmonitoring senarios. Throughout this setion we show results in ase when the losses arebounded with 1, that is ℓi,t ∈ [0, 1] for all i and t.



2.2. Algorithms 122.2.1 Follow-the-perturbed-leader algorithmIt was shown at the end of Subsetion 2.1.1 that the follow-the-leader strategy is notoptimal. However, a simple randomization su�es to ahieve a signi�antly improvedperformane. The idea is to add small random perturbations to the umulative lossesand then follow the �perturbed leader� with best �perturbed� past performane. The �rstHannan onsistent algorithm whih used this idea was given by Hannan [43℄, but here weshow a reent version of this algorithm due to Kalai and Vempala [49℄.Follow-the-perturbed-leader algorithmParameters: Fix R > 0.Initialization: Set Li,0 = 0 for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Selet the random N -vetor Zt with omponents Zi,t, i = 1, . . . , N ,uniformly from [0, R].(2) Selet an expert
It = arg min

i=1,...,N
(Li,t−1 + Zi,t)(ties are broken in favor of the smallest index).(3) Update the loss of eah expert i

Li,t = Li,t−1 + ℓi,t.Figure 2.3: The follow-the-perturbed-leader algorithm in full information ase.The following theorem gives an upper bound on the normalized regret of the follow-the-perturbed-leader algorithm given in Figure 2.3 due to [49℄.Theorem 2.1. Assume n,N ≥ 1, 0 < δ < 1, ℓi,t ∈ [0, 1] for all i and t , and let R =
√

nN .Then the follow-the-perturbed leader algorithm satis�es, with probability at least 1 − δ,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
N

n
+

√
ln(N/δ)

2n
.The weakness of this algorithm is that the upper bound has square-root-type dependeneon the number N of experts. However, Kalai and Vempala [50℄ proposed a follow-the-perturbed-leader type algorithm whih use exponential distribution instead of the uniformdistribution to generate the perturbation and it obtains the �right� logarithmi dependeneon N .



2.2. Algorithms 132.2.2 Exponentially weighted average preditionIn the �weighted average deision�-type algorithms at time instant t an expert i is hosenwith probability that inreases with the past performane of the expert. That is, P(It = i)is proportional to r(Li,t−1), where r is a non-inreasing funtion. The most popular hoieof r is r(x) = e−ηx, leading to the exponentially weighted average predition, where η > 0is tuning parameter. In that ase the probability that hoosing ation i at round t ≥ 2

pi,t =
exp(−η

∑t−1
s=1 ℓi,s)∑N

j=1 exp(−η
∑t−1

s=1 ℓj,s)
for i = 1, . . . , N .Formally, the algorithm for bounded losses is given in Figure 2.4.Exponentially weighted average preditorParameters: Fix η > 0.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .For eah round t = 1, 2, . . .(1) Randomly selet an expert It ∈ {1, . . . , N} aording to the proba-bility distribution pt = (p1,t, . . . , pN,t).(2) Update the weights wi,t = wi,t−1e

−ηℓi,t .(3) Calulate the updated probability distribution
pi,t+1 =

wi,t∑N
j=1 wj,t

, for i = 1, . . . , N.Figure 2.4: Exponentially weighted average algorithm.The maximum di�erene between the umulative loss of the above de�ned algorithmand umulative loss of the best expert is O(
√

n ln N) was proved by Littlestone and War-muth [53℄:Theorem 2.2. Let n,N ≥ 1, 0 < δ < 1 and ℓi,t ∈ [0, 1]. The exponentially weightedaverage algorithm with η =
√

8 ln N/n satis�es, with probability at least 1 − δ,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤
√

ln N

2n
+

√
1

2n
ln

1

δ
.If the ation spae is onvex and loss is onvex in its �rst argument, then we may usedeterministi algorithm in non-adversary environment (see Setion 2.1). That is, wherethe deisions of the algorithm is a onvex ombination of the expert advie aordingdistribution pt at time t.



2.2. Algorithms 14Theorem 2.3. Let n,N ≥ 1, ℓi,t ∈ [0, 1] and it is onvex in its �rst argument then thenon-randomized exponentially weighted average algorithm with η =
√

8 ln N/n satis�es,
1

n

(
n∑

t=1

N∑

i=1

pi,tℓi,t − min
i=1,...,N

Li,n

)
≤
√

ln N

2n
.Note that it is not a probabilisti statement, it holds for any sequene y1, y2, . . . , yn for a�x n.However the above regret bounds do not hold uniformly over sequenes of any length

n, sine the parameter η = ηn depends on n. In many appliations, inluding parametersetting in TCP variants and routing in ommuniation network the time horizon is not�xed and not available for the algorithm. To �x this problem the simplest idea is thedoubling trik whih appears in Cesa-Bianhi et al. [20℄. The idea is to partition thetime into periods of exponentially inreasing length. At the beginning of eah period, thealgorithm hooses the optimal η for the length of the interval and when the periods end,reset the whole �xed-horizon algorithm, and the new value of η is seleted optimally forthe next period. This method give a √
2/(

√
2−1) multipliative fator to the upper boundof the theorem. However, it is obvious that this method is not pratial, beause it resetsits previously gathered knowledge time after time and therefore its appliation for a realproblem is doubtful. Another more attrative method is that at eah time instant t thealgorithm hooses an η = ηt whih depends on t. It was proved by Auer et al. [7℄ thatsetting ηt =

√
8 ln N/t results in a regret bound that is only twie as muh as the original(time dependent) bound.2.2.3 Countably many expertsIf the (in�nite) ation spae is onvex, then the deision maker an ombine the advie ofthe expert aording to a distribution {pi,t}:

at =
N∑

i=1

pi,tfi,t .Under onvexity ondition on the loss funtion, the regret of this ombination is boundedby O(1/
√

n). It is easy to prove that this regret bound holds for ountably many experts,too. The only neessary modi�ation in the algorithm is that we have to de�ne probabilitydistribution over the set of positive integers {qi : i = 1, 2, . . .}, where wi,0 = qi representsthe initial weight of expert i.Theorem 2.4. Under the assumptions on Theorem 2.3, for any ountable lass of experts,for ℓi,t ∈ [0, 1] and for any probability distribution {qi : i = 1, 2, . . .} over the set of positiveintegers, suh that qi > 0, the non-randomized exponentially weighted average preditionfor all n ≥ 1
1

n
L̂n ≤ inf

i≥1

1

n

(
Li,n − 1

η
ln

1

qi

)
+

η

8
.



2.3. Partial monitoring problems 152.3 Partial monitoring problemsIn this setion we overview expert algorithms for situations where the whole information onits own performane and on the past performane of the experts is not available to the de-ision maker. The algorithms presented here follow the idea of estimating the performaneof the experts based on the available information, and then run the exponentially weightedaverage deision algorithm using the estimated losses. In general, the normalized regret ofthe algorithms an be bounded by O
(√

N ln N/(nM)
) where M is the average numberof experts whose performane are revealed to the deision maker at eah time instant. Weprovide algorithms for the label e�ient deision and multi-armed bandit problems.To ease the notation throughout this setion we also assume that the loss is upperbounded with 1.2.3.1 Label e�ient preditionIn the label e�ient deision problem, after hoosing its ation at time t, the deisionmaker has the option to query the �label� yt of the environment. The deision maker isallowed to make (average) m queries out of the n time instants, where m ≤ n. To makethe algorithm universal, the querying has to be randomized. In the sequel we will see thata simple biased oin does the job.More preisely, to query a label, the deision maker uses an independent, identiallydistributed sequene S1, S2, . . . , Sn of Bernoulli random variables with P(St = 1) = ε andasks label yt if St = 1. If yt is known, the deision maker an alulate the losses ℓi,t forall i = 1, . . . , N . If ε = m/n, then the number of the revealed labels during n roundsis approximately m for large n, and the proportion of labels queried onverges to ε withprobability 1 as n inreases.In order to apply the exponentially weighted average deision method in this ase, thelosses have to be substituted with its estimate. It is shown in Figure 2.5, estimated lossesare used instead of the observed losses:

ℓ̃i,t =

{
ℓi,t

ε
, if St = 1,

0, otherwise.Note that ℓ̃i,t is an unbiased estimate of the true loss ℓi,t, as
E

[
ℓ̃i,t

∣∣∣(S1, I1), . . . , (St−1, It−1)
]

= ℓi,t .The following upper bound on the normalized regret of algorithm in Figure 2.5 is due toCesa-Bianhi et al. [22℄. Note that this upper bound oinides with the previously provedupper bound for full information ase if m = n .



2.3. Partial monitoring problems 16Exponential weighting for label effiient preditionParameters: Fix η > 0 and 0 < ǫ ≤ 1.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Selet an ation It ∈ {1, . . . , N} aording to the probability distri-bution pt = (p1,t, . . . , pN,t).(2) Draw a Bernoulli random variable St suh that P(St = 1) = ǫ.(3) if St = 1 then obtain ℓi,t for all i and ompute the estimated loss
ℓ̃i,t =

{
ℓi,t

ε
, if St = 1;

0, otherwise.(4) Update the weights wi,t = wi,t−1e
−ηeℓi,t .(5) Calulate the updated probability distribution

pi,t+1 =
wi,t∑N
j=1 wj,t

i = 1, . . . , N.Figure 2.5: Exponentially weighted average deision algorithm in the label e�ient setting.Theorem 2.5. Assume n,N ≥ 1, ℓi,t ∈ [0, 1] and 0 < δ < 1. If the above de�ned algorithmis run with parameters
ε = max

{
0,

m −
√

2m ln(4/δ)

n

} and η =

√
2ε ln N

n
,then the normalized regret of the deision maker an be bounded with probability at least

1 − δ as
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 2

√
ln N

m
+ 6

√
ln(4N/δ)

m
,where m is the average number of the revealed labels.2.3.2 The multi-armed bandit problemIn the multi-armed bandit problem, the deision maker learns its own loss ℓIt,t after hoosingan ation (expert) It, but not the value ℓi,t of the other losses for i 6= It. Thus, the deision



2.3. Partial monitoring problems 17maker does not have aess to the losses it would have su�ered if it had hosen a di�erentation. The lak of information implies a natural strategy: namely, �rst the deision makerhas to explore the losses of the experts (exploration phase) and then it may keep hoosingthe ation with smallest estimated loss for the remaining time (the exploitation phase).In the lassial formulation of multi-armed bandit problems (see, e.g., Robbins [63℄), itis assumed that, for eah ation, the losses are randomly and independently drawn withrespet to a �xed but unknown distribution. This version is alled the stohasti multi-armed bandit problem (for a reent e�ient solution, see Auer et al. [4℄). Here we onsidera non-stohasti (or worst-ase) version of this problem where the sequene y1, . . . , yn,desribing the state of the environment, is generated by a non-stohasti opponent (non-stohasti or adversarial multi-armed bandit problem) [6℄. This non-stohasti approah isextremely useful in ase of reative environment e.g. in parameter setting of TCP variants,where the deision of the algorithm in�uenes the losses (delays) of the other users, andvie versa.There are some modi�ations relative to the full information ase. First, the modi�edmethod uses gains instead of losses, de�ned as
gi,t = 1 − ℓi,t ,where we used 0 ≤ ℓi,t ≤ 1 assumption.Moreover, in ontrast with the label e�ient ase, we use biased estimates of the gainsde�ned as

g̃i,t =

{
gi,t+β

pi,t
, if It = i,

β
pi,t

, otherwisewhere the role of parameter β is to ontrol the bias (for β = 0 we obtain unbiased estimatesof the true gains, sine then E[g̃i,t|I1, I2, . . . , It−1] = gi,t) and we update the weights using
g̃i,t in the following form

wi,t = wi,t−1e
ηg̃i,t .Finally, a new parameter 0 < γ < 1 is introdued that is used in the exploration phase:for It+1 ation i is hosen aording to the probability

pi,t+1 = (1 − γ)
wi,t∑N
j=1 wj,t

+
γ

N
, i = 1, . . . , N.The role of γ is to ensure that pi,t+1 ≥ γ/N for all i = 1, . . . , N . That is, instead of thepure probability distribution generated by exponential weighting, the deision maker usesa mixture of the exponentially weighted average distribution and the uniform distribution,where the latter allows the deision maker to onstantly explore all possible ations. Theresulting algorithm is given in Figure 2.6. The algorithm as well as the following boundon its performane is due to Auer et al. [6℄.



2.3. Partial monitoring problems 18Exponential weighting in the multi-armed bandit settingParameters: Fix η > 0, 0 < β < 1 and 0 < γ < 1.Initialization: Set wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .At time instants t = 1, 2, . . .(1) Selet an ation It ∈ {1, . . . , N} aording to the probability distri-bution pt = (p1,t, . . . , pN,t).(2) Calulate the estimated gains
g̃i,t =

{
gi,t+β

pi,t
, if It = i;

β
pi,t

, otherwise.(3) Update the weights wi,t = wi,t−1e
ηg̃i,t .(4) Calulate the updated probability distribution

pi,t+1 = (1 − γ)
wi,t∑N
j=1 wj,t

+
γ

N
, i = 1, . . . , N.Figure 2.6: Exponentially weighted average deision algorithm for the multi-armed banditproblem.Theorem 2.6. For any 0 < δ < 1, for any ℓi,t ∈ [0, 1] and for any n ≥ 8N ln (N/δ), ifalgorithm in Figure 2.6 is run for the multi-armed bandit problem with parameters

β =

√
ln(N/δ)

nN
, γ =

4Nβ

3 + β
, and η =

γ

2N
,then, with probability at least 1 − δ,

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 5.5

√
N ln(N/δ)/n +

ln N

2n
.Note that the bound of the theorem, unlike to the full information ase, grows with√

N ln N instead of √ln N . Hene, the bound is not really useful if the number of theexperts N is large. The other disadvantages of this bound is that it holds only for boundedloss (ℓi,t ∈ [0, 1]), sine the algorithm is de�ned via gains. In Chapter 4 below some reentresults are presented to handle this problem for the speial ase when the lass of theexperts has some struture.In Chapter 3 as well as in Chapter 4 we introdue a ombination of the label e�ientproblem and the multi-armed bandit problems. The ombination was motivated by the



2.4. Sequential predition in stationary and ergodi environment 19routing problem in Cognitive Paket Networks desribed in Example 4.1 (in Setion 4.4).In this ombined problem, the deision maker learns its own loss only if it hooses to queryit (whih is allowed only for a limited number of times), and it annot obtain informationon the performane of any other ation.2.4 Sequential predition in stationary and ergodi en-vironmentIn this setion we fous on the setting when y1, y2, . . . are realizations of random variables
Y1, Y2, . . .. Under this assumption the performane of the deision maker (strategy) hasa well-de�ned optimum, whih an be ahieved in full knowledge of the underlying dis-tribution generating the outome sequenes. This property - that the loss of a strategyonverges to the loss of the Bayes optimal preditor - is alled universal onsisteny andit is going to de�ne rigorously in the sequel.At eah time instant t = 1, 2, . . ., the preditor is asked to guess the value of thenext outome yt of a sequene of real numbers y1, y2, . . . with knowledge of the pasts
yt−1

1 = (y1, . . . , yt−1) (where y0
1 denotes the empty string) and the side information vetors

xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the preditor's estimate, at time t, is based onthe value of xt
1 and yt−1

1 . A predition strategy is a sequene g = {gt}∞t=1 of funtions
gt :

(
R

d
)t × R

t−1 → Rso that the predition formed at time t is gt(x
t
1, y

t−1
1 ).In this setion as well as in Chapter 5 we assume that (x1, y1), (x2, y2), . . . are realizationsof the random variables (X1, Y1), (X2, Y2), . . . suh that {(Xn, Yn)}∞−∞ is a jointly stationaryand ergodi proess. Furthermore, in these parts of the thesis we use a little bit di�erentnotation for the umulative loss, on the one hand to emphasize that here we have strongerassumptions on the outome sequene on the other hand to suit the notations extensivelyused in the literature.After n time instants, the normalized umulative predition error is

Ln(g) =
1

n

n∑

t=1

ℓ
(
gt(X

t
1, Y

t−1
1 ), Yt

)where ℓ(·, ·) is a nonnegative loss funtion.The fundamental limit for the preditability of the sequene an be determined basedon a result of Algoet [2℄, who showed that for any predition strategy g and stationaryergodi proess {(Xn, Yn)}∞−∞, in ase of squared loss (ℓ(x, y) = (x − y)2)
lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (2.1)where
L∗ = E

[
ℓ
(
E
[
Y0

∣∣X0
−∞, Y −1

−∞
]
, Y0

)]



2.4. Sequential predition in stationary and ergodi environment 20is the minimal error of any predition for the value of Y0 based on the in�nite past
X0

−∞, Y −1
−∞. Note that it follows by stationarity and the martingale onvergene theorem(see, e.g., Stout [67℄) that

L∗ = lim
n→∞

E
[
ℓ
(
E
[
Yn

∣∣Xn
1 , Y n−1

1

]
, Yn

)]
.This lower bound gives sense to the following de�nition:De�nition 2.1. A predition strategy g is alled universally onsistent with respet to alass C of stationary and ergodi proesses {(Xn, Yn)}∞−∞, if for eah proess in the lass,

lim
n→∞

Ln(g) = L∗ almost surely.Universally onsistent strategies asymptotially ahieve the best possible loss for allergodi proesses in the lass. In the '90s Algoet [1℄ and Morvai, Yakowitz, and Györ�[57℄ proved that there exists a predition strategy universal with respet to the lass of allbounded ergodi proesses. However, the predition strategies exhibited in these papers areeither very omplex or have an unreasonably slow rate of onvergene even for well-behavedproesses. For square loss, Györ� and Lugosi [32℄ introdued several simple preditionstrategies, whih are universally onsistent with respet to the lass of bounded, stationaryand ergodi proesses.



Chapter 3
Hannan Consisteny under Partial Monitoring for Unbounded Losses

In this hapter we analyze the sequential deision problem when the loss is unboundedunder partial monitoring senarios. We introdue a wide lass of the partial monitoringproblems: the ombination of the label e�ient problem and multi-armed bandit problem,that is, where the algorithm is only informed about the performane of the hosen expertwith probability ε ≤ 1. For this general setup a new algorithm (Green) is given andshown its Hannan onsisteny.In Setion 3.1 we introdue the ombination of the label e�ient and multi-armedbandit problems whih was originally motivated by adaptive routing (in details see inSetion 4.4). In Setion 3.2 we de�ne Green algorithm. In the next setion (Theorem3.1) we show that the expeted regret of the algorithm sales with the square root of theloss of the best expert. The main result of the hapter is stated and proved in Setion3.4; it shows that Hannan onsisteny an be ahieved, depending the growth rate of theworst expert's average loss. The above �unbounded� results an be utilized for the speialproblem when the loss is bounded. In Theorem 3.3 we o�er an improvement for smalllosses in expeted regret and a high-probability bound for the regret of a slightly modi�edalgorithm (Green.Shift) is proved in Theorem 3.4.3.1 Combination of the label e�ient and multi-armedbandit problemsIn this setion we introdue a reent ombination of the label e�ient and the multi-armedbandit (LE+MAB) problems due to Ottusák and György [61℄. This ombination wasmotivated by the routing problem in Cognitive Paket Networks (CPN) due to Gelenbe(Imperial College) et al. in [27, 28℄. CPN model is implemented and integrated into Linuxkernel 2.2.x and it is also the objet of a US Patent (No. 6804201). CPN is desribed indetails in Setion 4.4 (Example 4.1 ).In this ombined problem, the deision maker learns its own loss only if it hoosesto query it (whih is allowed only for a limited number of times), and it annot obtain21



3.2. Green algorithm 22information on the performane of any other ation. More preisely, for querying its lossthe deision maker uses a binary sequene S1, S2, . . .; If St = 1 then it queries its lossotherwise not. The following �gure gives the preise de�nition of randomized predition inase of the problem LE+MAB.Randomized predition with expert advie in problemle+mabParameters: number N of experts, state spae Y , ation spae A, non-negative loss funtion ℓ : A× Y → R, number n of rounds (n an be ∞)and µ : N → N. At time instants t = 1, . . . , n,(1) eah expert forms its ation fi,t ∈ A, i = 1, . . . , N ;(2) the deision maker observes the ations of the experts and hoosesan expert It ∈ {1, . . . , N};(3) the deision maker inurs loss ℓ(fIt,t, yt) and eah expert inurs loss
ℓ(fi,t, yt);(4) if St = 1 then the deision maker issues a new query to obtain itsown loss ℓ(fIt,t, yt); if no query is issued then ℓ(fIt,t, yt) as well asthe losses of the experts remain unknown.Figure 3.1: Randomized predition with expert advie in ombination of the label e�ientand the multi-armed bandit problems.3.2 Green algorithmIn problem LE+MAB, it is easy to see (similarly to the LE ase) that in order to ahievea nontrivial performane, the algorithm must use randomization.For querying its loss the algorithm uses a sequene S1, S2, . . . of independent Bernoullirandom variables suh that

P(St = 1) = εt,and asks for the loss ℓIt,t of the hosen expert It if St = 1, whih for onstant εt = ε isidential to the label e�ient algorithms in Cesa-Bianhi et al. [22℄.For problem LE+MAB we use Green algorithm with time-varying parameters intro-dued in Allenberg et al. [3℄. Green algorithm is a variant of the exponentially weightedaverage algorithm of Littlestone and Warmuth [53℄ and it was named after the known id-iom: �The grass is always greener on the other side�, sine Green assumes that the expertsit did not hoose had the best possible payo� (the zero loss).



