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Abstract— A simple on-line procedure is considered for the
prediction of a binary-valued sequence in the setup introduced
and studied by Weissman and Merhav [13], [14], where only side
information is available for the algorithm. The (non-randomized)
algorithm is based on a convex combination of several simple
predictors. If the side information is also binary-valued (i.e.
original sequence is corrupted by a binary sequence) and both
processes are realizations of stationary and ergodic random
processes then the average of the loss converges, almost surely,
to that of the optimum, given by the Bayes predictor. An analog
result is offered for the classification of binary processes.

I. I NTRODUCTION

We study the problem of sequential prediction of a binary-
valued sequence, when only side information is available for
the algorithm. At each time instantt = 1, 2, . . ., the predictor
is asked to guess the value of the next outcomeyt of a
sequence of binary numbersy1, y2, . . . with knowledge of side
information xt−1

1 = (x1, . . . , xt−1), wherext ∈ {0, 1}. By
definition x0

1 is empty. Thus, the predictor’s estimate, at time
t, is based on the value ofxt−1

1 . A prediction strategy is a
sequenceg = {gt}∞t=1 of functions

gt : {0, 1}t−1 → R

so that the prediction formed at timet is gt(x
t−1
1 ).

In this paper we assume that(x1, y1), (x2, y2), . . . are real-
izations of the random variables(X1, Y1), (X2, Y2), . . . such
that{(Xn, Yn)}∞−∞ is a jointly stationary and ergodic process.

After n time instants, thenormalized cumulative lossis

Ln(g)
def
=

1

n

n
∑

t=1

ℓ(gt(X
t−1
1 ), Yt)

=
1

n

n
∑

t=1

[

(1 − Yt)ℓ(gt(X
t−1
1 ), 0) + Ytℓ(gt(X

t−1
1 ), 1)

]

,

where ℓ : R × {0, 1} → [0,K] is a bounded loss function,
which is convex in its first argument. This model was intro-
duced and studied in Weissman and Merhav [13], [14].

The case when also the past of the sequenceY t−1
1 is avail-

able for the predictor is well-studied. The fundamental limit
for the predictability of the prediction strategyg′t(X

t
1, Y

t−1
1 )

was determined by Algoet [2] who showed that for any predic-
tion strategyg′ and stationary ergodic process{(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g′) ≥ L
∗

almost surely, (1)

where

L
∗

= E
{

(1 − Y0)ℓ(E{Y0 | X0
−∞, Y −1

−∞}, 0)

+Y0ℓ(E{Y0 | X0
−∞, Y −1

−∞}, 1)
}

is the minimal Bayes error of any prediction for the binary
value of Y0 based on the infinite pastX0

−∞ and Y −1
−∞.

Universally consistent strategies asymptotically achieve the
best possible loss for all ergodic processes in the class. Algoet
[1] and Morvai, Yakowitz and Gÿorfi [10] proved that there
exists a prediction strategy universal with respect to the class
of all bounded ergodic processes. Györfi, Lugosi and Morvai
[8] gave a simple universal algorithm for 0-1 loss and Györfi
and Lugosi [7] introduced several simple prediction strategies,
which are universally consistent for squared loss with respect
to the class of bounded, stationary and ergodic processes.

However, the prediction with side information only is a
delicate problem, becauseYt neither in the learning, nor in
the prediction is available. In that case the fundamental limit
for the predictability of the sequence can be determined as
follows. Let

g∗t (Xt−1
1 ) = E(Yt|Xt−1

1 )

be the Bayes-optimal predictor and its normalized cumulative
loss is

Ln(g∗) =
1

n

n
∑

t=1

ℓ(g∗(Xt−1
1 ), Yt) .

Now define

δt = ℓ(gt(X
t−1
1 ), Yt) − E

(

ℓ(gt(X
t−1
1 ), Yt)|Xt−1

1

)

then we can write

Ln(g) =
1

n

n
∑

t=1

δt +
1

n

n
∑

t=1

E
(

ℓ(gt(X
t−1
1 ), Yt)|Xt−1

1

)

≥ 1

n

n
∑

t=1

δt +
1

n

n
∑

t=1

E
(

ℓ(g∗t (Xt−1
1 ), Yt)|Xt−1

1

)

.

