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Abstract— A simple on-line procedure is considered for the where
prediction of a binary-valued sequence in the setup introduced
and studied by Weissman and Merhav [13], [14], where only side T," = E {(1 — Yo)U(E{Ys | ng onlo}’ 0)
information is available for the algorithm. The (non-randomized) 0 1
algorithm is based on a convex combination of several simple +Yol(E{Yy | XZ 0, Yoo ), 1)}

predictors. If the side information is also binary-valued (i.e. . . - .
original sequence is corrupted by a binary sequence) and both is the minimal Bayes error of any prediction for the binary

processes are realizations of stationary and ergodic random value of Y based on the infinite pask®  and Y.
processes then the average of the loss converges, almost syrelyJniversally consistent strategies asymptotically adhi¢he
to that of the optimum, given by the Bayes predictor. An analog best possible loss for all ergodic processes in the clagmeAl
result is offered for the classification of binary processes. [1] and Morvai, Yakowitz and Grfi [10] proved that there
|. INTRODUCTION exists a prediction strategy universal with respect to thesc

We study the problem of sequential prediction of a binar of all bounded ergodic processes. &y, Lugosi and Morvai

S L . 8] gave a simple universal algorithm for 0-1 loss ando@ly
valued sequence, when only side information is availabte fand Lugosi [7] introduced several simple prediction stte
the algorithm. At each time instant= 1, 2, ..., the predictor 9 pi€ b geis,

is asked to guess the value of the next outcogeof a which are universally consistent for squared loss with eéesp

sequence of binary numbeys with knowledae of side to the class of bounded, stationary and ergodic processes.
. t—1 y I8, Y2, . - g However, the prediction with side information only is a

ljn;z;r;iitf;oﬁls em: t(xl'llhi.lg g‘;th‘el)’r;\g:;rgr?;t eestiir?ég. :t’ytimdelicate problem, becausg neither in the learning, nor in
L PYy- ; b ' ﬁ1e prediction is available. In that case the fundamentait li

- 71 - . -
t, is based on thoeo value Qﬂ - A prediction strategy is a for the predictability of the sequence can be determined as
sequencey = {g:}:2, of functions follows. Let

gi: {0,111 =R gi (X1 =BV X{™)

so that the prediction formed at tintes g, (z! ™). be the Bayes-optimal predictor and its normalized curmudati
In this paper we assume th@ty, y1), (x2,y2),... are real- loss is

izations of the random variablesy;, Y1), (X3, Y2),... such

that {(X,,,Y,)}>, is ajointly stationary and ergodic process.

* 1 . * —
t=1
After n time instants, themormalized cumulative loss

Now define

n

LS (X1, 17) 8 = Ug (XE1),Y,) — E (£(g (X1, V)| X1
t=1

n

Ly(g)

then we can write

1 n
= *Z[(l—Yt)f(Qt(Xffl)»O)+Yi€(9t(X’1&71)a1)]7 1 18

"= Ln(9) = 5Z5t+EZE(f(Qt(Xffl)»YtﬂXf*l)
where/ : R x {0,1} — [0, K] is a bounded loss function, = =l
which is convex in its first argument. This model was intro- 15y o1 .yl -1

- T 2NTE (Ugr (XY, v | xEY)

duced and studied in Weissman and Merhav [13], [14]. n ; " ; (e (X370 Y01 ™)

The case when also the past of the sequéffc*e1 is avail-
able for the predictor is well-studied. The fundamentalitim

Y

Weissman and Merhav [14, Lemma 1] proved

for the predictability of the prediction strategy(X?, Y1) 1 <
was determined by Algoet [2] who showed that for any predic- n Z 0 — 0 a.s.
tion strategyy’ and stationary ergodic proce§§X,,,Y,,) >, =1
under the condition tha{(X,,Y,)}>> __ is conditionally

liminf L,(¢) > " almost surely,

n—oo

) mixing in the sense that



oo
Z supE [P{Yiys = alV; = a, XI5 1} - l'c\l/lndo <pq <I 5 iare the crossover probabilities of the channel.
>l ore precisely, let