3.2. Green algorithm 23Denote by pi,t the probability of hoosing ation i at time t in ase of the originalexponentially weighted average algorithm (preditor), that is,
pi,t =

e−ηt
eLi,t−1

∑N
j=1 e−ηt

eLj,t−1

,where L̃i,t−1 is so alled umulative estimated loss, whih will be updated later. Greenalgorithm uses modi�ed probabilities p̃i,t whih an be alulated from pi,t,
p̃i,t =

{
0 if pi,t < γt;
ct · pi,t if pi,t ≥ γt,where ct is the normalizing fator (see Step (2) of the algorithm) and γt ≥ 0 is a time-varying threshold. Finally, the algorithm uses estimated losses whih are given by

ℓ̃i,t =

{
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise.Therefore, the estimated loss is an unbiased estimate of the true loss with respet to itsnatural �ltration, that is,
Et

[
ℓ̃i,t

] def
= E

[
ℓ̃i,t

∣∣∣(I1, S1), (I2, S2), . . . , (It−1, St−1)
]

= ℓi,t .The umulative estimated loss of expert i is given by
L̃i,t = L̃i,t−1 + ℓ̃i,t .The resulting algorithm is given in Figure 3.2.



3.3. Bounds on the expeted regret 24Green algorithm for problem le+mabParameters: Let η1, η2, . . . > 0, ε1, ε2, . . . > 0 and γ1, γ2, . . . ≥ 0.Initialization: Set L̃i,0 = 0 for all i = 1, . . . , N .For eah round t = 1, 2, . . .(1) Calulate the probability distribution
pi,t =

e−ηt
eLi,t−1

∑N
i=1 e−ηt

eLi,t−1

i = 1, . . . , N .(2) Calulate the modi�ed probabilities
p̃i,t =

{
0 if pi,t < γt,
ct · pi,t if pi,t ≥ γt,where ct = 1/

∑
pi,t≥γt

pi,t .(3) Selet an ation It ∈ {1, . . . , N} aording to p̃t = (p̃1,t, . . . , p̃N,t).(4) Draw a Bernoulli random variable St suh that P(St = 1) = εt.(5) Compute the estimated loss for all i = 1, . . . , N

ℓ̃i,t =

{
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise.(6) For all i = 1, . . . , N update the umulative estimated loss
L̃i,t = L̃i,t−1 + ℓ̃i,t.Figure 3.2: Green algorithm for label e�ient and multi-armed bandit problem.3.3 Bounds on the expeted regretIn this setion an O(1/

√
n) bound is shown for the expeted normalized regret of Greenalgorithm .Theorem 3.1. (Allenberg, Auer, Györfi and Ottusák [3℄). If ℓ2

i,t ≤ tν and
εt ≥ t−β for all t, then for all n the expeted loss of Green algorithm with γt = 0 and
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ηt = 2

√
ln N
N

· t−(1+ν+β)/2 is bounded by
E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ 2

√
(N ln N)(n + 1)(1+ν+β)/2.For the proofs we introdue the notations

ℓ̌t =
N∑

i=1

p̃i,tℓ̃i,t, ℓt =
N∑

i=1

pi,tℓ̃i,t, and Ln =
n∑

t=1

ℓtand we split the statement into the following telesopes
L̂n − min

i=1,...,N
Li,n =

(
L̂n − Ln

)
+

(
Ln − min

i=1,...,N
L̃i,n

)
+

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)
. (3.1)Lemma 3.1. For any sequene of losses ℓi,t ≥ 0,

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.Proof. Sine pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γt
pj,t = 1 −

∑
j:pj,t<γt

pj,t ≥ 1 − Nγt we have
ℓt =

N∑

i=1

pi,tℓ̃i,t = pIt,tℓ̃It,t ≥ (1 − Nγt)p̃It,tℓ̃It,t = (1 − Nγt)ℓ̌t.Thus
L̂n − Ln =

n∑

t=1

ℓIt,t −
n∑

t=1

ℓt ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.

2For bounding Ln − mini=1,...,N L̃i,n we use the following lemma due to Cesa-Bianhi etal. [23℄.Lemma 3.2. Consider any non-inreasing sequene of η1, η2, . . . positive learning rates andany nonnegative sequenes ℓ̃1, ℓ̃2, . . . ∈ R
N of loss vetors, where ℓ̃t = (ℓ̃1,t, ℓ̃2,t, . . . , ℓ̃N,t).De�ne the funtion Φ by

Φ(pt, ηt,−ℓ̃t) =
N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,te
−ηt

eℓi,t ,where pt = (p1,t, p2,t, . . . , pN,t) is the probability vetor of the exponentially weighted averagealgorithm. Then, for Green algorithm
Ln − min

i=1,...,N
L̃i,n ≤

(
2

ηn+1

− 1

η1

)
ln N +

n∑

t=1

Φ(pt, ηt,−ℓ̃t).



3.3. Bounds on the expeted regret 26Lemma 3.3. With the notation of Lemma 3.2 we get for Green algorithm,
Φ(pt, ηt,−ℓ̃t) ≤

ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t.Proof. With straightforward alulation we obtain
Φ(pt, ηt,−ℓ̃t) =

N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,te
−ηt

eℓi,t

≤
N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln
N∑

i=1

pi,t

(
1 − ηtℓ̃i,t +

η2
t ℓ̃

2
i,t

2

) (3.2)
≤

N∑

i=1

pi,tℓ̃i,t +
1

ηt

ln

(
1 − ηt

N∑

i=1

pi,tℓ̃i,t +
η2

t

2

N∑

i=1

pi,tℓ̃
2
i,t

)

≤ ηt

2

N∑

i=1

pi,tℓ̃
2
i,t ≤ ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t (3.3)where (3.2) holds beause of e−x ≤ 1 − x + x2/2 for x ≥ 0, and (3.3) follows from the fatthat ln(1 + x) ≤ x for all x > −1, and from the de�nition of ℓ̃i,t in Green algorithm. 2Proof of Theorem 3.1. From (3.1) and Lemmas 3.1�3.3, we get
L̂n − min

i=1,...,N
Li,n ≤

n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t +

(
2

ηn+1

− 1

η1

)
ln N

+
n∑

t=1

ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t +

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)
.Note that

Et[ℓIt,t] =
N∑

i=1

p̃i,tℓi,t =
N∑

i=1

p̃i,tEt

[
ℓ̃i,t

]
= Et

[
ℓ̌t

]and
E

[
min

i=1,...,N
L̃i,n

]
≤ min

i=1,...,N
E

[
L̃i,n

]
= min

i=1,...,N
E[Li,n] ,then taking expetations we obtain

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1

+
N∑

i=1

n∑

t=1

ηtE

[
ℓi,tℓ̃i,t

]

2εt

. (3.4)



3.4. Hannan onsisteny 27Now using Et

[
ℓ̃i,t

]
= ℓi,t and assumptions of the theorem we have

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1

+
N∑

i=1

n∑

t=1

ηtE
[
ℓ2
i,t

]

2εt

≤
√

N ln N(n + 1)(1+ν+β)/2 +
√

N ln N

n∑

t=1

t(−1+ν+β)/2as desired. 23.4 Hannan onsistenyIn this setion we derive su�ient onditions of Hannan onsisteny under partial moni-toring for Green algorithm using time-varying parameters in ase when the bound of theloss is unknown in advane, or when the loss is unbounded.Theorem 3.2. (Allenberg, Auer, Györfi and Ottusák [3℄). Algorithm Greenis run for the ombination of the label e�ient and multi-armed bandit problem. Assumethat there exist universal onstants c < ∞ and 0 ≤ ν < 1 suh that for eah n

max
i=1,...,N

1

n

n∑

t=1

ℓ2
i,t < cnν .For some onstant ρ > 0 hoose the parameters of the algorithm as:

γt = t−α/N ; (ν + ρ)/2 ≤ α ≤ 1,

ηt = t−1+δ; 0 < δ ≤ 1 − ν − α − β − ρand
εt = ε0t

−β; 0 < ε0 ≤ 1 and 0 ≤ β ≤ 1 − ν − α − δ − ρ.Then Green algorithm is Hannan onsistent, that is,
lim sup

n→∞

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 0 a.s.Remark 3.1. We derive the onsequenes of the theorem in speial ases:

• Full information: With a slight modi�ation of the proof and �xing β = 0 (εt = 1)and γt = 0 we get the following ondition for the losses in full information ase:
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n1−δ−ρ

)
.
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• Multi-armed bandit problem: we �x β = 0 (εt = 1). Choose γt = t−1/3 for all t.Then the ondition is for the losses

max
i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n2/3−δ−ρ

)
.

• Label e�ient setting with time-varying query rate (εt): With a modi�ationof the proof and �xing γt = 0 we get the following ondition for the loss funtion inlabel e�ient ase:
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n1−β−δ−ρ

)
.

• Combination of the label e�ient and multi-armed bandit setting: This isthe most general ase. Let γt = t−1/3. Then the bound is
max

i=1,...,N

1

n

n∑

t=1

ℓ2
i,t ≤ O

(
n2/3−β−δ−ρ

)
.Remark 3.2. (Convergene rate) With an extension of Lemma 3.4 below we an retrievethe ν dependent almost sure onvergene rate of the algorithm. The rate is

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ O(nν/2−1/2) a.s.in the full information and the label e�ient ases with optimal hoie of the parametersand in the multi-armed bandit and �ombined� ases it is

1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ O(nν/2−1/3) a.s.Remark 3.3. (Minimum amount of query rate in label e�ient setting) Denote

µ(n) =
n∑

t=1

εtthe expeted query rate, that is, the expeted number of queries that an be issued up totime n. Assume that the average of the loss funtion has a onstant (unknown) bound,i.e., ν = 0. With a slight modi�ation of the proof of Theorem 3.2 and hoosing
ηt =

log log log t

t
and εt =

log log t

twe obtain the ondition for Hannan onsisteny, suh that
µ(n) = log n log log n,whih is the same as that of Cesa-Bianhi et al. [22℄.



3.4. Hannan onsisteny 29In order to prove Theorem 3.2, we split the proof into three lemmas by telesope:
1

n
L̂n − 1

n
min

i=1,...,N
Li,n

=
1

n

(
L̂n − Ln

)

︸ ︷︷ ︸Lemma 3.5 +
1

n

(
Ln − min

i=1,...,N
L̃i,n

)

︸ ︷︷ ︸Lemma 3.6 +
1

n

(
min

i=1,...,N
L̃i,n − min

i=1,...,N
Li,n

)

︸ ︷︷ ︸Lemma 3.7 . (3.5)Combining sequentially Lemma 3.5, Lemma 3.6 and Lemma 3.7 Theorem 3.2 is proved.We will show separately the almost sure onvergene of the three lemmas on the right-handside. In the sequel, we need the following lemma whih is the key of the proof of Theorem3.2:Lemma 3.4. Let {Zt} be a martingale di�erene sequene. Let
htE[kt] ≥ Var(Zt)where

ht = 1/tafor all t = 1, 2, . . . and
Kn =

1

n

n∑

t=1

kt ≤ Cnband 0 ≤ b < 1 and b − a < 1. Then
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.Proof. By the strong law of large numbers for martingale di�erenes due to Chow [24℄,if {Zt} a martingale di�erene sequene with
∞∑

t=1

Var(Zt)

t2
< ∞ (3.6)then

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.



3.4. Hannan onsisteny 30We have to verify (3.6). Beause of kt = tKt − (t − 1)Kt−1, and ht

t
− ht+1t

(t+1)2
≥ 0 we havethat

n∑

t=1

Var(Zt)

t2
≤

n∑

t=1

htE[kt]

t2
=

n∑

t=1

htE[(tKt − (t − 1)Kt−1)]

t2

=
hnE[Kn]

n
+

n−1∑

t=1

(
ht

t
− ht+1t

(t + 1)2

)
E[Kt]

≤ n−aCnb

n
+

n−1∑

t=1

(
t−a

t
− (t + 1)−at

(t + 1)2

)
Ctbwhih is bounded by onditions. 2Now we are ready to prove one by one the almost sure onvergene of the terms in(3.5).Lemma 3.5. Under the onditions of the Theorem 3.2,

lim
n→∞

1

n

(
L̂n − Ln

)
= 0 a.s.Proof. First we use Lemma 3.1, that is

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t =
n∑

t=1

Zt +
n∑

t=1

Nγtℓ̌t. (3.7)Below we show separately, that both sums in (3.7) divided by n onverge to zero al-most surely. First observe that {Zt} is a martingale di�erene sequene with respet to
(I1, S1), . . . , (It−1, St−1). Observe that It is independent from St therefore we get the fol-lowing bound for the variane of Zt:

Var(Zt) = E
[
Z2

t

]
= E

[
(ℓIt,t − ℓ̌t)

2
]
≤ 1

εt

E

[
N∑

i=1

ℓ2
i,t

]
def
= htE[kt] ,where ht = 1/εt and kt =

∑N
i=1 ℓ2

i,t. Then applying Lemma 3.4 we obtain
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.Next we show that the seond sum in (3.7) divided by n goes to zero almost surely, thatis,
1

n

n∑

t=1

Nγtℓ̌t =
1

n

n∑

t=1

St

εt

ℓIt,tNγt =
1

n

n∑

t=1

Rt +
1

n

n∑

t=1

ℓIt,tNγt → 0 (n → ∞) (3.8)



3.4. Hannan onsisteny 31where Rt is a martingale di�erene sequene respet to (I1, S1), . . . , (It−1, St−1). Boundingthe variane of Rt, we obtain
Var(Rt) ≤ N2γ2

t

εt

E

[
N∑

i=1

ℓ2
i,t

]
.Then using Lemma 3.4 with parameters ht = γ2

t /εt and kt =
∑N

i=1 ℓ2
i,t we get

lim
n→∞

1

n

n∑

t=1

Rt = 0 a.s.The proof is �nished by showing, that the seond sum in (3.8) goes to zero, i.e.,
lim

n→∞
1

n

n∑

t=1

ℓIt,tNγt = lim
n→∞

N
N∑

i=1

1

n

n∑

t=1

ℓi,tγt = 0.Introdue Ki,n = 1
n

∑n
t=1 ℓi,t then for all i

1

n

n∑

t=1

ℓi,tγt =
1

n

n∑

t=1

(tKi,t − (t − 1)Ki,t−1)γt

= Ki,nγn +
1

n

n−1∑

t=1

(γt − γt+1) tKi,t

≤ Ki,nγn +
1

n

n−1∑

t=1

γtKi,t (3.9)
≤

√
c

1

N
nν/2−α +

1

nN

n−1∑

t=1

tν/2−α
√

c → 0 (3.10)where the (3.9) holds beause (γt − γt+1)t ≤ γt and (3.10) follows from Ki,n ≤
√

cnν , thede�nition of the parameters and α ≥ (ν + ρ)/2. 2Lemma 3.6 yields the relation between Ln and mini=1,...,N L̃i,n.Lemma 3.6. Under the onditions of Theorem 3.2,
lim sup

n→∞

1

n

(
Ln − min

i=1,...,N
L̃i,n

)
≤ 0 a.s.Proof. We start by applying Lemma 3.2, that is,

Ln − min
i=1,...,N

L̃i,n ≤ 2 ln N

ηn+1

+
n∑

t=1

Φ(pt, ηt,−ℓ̃t). (3.11)



3.4. Hannan onsisteny 32To bound the quantity of Φ(pt, ηt,−ℓ̃t), our starting point is (3.3). Moreover,
ηt

2

N∑

i=1

pi,tℓ̃
2
i,t =

ηt

2

N∑

i=1

pi,t

ℓ2
i,t

p̃2
i,tε

2
t

StI{It=i} ≤
ηt

2γtεt

St

εt

ℓ2
It,t ≤

ηt

2γtεt

St

εt

N∑

i=1

ℓ2
i,t (3.12)where the �rst inequality omes from pIt,t ≥ γt. Combining this bound with (3.11), dividingby n and taking the limit superior we get

lim sup
n→∞

1

n

(
Ln − min

i=1,...,N
L̃i,n

)
≤ lim sup

n→∞

2 ln N

nηn+1

+ lim sup
n→∞

1

n

n∑

t=1

ηt

2γtεt

St

εt

N∑

i=1

ℓ2
i,t.Let analyze separately the two terms on the right-hand side. The �rst term is zero beauseof the assumption of the Theorem 3.2. Conerning the seond term, similarly to Lemma3.5 we an split St/εt as follows: let us

St

εt

ηt

2γtεt

N∑

i=1

ℓ2
i,t = Zt +

ηt

2γtεt

N∑

i=1

ℓ2
i,t, (3.13)where Zt is a martingale di�erene sequene. The variane is

Var(Zt) = E

[
η2

t St

γ2
t ε

2
t

(∑N
i=1 ℓ2

i,t

)2
]

=
η2

t

εtγ2
t

E

[(∑N
i=1 ℓ2

i,t

)2
]

.Appliation of Lemma 3.4 with ht =
η2

t

εtγ2
t
and kt =

(∑N
i=1 ℓ2

i,t

)2 yields
lim

n→∞
1

n

n∑

t=1

Zt = 0 a.s.where we used that
1

n

n∑

t=1

kt ≤
1

n

(
n∑

t=1

√
kt

)2

≤ N2c2n1+2ν .Finally, we have to prove that the sum of the seond term in (3.13) goes to zero, that is,
lim sup

n→∞

1

n

n∑

t=1

N∑

i=1

ηt

2γtεt

ℓ2
i,t = 0for whih we use same argument as in Lemma 3.5. Introdue Ki,n = 1

n

∑n
t=1 ℓ2

i,t then weget
1

n

n∑

t=1

ℓ2
i,t

ηt

2γtεt

= Ki,n
ηn

2γnεn

+
1

n

n−1∑

t=1

(
ηt

2γtεt

− ηt+1

2γt+1εt+1

)
tKi,t

≤ Ki,n
ηn

2γnεn

+
1

n

n−1∑

t=1

ηt

2γtεt

Ki,t

≤ Ncnν−1+α+β+δ +
1

n

n−1∑

t=1

Nctν−1+α+β+δ → 0



3.5. Bounded loss 33beause of Ki,n ≤ cnν and ν < 1 − α − β − δ − ρ. 2Finally, the last step is to analyze the di�erene between the estimated loss and thetrue loss.Lemma 3.7. Under the onditions of Theorem 3.2,
lim

n→∞
1

n

(
min

i=1,...,N
L̃i,n − min

j=1,...,N
Lj,n

)
= 0 a.s.Proof. First, bound the di�erene of the minimum of the true and the estimated loss.Obviously,

1

n

(
min

i=1,...,N
L̃i,n − min

j=1,...,N
Lj,n

)
≤

N∑

i=1

∣∣∣∣∣
1

n

(
L̃i,n − Li,n

) ∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

(ℓ̃i,t − ℓi,t)

∣∣∣∣∣

=
N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣,where Zi,t is martingale di�erene sequene for all i. As earlier, we use Lemma 3.4. Firstwe bound Var(Zi,t) as follows
Var(Zi,t) = Eℓ̃2

i,t ≤
E

[∑N
i=1 ℓ2

i,t

]

εtγt

. (3.14)Applying Lemma 3.4 with parameters kt =
∑N

i=1 ℓ2
i,t and ht = 1

εtγt
, for eah i

lim
n→∞

1

n

n∑

t=1

Zi,t = 0 a.s.therefore
lim

n→∞

N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣ = 0 a.s.

23.5 Bounded lossIf the individual losses are bounded by a onstant, muh stronger results an be obtainedfor Green algorithm. On the one hand, we give an improvement for small losses forexpeted regret. On the other hand, O(1/
√

n) regret bound is shown for high-probabilityregret.