Weissman and Merhav [14, Lemma 1] proved

1

n

n
∑

t=1

δt → 0 a.s.

under the condition that{(Xn, Yn)}∞n=−∞ is conditionally
mixing in the sense that



∞
∑

s=1

sup
t≥1

E
∣

∣P{Yt+s = a|Yt = a,Xt+s−1
1 }−

P{Yt+s = a|Xt+s−1
1 }

∣

∣ < ∞, (2)

wherea ∈ {0, 1}. Therefore, we get

lim inf
n→∞

Ln(g) ≥ lim inf
n→∞

Ln(g∗) = L∗ , (3)

with

L∗ = E
{

(1 − Y0)ℓ(E{Y0 | X−1
−∞}, 0)

+Y0ℓ(E{Y0 | X−1
−∞}, 1)

}

. (4)

This lower bound gives sense to the following definition:
Definition 1: A prediction strategyg is called universally

consistentwith respect to a classC of stationary and ergodic
processes{(Xn, Yn)}∞−∞ if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Weissman and Merhav [14] introduced a universally con-
sistent predictor for the above described setup. They used an
algorithm based on Vovk [12] to combine the simple predictors
and used doubling trick to fit the algorithm to infinite time
horizon. In this paper we give a simple universally consistent
predictor which does not use the doubling trick and the only
assumption on the loss function that it is convex in its first
argument. The algorithm builds on a methodology worked
out in recent years for prediction of individual sequences
(see e.g. Cesa-Bianchi and Lugosi [4] for a survey). We also
managed to extend the result for the seemingly more difficult
classification problem (0 − 1 loss).

In Section II we introduce a universally consistent strategy
based on a combination of simple predictors for bounded
loss function which is convex in its first argument in case of
ergodic process. In Section III we consider the0−1 loss, i.e.,
construct a recursive pattern recognition scheme for stationary
and ergodic process.

II. U NIVERSAL PREDICTION FOR ABINARY MEMORYLESS

CHANNEL : GENERAL CONVEX LOSS

Henceforth, we assume that the connection betweenYt and
Xt are characterized by anbinary memoryless channelas,
e.g., binary symmetric channel or binary erasure channel. It
means thatYt is the input of the channel andXt is the
output of the channel, and based on the past outputsXt−1

1 we
want to estimate inputYt. We suppose also that the crossover
probabilities of the channel areknownfor the algorithm. This
assumption is indeed a realistic in many applications, where
noisy medium is well-characterized statistically.

Then the algorithm is able to construct a random variable
r̃(Xt,C) which is an efficient estimate of original bitYt where
C is the channel matrix:

C =

[

1 − p p
q 1 − q

]

,

and0 ≤ p, q < 1
2 are the crossover probabilities of the channel.

More precisely, let

r̃(Xt,C) =
Xt − p

1 − p − q

and it is an conditionally unbiased estimate ofYt respect to
Xt−1

1 . Namely,

E{Xt|Yt} = I{Yt=0}[(1 − p)Yt + p(1 − Yt)]

+I{Yt=1}[(1 − q)Yt + q(1 − Yt)]

= I{Yt=0}[p(1 − Yt)] + I{Yt=1}[(1 − q)Yt]

= p + Yt(1 − p − q)

and therefore

E{r̃(Xt,C)|Xt−1
1 } = E

{

Xt − p

1 − p − q

∣

∣

∣

∣

Xt−1
1

}

= E

{

E
{

Xt|Yt,X
t−1
1

}

− p

1 − p − q

∣

∣

∣

∣

Xt−1
1

}

= E

{

E {Xt|Yt} − p

1 − p − q

∣

∣

∣

∣

Xt−1
1

}

= E{Yt|Xt−1
1 } ,

where the third equation follows from the memoryless property
of the channel.

The algorithm is defined, at each time instant, as a combi-
nation of simple predictors, where the weighting coefficients
depend on the past performance of each simple predictor.

We define an infinite array of elementary predictorsh(k),
k = 1, 2, . . . as follows. Let J (k)

n be the locations of the
matches of the last seen binary stringxn−1

n−k of length k in
the past:

J (k)
n = {k < t < n : xt−1

t−k = xn−1
n−k} .