P{Y; s =a| X! 2 -

{ s = al 1 }| <oo, (2) #(X,,C) = 1)it _p

wherea € {0,1}. Therefore, we get o - . P q'
and it is an conditionally unbiased estimate ¥of respect to
liminf L, (g) > liminf L, (¢*) = L* , (3) X{'. Namely,
with
E{X:|Vi} = Iy,=o[(1 =p)Yi+p(1-Y3)]
L =E{(1 - Yo)/(B{Yo | X=L},0) Hiyi—yl(1— @)Y, + q(1 = 7))
+Yol(BE{Yo | X_ 1.1} . (4) = Iy—oylp(1 = Yo)| + I{y,=13[(1 — ¢)Yi]

. . . = p+Yi(l-p—q)
This lower bound gives sense to the following definition:

Definition 1: A prediction strategyy is called universally and therefore
consistentwith respect to a clas§ of stationary and ergodic X, —
. . = t—1 t— P t—1
processeq (X, Y, )}, if for each process in the class, E{F(X:,C)|X]"} = E{ q‘X1 }

1—p-—
lim L,(g) = L* almost surely _ E { E{X,|Y;,X{"'} —p ‘Xt‘l}
- e - - B 1 - - 1
Weissman and Merhav [14] introduced a universally con- p—a
sistent predictor for the above described setup. They used a _ E{E{Xﬂyt} _p‘th}
algorithm based on Vovk [12] to combine the simple preditor l-p—gq !
and used doubling trick to fit the algorithm to infinite time = E{v|xi ',

horizon. In this paper we give a simple universally consiste
predictor which does not use the doubling trick and the onWhere the third equation follows from the memoryless prgper
assumption on the loss function that it is convex in its fir§f the channel.
argument. The algorithm builds on a methodology worked The algorithm is defined, at each time instant, as a combi-
out in recent years for prediction of individual sequencé®tion ofsimple predictorswhere the weighting coefficients
(see e.g. Cesa-Bianchi and Lugosi [4] for a survey). We al§§pend on the past performance of each simple predictor.
managed to extend the result for the seemingly more difficult We define an infinite array of elementary predictaf$),
classification problem((— 1 loss). k = 1,2,... as follows. LetJ\") be the locations of the

In Section Il we introduce a universally consistent strptegnatches of the last seen binary strim§_; of length % in
based on a combination of simple predictors for boundé@e past:
loss function which is convex in its first argument in case of
ergodic process. In Section Ill we consider the 1 loss, i.e.,

construct a recursive pattern recognition scheme forostaty  Now define the elementary predictbf®) by

and ergodic process.
k) (n—1y _ = 2 ey T
R (™) =7 z ,C |,
||

JF ={k<t<n:zlZl =a""1}.

I[l. UNIVERSAL PREDICTION FOR ABINARY MEMORYLESS
CHANNEL: GENERAL CONVEX LOSS

) n > k + 1, where 0/0 is defined to be0. Note that
Henceforth, we assume that the connection betwig¢esmd W) (2 1) € [=p, 1p
1

X; are characterized by ahinary memoryless channels, 1=p=q’ 1-p—q |’

e.g., binary symmetric channel or binary erasure channeI.Yl Stlr:lce,tthe predlctort has no acfcess to thel clea.rt1 seqtlence
means thatY; is the input of the channel anX; is the ! us to measure 1S own performance (loss) It must use
another type of the loss function based ®pnonly. Define the

output of the channel, and based on the past outﬁﬁ@fs1 we ) L .
want to estimate input;. We suppose also that the crossove][cﬁgt])_wl':tgglo‘jg Lu?gtlf}n 'ntEoil,J I?ed(Pé’,,)V}’?'zse"“tﬁg 2zgml\gfézav
. : s —

probabilities of the channel ateownfor the algorithm. This _ 1-p—q’> 1-p—q )
assumption is indeed a realistic in many applications, whejlpss' whereK is the upper bound of(-, ). More precisely,
noisy medium is well-characterized statistically. et