3.5. Bounded loss 34Theorem 3.3. (Allenberg, Auer, Györfi and Ottusák [3℄). If ℓi,t ∈ [0, 1] and
εt = ε for all t, then for all n with mini=1,...,N Li,n ≤ B the expeted loss of Greenalgorithm with γt = γ = 1

N(Bε+2)
and ηt = η = 2

√
ln N
N

ε
B
is bounded by

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ 4

√
B

ε
N ln N +

N ln N + 2

ε
+

N ln(εB + 1)

ε
.Remark 3.4. The improvement in Theorem 3.3 is signi�ant, sine it bounds the regretof the algorithm in terms of the loss of the best ation and not in respet to the number ofrounds. For example, Theorem 3.1 is void for mini=1,...,N Li,n ≪ √

n whereas Theorem 3.3still gives a nearly optimal bound1.Proof. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round whih ontributes to L̃i,n.Therefore,
γ ≤ pi,Ti

=
e−ηeLi,Ti

∑N
j=1 e−ηeLj,Ti

<
e−ηeLi,Ti

e−ηeLi∗,n

,where i∗ = arg mini Li,n. After rearranging we obtain
L̃i,Ti

≤ L̃i∗,n +
ln(1/γ)

ηand sine L̃i,n = L̃i,Ti
we get that L̃i,n ≤ L̃i∗,n + ln(1/γ)

η
. Plugging this bound into (3.4) andusing ℓi,t ∈ [0, 1] we get

E

[
L̂n

]
− min

i=1,...,N
E[Li,n] ≤ γNE

[
L̂n

]
+

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)
.Solving for E

[
L̂n

] we �nd
E

[
L̂n

]
≤ 1

1 − γN

[
min

i=1,...,N
E[Li,n] +

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)]
.For γ = 1

N(εB+2)
we have mini E[Li,n]

1−γN
≤ mini E[Li,n] + 1

ε
and 1

1−γN
≤ 2, whih implies

E

[
L̂n

]
≤ min

i=1,...,N
E[Li,n] +

1

ε
+

4 ln N

η
+ N

η

ε

(
E[Li∗,n] +

ln N

η
+

ln(εB + 2)

η

)and, by simple alulation, the statement of the theorem. 2In the rest of this setion we introdue a slightly modi�ed version of Green algo-rithm for multi-armed bandit problem, so alled Green.Shift. One an easily extend1For ε = 1 optimality follows from the lower bound on the regret in [6℄.



3.5. Bounded loss 35the Green.Shift algorithm for problem LE+MAB based on Setion 4.4. The proposedalgorithm is a �shifted� version of Green algorithm .As earlier let ℓ̃i,t denote the onditional unbiased estimation of the true loss of eahation with respet to its natural �ltration. Instead of the unbiased estimate, a slightlysmaller quantity is used by the algorithm. The (biased) estimated loss is
ℓ′i,t = ℓ̃i,t −

β

max{p̃i,t, γ}
,where β is a positive parameter and the maximum is neessary to avoid dividing by zero.Then the umulative estimated loss of an ation is given by

L′
i,n =

n∑

t=1

ℓ′i,t .The resulting algorithm is given in Figure 3.3.Theorem 3.4. (Auer and Ottusák [8℄). For any 0 < δ < 1 and parameters
√

ln (N/δ)

nN
≤ β ≤ 1

N
, β ≤ γ ≤ 1

N
and 0 < η ≤

√
ln N

nN
,the performane of Green.Shift algorithm an be bounded with probability at least 1 − δas

L̂n ≤ NγL̂n + 2βnN + (1 + ηN) min
i=1,...,N

Li,n + ηβnN2 + N ln(1/γ) + 2Nη +
ln N

η
.In partiular, hoosing β =

√
ln(N/δ)

nN
, γ = β, η =

√
ln N
nN

and if n ≥ N ln(N/δ) then wehave
1

n

(
L̂n − min

i=1,...,N
Li,n

)
≤ 7
√

N ln(N/δ)/n +
1

2n
N ln(nN) .



3.5. Bounded loss 36Green.Shift algorithm for multi-armed bandit problemParameters: Let η > 0, β > 0 and γ > 0.Initialization: L′
i,0 = 0 for all i = 1, . . . , N .For eah round t = 1, 2, . . .(1) Calulate the weights of the ations

wi,t = e−ηL′
i,t−1 i = 1, . . . , N and Wt =

N∑

i=1

wi,t .(2) Calulate the probability distribution
pi,t =

wi,t

Wt

i = 1, . . . , N .(3) Calulate the modi�ed probabilities
p̃i,t =

{
0 if pi,t < γ,
ct · pi,t if pi,t ≥ γ,where ct = 1/

∑
pi,t≥γ pi,t .(4) Compute the estimated loss for all i = 1, . . . , N

ℓ′i,t = ℓ̃i,t −
β

max{p̃i,t, γ}
=

{
ℓi,t

epi,t
− β

max{epi,t,γ} if It = i;

− β
max{epi,t,γ} otherwise.(5) For all i = 1, . . . , N update the umulative estimated loss

L′
i,t = L′

i,t−1 + ℓ′i,t.Figure 3.3: Green.Shift algorithm for multi-armed bandit problem.For the proof of the theorem we need the following 2 lemmas. The �rst lemma is asimple modi�ation of [21, Lemma 6.7℄.Lemma 3.8. Under the assumptions of Theorem 3.4 for any 0 < δ < 1 we have
P
(
L′

i,n > Li,n + βnN
)
≤ δ

N
, i ∈ {1, . . . , N}.



3.5. Bounded loss 37Proof. For any u > 0 and c > 0 the Cherno� bounding tehnique (see, e.g., [25℄) implies
P
(
L′

i,n > Li,n + u
)
≤ e−cu

Eec(L′
i,n−Li,n) . (3.15)Letting u = βnN and c = β, therefore from (3.15):

e−cu
Eec(L′

i,n−Li,n) = e−β2nN
Eeβ(L′

i,n−Li,n) ≤ δ

N
Eeβ(L′

i,n−Li,n) ,where the inequality omes from √
ln (N/δ)

nN
≤ β. Thus it su�es to prove that

Eeβ(L′
i,n−Li,n) ≤ 1.For t = 1, . . . , n, introduing, a random variable Zt = eβ(L′

i,t−Li,t) we learly have
Zt = eβ(ℓ′i,t−ℓi,t)Zt−1.Note that β(ℓ′i,t − ℓi,t) ≤ 1 beause

β

(
ℓi,tI{It=i}

p̃i,t

− β

max{p̃i,t, γt}
− ℓi,t

)
≤ βℓIt,t

p̃It,t

≤ βℓIt,t

γ
≤ 1where the seond inequality omes from β ≤ γ. Let Et[Zt] = E[Zt|Zt−1, . . . , Z1] and using

ex ≤ 1 + x + x2 for x ≤ 1 we have
Et[Zt] = Zt−1Et

[
e

β

„
eℓi,t− β

max{epi,t,γ}
−ℓi,t

«]

= Zt−1e
− β2

max{epi,t,γ}
Et

[
eβ(eℓi,t−ℓi,t)

]

≤ Zt−1e
− β2

max{epi,t,γ}
Et

[
1 + β

(
ℓ̃i,t − ℓi,t

)
+ β2

(
ℓ̃i,t − ℓi,t

)2
]

= Zt−1e
− β2

max{epi,t,γ}
Et

[
1 + β2

(
ℓ̃i,t − ℓi,t

)2
]

≤ Zt−1e
− β2

max{epi,t,γ}

(
1 +

β2ℓ2
i,t

max{p̃i,t, γ}

)

≤ Zt−1 ,where we used Et

[
ℓ̃i,t − ℓi,t

]
= 0 and 1 + x ≤ ex. Taking expeted values of both sides ofthe inequality we have EtZt ≤ EtZt−1 and sine EtZ1 ≤ 1 the proof is onluded. 2The following lemma is a variant of Theorem 3.3.Lemma 3.9. Under the assumptions of Theorem 3.4 for the umulative estimated loss wehave
L′

i,n ≤ min
j=1,...,N

L′
j,n +

ln(1/γ)

η
.



3.5. Bounded loss 38Proof. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round where p̃i,t > 0. Therefore,
γ ≤ pi,Ti

=
e−ηL′

i,Ti

∑N
j=1 e−ηL′

j,Ti

<
e−ηL′

i,Ti

e
−ηL′

i∗,Ti

,where i∗ = arg mini=1,...,N L′
i,n. After rearranging we obtain

L′
i,Ti

≤ L′
i∗,Ti

+
ln(1/γ)

η
.Sine L′

i,Ti
= L′

i,n + β(n−Ti−1)
γ

and L′
i∗,Ti

≤ L′
i∗,n +

∑n
t=Ti+1

β
max{epi,t,γ} we get that

L′
i,n ≤ L′

i∗,n + β

n∑

t=Ti+1

(
1

max{p̃i,t, γ}
− 1

γ

)
+

ln(1/γ)

η
≤ L′

i∗,n +
ln(1/γ)

η
.

2Proof of Theorem 3.4. For the proof of theorem the quantity of ln Wn

W0
is bounded,where

Wt =
N∑

i=1

wi,t, t ≥ 1 and W0 = N .The lower bound is
ln

Wn

W0

= ln

(
N∑

i=1

e−ηL′
i,n

)
− ln N ≥ ln

(
max

i=1,...,N
e−ηL′

i,n

)
− ln N = −η min

i=1,...,N
L′

i,n − ln N .(3.16)For the upper bound note that −ηℓ′i,t ≤ 1 for all i and t, therefore
ln

Wt

Wt−1

= ln
N∑

i=1

pi,te
−ηℓ′i,t ≤ ln

N∑

i=1

pi,t

(
1 − ηℓ′i,t + η2ℓ′i,t

)
≤ −η

N∑

i=1

pi,tℓ
′
i,t + η2

N∑

i=1

pi,tℓ
′2
i,t .(3.17)Next we bound the sums in (3.17). On the one hand,

N∑

i=1

pi,tℓ
′
i,t =

pIt,t

p̃It,t

ℓIt,t − β
N∑

i=1

pi,t

max{p̃i,t, γ}
≥ pIt,t

p̃It,t

ℓIt,t − βN ≥ (1 − Nγ)ℓIt,t − βN ,sine pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γ pj,t = 1 −∑j:pj,t<γ pj,t ≥ 1 − Nγ.
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N∑

i=1

pi,tℓ
′2
i,t =

N∑

i=1

pi,t

(
ℓ̃i,t −

β

max{p̃i,t, γ}

)
ℓ′i,t ≤ ℓIt,tℓ

′
It,t − β

N∑

i=1

pi,tℓ
′
i,t

max{p̃i,t, γ}

≤ ℓIt,tℓ
′
It,t + β2

N∑

i=1

1

max{p̃i,t, γ}

≤ ℓIt,tℓ
′
It,t +

β2N

γ

≤
N∑

i=1

ℓ′i,t +
βN

γ
+

β2N

γ

≤
N∑

i=1

ℓ′i,t + N + βN ,where the last inequality follows from β ≤ γ. Summing over t = 1, . . . , n, we have that
ln

Wn

W0

≤ −ηL̂n + NηγL̂n + ηβnN + η2
∑N

i=1 L′
i,n + η22N . (3.18)Plug the results of Lemma 3.9 into (3.18) we get

ln
Wn

W0

≤ −ηL̂n + NηγL̂n + ηβnN + η2N min
i=1,...,N

L′
i,n + ηN ln(1/γ) + η22N . (3.19)Combining (3.16) and (3.19) we obtain

L̂n ≤ NγL̂n + βnN + (1 + ηN) min
i=1,...,N

L′
i,n + N ln(1/γ) + 2ηN +

ln N

η
.By Lemma 3.8 and the union bound we have at least 1 − δ

L̂n ≤ NγL̂n + 2βnN + (1 + ηN) min
i=1,...,N

Li,n + ηβnN2 + N ln(1/γ) + 2ηN +
ln N

ηas desired. 2



Chapter 4
Shortest Path Problem under Partial Monitoring

As mentioned before, the basi theoretial results of sequential deision problem werepioneered by Blakwell [15℄ and Hannan [43℄, and brought to the attention of the mahinelearning ommunity in the 1990's by Vovk [70℄, Littlestone and Warmuth [53℄, and Cesa-Bianhi et al. [20℄. These results show that for any bounded loss funtion, if the deisionmaker has aess to the past losses of all experts, then it is possible to onstrut on-linealgorithms that perform, for any possible behavior of the environment, almost as well asthe best of N experts. More preisely, realling the results are presented in Chapter 2,the per round umulative loss of these algorithms is at most as large as that of the bestexpert plus a quantity proportional to √ln N/n for any bounded loss funtion, where n isthe number of rounds in the deision game. The logarithmi dependene on the number ofexperts makes it possible to obtain meaningful bounds even if the pool of experts is verylarge. However, the basi predition algorithms, suh as exponentially weighted averageforeasters, have a omputational omplexity that is proportional to the number of experts,and they are therefore pratially infeasible when the number of experts is very large.As it is desribed in details in Setion 2.3 in ertain situations the deision maker hasonly limited knowledge about the losses of all possible ations. For example, it is oftennatural to assume that the deision maker gets to know only the loss orresponding tothe ation it has made, and has no information about the loss it would have su�ered hadit made a di�erent deision. This setup is referred to as the multi-armed bandit problem,and was onsidered, in the adversarial setting, by Auer et al. [5℄ who gave an algorithmwhose normalized regret (the di�erene of the algorithm's average loss and that of thebest expert) is upper bounded by a quantity whih is proportional to √N ln N/n. Notethat, ompared to the full information ase desribed above where the losses of all possibleations are revealed to the deision maker, there is an extra √
N fator in the performanebound, whih seriously limits the usefulness of the bound if the number of experts is large.Another interesting example for the limited information ase is the so-alled label e�-ient deision problem (see Helmbold and Panizza [45℄) in whih it is too ostly to observethe state of the environment, and so the deision maker an query the losses of all possible40



4. Shortest Path Problem under Partial Monitoring 41ations for only a limited number of times. A reent result of Cesa-Bianhi, Lugosi, andStoltz [22℄ shows that in this ase, if the deision maker an query the losses m timesduring a period of length n, then it an ahieve O(
√

ln N/m) normalized regret relative tothe best expert.In many appliations the set of experts has a ertain struture that may be exploitedto onstrut e�ient on-line deision algorithms. The onstrution of suh algorithms hasbeen of great interest in omputational learning theory. A partial list of works dealing withthis problem inludes Herbster and Warmuth [46℄, Vovk [71℄, Bousquet and Warmuth [17℄,Helmbold and Shapire [64℄, Takimoto and Warmuth [69℄, Kalai and Vempala [49℄, Györgyet al. [36, 37, 38℄. For a more omplete survey, we refer to Cesa-Bianhi and Lugosi [21,Chapter 5℄.In this hapter we study the on-line shortest path problem, a representative exam-ple of strutured expert lasses that has reeived attention in the literature for its manyappliations, inluding, among others, routing in ommuniation networks; see, e.g., Taki-moto and Warmuth [69℄, Awerbuh et al. [10℄, or György and Ottusák [42℄, and adaptivequantizer design in zero-delay lossy soure oding; see, György et al. [36, 37, 39℄. In thisproblem, a weighted direted (ayli) graph is given whose edge weights an hange in anarbitrary manner, and the deision maker has to pik in eah round a path between twogiven verties, suh that the weight of this path (the sum of the weights of its omposingedges) be as small as possible.E�ient solutions, with time and spae omplexity proportional to the number of edgesrather than to the number of paths (the latter typially being exponential in the numberof edges), have been given in the full information ase, where in eah round the weightsof all the edges are revealed after a path has been hosen; see, for example, Mohri [55℄,Takimoto and Warmuth [69℄, Kalai and Vempala [49℄, and György et al. [38℄.In the bandit setting only the weights of the edges or just the sum of the weights ofthe edges omposing the hosen path are revealed to the deision maker. If one applies thegeneral bandit algorithm of Auer et al. [5℄, the resulting bound will be too large to be ofpratial use beause of its square-root-type dependene on the number of paths N . Onthe other hand, using the speial graph struture in the problem, Awerbuh and Kleinberg[11℄ and MMahan and Blum [54℄ managed to get rid of the exponential dependene onthe number of edges in the performane bound. They ahieved this by extending theexponentially weighted average preditor and the follow-the-perturbed-leader algorithm ofHannan [43℄ to the generalization of the multi-armed bandit setting for shortest paths,when only the sum of the weights of the edges is available for the algorithm. However,the dependene of the bounds obtained in [11℄ and [54℄ on the number of rounds n issigni�antly worse than the O(1/
√

n) bound of Auer et al. [5℄. Awerbuh and Kleinberg[11℄ onsider the model of �non-oblivious� adversaries for shortest path (i.e., the lossesassigned to the edges an depend on the previous ations of the foreaster) and provean O(n−1/3) bound for the expeted normalized regret. MMahan and Blum [54℄ give asimpler algorithm than in [11℄ however obtain a bound of the order of O(n−1/4) for theexpeted regret.In this hapter we provide an extension of the bandit algorithm of Auer et al. [5℄ unifying



4.1. The shortest path problem 42the advantages of the above approahes, with a performane bound that is polynomial inthe number of edges, and onverges to zero at the right O(1/
√

n) rate as the numberof rounds inreases. We ahieve this bound in a model whih assumes that the lossesof all edges on the path hosen by the foreaster are available separately after makingthe deision. We also disuss the ase (onsidered by [11℄ and [54℄) in whih only thetotal loss (i.e., the sum of the losses on the hosen path) is known to the deision maker.We exhibit a simple algorithm whih ahieves an O(n−1/3) normalized regret with highprobability against �non-oblivious� adversary. In this ase it remains an open problem to�nd an algorithm whose umulative loss is polynomial in the number of edges of the graphand dereases as O(n−1/2) with the number of rounds. Throughout the hapter we assumethat the number of rounds n in the predition game is known in advane to the deisionmaker.In Setion 4.1 we formally de�ne the on-line shortest path problem, whih is extendedto the multi-armed bandit setting in Setion 4.2. Our new algorithm for the shortestpath problem in the bandit setting is given in Setion 4.3 together with its performaneanalysis. The algorithm is extended to solve the shortest path problem in a ombinedlabel e�ient and multi-armed bandit setting in Setion 4.4. Another extension, when thealgorithm ompetes against a time-varying path is studied in Setion 4.5. An algorithmfor the �restrited� multi-armed bandit setting (when only the sums of the losses of theedges are available) is given in Setion 4.6. Simulation results are presented in Setion 4.7.4.1 The shortest path problemConsider a network represented by a set of verties onneted by edges, and assume thatwe have to send a stream of pakets from a distinguished vertex, alled soure, to anotherdistinguished vertex, alled destination. At eah time slot a paket is sent along a hosenroute (path) onneting soure and destination. Depending on the tra�, eah edge in thenetwork may have a di�erent delay, and the total delay the paket su�ers on the hosenpath is the sum of delays of the edges omposing the route. The delays may hangefrom one time slot to the next one in an arbitrary way, and our goal is to �nd a way ofhoosing the path in eah time slot suh that the sum of the total delays over time isnot signi�antly more than that of the best �xed path in the network. This adversarialversion of the routing problem is most useful when the delays on the edges an hangedynamially, even depending on our previous routing deisions. This is the situation inthe ase of ad-ho networks, where the network topology an hange rapidly, or in ertainseure networks, where the algorithm has to be prepared to handle denial of servie attaks,that is, situations where willingly malfuntioning verties and links inrease the delay; see,e.g., Awerbuh et al. [10℄.This problem an be ast naturally as a sequential deision problem in whih eahpossible path is represented by an ation (expert). However, the number of paths istypially exponentially large in the number of edges, and therefore omputationally e�ientalgorithms are alled for. Two solutions of di�erent �avor have been proposed. One of them



4.1. The shortest path problem 43is based on a follow-the-perturbed-leader foreaster, see Kalai and Vempala [49℄, while theother is based on an e�ient omputation of the exponentially weighted average foreaster,see, for example, Takimoto and Warmuth [69℄. Both solutions have di�erent advantagesand may be generalized in di�erent diretions.To formalize the problem, onsider a (�nite) direted ayli graph with a set of edges
E = {e1, . . . , e|E|} and a set of verties V . Thus, eah edge e ∈ E is an ordered pairof verties (v1, v2). Let u and v be two distinguished verties in V . A path from u to
v is a sequene of edges e(1), . . . , e(k) suh that e(1) = (u, v1), e(j) = (vj−1, vj) for all
j = 2, . . . , k−1, and e(k) = (vk−1, v). Let P = {i1, . . . , iN} denote the set of all suh paths.For simpliity, we assume that every edge in E is on some path from u to v and everyvertex in V is an endpoint of an edge (see Figure 4.1 for examples).
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Figure 4.1: Two examples of direted ayli graphs for the shortest path problem.(a) (b)
In eah round t = 1, . . . , n of the deision game, the deision maker hooses a path I tamong all paths from u to v. Then a loss ℓe,t ∈ [0, 1] is assigned to eah edge e ∈ E. Wewrite e ∈ i if the edge e ∈ E belongs to the path i ∈ P, and with a slight abuse of notationthe loss of a path i at time slot t is also represented by ℓi,t. Then ℓi,t is given as

ℓi,t =
∑

e∈i

ℓe,tand therefore the umulative loss up to time t of eah path i takes the additive form
Li,t =

t∑

s=1

ℓi,s =
∑

e∈i

t∑

s=1

ℓe,swhere the inner sum on the right-hand side is the loss aumulated by edge e during the�rst t rounds of the game. The umulative loss of the algorithm is
L̂t =

t∑

s=1

ℓIs,s =
t∑

s=1

∑

e∈Is

ℓe,s .