Now define the elementary predictorh(k) by

h(k)(xn−1
1 ) = r̃

(∑

{t∈J
(k)
n } xt

|J (k)
n |

,C

)

,

n > k + 1, where 0/0 is defined to be0. Note that

h(k)(xn−1
1 ) ∈

[

−p
1−p−q

; 1−p
1−p−q

]

.
Since, the predictor has no access to the “clean” sequence

Yt thus to measure its own performance (loss) it must use
another type of the loss function based onXt only. Define the
following loss function introduced by Weissman and Merhav
[13]: let ℓ̃ : R × {0, 1} → [ −pK

1−p−q
, (1−p)K

1−p−q
] be the estimated

loss, whereK is the upper bound ofℓ(·, ·). More precisely,
let

ℓ̃(h(k)(Xt−1
1 ),Xt)

def
= r̃(1 − Xt,C)ℓ(h(k)(Xt−1

1 ), 0)

+ r̃(Xt,C)ℓ(h(k)(Xt−1
1 ), 1) ,

which is an (conditionally) unbiased estimate of thek-th
expert’s true loss. The cumulative estimated loss of thek-th



expert is given by

L̃n(h(k)) =
1

n

n
∑

t=1

ℓ̃(h(k)(Xt−1
1 ),Xt) .

The proposed prediction algorithm proceeds as follows: let
{qk} be a probability distribution on the set of allk of positive
integers such that for allk, qk > 0. For ηt > 0, define the
weights

wt,k = qke−ηt(t−1)L̃t−1(h
(k))

and their normalized values

pt,k =
wt,k

Wt

, where Wt
def
=

∞
∑

i=1

wt,i .

The prediction strategyg is defined by

gt(x
t−1
1 ) =

∞
∑

k=1

pt,kh(k)(xt−1
1 ) , t = 1, 2, . . . . (5)

Theorem 1:Assume that{Yt} is stationary ergodic, and
{Xt} is the output sequence of a binary memoryless channel
if {Yt} is the input sequence. The prediction schemeg defined
above is universally consistent with respect to the class ofall
ergodic processes satisfying (2).

Here we describe three lemmas, which are used in the
analysis. The first lemma allows us to handle the case when
the number of the elementary predictors is infinite.

Lemma 1 (Gÿorfi and Ottucśak [9]): Let h(1), h(2), . . . be
a sequence of prediction strategies (experts). Let{qk} be a
probability distribution on the set of positive integers. Denote
the normalized loss of the experth = (h1, h2, . . . ) by

Ln(h) =
1

n

n
∑

t=1

ℓ(ht, Yt)

and the loss functionℓ is convex in its first argumenth and
ℓ(·, ·) ∈ [0, B], whereB ∈ R

+. Define

wt,k = qke−ηt(t−1)Lt−1(h
(k))

with ηt = 1
B
√

t
, and

pt,k =
wt,k

∑∞
k=1 wt,k

.

If the prediction strategyg = (g1, g2, . . . ) is defined by

gt =

∞
∑

k=1

pt,kh
(k)
t t = 1, 2, . . .

then for everyn ≥ 1,

Ln(g) ≤ inf
k

(

Ln(h(k)) − 2B ln qk√
n

)

+
B

2
√

n
.

Lemma 2 (Weissman and Merhav [13], Lemma 2):If
ℓ(·, ·) ∈ [0, B] then for any predictorg

lim sup
n→∞

√
n|Ln(g) − L̃n(g)|√

log log n
≤ C(C) a.s.,

where C(C) is a deterministic constant depending on the
channel matrix.

The next lemma is due to Breiman [3], and its proof may
also be found in Gÿorfi et al. [6].

Lemma 3 (Breiman [3]):Let Z = {Zi}∞−∞ be a stationary
and ergodic time series. LetT denote the left shift operator.
Let fi be a sequence of real-valued functions such that for
some functionf , fi(Z) → f(Z) almost surely. Assume that
E supi |fi(Z)| < ∞. Then

lim
n→∞

1

n

n
∑

i=1

fi(T
iZ) = Ef(Z) a.s.