Then the algorithm is able to construct a random variable ; , ) yt—1 def ~ .o (k) [ yt—1
#(X,, C) which is an efficient estimate of original Bif where CREXT), Xe) = (1 {("’ C)(h (15(1 t)_’lo)
C is the channel matrix: + (X, C)(RM (X1, 1),

Cc— 1—-p p which is an (conditionally) unbiased estimate of theh
o q 1—¢q |’ expert’s true loss. The cumulative estimated loss of &b




expert is given by
(R0 = lz (W) (X1), X)) .

3

The proposed prediction algorithm proceeds as follows:
{qx} be a probability distribution on the set of &llof positive
integers such that for ak, ¢, > 0. Forn, > 0, define the
weights

Wy = le”“(t’l)i“l(hm)

and their normalized values

(oo}
Wy def
Dik = W, where W; = ;wm .

The prediction strategy is defined by

= pkhWE, t=12,.... (5

where C(C) is a deterministic constant depending on the
channel matrix.

The next lemma is due to Breiman [3], and its proof may
Ialso be found in Gyrfi et al. [6].

tLemma 3 (Breiman [3]):Let Z = {Z;}>° be a stationary
and ergodic time series. L&t denote the left shift operator.
Let f; be a sequence of real-valued functions such that for
some functionf, f;(Z) — f(Z) almost surely. Assume that

Esup, |fi(Z)] < co. Then

1< ,
nlingoﬁ;fi(TlZ) =Ef(Z) as.

Proof of Theorem 1Because of (2) we have (3), therefore it
is enough to show that

limsup L, (g9) < L* a.s.

n—oo

Theorem 1:Assume that{Y;} is stationary ergodic, and NOW We can write
{X.} is the output sequence of a binary memoryless channel

if {Y;} is the input sequence. The prediction schenuefined
above is universally consistent with respect to the clasallof

limsup L, (g9) — L*

n—o0

ergodic processes satisfying (2). = h,?fo%p [Ln(9) = Ln(9)] )
Here we describe three lemmas, which are used in the +limsup Ly, (g) — inf lim sup L,, (h*)) @)

analysis. The first lemma allows us to handle the case when n—oo k' pn—oo

the number of the elementary predictors is infinite. +inf lim sup Ly, (h®)) — inf lim sup L,, (h®) (8)
Lemma 1 (Gyrfi and Ottucék [9]): Let A1) h(2) ... be n—o0 ko n—oo

a sequence of prediction strategies (experts). {lggt be a +inf 1171111_}851) Ln(h™) = L*. 9)

probability distribution on the set of positive integersrinte
the normalized loss of the expért= (hy, hs,...) by

lz ((he, V2)

and the loss functior is convex in its first argument and
¢(-,-) € [0, B], where B € R™. Define

3

Wi g = qre DL ()

with n, = and

1
BVt'
Wtk
Dtk = <o -
Zk 1 W,k

If the prediction strategy = (g1, go, - . - ) is defined by

gt = Zptyk.hgk) t=1,2,...
k=1

then for everyn > 1,

2B1 B
La(g) < inf (Ln(h<’“>> nq’“) 3

vn v
Lemma 2 (Weissman and Merhav [13], Lemma [):
¢(-,-) € [0, B] then for any predictoy

n—oo vl1oglogn -

(C) as,

(6) and (8) goes to zero because of Lemma 2. For (7), we can
apply Lemma 1 withé(-,-) = £(-,-) + 12 p 7 , Where the last
additive term ensures théf-,-) > 0. Then we have

7 = 2B1
limsup L,(g9) < limsupi%f (Ln(h(k)) _ HQk>

n—oo n—oo \/ﬁ
~ 2B1
< inflimsup (Ln (hR)y — - qk)
n—oo \/ﬁ

< i%f lim sup Ly, (h®) .

n—oo

Thus it remains to show that (9) is smaller than zero:

mfhmbup L,(h®)y—L*<0.

n—oo

By an application of the ergodic theorem, as— oo, a.s.,

> 0y Xt
(k) n—1 o ~ {teJn’}
hn (Xl ) = T ( |J’I’(Lk)| ,C

— 7 (B{X|XZ;}.C)
= E{f(Xo, O)|XT;}
= E{X|XT}.