4.2. The multi-armed bandit setting 44It is well known that for a general loss sequene, the deision maker must be allowedto use randomization to be able to approximate the performane of the best expert (see,e.g., Cesa-Bianhi and Lugosi [21℄). Therefore, the path I t is hosen randomly aordingto some distribution pt over all paths from u to v. We study the normalized regret over nrounds of the game
1

n

(
L̂n − min

i∈P
Li,n

)where the minimum is taken over all paths i from u to v.In the full information ase, for example, the exponentially weighted average foreaster([70℄, [53℄, [20℄), alulated over all possible paths, has regret
1

n

(
L̂n − min

i∈P
Li,n

)
≤ K

(√
ln N

2n
+

√
ln(1/δ)

2n

)with probability at least 1 − δ, where N is the total number of paths from u to v in thegraph and K is the length of the longest path.4.2 The multi-armed bandit settingIn this setion we disuss the �bandit� version of the shortest path problem. In this setup,whih is more realisti in many appliations, the deision maker has only aess to thelosses orresponding to the paths it has hosen. For example, in the routing problem thismeans that information is available on the delay of the path the paket is sent on, and noton other paths in the network.We distinguish between two types of bandit problems, both of whih are natural gener-alizations of the simple bandit problem to the shortest path problem. In the �rst variant,the deision maker has aess to the losses of those edges that are on the path it has ho-sen. That is, after hoosing a path I t at time t, the value of the loss ℓe,t is revealed to thedeision maker if and only if e ∈ I t. We study this ase and its extensions in Setions 4.3,4.4, and 4.5.The seond variant is a more restrited version in whih the loss of the hosen path isobserved, but no information is available on the individual losses of the edges belongingto the path. That is, after hoosing a path I t at time t, only the value of the loss of thepath ℓIt,t is revealed to the deision maker. Further on we all this setting as the restritedbandit problem for shortest path. We onsider this restrited problem in Setion 4.6.Formally, the on-line shortest path problem in the multi-armed bandit setting is de-sribed as follows: at eah time instane t = 1, . . . , n, the deision maker piks a path
I t ∈ P from u to v. Then the environment assigns loss ℓe,t ∈ [0, 1] to eah edge e ∈ E, andthe deision maker su�ers loss ℓIt,t =

∑
e∈It

ℓe,t. In the unrestrited ase the losses ℓe,t arerevealed for all e ∈ I t, while in the restrited ase only ℓIt,t is revealed. Note that in bothases ℓe,t may depend on I1, . . . , I t−1, the earlier hoies of the deision maker.



4.3. A bandit algorithm for shortest paths 45For the basi multi-armed bandit problem, Auer et al. [5℄ gave an algorithm, based onexponential weighting with a biased estimate of the gains ombined with uniform explo-ration. Applying their algorithm to the on-line shortest path problem in the bandit settingresults in a performane that an be bounded, for any 0 < δ < 1 and �xed time horizon n,with probability at least 1 − δ, by
1

n

(
L̂n − min

i∈P
Li,n

)
≤ 11K

2

√
N ln(N/δ)

n
+

K ln N

2n
.(The onstants follow from a slightly improved version; see Cesa-Bianhi and Lugosi [21℄.)However, for the shortest path problem this bound is unaeptably large beause, unlikein the full information ase, here the dependene on the number of all paths N is not merelylogarithmi, while N is typially exponentially large in the size of the graph (as in the twosimple examples of Figure 4.1). Note that this bound also holds for the restrited settingas only the total losses on the paths are used. In order to ahieve a bound that does notgrow exponentially with the number of edges of the graph, it is imperative to make useof the dependene struture of the losses of the di�erent ations (i.e., paths). Awerbuhand Kleinberg [11℄ and MMahan and Blum [54℄ do this by extending low omplexitypreditors, suh as the follow-the-perturbed-leader foreaster [43℄, [49℄ to the restritedbandit setting. However, in both ases the prie to pay for the polynomial dependene onthe number of edges is a worse dependene on the length n of the game.4.3 A bandit algorithm for shortest pathsIn this setion we desribe a variant of the bandit algorithm of [5℄ whih ahieves thedesired performane for the shortest path problem. The new algorithm uses the fat thatwhen the losses of the edges of the hosen path are revealed, then this also provides someinformation about the losses of eah path sharing ommon edges with the hosen path.For eah edge e ∈ E, and t = 1, 2, . . ., introdue the gain ge,t = 1 − ℓe,t, and for eahpath i ∈ P , let the gain be the sum of the gains of the edges on the path, that is,

gi,t =
∑

e∈i

ge,t .The onversion from losses to gains is done in order to failitate the subsequent performaneanalysis. This has tehnial reasons. For the ordinary bandit problem the regret boundsof the order of O(
√

n−1N log N) were proved based on gains by Auer et al. [5℄ and it wasonly reently shown by Auer and Ottusák [8℄ that it is possible to ahieve the same typeof bound for an algorithm based on losses. However, we do not know how to onvert thelatter algorithm into one that is e�iently omputable for the shortest path problem.To simplify the onversion, we assume that eah path i ∈ P is of the same length K forsome K > 0. Note that although this assumption may seem to be restritive at the �rstglane, from eah ayli direted graph (V,E) one an onstrut a new graph by adding at



4.3. A bandit algorithm for shortest paths 46most (K−2)(|V |−2)+1 verties and edges (with onstant loss zero) to the graph withoutmodifying the losses of the paths suh that eah path from u to v will be of length K, where
K denotes the length of the longest path of the original graph. If the number of edges isquadrati in the number of verties, the size of the graph is not inreased substantially.A main feature of the algorithm below is that the gains are estimated for eah edgeand not for eah path. This modi�ation results in an improved upper bound on theperformane with the number of edges in plae of the number of paths. Moreover, usingdynami programming as in Takimoto and Warmuth [69℄, the algorithm an be omputede�iently. Another important ingredient of the algorithm is that one needs to make surethat every edge is sampled (�saw�) su�iently often. To this end, we introdue a set C ofovering paths with the property that for eah edge e ∈ E there is a path i ∈ C suh that
e ∈ i. Observe that one an always �nd suh a overing set of ardinality |C| ≤ |E|.We note that the algorithm of [5℄ is a speial ase of the algorithm below: For anymulti-armed bandit problem with N experts, one an de�ne a graph with two verties uand v, and N direted edges from u to v with weights orresponding to the losses of theexperts. The solution of the shortest path problem in this ase is equivalent to that of theoriginal bandit problem with hoosing expert i if the orresponding edge is hosen. Forthis graph, our algorithm redues to the original algorithm of [5℄.Note that the algorithm an be e�iently implemented using dynami programming,similarly to Takimoto and Warmuth [28℄. See the upoming Theorem 4.1 for the formalstatement.The main result of this hapter is the following performane bound for the shortest-pathbandit algorithm. It states that the normalized regret of the algorithm, after n rounds ofplay, is, roughly, of the order of K

√
|E| ln N/n where |E| is the number of edges of thegraph, K is the length of the paths, and N is the total number of paths.



4.3. A bandit algorithm for shortest paths 47A BANDIT ALGORITHM FOR SHORTEST PATHSParameters: real numbers β > 0, 0 < η, γ < 1.Initialization: Set we,0 = 1 for eah e ∈ E, w̄i,0 = 1 for eah i ∈ P , and
W 0 = N . For eah round t = 1, 2, . . .(a) Choose a path I t at random aording to the distribution pt on P ,de�ned by

pi,t =

{
(1 − γ)

w̄i,t−1

W t−1
+ γ

|C| if i ∈ C
(1 − γ)

w̄i,t−1

W t−1
if i 6∈ C.(b) Compute the probability of hoosing eah edge e as

qe,t =
∑

i:e∈i

pi,t = (1 − γ)

∑
i:e∈i w̄i,t−1

W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C| .() Calulate the estimated gains
g′

e,t =

{
ge,t+β

qe,t
if e ∈ I t

β
qe,t

otherwise.(d) Compute the updated weights
we,t = we,t−1e

ηg′e,t

w̄i,t =
∏

e∈i

we,t = w̄i,t−1e
ηg′

i,twhere g′
i,t =

∑
e∈i g′

e,t, and the sum of the total weights of the paths
W t =

∑

i∈P
w̄i,t.Figure 4.2: Bandit algorithm for shortest path problem.Theorem 4.1. (György, Linder and Ottusák [41℄). For any δ ∈ (0, 1) and pa-rameters 0 ≤ γ < 1/2, 0 < β ≤ 1, and η > 0 satisfying 2ηK|C| ≤ γ, the performane ofthe algorithm de�ned above an be bounded, with probability at least 1 − δ, as

1

n

(
L̂n − min

i∈P
Li,n

)
≤ Kγ + 2ηK2|C| + K

nβ
ln

|E|
δ

+
ln N

nη
+ |E|β.In partiular, hoosing β =

√
K

n|E| ln
|E|
δ
, γ = 2ηK|C|, and η =

√
ln N

4nK2|C| yields for all
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n ≥ max

{
K
|E| ln

|E|
δ

, 4|C| ln N
},

1

n

(
L̂n − min

i∈P
Li,n

)
≤ 2

√
K

n

(
√

4K|C| ln N +

√
|E| ln |E|

δ

)
.The proof of the theorem is based on the analysis of the original algorithm of [5℄ withneessary modi�ations required to transform parts of the argument from paths to edges,and to use the onnetion between the gains of paths sharing ommon edges.For the analysis we introdue some notation:

Gi,n =
n∑

t=1

gi,t and G′
i,n =

n∑

t=1

g′
i,tfor eah i ∈ P and

Ge,n =
n∑

t=1

ge,t and G′
e,n =

n∑

t=1

g′
e,tfor eah e ∈ E, and

Ĝn =
n∑

t=1

gIt,t.Note that g′
e,t, g′

i,t, G′
e,n, and G′

i,n are random variables that depend on I t.The following lemma, shows that the deviation of the true umulative gain from theestimated umulative gain is of the order of √n. The proof is a modi�ation of [21, Lemma6.7℄.Lemma 4.1. For any δ ∈ (0, 1), 0 ≤ β < 1 and e ∈ E we have
P

[
Ge,n > G′

e,n +
1

β
ln

|E|
δ

]
≤ δ

|E| .Proof. Fix e ∈ E. For any u > 0 and c > 0, by the Cherno� bound we have
P[Ge,n > G′

e,n + u] ≤ e−cu
Eec(Ge,n−G′

e,n) . (4.1)Letting u = ln(|E|/δ)/β and c = β, we get
e−cu

Eec(Ge,n−G′
e,n) = e− ln(|E|/δ)

Eeβ(Ge,n−G′
e,n) =

δ

|E|Eeβ(Ge,n−G′
e,n) ,so it su�es to prove that Eeβ(Ge,n−G′

e,n) ≤ 1 for all n. To this end, introdue
Zt = eβ(Ge,t−G′

e,t) .



4.3. A bandit algorithm for shortest paths 49Below we show that Et[Zt] ≤ Zt−1 for t ≥ 2 where Et denotes the onditional expetation
E[·|I1, . . . , I t−1] . Clearly,

Zt = Zt−1 exp

(
β

(
ge,t −

I{e∈It}ge,t + β

qe,t

))
.Taking onditional expetations, we obtain

Et[Zt]

= Zt−1Et

[
exp

(
β

(
ge,t −

I{e∈It}ge,t + β

qe,t

))]

= Zt−1e
− β2

qe,t Et

[
exp

(
β

(
ge,t −

I{e∈It}ge,t

qe,t

))]

≤ Zt−1e
− β2

qe,t Et

[
1 + β

(
ge,t −

I{e∈It}ge,t

qe,t

)
+ β2

(
ge,t −

I{e∈It}ge,t

qe,t

)2
] (4.2)

= Zt−1e
− β2

qe,t Et

[
1 + β2

(
ge,t −

I{e∈It}ge,t

qe,t

)2
] (4.3)

≤ Zt−1e
− β2

qe,t Et

[
1 + β2

(
I{e∈It}ge,t

qe,t

)2
]

≤ Zt−1e
− β2

qe,t

(
1 +

β2

qe,t

)

≤ Zt−1. (4.4)Here (4.2) holds sine β ≤ 1, ge,t − I{e∈It}
ge,t

qe,t
≤ 1 and ex ≤ 1 + x + x2 for x ≤ 1. (4.3)follows from Et

[
I{e∈It}

ge,t

qe,t

]
= ge,t. Finally, (4.4) holds by the inequality 1 + x ≤ ex. Takingexpetations on both sides proves E[Zt] ≤ E[Zt−1]. A similar argument shows that E[Z1] ≤

1, implying E[Zn] ≤ 1 as desired. 2Proof of Theorem 4.1. As usual in the analysis of exponentially weighted averageforeasters, we start with bounding the quantity ln W n

W 0
. On the one hand, we have thelower bound

ln
W n

W 0

= ln
∑

i∈P
eηG′

i,n − ln N ≥ η max
i∈P

G′
i,n − ln N . (4.5)To derive a suitable upper bound, �rst notie that the ondition η ≤ γ

2K|C| implies
ηg′

i,t ≤ 1 for all i and t, sine
ηg′

i,t = η
∑

e∈i

g′
e,t ≤ η

∑

e∈i

1 + β

qe,t

≤ ηK(1 + β)|C|
γ

≤ 1



4.3. A bandit algorithm for shortest paths 50where the seond inequality follows beause qe,t ≥ γ/|C| for eah e ∈ E.Therefore, using the fat that ex ≤ 1 + x + x2 for all x ≤ 1, for all t = 1, 2, . . . we have
ln

W t

W t−1

= ln
∑

i∈P

w̄i,t−1

W t−1

eηg′
i,t

= ln

(
∑

i∈P

pi,t − γ
|C|I{i∈C}

1 − γ
eηg′

i,t

) (4.6)
≤ ln

(
∑

i∈P

pi,t − γ
|C|I{i∈C}

1 − γ

(
1 + ηg′

i,t + η2g′2
i,t

))

≤ ln

(
1 +

∑

i∈P

pi,t

1 − γ

(
ηg′

i,t + η2g′2
i,t

))

≤ η

1 − γ

∑

i∈P
pi,tg

′
i,t +

η2

1 − γ

∑

i∈P
pi,tg

′2
i,t (4.7)where (4.6) follows form the de�nition of pi,t, and (4.7) holds by the inequality ln(1+x) ≤ xfor all x > −1.Next we bound the sums in (4.7). On the one hand,

∑

i∈P
pi,tg

′
i,t =

∑

i∈P
pi,t

∑

e∈i

g′
e,t =

∑

e∈E

g′
e,t

∑

i∈P:e∈i

pi,t

=
∑

e∈E

g′
e,tqe,t = gIt,t + |E|β.On the other hand,

∑

i∈P
pi,tg

′2
i,t =

∑

i∈P
pi,t

(
∑

e∈i

g′
e,t

)2

≤
∑

i∈P
pi,tK

∑

e∈i

g′2
e,t

= K
∑

e∈E

g′2
e,t

∑

i∈P:e∈i

pi,t

= K
∑

e∈E

g′2
e,tqe,t

= K
∑

e∈E

qe,tg
′
e,t

β + I{e∈It}ge,t

qe,t

≤ K(1 + β)
∑

e∈E

g′
e,t



4.3. A bandit algorithm for shortest paths 51where the �rst inequality is due to the inequality between the arithmeti and quadratimean, and the seond one holds beause ge,t ≤ 1. Therefore,
ln

W t

W t−1

≤ η

1 − γ
(gIt,t + |E|β) +

η2K(1 + β)

1 − γ

∑

e∈E

g′
e,t .Summing for t = 1, . . . , n, we obtain

ln
W n

W 0

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ

∑

e∈E

G′
e,n

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ
|C|max

i∈P
G′

i,n (4.8)where the seond inequality follows sine ∑e∈E G′
e,n ≤ ∑

i∈C G′
i,n. Combining the upperbound with the lower bound (4.5), we obtain

Ĝn ≥ (1 − γ − ηK(1 + β)|C|) max
i∈P

G′
i,n − 1 − γ

η
ln N − n|E|β. (4.9)Now using Lemma 4.1 and applying the union bound, for any δ ∈ (0, 1) we have that, withprobability at least 1 − δ,

Ĝn ≥ (1 − γ − ηK(1 + β)|C|)
(

max
i∈P

Gi,n − K

β
ln

|E|
δ

)
− 1 − γ

η
ln N − n|E|β ,where we used 1−γ−ηK(1+β)|C| ≥ 0 whih follows from the assumptions of the theorem.Sine Ĝn = Kn − L̂n and Gi,n = Kn − Li,n for all i ∈ P, we have

L̂n ≤ Kn (γ + η(1 + β)K|C|) + (1 − γ − η(1 + β)K|C|) min
i∈P

Li,n

+ (1 − γ − η(1 + β)K|C|) K

β
ln

|E|
δ

+
1 − γ

η
ln N + n|E|βwith probability at least 1 − δ. This implies

L̂n − min
i∈P

Li,n ≤ Knγ + η(1 + β)nK2|C| + K

β
ln

|E|
δ

+
1 − γ

η
ln N + n|E|β

≤ Knγ + 2ηnK2|C| + K

β
ln

|E|
δ

+
ln N

η
+ n|E|βwith probability at least 1 − δ, whih is the �rst statement of the theorem. Setting

β =

√
K

n|E| ln
|E|
δ

and γ = 2ηK|C|



4.3. A bandit algorithm for shortest paths 52results in the inequality
L̂n − min

i∈P
Li,n ≤ 4ηnK2|C| + ln N

η
+ 2

√
nK|E| ln |E|

δwhih holds with probability at least 1 − δ if n ≥ (K/|E|) ln(|E|/δ) (to ensure β ≤ 1).Finally, setting
η =

√
ln N

4nK2|C|yields the last statement of the theorem (n ≥ 4 ln N |C| is required to ensure γ ≤ 1/2). 2Next we analyze the omputational omplexity of the algorithm. The next result showsthat the algorithm is feasible as its omplexity is linear in the size (number of edges) ofthe graph.Theorem 4.2. (György, Linder and Ottusák [41℄). The proposed algorithm anbe implemented e�iently with time omplexity O(n|E|) and spae omplexity O(|E|).Proof. The two omplex steps of the algorithm are steps (a) and (b), both of whih anbe omputed, similarly to Takimoto and Warmuth [69℄, using dynami programming. Toperform these steps e�iently, �rst we order the verties of the graph. Sine we have anayli direted graph, its verties an be labeled (in O(|E|) time) from 1 to |V | suh that
u = 1, v = |V |, and if (v1, v2) ∈ E, then v1 < v2. For any pair of verties u1 < v1 let Pu1,v1denote the set of paths from u1 to v1, and for any vertex s ∈ V , let

Ht(s) =
∑

i∈Ps,v

∏

e∈i

we,tand
Ĥt(s) =

∑

i∈Pu,s

∏

e∈i

we,t .Given the edge weights {we,t}, Ht(s) an be omputed reursively for s = |V | − 1, . . . , 1,and Ĥt(s) an be omputed reursively for s = 2, . . . , |V | in O(|E|) time (letting Ht(v) =