Proof of Theorem 1.Because of (2) we have (3), therefore it
is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Now we can write

lim sup
n→∞

Ln(g) − L∗

≤ lim sup
n→∞

|Ln(g) − L̃n(g)| (6)

+ lim sup
n→∞

L̃n(g) − inf
k

lim sup
n→∞

L̃n(h(k)) (7)

+ inf
k

lim sup
n→∞

L̃n(h(k)) − inf
k

lim sup
n→∞

Ln(h(k)) (8)

+ inf
k

lim sup
n→∞

Ln(h(k)) − L∗. (9)

(6) and (8) goes to zero because of Lemma 2. For (7), we can
apply Lemma 1 withℓ(·, ·) = ℓ̃(·, ·) + pK

1−p−q
, where the last

additive term ensures thatℓ(·, ·) ≥ 0. Then we have

lim sup
n→∞

L̃n(g) ≤ lim sup
n→∞

inf
k

(

L̃n(h(k)) − 2B ln qk√
n

)

≤ inf
k

lim sup
n→∞

(

L̃n(h(k)) − 2B ln qk√
n

)

≤ inf
k

lim sup
n→∞

L̃n(h(k)) .

Thus it remains to show that (9) is smaller than zero:

inf
k

lim sup
n→∞

Ln(h(k)) − L∗ ≤ 0 .

By an application of the ergodic theorem, asn → ∞, a.s.,

h(k)
n (Xn−1

1 ) = r̃

(∑

{t∈J
(k)
n } Xt

|J (k)
n |

,C

)

→ r̃
(

E{X0|X−1
−k},C

)

= E{r̃(X0,C)|X−1
−k}

= E{Y0|X−1
−k} .

By Lemma 3, asn → ∞, almost surely,



Ln(h(k)) =
1

n

n
∑

t=1

ℓ(h(k)(Xt−1
1 ), Yt)

→ E{ℓ(E{Y0 | X−1
−k}, Y0)

= E{(1 − Y0)ℓ(E{Y0 | X−1
−k}, 0)

+Y0ℓ(E{Y0 | X−1
−k}, 1)

def
= ǫk.

Thus, the martingale convergence theorem (see, e.g., Stout[11,
Theorem 2.8.6.]) implies that

inf
k

ǫk = lim
k→∞

ǫk

= E
{

(1 − Y0)ℓ(E{Y0 | X−1
−∞}, 0)

+ Y0ℓ(E{Y0 | X−1
−∞}, 1)

}

= L∗

as desired. 2

Remark 1: (Prediction under channel uncertainty)If we
assume that sometimes the algorithm has access to the original
bit Yt, then we may construct a universal consistent prediction
scheme. However in a number of cases there are expensive to
obtainYt, therefore the forecaster has the option to query this
information. For query it used i.i.d. sequenceS1, S2, . . . , Sn

of Bernoulli random variables such thatP{St = 1} = ǫ and
asks labelYt if St = 1. Then the algorithm can construct an
efficient estimate of the crossover probabilities:

p̃n =

∑n
t=1 I{Xt=1,Yt=0}St
∑n

t=1 I{Yt=0}St

and

q̃n =

∑n
t=1 I{Xt=0,Yt=1}St
∑n

t=1 I{Yt=1}St

,

where p̃n → p and q̃n → q. Now using these estimates in
ℓ̃(·, ·) and r̃(·, ·) we obtain a universal prediction scheme.
The above described situation appears when the algorithm is
supported by a human expert or we have a second no noisy-
channel. For example, in case of natural language processing
(e.g. 8 bits represent a character), the human observer select
the best possible reconstruction, which e.g, it can be foundin
the “dictionary” and fits in with the context.

III. U NIVERSAL PREDICTION FOR ABINARY

MEMORYLESS CHANNEL: ZERO-ONE LOSS

In this section we apply the same ideas to the seemingly
more difficult classification (or pattern recognition) problem.
We may formalize the prediction (classification) problem as
follows. The strategy of the classifier is a sequencef =
{ft}∞t=1 of decision functions

ft : {0, 1}t → {0, 1}

so that the classification formed at timet is ft(X
t−1
1 ). The

normalized cumulative0 − 1 loss for any fixed pair of se-
quencesXn

1 , Y n
1 is now

Rn(f) =
1

n

n
∑

t=1

I{ft(X
t−1
1 ) 6=Yt}.

(2) implies (3) such that

lim inf
n→∞

Rn(f) ≥ R∗ (10)

where

R∗ = E

{

min
(

P{Y0 = 1|X−1
−∞},P{Y0 = 0|X−1

−∞}
)

}

.

Consider the prediction schemegt(X
t−1
1 ) with squared loss

ℓ(x, y) = (x−y)2, introduced in the previous section, and then
introduce the corresponding classification scheme:

ft(X
t−1
1 ) =

{

1 if gt(X
t−1
1 ) > 1/2;

0 otherwise.