Ĥt(u) = 1 by de�nition). In step (a), �rst one has to deide with probability γ whether I tis generated aording to the graph weights, or it is hosen uniformly from C. If I t is tobe drawn aording to the graph weights, it an be shown that its verties an be hosenone by one suh that if the �rst k verties of I t are v0 = u, v1, . . . , vk−1, then the nextvertex of I t an be hosen to be any vk > vk−1, satisfying (vk−1, vk) ∈ E, with probability
w(vk−1,vk),t−1Ht−1(vk)/Ht−1(vk−1). The other omputationally demanding step, namely step(b), an be performed easily by noting that for any edge (v1, v2),

q(v1,v2),t = (1 − γ)
Ĥt−1(v1)w(v1,v2),t−1Ht−1(v2)

Ht−1(u)
+ γ

|{i ∈ C : (v1, v2) ∈ i}|
|C|as desired. 2



4.4. A ombination of the label effiient and bandit settings 534.4 A ombination of the label e�ient and bandit set-tingsIn this setion we investigate a ombination of the multi-armed bandit and the label e�ientproblems. This means that the deision maker only has aess to the loss of all the edgeson the hosen path upon request and the total number of requests must be bounded bya onstant m. This ombination is motivated by some appliations, in whih feedbakinformation is ostly to obtain.In the general label e�ient deision problem, after taking an ation, the deision makerhas the option to query the losses of all possible ations. For this problem, Cesa-Bianhiet al. [22℄ proved an upper bound on the normalized regret of order O(K
√

ln(4N/δ)/(m))whih holds with probability at least 1 − δ, where K is the length of the longest path inthe graph.Our model of the label-e�ient bandit problem for shortest paths is motivated byan appliation to a partiular paket swithed network model. This model, alled theCognitive Paket Network (CPN), was introdued by Gelenbe et al. [27, 28℄.Example 4.1. (Cognitive Paket Network) CPN is a spei� autonomi tehniquethat o�ers adaptive routing as a way to better QoS to users and it is oriented toward touse of self-awareness in the network and it is based on stritly automati defene withouthuman intervention.In these networks a partiular type of pakets, alled smart pakets, are used to explorethe network (e.g., the delay of the hosen path). These pakets do not arry any usefuldata; they are merely used for exploring the network. The other type of pakets arethe data pakets, whih do not ollet any information about their paths. The task ofthe deision maker is to send pakets from the soure to the destination over paths withminimum average transmission delay (or paket loss rate). In this senario, smart paketsare used to query the delay (or loss) of the hosen path. However, as these pakets do nottransport information, there is a trade-o� between the number of queries and the usage ofthe network. If data pakets are on the average α times larger than smart pakets (notethat typially α ≫ 1) and ε is the proportion of time instanes when smart pakets areused to explore the network, then ε/(ε + α(1 − ε)) is the proportion of the bandwidthsari�ed for well informed routing deisions.The CPN model is implemented and integrated into Linux kernel 2.2.x and it is theobjet of the US Patent No. 6804201. The performane of the CPN is extensively studiedexperimentally in a test-bed (with 80 nodes) [26℄ in Imperial College. These experimentalmeasurements are foused on the tehniques using geneti algorithm [29℄ and neural net-work [27℄ to hoose the next path. However, these papers do not touh on the theoretialoptimality of the proposed methods.We study a ombined algorithm whih, at eah time slot t, queries the loss of the hosenpath with probability ε (as in the solution of the label e�ient problem proposed in [22℄),and, similarly to the multi-armed bandit ase, omputes biased estimates g′
i,t of the true



4.4. A ombination of the label effiient and bandit settings 54gains gi,t. Just as in the previous setion, it is assumed that eah path of the graph is ofthe same length K.The algorithm di�ers from our bandit algorithm of the previous setion only in step(), whih is modi�ed in the spirit of [22℄. The modi�ed step is given below:MODIFIED STEP FOR THE LABEL EFFICIENT BANDITALGORITHM FOR SHORTEST PATHS(') Draw a Bernoulli random variable St with P((St = 1)) = ε, andompute the estimated gains
g′

e,t =

{
ge,t+β

εqe,t
St if e ∈ I t

β
εqe,t

St if e /∈ I t .Figure 4.3: The modi�ed step for the LE+MAB problem for shortest path.The performane of the algorithm is analyzed in the next theorem, whih an be viewedas a ombination of Theorem 4.1 in the preeding setion and Theorem 2 of [22℄.Theorem 4.3. (György, Linder and Ottusák [41℄). For any δ ∈ (0, 1), ε ∈ (0, 1],parameters η =
√

ε ln N
4nK2|C| , γ = 2ηK|C|

ε
≤ 1/2, and β =

√
K

n|E|ε ln 2|E|
δ

≤ 1, and for all
n ≥ 1

ε
max

{
K2 ln2(2|E|/δ)

|E| ln N
,
|E| ln(2|E|/δ)

K
, 4|C| ln N

}the performane of the algorithm de�ned above an be bounded, with probability at least
1 − δ, as

1

n

(
L̂n − min

i∈P
Li,t

)

≤
√

K

nε

(
4
√

K|C| ln N + 5

√
|E| ln 2|E|

δ
+

√
8K ln

2

δ

)
+

4K

3nε
ln

2N

δ

≤ 27K

2

√
|E| ln 2N

δ

nε
.If ε is hosen as (m −

√
2m ln(1/δ))/n then, with probability at least 1 − δ, the totalnumber of queries is bounded by m (see [21, Lemma 6.1℄) and the performane boundabove is of the order of K

√
|E| ln(N/δ)/m.For the proof we need the following two lemmas. The �rst is the Bernstein's inequalityfor martingales di�erenes [13℄.



4.4. A ombination of the label effiient and bandit settings 55Lemma 4.2. Let X1, . . . , Xn be a martingale di�erene sequene suh that Xt ∈ [a, b] withprobability one (t = 1, . . . , n). Assume that, for all t,
E
[
X2

t |Xt−1, . . . , X1

]
≤ σ2 a.s.Then, for all ε > 0,

P

{
n∑

t=1

Xt > ε

}
≤ e

−ε2

2nσ2+2ε(b−a)/3and therefore
P

{
n∑

t=1

Xt >
√

2nσ2 ln δ−1 + 2 ln δ−1(b − a)/3

}
≤ δ.Similarly to Theorem 4.1, we need a lemma whih reveals the onnetion between thetrue and the estimated umulative losses. However, here we need a more areful analysisbeause the �shifting term� β

εqe,t
St, is a random variable.Lemma 4.3. For any 0 < δ < 1, 0 < ε ≤ 1, for any

n ≥ 1

ε
max

{
K2 ln2(2|E|/δ)

|E| ln N
,
K ln(2|E|/δ)

|E|

}
,parameters

2ηK|C|
ε

≤ γ, η =

√
ε ln N

4nK2|C| and β =

√
K

n|E|ε ln
2|E|

δ
≤ 1 ,and e ∈ E, we have

P

[
Ge,n > G′

e,n +
4

βε
ln

2|E|
δ

]
≤ δ

2|E| .Proof. Fix e ∈ E. Using (4.1) with u = 4
βε

ln 2|E|
δ

and c = βε
4
, it su�es to prove for all

n that
E

[
ec(Ge,n−G′

e,n)
]
≤ 1 .Similarly to Lemma 4.1 we introdue Zt = ec(Ge,t−G′
e,t) and we show that Z1, . . . , Zn is a su-permartingale, that is Et[Zt] ≤ Zt−1 for t ≥ 2 where Et denotes E[·|(I1,S1), . . . , (I t−1,St−1)].Taking onditional expetations, we obtain

Et[Zt] = Zt−1Et

[
e

c

„
ge,t−

I{e∈It}
Stge,t+Stβ

qe,tε

«]

≤ Zt−1Et

[
1 + c

(
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

)

+c2

(
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

)2
]

. (4.10)
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Et

[
ge,t −

I{e∈It}Stge,t + Stβ

qe,tε

]
= − β

qe,tand
Et

[(
ge,t −

I{e∈It}Stge,t

qe,tε

)2
]
≤ Et

[(
I{e∈It}Stge,t

qe,tε

)2
]
≤ 1

qe,tεwe get from (4.10) that
Et[Zt]

≤ Zt−1Et

[
1 − cβ

qe,t

+
c2

qe,tε
+ c2

(
2I{e∈It}Stge,tβ

q2
e,tε

2
− 2ge,tStβ

qe,tε
+

Stβ
2

q2
e,tε

2

)]

≤ Zt−1

(
1 +

c

qe,t

(
−β +

c

ε
+ cβ

(
2

ε
+

β

qe,tε

)))
. (4.11)Sine c = βε/4 we have

−β +
c

ε
+ cβ

(
2

ε
+

β

qe,tε

)
= −3β

4
+

β2ε

4

(
2

ε
+

β

qe,tε

)

= −3β

4
+

β2

2
+

β3

4qe,t

≤ −β

4
+

β3

4qe,t

≤ −β

4
+

β3|C|
4γ

(4.12)
≤ 0, (4.13)where (4.12) follows from qe,t ≥ γ

|C| and (4.13) holds sine β ≤ 1 and by
β2|C|

γ
≤ β2ε

2ηK
≤ 1 ,and the last inequality is ensured by n ≥ K2 ln2(2|E|/δ)

ε|E| ln N
, the assumption of the lemma.Combining (4.11) and (4.13) we get that Et[Zt] ≤ Zt−1. Taking expetations on bothsides of the inequality, we get E[Zt] ≤ E[Zt−1] and sine E[Z1] ≤ 1, we obtain E[Zn] ≤ 1as desired. 2Proof of Theorem 4.3. The proof of the theorem is a generalization of that of Theo-rem 4.1, and follows the same lines with some extra tehnialities to handle the e�ets of



4.4. A ombination of the label effiient and bandit settings 57the modi�ed step ('). Therefore, in the following we emphasize only the di�erenes. Firstnote that (4.5) and (4.7) also hold in this ase. Bounding the sums in (4.7), one obtains
∑

i∈P
pi,tg

′
i,t =

St

ε
(gIt,t + |E|β)and ∑

i∈P
pi,tg

′2
i,t ≤

1

ε
K(1 + β)

∑

e∈E

g′
e,t .Plugging these bounds into (4.7) and summing for t = 1, . . . , n, we obtain

ln
W n

W 0

≤ η

1 − γ

n∑

t=1

St

ε
(gIt,t + |E|β ) +

η2K(1 + β)

(1 − γ)ε
|C|max

i∈P
G′

i,n .Combining the upper bound with the lower bound (4.5), we obtain
n∑

t=1

St

ε
(gIt,t + |E|β ) ≥

(
1−γ− ηK(1 + β)|C|

ε

)
max
i∈P

G′
i,n−

ln N

η
. (4.14)To relate the left-hand side of the above inequality to the real gain∑n

t=1 gIt,t, notie that
Xt =

St

ε
(gIt,t + |E|β) − (gIt,t + |E|β)is a martingale di�erene sequene with respet to (I1, S1), (I2, S2), . . .. Now for all t =

1, . . . , n, we have the bound
E
[
X2

t |(I1, S1), . . . , (I t−1, St−1)
]

≤ E

[
St

ε2
(gIt,t + |E|β)2

∣∣∣∣(I1, S1), . . . , (I t−1, St−1)

]

≤ (K + |E|β)2

ε

≤ 4K2

ε
def
= σ2, (4.15)where (4.15) holds by n ≥ |E| ln(2|E|/δ)

Kε
(to ensure β|E| ≤ K). We know that

Xt ∈
[
−2K,

(
1

ε
− 1

)
2K

]for all t. Now apply Bernstein's inequality for martingale di�erenes (see Lemma 4.2 inthe Appendix) to obtain
P

[
n∑

t=1

Xt > u

]
≤ δ

2
, (4.16)
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u =

√
2n

4K2

ε
ln

(
2

δ

)
+

4K

3ε
ln

(
2

δ

)
.From (4.16) we get

P

[
n∑

t=1

St

ε
(gIt,t + |E|β) ≥ Ĝn + βn|E| + u

]
≤ δ

2
. (4.17)Now Lemma 4.3, the union bound, and (4.17) ombined with (4.14) yield, with proba-bility at least 1 − δ,

Ĝn ≥
(

1 − γ − ηK(1 + β)|C|
ε

)(
max
i∈P

Gi,n − 4K

βε
ln

2|E|
δ

)

− ln N

η
− βn|E| − usine the oe�ient of G′

i,n is greater than zero by the assumptions of the theorem.Sine Ĝn = Kn − L̂n and Gi,n = Kn − Li,n, we have
L̂n ≤

(
1 − γ − K(1 + β)η|C|

ε

)
min
i∈P

Li,n + Kn

(
γ +

K(1 + β)η|C|
ε

)

+

(
1 − γ − K(1 + β)η|C|

ε

)
4K

βε
ln

2|E|
δ

+ βn|E| + ln N

η
+ u

≤ min
i∈P

Li,n + Kn

(
γ +

K(1 + β)η|C|
ε

)
+ 5βn|E| + ln N

η
+ u ,where we used the fat that K

βε
ln 2|E|

δ
= βn|E|.Substituting the value of β, η and γ, we have

L̂n − min
i∈P

Li,n ≤Kn
2Kη|C|

ε
+ Kn

2Kη|C|
ε

+
ln N

η
+ 5βn|E| + u

≤4K

√
n|C| ln N

ε
+ 5

√
n|E|K ln(2|E|/δ)

ε
+ u

≤
√

nK

ε

(
4
√

K|C| ln N + 5
√

|E| ln(2|E|/δ) +
√

8K ln (2/δ)
)

+
4K

3ε
ln (2/δ)as desired. 2



4.5. A bandit algorithm for traking the shortest path 594.5 A bandit algorithm for traking the shortest pathOur goal in this setion is to extend the bandit algorithm so that it is able to ompetewith time-varying paths under small omputational omplexity. This is a variant of theproblem known as traking the best expert ; see, for example, Herbster and Warmuth [46℄,Vovk [71℄, Auer and Warmuth [9℄, Bousquet and Warmuth [17℄, Herbster and Warmuth[47℄.To desribe the loss the deision maker is ompared to, onsider the following �m-partition� predition sheme: the sequene of paths is partitioned into m + 1 ontiguoussegments, and on eah segment the sheme assigns exatly one of the N paths. Formally,an m-partition Part(n,m, t, i) of the n paths is given by an m-tuple t = (t1, . . . , tm) suhthat t0 = 1 < t1 < · · · < tm < n + 1 = tm+1, and an (m + 1)-vetor i = (i0, . . . , im) where
ij ∈ P . At eah time instant t, tj ≤ t < tj+1, path ij is used to predit the best path. Theumulative loss of a partition Part(n,m, t, i) is

L(Part(n,m, t, i)) =
m∑

j=0

tj+1−1∑

t=tj

ℓij ,t =
m∑

j=0

tj+1−1∑

t=tj

∑

e∈ij

ℓe,t.The goal of the deision maker is to perform as well as the best time-varying path(partition), that is, to keep the normalized regret
1

n

(
L̂n − min

t,i
L(Part(n,m, t, i))

)as small as possible (with high probability) for all possible outome sequenes.In the �lassial� traking problem there is a relatively small number of �base� expertsand the goal of the deision maker is to predit as well as the best �ompound� expert(i.e., time-varying expert). However in our ase, base experts orrespond to all paths ofthe graph between soure and destination whose number is typially exponentially large inthe number of edges, and therefore we annot diretly apply the omputationally e�ientmethods for traking the best expert. György, Linder, and Lugosi [38℄ develop e�ientalgorithms for traking the best expert for ertain large and strutured lasses of baseexperts, inluding the shortest path problem. The purpose of the following algorithm isto extend the methods of [38℄ to the bandit setting when the foreaster only observes thelosses of the edges on the hosen path.The following performane bounds shows that the normalized regret with respet tothe best time-varying path whih is allowed to swith paths m times is roughly of the orderof K
√

(m/n)|C| ln N .
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A BANDIT ALGORITHM FOR TRACKING SHORTEST PATHSParameters: real numbers β > 0, 0 < η, γ < 1, 0 ≤ α ≤ 1.Initialization: Set we,0 = 1 for eah e ∈ E, w̄i,0 = 1 for eah i ∈ P , and

W 0 = N . For eah round t = 1, 2, . . .(a) Choose a path I t aording to the distribution pt de�ned by
pi,t =

{
(1 − γ)

w̄i,t−1

W t−1
+ γ

|C| if i ∈ C;
(1 − γ)

w̄i,t−1

W t−1
if i 6∈ C.(b) Compute the probability of hoosing eah edge e as

qe,t =
∑

i:e∈i

pi,t = (1 − γ)

∑
i:e∈i w̄i,t−1

W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C| .() Calulate the estimated gains
g′

e,t =

{
ge,t+β

qe,t
if e ∈ I t;

β
qe,t

otherwise.(d) Compute the updated weights
v̄i,t = w̄i,t−1e

ηg′
i,t

w̄i,t = (1 − α)v̄i,t +
α

N
W twhere g′

i,t =
∑

e∈i g′
e,t and W t is the sum of the total weights of thepaths, that is,

W t =
∑

i∈P
v̄i,t =

∑

i∈P
w̄i,t.Figure 4.4: Bandit algorithm for traking the shortest path.



4.5. A bandit algorithm for traking the shortest path 61Theorem 4.4. (György, Linder, Lugosi and Ottusák [40℄). For any δ ∈ (0, 1)and parameters 0 ≤ γ < 1/2, α, β ∈ [0, 1], and η > 0 satisfying 2ηK|C| ≤ γ, the per-formane of the algorithm de�ned above an be bounded, with probability at least 1 − δ,as
1

n

(
L̂n − min

t,i
L(Part(n,m, t, i))

)

≤ K (γ + η(1 + β)K|C|) +
K(m + 1)

nβ
ln

|E|(m + 1)

δ

+ β|E| + 1

nη
ln

(
Nm+1

αm(1 − α)n−m−1

)
.In partiular, hoosing

β =

√
K(m + 1)

n|E| ln
|E|(m + 1)

δ
, γ = 2ηK|C|, α =

m

n − 1
,and

η =

√
(m + 1) ln N + m ln e(n−1)

m

4nK2|C|we have, for all n ≥ max
{

K(m+1)
|E| ln |E|(m+1)

δ
, 4|C|D

},
L̂n − min

t,i
L(Part(n,m, t, i)) ≤ 2

√
K

n

(
√

4K|C|D +

√
|E|(m + 1) ln

|E|(m + 1)

δ

)
,where

D = (m + 1) ln N + m

(
1 + ln

n − 1

m

)
.The proof of the theorem is a ombination of that of our Theorem 4.1 and Theorem 1of [38℄. We will need the following three lemmas.Lemma 4.4. For any 1 ≤ t ≤ t′ ≤ n and any i ∈ P,

v̄i,t′

w̄i,t−1

≥ e
ηG′

i,[t,t′](1 − α)t′−twhere G′
i,[t,t′] =

∑t′

τ=t g
′
i,τ .Proof. The proof is a straightforward modi�ation of the one in Herbster and Warmuth[46℄. From the de�nitions of vi,t and wi,t (see step (d) of the algorithm) it is lear that forany τ ≥ 1,

w̄i,τ = (1 − α)v̄i,τ +
α

N
W τ ≥ (1 − α)eηg′

i,τ w̄i,τ−1 .



4.5. A bandit algorithm for traking the shortest path 62Applying this equation iteratively for τ = t, t + 1, . . . , t′ − 1, and the de�nition of v̄i,t (step(d)) for τ = t′, we obtain
v̄i,t′ = w̄i,t′−1e

ηg′
i,t′ ≥ e

ηg′
i,t′

t′−1∏

τ=t

(
(1 − α)eηg′

i,τ

)
w̄i,t−1

= e
ηG′

i,[t,t′](1 − α)t′−tw̄i,t−1whih implies the statement of the lemma. 2Lemma 4.5. For any t ≥ 1 and i, j ∈ P, we have
w̄i,t

v̄j,t

≥ α

NProof. By the de�nition of w̄i,t we have
w̄i,t = (1 − α)v̄i,t +

α

N
W t ≥

α

N
W t ≥

α

N
v̄j,t .This ompletes the proof of the lemma. 2The next lemma is a simple orollary of Lemma 4.1.Lemma 4.6. For any δ ∈ (0, 1), 0 ≤ β ≤ 1, t ≥ 1 and e ∈ E we have

P

[
Ge,t > G′

e,t +
1

β
ln

|E|(m + 1)

δ

]
≤ δ

|E|(m + 1)
.Proof of Theorem 4.4. Again, we upper bound ln W n/W 0 the same way as in Theorem4.1. Then we get

ln
W n

W 0

≤ η

1 − γ

(
Ĝn + n|E|β

)
+

η2K(1 + β)

1 − γ
|C|max

i∈P
G′

i,n . (4.18)Let Part(n,m, t, i) be an arbitrary partition. Then the lower bound is obtained as
ln

W n

W 0

= ln
∑

j∈P

w̄j,n

N
= ln

∑

j∈P

v̄j,n

N
≥ ln

v̄im,n

N
(4.19)(reall that im denotes the path used in the last segment of the partition). Now vim,n anbe rewritten in the form of the following telesoping produt

v̄im,n = w̄i0,t0−1
v̄i0,t1−1

w̄i0,t0−1

m∏

j=1

(
w̄ij ,tj−1

v̄ij−1,tj−1

v̄ij ,tj+1−1

w̄ij ,tj−1

)
.