The main result of this section is the universal consistencyof
this simple classification scheme:

Theorem 2:Assume that{Yt} is stationary ergodic, and
{Xt} is the output sequence of a binary memoryless channel
if {Yt} is the input sequence. The classification schemef
defined above satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process{(Xn, Yn)}∞n=−∞ sat-
isfying (2).

For the proof of Theorem 2 we need the following corollary
of Theorem 1.

Corollary 1: Under the conditions of Theorem 1,

lim
n→∞

1

n

n
∑

t=1

(

E{Yt | Xt−1
−∞} − gt(X

t−1
1 )

)2
= 0 a.s. (11)

wheregt is the predictor for squared lossℓ(x, y) = (x − y)2.

Proof. The ergodic theorem implies that

lim
n→∞

1

n

n
∑

t=1

E

{

(

Yt − E{Yt | Xt−1
−∞}

)2
∣

∣

∣
Xt−1

−∞

}

= L∗ a.s.

and note that

E
{ (

Yt − gt(X
t−1
1 )

)2 ∣
∣Xt−1

−∞
}

= E{
(

Yt − E{Yt | Xt−1
−∞}

)2 | Xt−1
−∞}

+
(

E{Yt | Xt−1
−∞} − gt(X

t−1
1 )

)2
,

therefore in order to finish the proof it suffices to show

lim
n→∞

1

n

n
∑

t=1

E

{

(

Yt − gt(X
t−1
1 )

)2
∣

∣

∣
Xt−1

−∞

}

= L∗ a.s.

(12)
By Theorem 1 with squared loss, we have

lim
n→∞

1

n

n
∑

t=1

(

Yt − gt(X
t−1
1 )

)2
= L∗ a.s.



Thus, for (12), we have to prove that

1

n

n
∑

t=1

(

(

Yt − gt(X
t−1
1 )

)2 − E{
(

Yt − gt(X
t−1
1 )

)2 | Xt−1
−∞}

)

=
1

n

n
∑

t=1

(

Y 2
t − E{Y 2

t | Xt−1
−∞}

)

− 2
1

n

n
∑

t=1

gt(X
t−1
1 )(Yt − E{Yt | Xt−1

−∞}) → 0 a.s.

Because of assumption (2)

1

n

n
∑

t=1

(

Y 2
t − E{Y 2

t | Xt−1
−∞}

)

=
1

n

n
∑

t=1

(Yt − E{Yt | Xt−1
−∞})

→ 0 a.s.

and the corollary is proved. 2

Proof of Theorem 2.Because of (10) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.

Introduce the Bayes classification scheme using the infinite
past:

f∗
t (Xt−1

−∞) =

{

1 if P{Yt = 1 | Xt−1
−∞} > 1/2;

0 otherwise,

and its normalized cumulative0 − 1 loss:

Rn(f∗) =
1

n

n
∑

t=1

I{f∗

t
(Xt−1

−∞
) 6=Yt}.

Put

R̄n(f) =
1

n

n
∑

t=1

P{ft(X
t−1
1 ) 6= Yt | Xt−1

−∞}

and

R̄n(f∗) =
1

n

n
∑

t=1

P{f∗
t (Xt−1

−∞) 6= Yt | Xt−1
−∞}.

Because of assumption (2) we have

Rn(f) − R̄n(f) → 0 a.s.

and
Rn(f∗) − R̄n(f∗) → 0 a.s.,

moreover, by the Breiman ergodic theorem

R̄n(f∗) → R∗ a.s.

so we have to show that

lim sup
n→∞

(R̄n(f) − R̄n(f∗)) ≤ 0 a.s.

Theorem 2.2 in Devroye, Györfi and Lugosi [5] implies that

R̄n(f) − R̄n(f∗) =
1

n

n
∑

t=1

(

P{ft(X
t−1
1 ) 6= Yt | Xt−1

−∞}

−P{f∗
t (Xt−1

−∞) 6= Yt | Xt−1
−∞}

)

≤ 2
1

n

n
∑

t=1

∣

∣E{Yt | Xt−1
−∞} − gt(X

t−1
1 )

∣

∣

≤ 2

√

√

√

√

1

n

n
∑

t=1

∣

∣E{Yt | Xt−1
−∞} − gt(X

t−1
1 )

∣

∣

2

→ 0 a.s.,

where in the last step we applied the result of Corollary 1.2
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