4.5. A bandit algorithm for traking the shortest path 63Therefore, applying Lemmas 4.4 and 4.5, we have
v̄im,n ≥ w̄i0,t0−1

( α

N

)m
m∏

j=0

(
(1 − α)tj+1−1−tje

ηG′
ij ,[tj ,tj+1−1]

)

=
( α

N

)m

eηG′(Part(n,m,t,i))(1 − α)n−m−1.Combining the lower bound with the upper bound (4.18), we have
ln

(
αm(1 − α)n−m−1

Nm+1

)
+ max

t,i
ηG′(Part(n,m, t, i))

≤ η
1−γ

(
Ĝn + n|E|β

)
+ η2K(1+β)

1−γ
|C|maxi∈P G′

i,n ,where we used the fat that Part(n,m, t, i) is an arbitrary partition. After rearrangingand using maxi∈P G′
i,n ≤ maxt,i G′(Part(n,m, t, i)) we get

Ĝn ≥ (1 − γ − ηK(1 + β)|C|) max
t,i

G′(Part(n,m, t, i))

−n|E|β − 1 − γ

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.Now sine 1−γ−ηK(1+β)|C| ≥ 0, by the assumptions of the theorem and from Lemma 4.6with an appliation of the union bound we obtain that, with probability at least 1 − δ,

Ĝn ≥ (1 − γ − ηK(1 + β)|C|)
(

max
t,i

G(Part(n,m, t, i)) − K(m + 1)

β
ln

|E|(m + 1)

δ

)

− n|E|β − 1 − γ

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.Sine Ĝn = Kn − L̂n and G(Part(n,m, t, i)) = Kn − L(Part(n,m, t, i)), we have

L̂n ≤ (1 − γ − ηK(1 + β)|C|) min
t,i

L(Part(n,m, t, i)) + Kn (γ + η(1 + β)K|C|)

+ (1 − γ − η(1 + β)K|C|) K(m + 1)

β
ln

|E|(m + 1)

δ
+ n|E|β

+
1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
.This implies that, with probability at least 1 − δ,

L̂n − min
t,i

L(Part(n,m, t, i))

≤ Kn (γ + η(1 + β)K|C|) +
K(m + 1)

β
ln

|E|(m + 1)

δ

+ n|E|β +
1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)
. (4.20)



4.5. A bandit algorithm for traking the shortest path 64To prove the seond statement, let H(p) = −p ln p − (1 − p) ln(1 − p) and D(p ‖ q) =
p ln p

q
+ (1 − p) ln 1−p

1−q
. Optimizing the value of α in the last term of (4.20) gives

1

η
ln

(
Nm+1

αm(1 − α)n−m−1

)

=
1

η

(
(m + 1) ln (N) + m ln

1

α
+ (n − m − 1) ln

1

1 − α

)

=
1

η

(
(m + 1) ln (N) + (n − 1)(Db(α

∗ ‖ α) + Hb(α
∗))
)where α∗ = m

n−1
. For α = α∗ we obtain
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η
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=
1

η
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(m + 1) ln (N) + m ln
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m

) def
=

1

η
Dwhere the inequality follows sine ln(1 + x) ≤ x for x > 0. Therefore

L̂n − min
t,i

L(Part(n,m, t, i))

≤ Kn (γ + η(1 + β)K|C|) +
K(m + 1)

β
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|E|(m + 1)

δ
+ n|E|β +

1

η
D .whih is the �rst statement of the theorem. Setting

β =

√
K(m + 1)

n|E| ln
|E|(m + 1)

δ
, γ = 2ηK|C|, and η =

√
D

4nK2|C|results in the seond statement of the theorem, that is,
L̂n − min

t,i
L(Part(n,m, t, i))

≤ 2
√

nK

(
√

4K|C|D +

√
|E|(m + 1) ln

|E|(m + 1)

δ

)
. 2Similarly to [38℄, the proposed algorithm has an alternative version, whih is e�ientlyomputable:
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AN ALTERNATIVE BANDIT ALGORITHM FOR TRACKINGSHORTEST PATHSFor t = 1, hoose I1 uniformly from the set P . For t ≥ 2,(a) Draw a Bernoulli random variable Γt with P(Γt = 1) = γ.(b) If Γt = 1, then hoose I t uniformly from C.() If Γt = 0,(1) hoose τt randomly aording to the distribution
P{τt = t′} =

{
(1−α)t−1Z1,t−1

Wt−1
for t′ = 1

α(1−α)t−t′Wt′Zt′,t−1

NWt
for t′ = 2, . . . , twhere Zt′,t−1 =

∑
i∈P e

ηG′
i,[t′,t−1] for t′ = 1, . . . , t − 1, and

Zt,t−1 = N ;(2) given τt = t′, hoose I t randomly aording to the probabilities
P{It = i|τt = t′} =





e
ηG′

i,[t′,t−1]

Zt′,t−1
for t′ = 1, . . . , t − 1

1
N

for t′ = t.Figure 4.5: An alternative version of the bandit algorithm for traking shortest path.



4.6. An algorithm for the restrited multi-armed bandit problem 66With a slight modi�ation of the proof of Theorem 2 in [38℄, it an be shown thatthe alternative and the original algorithms are equivalent. Moreover, in a way ompletelyanalogous to [38℄, in this alternative formulation of the algorithm one an ompute theprobabilities the normalization fators Zt′,t−1 e�iently, as the baseline bandit algorithmfor shortest paths has an O(n|E|) time omplexity by Theorem 4.2. Therefore the fators
W t and hene the probabilities P{I t = i|τt = t′} an also be omputed e�iently as in [38℄.In partiular, it follows from Theorem 3 of [38℄ that the time omplexity of the alternativebandit algorithm for traking the shortest path is O(n2|E|).4.6 An algorithm for the restrited multi-armed banditproblemIn this setion we onsider the situation where the deision maker reeives informationonly about the performane of the whole hosen path, but the individual edge losses arenot available. That is, the foreaster has aess to the sum ℓIt,t of losses over the hosenpath I t but not to the losses {ℓe,t}e∈It of the edges belonging to I t.This is the problem formulation onsidered by MMahan and Blum [54℄ and Awerbuhand Kleinberg [11℄. MMahan and Blum provided a relatively simple algorithm whoseregret is at most of the order of n−1/4, while Awerbuh and Kleinberg gave a more omplexalgorithm to ahieve O(n−1/3) regret. In this setion we ombine the strengths of thesepapers, and propose a simple algorithm with regret at most of the order of n−1/3. Moreover,our bound holds with high probability, while the above-mentioned papers prove boundsfor the expeted regret only. The proposed algorithm uses ideas very similar to thoseof MMahan and Blum [54℄. The algorithm alternates between hoosing a path from a�basis� B to obtain unbiased estimates of the loss (exploration step), and hoosing a pathaording to exponential weighting based on these estimates.A simple way to desribe a path i ∈ P is a binary row vetor with |E| omponentswhih are indexed by the edges of the graph suh that, for eah e ∈ E, the eth entry of thevetor is 1 if e ∈ i and 0 otherwise. With a slight abuse of notation we will also denote by ithe binary row vetor representing path i. In the previous setions, where the loss of eahedge along the hosen path is available to the deision maker, the omplexity stemmingfrom the large number of paths was redued by representing all information in terms ofthe edges, as the set of edges spans the set of paths. That is, the vetor orrespondingto a given path an be expressed as the linear ombination of the unit vetors assoiatedwith the edges (the eth omponent of the unit vetor representing edge e is 1, while theother omponents are 0). While the losses orresponding to suh a spanning set are notobservable in the restrited setting of this setion, one an hoose a subset of P that formsa basis, that is, a olletion of b paths whih are linearly independent and eah path in Pan be expressed as a linear ombination of the paths in the basis. We denote by B the
b× |E| matrix whose rows b1, . . . , bb represent the paths in the basis. Note that b is equalto the maximum number of linearly independent vetors in {i : i ∈ P}, so b ≤ |E|.



4.6. An algorithm for the restrited multi-armed bandit problem 67Let ℓ
(E)
t denote the (olumn) vetor of the edge losses {ℓe,t}e∈E at time t, and let

ℓ
(B)
t = (ℓb1,t, . . . , ℓbb,t)

T be a b-dimensional olumn vetor whose omponents are the lossesof the paths in the basis B at time t. If α
(i,B)

b1 , . . . , α
(i,B)

bb are the oe�ients in the linearombination of the basis paths expressing path i ∈ P , that is, i =
∑b

j=1 α
(i,B)

bj bj, then theloss of path i ∈ P at time t is given by
ℓi,t = 〈i, ℓ(E)

t 〉 =
b∑

j=1

α
(i,B)

bj 〈bj, ℓ
(E)
t 〉 =

b∑

j=1

α
(i,B)

bj ℓbj ,t (4.21)where 〈·, ·〉 denotes the standard inner produt in R
|E|. In the algorithmwe obtain estimates

ℓ̃bj ,t of the losses of the basis paths and use (4.21) to estimate the loss of any i ∈ P as
ℓ̃i,t =

b∑

j=1

α
(i,B)

bj ℓ̃bj ,t . (4.22)It is algorithmially advantageous to alulate the estimated path losses ℓ̃i,t from anintermediate estimate of the individual edge losses. Let B+ denote the Moore-Penroseinverse of B de�ned by B+ = BT (BBT )−1, where BT denotes the transpose of B and
BBT is invertible sine the rows of B are linearly independent. (Note that BB+ = Ib,the b× b identity matrix, and B+ = B−1 if b = |E|.). Then letting ℓ̃

(B)

t = (ℓ̃b1,t, . . . , ℓ̃bb,t)
Tand

ℓ̃
(E)

t = B+ℓ̃
(B)

tit is easy to see that ℓ̃i,t in (4.22) an be obtained as ℓ̃i,t = 〈i, ℓ̃(E)

t 〉, or equivalently
ℓ̃i,t =

∑

e∈i

ℓ̃e,t.This form of the path losses allows for an e�ient implementation of exponential weightingvia dynami programming [69℄.To analyze the algorithm we need an upper bound on the magnitude of the oe�ients
α

(i,B)

bj . For this, we invoke the de�nition of a baryentri spanner from [11℄: the basis B isalled a C-baryentri spanner if |α(i,B)

bj | ≤ C for all i ∈ P and j = 1, . . . , b. Awerbuh andKleinberg [11℄ show that a 1-baryentri spanner exists if B is a square matrix (i.e., b = |E|)and give a low-omplexity algorithm whih �nds a C-baryentri spanner for C > 1. Weuse their tehnique to show that a 1-baryentri spanner also exists in ase of a non-square
B, when the basis is hosen to maximize the absolute value of the determinant of BBT .As before, b denotes the maximum number of linearly independent vetors (paths) in P .Lemma 4.7. For a direted ayli graph, the set of paths P between two dediated nodeshas a 1-baryentri spanner. Moreover, let B be a b × |E| matrix with rows from P suh



4.6. An algorithm for the restrited multi-armed bandit problem 68that det[BBT ] 6= 0. If B−j,i is the matrix obtained from B by replaing its jth row by
i ∈ P and ∣∣det

[
B−j,iB

T
−j,i

]∣∣ ≤ C2
∣∣det

[
BBT

]∣∣ (4.23)for all j = 1, . . . , b and i ∈ P, then B is a C-baryentri spanner.Proof. Let B be a basis of P with rows b1, . . . , bb ∈ P that maximizes | det[BBT ]|.Then, for any path i ∈ P , we have i =
∑b

j=1 α
(i,B)

bj bj for some oe�ients {α(i,B)

bj }. Nowfor the matrix B−1,i = [iT , (b2)T , . . . , (bb)T ]T we have
∣∣det

[
B−1,iB

T
−1,i

]∣∣

=
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B−1,ii

T ,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T
]∣∣

=

∣∣∣∣∣∣
det



(
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j=1

α
(i,B)

bj B−1,ib
j

)T

,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T
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=

∣∣∣∣∣
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j=1

α
(i,B)

bj det
[
B−1,i(b

j)T ,B−1,i(b
2)T ,B−1,i(b

3)T , . . . ,B−1,i(b
b)T
]
∣∣∣∣∣

= |α(i,B)

b1 |
∣∣det

[
B−1,iB

T
]∣∣

=
(
α

(i,B)

b1

)2 ∣∣det
[
BBT

]∣∣where last equality follows by the same argument the penultimate equality was obtained.Repeating the same argument for B−j,i, j = 2, . . . , b we obtain
∣∣det

[
B−j,iB

T
−j,i

]∣∣ =
(
α

(i,B)

bj

)2 ∣∣det
[
BBT

]∣∣ . (4.24)Thus the maximal property of | det[BBT ]| implies |α(i,B)

bj | ≤ 1 for all j = 1, . . . , b. Theseond statement follows trivially from (4.23) and (4.24). 2Awerbuh and Kleinberg [11, Proposition 2.4℄ also present an iterative algorithm to�nd a C-baryentri spanner if B is a square matrix. Their algorithm has two parts.First, starting from the identity matrix, the algorithm replaes sequentially the rows of thematrix in eah step by maximizing the determinant with respet to the given row. Thisis done by alling b times an optimization orale, to ompute arg maxi∈P | det [B−j,i] | for
j = 1, 2, . . . , b. In the seond part the algorithm replaes an arbitrarily row j of the matrixin eah iteration with some i ∈ P if | det [B−j,i] | > C| det [B] |. It is shown that the oraleis alled in the seond part O(b logC b) times for C > 1. In ase B is not a square matrix,the algorithm arries over if we have aess to an alternative optimization orale that anompute arg maxi∈P | det[B−j,iB

T
−j,i]|: In the �rst b steps, all the rows of the matrix arereplaed (�rst part), then we an iteratively replae one row in eah step, using the orale,to maximize the determinant | det[B−j,iB

T
−j,i]| in i until (4.23) is satis�ed for all j and i.By Lemma 4.7, this results is a C-baryentri spanner. Similarly to [11, Lemma 2.5℄, itan be shown that the alternative optimization orale is alled O(b logC b) times for C > 1.



4.6. An algorithm for the restrited multi-armed bandit problem 69For simpliity (to avoid arrying the onstant C), assume that we have a 2-baryentrispanner B. Based on the ideas of label e�ient predition, the next algorithm gives asimple solution to the restrited shortest path problem. The algorithm is very similar tothat of the algorithm in the label e�ient ase, but here we annot estimate the edge lossesdiretly. Therefore, we query the loss of a (random) basis vetor from time to time, andreate unbiased estimates ℓ̃bj ,t of the losses of basis paths ℓbj ,t, whih are then transformedinto edge-loss estimates.The performane of the algorithm is analyzed in the next theorem. The proof followsthe argument of Cesa-Bianhi et al. [22℄, but we also have to deal with some additionaltehnial di�ulties. Note that in the theorem we do not assume that all paths between uand v have equal length.Theorem 4.5. (György, Linder, Lugosi and Ottusák [40℄). Let K denote the lengthof the longest path in the graph. For any δ ∈ (0, 1), parameters 0 < ε ≤ 1
K

and η > 0satisfying η ≤ ε2, and n ≥ 8b
ε2 ln 4bN

δ
, the performane of the algorithm de�ned above an bebounded, with probability at least 1 − δ, as
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i∈P
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√
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√
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ε
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4bN
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+

ln N

ηIn partiular, hoosing
ε =

(
Kb

n
ln

4bN

δ

)1/3 and η = ε2we obtain
L̂n − min

i∈P
Li,n ≤ 9.1K2b (Kb ln(4bN/δ))1/3 n2/3 .The theorem is proved using the following two lemmas. The �rst one is an easy onse-quene of Bernstein's inequality:Lemma 4.8. Under the assumptions of Theorem 4.5, the probability that the algorithmqueries the basis more than nε +
√

2nε ln 4
δ
times is at most δ/4.Using the estimated loss of a path i ∈ P given in (4.22), we an estimate the umulativeloss of i up to time n as

L̃i,n =
n∑

t=1

ℓ̃i,t .The next lemma demonstrates the quality of these estimates.
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A BANDIT ALGORITHM FOR THE RESTRICTED SHORTESTPATH PROBLEMParameters: 0 < ε, η ≤ 1.Initialization: Set we,0 = 1 for eah e ∈ E, w̄i,0 = 1 for eah i ∈ P ,

W 0 = N . Fix a basis B, whih is a 2-baryentri spanner. For eah round
t = 1, 2, . . .(a) Draw a Bernoulli random variable St suh that P(St = 1) = ε;(b) If St = 1, then hoose the path I t uniformly from the basis B. If

St = 0, then hoose I t aording to the distribution {pi,t}, de�nedby
pi,t =

w̄i,t−1

W t−1

.() Calulate the estimated loss of all edges aording to
ℓ̃

(E)

t = B+ℓ̃
(B)

t ,where ℓ̃
(E)

t = {ℓ̃(E)
e,t }e∈E, and ℓ̃

(B)

t = (ℓ̃
(B)

b1,t
, . . . , ℓ̃

(B)

bb,t
) is the vetor ofthe estimated losses

ℓ̃bj ,t =
St

ε
ℓbj ,tI{It=bj}bfor j = 1, . . . , b.(d) Compute the updated weights

we,t = we,t−1e
−ηℓ̃e,t ,

w̄i,t =
∏

e∈i

we,t = w̄i,t−1e
−η

P
e∈i ℓ̃e,t ,and the sum of the total weights of the paths

W t =
∑

i∈P
w̄i,t .Figure 4.6: Bandit algorithm for the restrited shortest path problem.
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ε

ln 4bN
δ
. For any i ∈ P, with probability atleast 1 − δ/4,

n∑

t=1

∑

i∈P
pi,tℓi,t −

n∑

t=1

∑

i∈P
pi,tℓ̃i,t ≤

8

3
b

√
2n

bK2

ε
ln

4b

δ
.Furthermore, with probability at least 1 − δ/(4N),

L̃i,n − Li,n ≤ 8

3
b

√
2n

bK2

ε
ln

4bN

δ
.Proof. We may write

n∑

t=1

∑

i∈P
pi,tℓi,t −

n∑

t=1

∑

i∈P
pi,tℓ̃i,t =

n∑

t=1

∑

i∈P
pi,t

b∑

j=1

α
(i,B)

bj

(
ℓbj ,t − ℓ̃bj ,t

)

=
b∑

j=1

n∑

t=1

[
∑

i∈P
pi,tα

(i,B)

bj

(
ℓbj ,t − ℓ̃bj ,t

)]def
=

b∑

j=1

n∑

t=1

Xbj ,t . (4.25)Note that for any bj, Xbj ,t, t = 1, 2, . . . is a martingale di�erene sequene with respet to
(I t, St), t = 1, 2, . . . as Etℓ̃b,t = ℓb,t. Also,
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(4.27)where the last inequalities in both ases follow from the fat that B is a 2-baryentrispanner. Then, using Bernstein's inequality for martingale di�erenes (Lemma 4.2), wehave, for any �xed bj,
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(4.28)where we used (4.26), (4.27) and the assumption of the lemma on n. The proof of the�rst statement is �nished with an appliation of the union bound and its ombination with(4.25).
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n∑

t=1

(ℓ̃i,t − ℓi,t) =
b∑

j=1

α
(i,B)

bj

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t) ≤
∑

j=1

∣∣∣α(i,B)

bj

∣∣∣
∣∣∣∣∣

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t)

∣∣∣∣∣

≤ 2
b∑

j=1

∣∣∣∣∣

n∑

t=1

(ℓ̃bj ,t − ℓbj ,t)

∣∣∣∣∣ . (4.29)Now applying Lemma 4.2 for a �xed bj we get
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). The proof isompleted by applying the union bound to (4.30) and ombining the result with (4.29). 2Proof of Theorem 4.5. Similarly to earlier proofs, we follow the evolution of the term
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Tn

def
= {t : 1 ≤ t ≤ n and St = 0} and T n

def
= {t : 1 ≤ t ≤ n and St = 1}of �exploitation� and �exploration� steps, respetively. Then, by the Hoe�ding-Azumainequality [48℄ we obtain that, with probability at least 1 − δ/4,
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− K|T n| . (4.32)Then, by (4.31), (4.32) and Lemma 4.8 we obtain, with probability at least 1 − δ,
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ηwhere we used L̂n ≤ Kn and |Tn| ≤ n. Substituting the values of ε and η gives
L̂n − min

i∈P
Li,n ≤ K2bnε +

1

4
Knε + Knε +

1

2
nε +

16

3
b
√

Knε + nε

≤ 9.1K2bnεwhere we used √n
2

ln 4
δ
≤ 1

4
nε, √2nε ln 4

δ
≤ 1

2
nε, √n bK

ε
ln 4N

δ
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η
≤ nε (fromthe assumptions of the theorem). 24.7 Simulation resultsTo further investigate our new algorithms, we have onduted some simple simulations.As the main motivation of this work is to improve earlier algorithms in ase the number ofpaths is exponentially large in the number of edges, we tested the algorithms on the small



4.7. Simulation results 74graph shown in Figure 4.1 (b), whih has one of the simplest strutures with exponentiallymany (namely 2|E|/2) paths.The losses on the edges were generated by a sequene of independent and uniformrandom variables, with values from [0, 1] on the upper edges, and from [0.32, 1] on thelower edges, resulting in a (long-term) optimal path onsisting of the upper edges. Weran the tests for n = 10000 steps, with on�dene value δ = 0.001. To establish baselineperformane, we also tested the EXP3 algorithm of Auer et al. [5℄ (note that this algorithmdoes not need edge losses, only the loss of the hosen path). For the version of our banditalgorithm that is informed of the individual edge losses (edge-bandit), we used the simple2-element over set of the paths onsisting of the upper and lower edges, respetively (other2-element over sets give similar performane). For our restrited shortest path algorithm(path-bandit) the basis {uuuuu, uuuul, uuull, uulll, ullll, lllll} was used, where u (resp.
l) in the kth position denotes the upper (resp. lower) edge onneting vk−1 and vk. Inthis example the performane of the algorithm appeared to be independent of the atualhoie of the basis; however, in general we do not expet this behavior. Two versionsof the algorithm of Awerbuh and Kleinberg [11℄ were also simulated. With its originalparameter setting (AwKl), the algorithm did not perform well. However, after optimizingits parameters o�-line (AwKl tuned), substantially better performane was ahieved. Thenormalized regret of the above algorithms, averaged over 30 runs, as well as the regret ofthe �xed paths in the graph are shown in Figure 4.7.Although all algorithms showed better performane than the bound for the edge-banditalgorithm, the latter showed the expeted superior performane in the simulations. Fur-thermore, our algorithm for the restrited shortest path problem outperformed Awerbuhand Kleinberg's (AwKl) algorithm, while being inferior to its o�-line tuned version (AwKltuned). It must be noted that similar parameter optimization did not improve the per-formane of our path-bandit algorithm, whih showed robust behavior with respet toparameter tuning.
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Chapter 5
On-line Predition in ase of Stationary and Ergodi Proesses

One may wonder whether it is possible to improve the statements for individual sequenesif we have some assumptions about the behavior of the outome sequenes y1, y2, . . .. Tospot a possible way of the improvement we reall our analogy with pattern reognition,whih was mentioned in Setion 1.1. In Chapter 3 and in Chapter 4 we have dealt withthe minimization of the estimation error, that is, that measures the di�erene between thenormalized regret of the best expert from a �xed expert lass and the normalized regret ofour algorithm. However, if we have e.g. stationary and ergodi assumption on the outomesequene we an say also something about the approximation error, whih desribes how faris the performane of the best expert from the performane of the Bayes-optimal preditor,whih an be ahieved only in full knowledge of the underlying distribution of the outomeproess.In this hapter we provide simple on-line proedures for the predition of a sequenesin stationary and ergodi environment, whih not only minimize the estimation error butalso guarantee that the approximation error vanishes asymptotially. The proposed al-gorithms are based on a ombination of several simple preditors (experts). One of thehuge inrement using this �model-less� expert advie approah that it provides �adapta-tion� also in ase of dependent outome sequene, where the lassial methods (splittingand ross-validation) is not appliable.In Setion 5.1 we introdue a predition strategy (algorithm) for unbounded stationaryand ergodi real-valued proesses and show that the average of squared errors of the algo-rithm onverges, almost surely, to that of the optimum, given by the Bayes preditor. Thisproperty � that the loss of a strategy onverges to the loss of the theoretial optimum � isalled universal onsisteny. In Setion 5.2 we o�er an extension for the noisy setting, thatis when the algorithm has aess only to the noisy version of the original sequene. The�lean� proess is passed through a �xed binary memoryless hannel (e.g. Binary Symmet-ri Channel). This setup was introdued and studied by Weissman and Merhav [72, 73℄.Theorem 5.2 proves the universal onsisteny of an algorithm in the noisy setting for theloss funtion whih is onvex in its �rst argument (e.g.: squared loss, absolute loss, et.).76



5.1. Universal predition of unbounded time series:squared loss 77Finally, in Setion 5.3 we provide a simple universally onsistent lassi�ation sheme forzero-one loss in the noisy setting.5.1 Universal predition of unbounded time series:squared lossThe problem of time series analysis and predition has a long and rih history, probablydating bak to the pioneering work of Yule in 1927 [75℄. The appliation sope is vast, astime series modeling is routinely employed aross the entire and diverse range of appliedstatistis, inluding problems in genetis, in info-ommuniations systems, mahine ondi-tion monitoring, �nanial investments, marketing and eonometris. Most of the researhativity until the 1970s was onerned with parametri approahes to the problem wherebya simple, usually linear model is �tted to the data or it was assumed that the proess isthe sum of a sequene from a restrited lass or a Gaussian proess (for a omprehensiveaount we refer the reader to the monograph of Brokwell and Davies [19℄). While manyappealing mathematial properties of the parametri paradigm have been established, ithas beome lear over the years that the limitations of the approah may be rather severe,essentially due to overly rigid onstraints whih are imposed on the proesses. For example,it turned out that �nanial proesses annot be modeled by linear proesses. One of themore promising solutions to overome this problem has been the extension of lassi non-parametri methods to the time series framework (see for example Györ�, Härdle, Sardaand Vieu [30℄ and Bosq [16℄ for a review and referenes).The present setion is devoted to the nonparametri problem of sequential preditionof unbounded, ergodi real valued sequenes whih we do not require to neessarily satisfythe lassial statistial assumptions for bounded, autoregressive or Markovian proesses.Indeed, our goal is to show onsisteny results under a strit minimum of onditions.Consisteny for ergodi sequene an be proved using the powerful mahine learning boundsderived for individual sequenes.To �x the ontext, we suppose that at eah time instant t = 1, 2, . . ., the preditor isasked to guess the value of the next outome yt of a sequene of real numbers y1, y2, . . . withknowledge of the past yt−1
1 = (y1, . . . , yt−1) (where y0

1 denotes the empty string) and the sideinformation vetors xt
1 = (x1, . . . , xt), where xt ∈ R

d . Thus, the preditor's estimate, attime t, is based on the value of xt
1 and yt−1

1 . A predition strategy is a sequene g = {gt}∞t=1of funtions
gt : (Rd)t × R

t−1 → Rso that the predition formed at time t is gt(x
t
1, y

t−1
1 ).Throughout the hapter we assume that (x1, y1), (x2, y2), . . . are realizations of the ran-dom variables (X1, Y1), (X2, Y2), . . . suh that {(Xn, Yn)}∞−∞ is a jointly stationary andergodi proess.



5.1. Universal predition of unbounded time series:squared loss 78After n time instants, the normalized umulative predition error is
Ln(g) =

1

n

n∑

t=1

ℓ(gt(X
t
1, Y

t−1
1 ), Yt) =

1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 ) − Yt)

2,where ℓ : R × R → R now denotes the squared loss.The results of this hapter are given in an autoregressive (on-line learning) framework,that is, the value Yt is predited based on the past observations (X t
1 and Y t−1

1 ). Thefundamental limit for the preditability of the sequene an be determined based on aresult of Algoet [2℄, who showed that for any predition strategy g and stationary ergodiproess {(Xn, Yn)}∞−∞,
lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (5.1)where
L∗ = E

{(
Y0 − E

[
Y0

∣∣X0
−∞, Y −1

−∞
])2}is the minimal mean squared error of any predition for the value of Y0 based on thein�nite past X0

−∞, Y −1
−∞. Note that it follows by stationarity and the martingale onvergenetheorem (see, e.g., Stout [67℄) that

L∗ = lim
n→∞

E

{(
Yn − E

[
Yn

∣∣Xn
1 , Y n−1

1

])2}
.This lower bound gives sense to the following de�nition:De�nition 5.1. A predition strategy g is alled universally onsistent with respet to alass C of stationary and ergodi proesses {(Xn, Yn)}∞−∞, if for eah proess in the lass,

lim
n→∞

Ln(g) = L∗ almost surely.Universally onsistent strategies asymptotially ahieve the best possible loss for all ergodiproesses in the lass.In ase of squared loss Algoet [1℄ proved that there exists a predition strategy that anahieve this well-de�ned optimum. Using mahine learning priniples, Györ� and Lugosi[32℄ introdued several simple predition strategies, whih are universally onsistent withrespet to the lass of bounded, stationary and ergodi proesses. In this setion we extendthe results of [32℄ to unbounded proesses. We refer to Nobel [58℄, Singer and Feder [65℄,[66℄ and Yang [74℄ for losely related reent works.The predition strategy g is de�ned, at eah time instant, as a onvex ombination ofelementary preditors, where the weighting oe�ients depend on the past performane ofeah elementary preditor.The goal of eah simple preditor is to estimate the regression funtion E
[
Yn

∣∣Xn
1 , Y n−1

1

]at time instane n. We de�ne an in�nite array of elementary preditors h(k,l), k, l = 1, 2, . . .as follows. Let Pl = {Al,j, j = 1, 2, . . . ,ml} be a sequene of �nite partitions of R, and let
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Ql = {Bl,j, j = 1, 2, . . . ,m′

l} be a sequene of �nite partitions of R
d. Introdue the orre-sponding quantizers:

Fl(y) = j, if y ∈ Al,jand
Gl(x) = j, if x ∈ Bl,j .With some abuse of notation, for any n and yn

1 ∈ R
n, we write Fl(y

n
1 ) for the se-quene Fl(y1), . . . , Fl(yn), and similarly, for xn

1 ∈ (Rd)n, we write Gl(x
n
1 ) for the sequene

Gl(x1), . . . , Gl(xn).Fix positive integers k, l, and for eah (k + 1)-long string z of positive integers, and foreah k-long string s of positive integers, de�ne the partitioning regression funtion estimate
Ê(k,l)

n (xn
1 , y

n−1
1 , z, s) =

∑
{k<t<n:Gl(x

t
t−k)=z, Fl(y

t−1
t−k)=s} yt

∣∣{k < t < n : Gl(xt
t−k) = z, Fl(y

t−1
t−k) = s}

∣∣ ,for all n > k+1 where 0/0 is de�ned to be 0. Beause of the original sequene is unboundedwe have to ontrol (bound) the predited value of eah expert. Therefore we introdue atrunation funtion to prevent from that the experts' predition have �too big� values, thatis,
Tn(z) =





nδ if z > nδ;
z if |z| ≤ nδ;
−nδ if z < −nδ,where

0 < δ < 1/8.Now we are ready to de�ne the elementary preditor h(k,l) by
h(k,l)

n (xn
1 , y

n−1
1 ) = Tn

(
Ê(k,l)

n (xn
1 , y

n−1
1 , Gl(x

n
n−k), Fl(y

n−1
n−k))

)
,for n = 1, 2, . . . . That is, h

(k,l)
n quantizes the sequene xn

1 , y
n−1
1 aording to the partitions

Ql and Pl, and looks for all appearanes of the last seen quantized strings Gl(x
n
n−k) oflength k + 1 and Fl(y

n−1
n−k) of length k in the past. Then it predits aording to thetrunation of the average of the yt's following the string.The proposed predition algorithm proeeds based on exponential weighting averagealgorithm. Formally, let {qk,l} be a probability distribution on the set of all pairs (k, l) ofpositive integers suh that for all k, l, qk,l > 0. For ηt > 0, and de�ne the weights

wk,l,t = qk,le
−ηt(t−1)Lt−1(h(k,l))and their normalized values

pk,l,t =
wk,l,t

Wt

,where
Wt =

∞∑

i,j=1

wi,j,t .
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gt(x

t
1, y

t−1
1 ) =

∞∑

k,l=1

pk,l,th
(k,l)
t (xt

1, y
t−1
1 ) , t = 1, 2, . . . (5.2)Theorem 5.1. (Györfi and Ottusák [35℄). Assume that(a) the sequenes of partition Pl is nested, that is, any ell of Pl+1 is a subset of a ell of

Pl, l = 1, 2, . . .;(b) the sequenes of partition Ql is nested;() the sequenes of partition Pl is asymptotially �ne, i.e., if
diam(A) = sup

x,y∈A
‖x − y‖denotes the diameter of a set, then for eah sphere S entered at the origin

lim
l→∞

max
j:Al,j∩S 6=∅

diam(Al,j) = 0 ;(d) the sequenes of partition Ql is asymptotially �ne.Choose the parameter ηt of the algorithm as
ηt =

1√
t

.Then the predition sheme g de�ned above is universally onsistent with respet to thelass of all ergodi proesses suh that
E{Y 4

1 } < ∞.Here we desribe two results, whih are used in the analysis. The �rst lemma is amodi�ation of the analysis of Auer et al. [7℄, whih allows of the handling the ase whenthe parameter of the algorithm (ηt) is time-dependent and the number of the elementarypreditors is in�nite.Lemma 5.1. (Györfi and Ottusák [35℄). Let h(1), h(2), . . . be a sequene of predi-tion strategies (experts). Let {qk} be a probability distribution on the set of positive integers.Denote the normalized loss of the expert h = (h1, h2, . . . ) by
Ln(h) =

1

n

n∑

t=1

ℓt(h),where
ℓt(h) = ℓ(ht, Yt)and the loss funtion ℓ is onvex in its �rst argument h. De�ne

wk,t = qke
−ηt(t−1)Lt−1(h(k))
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pk,t =

wk,t

Wtwhere
Wt =

∞∑

k=1

wk,t .If the predition strategy g = (g1, g2, . . . ) is de�ned by
gt =

∞∑

k=1

pk,th
(k)
t t = 1, 2, . . .then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pk,tℓ
2
t (h

(k)).Proof. Introdue some notations:
w′

k,t = qke
−ηt−1(t−1)Lt−1(h(k)),whih is the weight wk,t, where ηt is replaed by ηt−1 and the sum of these are

W ′
t =

∞∑

k=1

w′
k,t.We start the proof with the following hain of bounds:

1

ηt

ln
W ′

t+1

Wt

=
1

ηt

ln

∑∞
k=1 wk,te

−ηtℓt(h(k))

Wt

=
1

ηt

ln
∞∑

k=1

pk,te
−ηtℓt(h(k))

≤ 1

ηt

ln
∞∑

k=1

pk,t

(
1 − ηtℓt(h

(k)) +
η2

t

2
ℓ2
t (h

(k))

)
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1

ηt

ln
W ′

t+1

Wt

≤ 1

ηt

ln

(
1 − ηt

∞∑

k=1

pk,tℓt(h
(k)) +

η2
t

2

∞∑

k=1

pk,tℓ
2
t (h

(k))

)

≤ −
∞∑

k=1

pk,tℓt(h
(k)) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.3)
= −

∞∑

k=1

pk,tℓ(h
(k)
t , Yt) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k))

≤ −ℓ

( ∞∑

k=1

pk,th
(k)
t , Yt

)
+

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.4)
= −ℓt(g) +

ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) (5.5)where (5.3) follows from the fat that ln(1+x) ≤ x for all x > −1 and in (5.4) we used theonvexity of the loss ℓ(h, y) in its �rst argument h. From (5.5) after rearranging we obtain
ℓt(g) ≤ − 1

ηt

ln
W ′

t+1

Wt

+
ηt

2

∞∑

k=1

pk,tℓ
2
t (h

(k)) .Then write a telesope formula:
1

ηt

ln Wt −
1

ηt

ln W ′
t+1 =

(
1

ηt

ln Wt −
1

ηt+1

ln Wt+1

)

+

(
1

ηt+1

ln Wt+1 −
1

ηt

ln W ′
t+1

)

= (At) + (Bt).We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt

ln Wt −
1

ηt+1

ln Wt+1

)

=
1

η1

ln W1 −
1

ηn+1

ln Wn+1

= − 1

ηn+1

ln
∞∑

k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1

ln sup
k

qke
−ηn+1nLn(h(k))

= − 1

ηn+1

sup
k

(
ln qk − ηn+1nLn(h(k))

)

= inf
k

(
nLn(h(k)) − ln qk

ηn+1

)
.
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ηt+1

ηt
≤ 1, therefore applying Jensen's inequality for onave funtion, we get that

Wt+1 =
∞∑

i=1

qie
−ηt+1tLt(h(i))

=
∞∑

i=1

qi

(
e−ηttLt(h(i))

) ηt+1
ηt

≤
( ∞∑

i=1

qie
−ηttLt(h(i))

) ηt+1
ηt

=
(
W ′

t+1

) ηt+1
ηt .Thus,

Bt =
1

ηt+1

ln Wt+1 −
1

ηt

ln W ′
t+1

≤ 1

ηt+1

ηt+1

ηt

ln W ′
t+1 −

1

ηt

ln W ′
t+1

= 0.We an summarize the bounds:
Ln(g) ≤ inf

k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pk,tℓ
2
t (h

(k)) .

2The next lemma is due to Breiman [18℄, and its proof may also be found in Györ� etal. [31℄.Lemma 5.2. Let Z = {Zi}∞−∞ be a stationary and ergodi time series. Let T denote theleft shift operator. Let fi be a sequene of real-valued funtions suh that for some funtion
f , fi(Z) → f(Z) almost surely. Assume that E supi |fi(Z)| < ∞. Then

lim
n→∞

1

n

n∑

i=1

fi(T
iZ) = Ef(Z)almost surely.Proof of Theorem 5.1. Beause of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s. (5.6)
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Ê(k,l)

n (Xn
1 , Y n−1

1 , z, s) =

1
n

∑
{k<t<n: Gl(X

t
t−k)=z, Fl(Y

t−1
t−k )=s} Yt

1
n

∣∣{k < t < n : Gl(X t
t−k) = z, Fl(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{Gl(X

0
−k)=z, Fl(Y

−1
−k )=s}}

P{Gl(X0
−k) = z, Fl(Y

−1
−k ) = s}

= E{Y0 | Gl(X
0
−k) = z, Fl(Y

−1
−k ) = s},and therefore for all z and s

Tn

(
Ê(k,l)

n (Xn
1 , Y n−1

1 , z, s)
)
→ E{Y0 | Gl(X

0
−k) = z, Fl(Y

−1
−k ) = s}.Now we an write

Ln(h(k,l)) =
1

n

n∑

t=1

(h(k,l)(X t
1, Y

t−1
1 ) − Yt)

2

=
1

n

n∑

t=1

(
Tt

(
Ê

(k,l)
t (X t

1, Y
t−1
1 , Gl(X

t
t−k), Fl(Y

t−1
t−k ))

)
−Yt

)2

. (5.7)To use Lemma 5.2 we have to verify E supi |fi(Y
∞
−∞, X∞

−∞)| < ∞, where
fi(X

∞
−∞, Y ∞

−∞) = (h(k,l)(X0
1−i, Y

−1
1−i) − Y0)

2.One an show that is enough to verify only the numerator of Ê
(k,l)
n (X0

1−k, Y
−1
1−k, z, s) dividedby n is �nite for eah individual z and s. For this we an apply maximal ergodi theorem(see Krengel [51℄ Theorem 6.3 with parameter p = 2). Now using Lemma 5.2, as n → ∞,almost surely, we get from (5.7)

Ln(h(k,l)) →E{(Y0 − E{Y0 | Gl(X
0
−k), Fl(Y

−1
−k )})2}def

= ǫk,l.

E{Y0 | Gl(X
0
−k), Fl(Y

−1
−k )} is a martingale indexed by the pair (k, l), sine the partitions

Pl and Ql are nested. Thus, the martingale onvergene theorem (see, e.g., Stout [67℄) andassumptions () and (d) for the sequenes of partitions implies that
inf
k,l

ǫk,l = lim
k,l→∞

ǫk,l = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗(f. Györ� and Lugosi [32℄).To prove (5.6) apply Lemma 5.1 with hoie ηt = 1√

t
and for the squared loss ℓt(h) =

(ht − Yt)
2, then the squared loss is onvex in its �rst argument h, so

Ln(g) ≤ inf
k,l

(
Ln(h(k,l)) − 2 ln qk,l√

n

)
+

1

2n

n∑

t=1

1√
t

∞∑

k,l=1

pk,l,t

(
h(k,l)(X t

1, Y
t−1
1 ) − Yt

)4
.(5.8)
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lim sup

n→∞
inf
k,l

(
Ln(h(k,l)) − 2 ln qk,l√

n

)
≤ inf

k,l
lim sup

n→∞

(
Ln(h(k,l)) − 2 ln qk,l√

n

)

= inf
k,l

lim sup
n→∞

Ln(h(k,l))

= inf
k,l

ǫk,l

= lim
k,l→∞

ǫk,l

= L∗.On the other hand,
1

n

n∑

t=1

1√
t

∑

k,l

pk,l,t(h
(k,l)(X t

1, Y
t−1
1 ) − Yt)

4 ≤ 8

n

n∑

t=1

1√
t

∑

k,l

pk,l,t

(
h(k,l)(X t

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑

t=1

1√
t

∑

k,l

pk,l,t

(
t4δ + Y 4

t

)

=
8

n

n∑

t=1

t4δ + Y 4
t√

t
,therefore, almost surely,

lim sup
n→∞

1

n

n∑

t=1

1√
t

∑

k,l

pk,l,t(h
(k,l)(X t

1, Y
t−1
1 ) − Yt)

4 ≤ lim sup
n→∞

8

n

n∑

t=1

Y 4
t√
t

= 0,where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8
. Summarizing these bounds, we getthat, almost surely,

lim sup
n→∞

Ln(g) ≤ L∗and the proof of the theorem is �nished. 2Remark 5.1. (Choie of qk,l) Theorem 5.1 is true independently of the hoie of the
qk,l's as long as these values are stritly positive for all k and l. In pratie, however, thehoie of qk,l may have an impat on the performane of the preditor. For example, if thedistribution {qk,l} has a very rapidly dereasing tail, then the term − ln qk,l/

√
n will belarge for moderately large values of k and l, and the performane of g will be determinedby the best of just a few of the elementary preditors h(k,l). Thus, it may be advantageousto hoose {qk,l} to be a large-tailed distribution. For example, qk,l = c0k

−2l−2 is a safehoie, where c0 is an appropriate normalizing onstant.Remark 5.2. (General losses) It is easy to extend Theorem 5.1 to the loss funtion
ℓ(x, y) = |x − y|r ,where r ≥ 1.



5.2. Univ. pred. for bin. memoryless hannel: general onvex loss 86Remark 5.3. (Implementation) The proposed algorithm in not omputationally fea-sible to implement it beause of the in�nite number of simple preditors. However, inpratial senarios e.g. in regression problem Biau, Bleakley, Györ� and Ottusák [14℄ orin portfolio seletion problems f. Györ�, Lugosi and Udina [34℄ and Ottusák and Vajda[62℄ it seems that a relatively small proportion of experts (k = 1, . . . , 5 and l = 1, . . . , 10)provides good experimental results. Moreover, for the higher values of k and l the ahievedperformane is from bad to worse.5.2 Universal predition for binary memoryless hannel:general onvex lossIn this setion we investigate the ase when the preditor has only inomplete information.Here {(Xn, Yn)}∞−∞ is a jointly stationary and ergodi proess and both Xt and Yt arebinary valued. The preditor's estimate, at time t, is based on the value of X t−1
1 and apredition strategy is a sequene g = {gt}∞t=1 of funtions

gt : {0, 1}t−1 → Rso that the predition formed at time t is gt(X
t−1
1 ).Obviously, on the one hand this model is a speial ase of the previous setup (beausethe outome is a binary value sequene), on the other hand it handles a more general lassof loss funtions (onvex losses) and takes less assumption on the amount of the information(uses only past side information).After n time instants, the normalized umulative loss is

Ln(g)
def
=

1

n

n∑

t=1

ℓ(gt(X
t−1
1 ), Yt)where ℓ : R × {0, 1} → [0, K] is a bounded loss funtion, whih is onvex in its �rstargument. This model was introdued and studied in Weissman and Merhav [72, 73℄.The key property of the loss funtion, whih allows to obtain universal onsisteny inthe ase noisy environment, is that the loss funtion an be �linearized� in Yt, that is,

Ln(g) =
1

n

n∑

t=1

[
(1 − Yt)ℓ(gt(X

t−1
1 ), 0) + Ytℓ(gt(X

t−1
1 ), 1)

]beause Yt is binary. This form allows us to estimate Yt muh easier (diretly) irrespetivelyof the loss funtion.The predition with side information only is a deliate problem, beause Yt neither inthe learning, nor in the predition is available. In that ase the fundamental limit for thepreditability of the sequene an be determined as follows. Let
g∗

t (X
t−1
1 ) = E(Yt|X t−1

1 )



5.2. Univ. pred. for bin. memoryless hannel: general onvex loss 87be the Bayes-optimal preditor and its normalized umulative loss is
Ln(g∗

t ) =
1

n

n∑

t=1

ℓ(g∗(X t−1
1 ), Yt) .Now de�ne

δt = ℓ(gt(X
t−1
1 ), Yt) − E

(
ℓ(gt(X

t−1
1 ), Yt)|X t−1

1

)then we an write
Ln(g) =

1

n

n∑

t=1

δt +
1

n

n∑

t=1

E
(
ℓ(gt(X

t−1
1 ), Yt)|X t−1

1

)

≥ 1

n

n∑

t=1

δt +
1

n

n∑

t=1

E
(
ℓ(g∗

t (X
t−1
1 ), Yt)|X t−1

1

)
.Weissman and Merhav [73, Lemma 1℄ proved

1

n

n∑

t=1

δt → 0 a.s.under the ondition that {(Xn, Yn)}∞n=−∞ is onditionally mixing in the sense that
∞∑

s=1

sup
t≥1

E
∣∣P{Yt+s = a|Yt = a,X t+s−1

1 } − P{Yt+s = a|X t+s−1
1 }

∣∣ < ∞, (5.9)where a ∈ {0, 1}. Therefore, we get
lim inf
n→∞

Ln(g) ≥ lim inf
n→∞

Ln(g∗) = R∗ , (5.10)with
R∗ = E

{
(1 − Y0)ℓ(E{Y0 | X−1

−∞}, 0) + Y0ℓ(E{Y0 | X−1
−∞}, 1)

}
. (5.11)Similarly to De�nition 5.1 we all a predition strategy g universally onsistent with respetto a lass C of stationary and ergodi proesses {(Xn, Yn)}∞−∞ if for eah proess in thelass,

lim
n→∞

Ln(g) = R∗ almost surely.Heneforth, we assume that the onnetion between Yt and Xt are haraterized by anbinary memoryless hannel as, e.g., binary symmetri hannel or binary erasure hannel.It means that Yt is the input of the hannel and Xt is the output of the hannel, andbased on the past outputs X t−1
1 we want to estimate the input Yt. We suppose also thatthe rossover probabilities of the hannel are known for the algorithm. This assumptionis indeed a realisti one in many appliations, where noisy medium is well-haraterizedstatistially.



5.2. Univ. pred. for bin. memoryless hannel: general onvex loss 88Then the algorithm is able to onstrut a random variable r̃(Xt,C) whih is an e�ientestimate of original bit Yt where C is the hannel matrix:
C =

[
1 − p p

q 1 − q

]
,and 0 ≤ p, q < 1

2
are the rossover probabilities of the hannel. More preisely, let

r̃(Xt,C) =
Xt − p

1 − p − qwhih is a onditionally unbiased estimate of Yt respet to X t−1
1 . Namely,

E{Xt|Yt} = I{Yt=0}[(1 − p)Yt + p(1 − Yt)] + I{Yt=1}[(1 − q)Yt + q(1 − Yt)]

= I{Yt=0}[p(1 − Yt)] + I{Yt=1}[(1 − q)Yt]

= p + Yt(1 − p − q)and therefore
E{r̃(Xt,C)|X t−1

1 } = E

{
Xt − p

1 − p − q

∣∣∣∣X
t−1
1

}

= E

{
E
{
Xt|Yt, X

t−1
1

}
− p

1 − p − q

∣∣∣∣X
t−1
1

}

= E

{
E {Xt|Yt} − p

1 − p − q

∣∣∣∣X
t−1
1

}

= E{Yt|X t−1
1 } ,where the third equation follows from the memoryless property of the hannel.The algorithm is de�ned, at eah time instant, as a ombination of simple preditors,where the weighting oe�ients depend on the past performane of eah simple preditor.We de�ne an in�nite array of elementary preditors h(k), k = 1, 2, . . . as follows. Let

J
(k)
n be the loations of the mathes of the last seen binary string xn−1

n−k of length k in thepast:
J (k)

n = {k < t < n : xt−1
t−k = xn−1

n−k} .Now de�ne the elementary preditor h(k) by
h(k)(xn−1

1 ) = r̃

(∑
{t∈J

(k)
n } xt

|J (k)
n |

,C

)

n > k + 1, where 0/0 is de�ned to be 0. Note that h(k)(xn−1
1 ) ∈

[
−p

1−p−q
; 1−p

1−p−q

].Sine, the preditor has no aess to the �lean� sequene Yt thus to measure its ownperformane (loss) it must use another type of the loss funtion based on Xt only. De�ne



5.2. Univ. pred. for bin. memoryless hannel: general onvex loss 89the following loss funtion introdued by Weissman and Merhav [72℄: let ℓ̃ : R × {0, 1} →
[−pK
1−2p

, (1−p)K
1−2p

] be the estimated loss, where K is the upper bound of ℓ(·, ·). More preisely,let
ℓ̃(gt(X

t−1
1 ), Xt)

def
= r̃(1 − Xt,C)ℓ(gt(X

t−1
1 ), 0) + r̃(Xt,C)ℓ(gt(X

t−1
1 ), 1) ,whih is an (onditionally) unbiased estimate of the k-th expert's true loss. The umulativeestimated loss of the k-th expert is given by

L̃n(h(k)) =
1

n

n∑

t=1

ℓ̃(h(k)(X t−1
1 ), Xt) .The proposed predition algorithm proeeds as follows: let {qk} be a probability distri-bution on the set of all k of positive integers suh that for all k, qk > 0. For ηt > 0, de�nethe weights

wk,t = qke
−ηt(t−1)L̃t−1(h(k))and their normalized values

pk,t =
wk,t∑∞
i=1 wi,t

.The predition strategy g is de�ned by
gt(x

t−1
1 ) =

∞∑

k=1

pk,th
(k)(xt−1

1 ) , t = 1, 2, . . . . (5.12)Theorem 5.2. (Ottusák and Györfi [60℄). Assume that {Yt} is stationary ergodi,and {Xt} is the output sequene of a binary memoryless hannel if {Yt} is the input se-quene. The predition sheme g de�ned above is universally onsistent with respet to thelass of all ergodi proesses satisfying (5.9).For the proof of the theorem we use the next lemma is due to Weissman and Merhav [72℄(Lemma 2).Lemma 5.3. If ℓ(·, ·) ∈ [0, B] then for any preditor g

lim sup
n→∞

√
n|Ln(g) − L̃n(g)|√

log log n
≤ C(C) a.s.,where C(C) is a deterministi onstant depending on the hannel matrix.Proof of Theorem 5.2. Beause of (5.9) we have (5.10), therefore it is enough to showthat

lim sup
n→∞

Ln(g) ≤ R∗ a.s.



5.2. Univ. pred. for bin. memoryless hannel: general onvex loss 90Now we an write
lim sup

n→∞
Ln(g) − R∗ ≤ lim sup

n→∞
|Ln(g) − L̃n(g)| (5.13)

+ lim sup
n→∞

L̃n(g) − inf
k

lim sup
n→∞

L̃n(h(k)) (5.14)
+ inf

k
lim sup

n→∞
L̃n(h(k)) − inf

k
lim sup

n→∞
Ln(h(k)) (5.15)

+ inf
k

lim sup
n→∞

Ln(h(k)) − R∗. (5.16)(5.13) and (5.15) goes to zero beause of Lemma 5.3. For (5.14), we an apply Lemma 5.1with ℓ(·, ·) = ℓ̃(·, ·) + pK
1−p−q

, where the last additive term ensures that ℓ(·, ·) ≥ 0. Then
ℓ(·, ·) ∈ [0, B], where B = K

1−p−q
and we have

lim sup
n→∞

L̃n(g) ≤ lim sup
n→∞

inf
k

(
L̃n(h(k)) − 2B ln qk√

n

)

≤ inf
k

lim sup
n→∞

(
L̃n(h(k)) − 2B ln qk√

n

)

≤ inf
k

lim sup
n→∞

L̃n(h(k)) .Thus it remains to show that (5.16) is smaller than zero:
inf
k

lim sup
n→∞

Ln(h(k)) − R∗ ≤ 0 .By an appliation of the ergodi theorem, as n → ∞, a.s.,
h(k)

n (Xn−1
1 ) = r̃

(∑
{t∈J

(k)
n } Xt

|J (k)
n |

,C

)

→ r̃
(
E{X0|X−1

−k},C
)

= E{r̃(X0,C)|X−1
−k}

= E{Y0|X−1
−k} .By Lemma 5.2, as n → ∞, almost surely,

Ln(h(k)) =
1

n

n∑

t=1

ℓ(h(k)(X t−1
1 ), Yt)

→ E{ℓ(E{Y0 | X−1
−k}, Y0)

= E{(1 − Y0)ℓ(E{Y0 | X−1
−k}, 0) + Y0ℓ(E{Y0 | X−1

−k}, 1)}def
= ǫk.Thus, the martingale onvergene theorem (see, e.g., Stout [67, Theorem 2.8.6.℄) impliesthat
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inf
k

ǫk = lim
k→∞

ǫk = E
{
(1 − Y0)ℓ(E{Y0 | X−1

−∞}, 0) +Y0ℓ(E{Y0 | X−1
−∞}, 1)

}
= R∗as desired. 2Remark 5.4. (Predition under hannel unertainty) If we assume that some-times the algorithm has aess to the original bit Yt, then we may onstrut a universalonsistent predition sheme even if p and q are unknown for the algorithm. However in anumber of ases there are expensive to obtain Yt, therefore the foreaster has the option toquery this information. For query it used i.i.d. sequene S1, S2, . . . , Sn of Bernoulli randomvariables suh that P{St = 1} = ǫ and asks label Yt if St = 1. Then the algorithm anonstrut an e�ient estimate of the rossover probabilities:

p̃n =

∑n
t=1 I{Xt=1,Yt=0}St∑n

t=1 I{Yt=0}Stand
q̃n =

∑n
t=1 I{Xt=0,Yt=1}St∑n

t=1 I{Yt=1}St

,where p̃n → p and q̃n → q. Now using these estimates in ℓ̃(·, ·) and r̃(·, ·) we obtain auniversal predition sheme. The above desribed situation appears when the algorithmis supported by a human expert or we have a seond no noisy-hannel. For example, inase of natural language proessing (e.g. 8 bits represent a harater), the human observerselet the best possible reonstrution, whih e.g, an be found in the �ditionary� and �tsin with the ontext.5.3 Universal predition for binary memoryless hannel:zero-one lossIn this setion we apply the same ideas to the seemingly more di�ult lassi�ation (orpattern reognition) problem. The strategy of the lassi�er is a sequene f = {f t}∞t=1 ofdeision funtions
f t : {0, 1}t−1 → {0, 1}so that the lassi�ation formed at time t is ft(X

t−1
1 ). The normalized umulative 0 − 1loss for any �xed pair of sequenes Xn

1 , Y n
1 is now

Rn(f) =
1

n

n∑

t=1

I{f t(X
t−1
1 ) 6=Yt}.(5.9) implies (5.10) suh that

lim inf
n→∞

Rn(f) ≥ R∗ (5.17)



5.3. Universal predition for binary memoryless hannel: zero-one loss 92where
R∗ = E

{
min

(
P{Y0 = 1|X−1

−∞}, P{Y0 = 0|X−1
−∞}

)}
.Consider the predition sheme gt(X

t−1
1 ) with squared loss ℓ(x, y) = (x−y)2, introduedin the previous setion, and then introdue the orresponding lassi�ation sheme:

f t(X
t−1
1 ) =

{
1 if gt(X

t−1
1 ) > 1/2;

0 otherwise.The main result of this setion is the universal onsisteny of this simple lassi�ationsheme:Theorem 5.3. (Ottusák and Györfi [60℄). Assume that {Yt} is stationary ergodi,and {Xt} is the output sequene of a binary memoryless hannel if {Yt} is the input se-quene. The lassi�ation sheme f de�ned above satis�es
lim

n→∞
Rn(f) = R∗ almost surelyfor any stationary and ergodi proess {(Xn, Yn)}∞n=−∞ satisfying (5.9).For the proof we need the following orollary of Theorem 5.2.Corollary 5.1. Under the onditions of Theorem 5.2,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | X t−1

−∞} − gt(X
t−1
1 )

)2
= 0 a.s. (5.18)where gt is the preditor for squared loss ℓ(x, y) = (x − y)2 in noisy setting.Proof. The ergodi theorem implies that

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − E{Yt | X t−1

−∞}
)2 ∣∣∣X t−1

−∞

}
= L∗ a.s.and note that

E
{ (

Yt − gt(X
t−1
1 )

)2 ∣∣X t−1
−∞
}

= E{
(
Yt − E{Yt | X t−1

−∞}
)2 | X t−1

−∞}
+
(
E{Yt | X t−1

−∞} − gt(X
t−1
1 )

)2
,therefore in order to �nish the proof it su�es to show

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − gt(X

t−1
1 )

)2 ∣∣∣X t−1
−∞

}
= L∗ a.s. (5.19)By Theorem 5.2 with squared loss, we have
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lim

n→∞
1

n

n∑

t=1

(
Yt − gt(X

t−1
1 )

)2
= L∗ a.s.Thus, for (5.19), we have to prove that

1

n

n∑

t=1

((
Yt − gt(X

t−1
1 )

)2 − E{
(
Yt − gt(X

t−1
1 )

)2 | X t−1
−∞}

)

=
1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | X t−1

−∞}
)

− 2
1

n

n∑

t=1

gt(X
t−1
1 )(Yt − E{Yt | X t−1

−∞}) → 0 a.s.By the ergodi theorem and the assumption (5.9) we have
1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | X t−1

−∞}
)
→ 0 a.s.and

1

n

n∑

t=1

(Yt − E{Yt | X t−1
−∞}) → 0 a.s.whih imply the assertion. 2Proof of Theorem 5.3. Beause of (5.17) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.Introdue the Bayes lassi�ation sheme using the in�nite past:
f ∗

t (X t−1
−∞) =

{
1 if P{Yt = 1 | X t−1

−∞} > 1/2;
0 otherwise,and its normalized umulative 0 − 1 loss:

Rn(f ∗) =
1

n

n∑

t=1

I{f∗
t (Xt−1

−∞) 6=Yt}.Put
R̄n(f) =

1

n

n∑

t=1

P{f t(X
t−1
1 ) 6= Yt | X t−1

−∞}
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R̄n(f ∗) =

1

n

n∑

t=1

P{f ∗
t (X t−1

−∞) 6= Yt | X t−1
−∞}.Beause of assumption (5.9) we have

Rn(f) − R̄n(f) → 0 a.s.and
Rn(f ∗) − R̄n(f ∗) → 0 a.s.,moreover, by the Breiman ergodi theorem

R̄n(f ∗) → R∗ a.s.so we have to show that
lim sup

n→∞
(R̄n(f) − R̄n(f ∗)) ≤ 0 a.s.Theorem 2.2 in Devroye, Györ� and Lugosi [25℄ implies that

R̄n(f) − R̄n(f ∗) =
1

n

n∑

t=1

(
P{f t(X

t−1
1 ) 6= Yt | X t−1

−∞}

−P{f ∗
t (X t−1

−∞) 6= Yt | X t−1
−∞}

)

≤ 2
1

n

n∑

t=1

∣∣E{Yt | X t−1
−∞} − gt(X

t−1
1 )

∣∣

≤ 2

√√√√1

n

n∑

t=1

∣∣E{Yt | X t−1
−∞} − gt(X

t−1
1 )

∣∣2

→ 0 a.s.,where in the last step we applied the result of Corollary 5.1. 2
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