By Lemma 3, as1 — oo, almost surely,



so that the classification formed at times f;(X!™'). The
normalized cumulativé) — 1 loss for any fixed pair of se-

Ln(h("')) - lZg(h(k) (X1, 7,) quencesXy, Y{" is now
n t=1 1 n
— B{UE{Y | X7} Y) Balf) = =D Lipxt-Hevy
= B{(1-Yo)(B{Y; | XZ;}.,0) =

2) implies (3) such that
YR | X (2) implies (3) su

def liminf R, (f) > R* (10)
= €. n— 00
_ where
Thus, the martingale convergence theorem (see, e.g., [@fut
Theorem 2.8.6.]) implies that R* = E{ min (P{Yo = 1\)(:;0},13{)/0 = O|X:;o}) } .
ifgf € = ,}E{jo €k Consider the prediction schempg X}~ ') with squared loss
RN . . :
- E {(1 —Yo)UE{Y, | X~L1,0) {(z,y) = (z—y)?, introduced in the previous section, and then

B introduce the corresponding classification scheme:

. _ i go(XTY) > 1/2;
= I t—1y _ UACE S ;
F(XT) { 0 otherwise.
as desired. O  The main result of this section is the universal consistesfcy

Remark 1: (Prediction under channel uncertaintj)we this simple classification scheme: _ _
assume that sometimes the algorithm has access to theabrigin Theorem 2:Assume that{Y;} is stationary ergodic, and
bit ¥;, then we may construct a universal consistent predictigrit} 1S the output sequence of a binary memoryless channel
scheme. However in a number of cases there are expensivl t§Y:} IS the input sequence. The classification schefme
obtainY;, therefore the forecaster has the option to query tHfigfined above satisfies
information. For query it used i.i.d. sequenég, Ss,...,S, lim R,(f) =R* almost surely
of Bernoulli random variables such thR{S; = 1} = ¢ and n—0o0
asks labelY; if S, = 1. Then the algorithm can construct arfor any stationary and ergodic proce§sX,,, Y, )} _ . sat-

efficient estimate of the crossover probabilities: isfying (2).
n For the proof of Theorem 2 we need the following corollary
= 21 Lix,=1,vi=0} St of Theorem 1.
' >ty Irv,—0y St Corollary 1: Under the conditions of Theorem 1,
and R t—1 t—1y)2
n lim — E{V; | X"} —a(X;7")) =0 as. (11)
2= fix=ovi=1y S noeen ; (B(Y: (670)
Y= Ty S whereg, is the predictor for squared logéz,y) = (z — y)>.

wherep, — p and g, — g. Now using these estimates inproof. The ergodic theorem implies that
¢(-,-) and 7(-,-) we obtain a universal prediction scheme.

The above described situation appears when the algorithm jis, 1
supported by a human expert or we have a second no noigy=> 7
channel. For example, in case of natural language pro@essi

: d note that
(e.g. 8 hits represent a character), the human observait sele

SE{(v - B | xl}’ ‘Xﬁ;ﬁ} —L* as.
t=1

_ 2 _
the best possible reconstruction, which e.g, it can be foond E{ (Y —¢:(X{™") p.sany
the “dictionary” and fits in with the context. _ E{(Yt AP G )2 | Xt

t—1 t—1y\)\2
IIl. UNIVERSAL PREDICTION FOR ABINARY + (E{Yt | XZo) = 9:(X3 )> ’
MEMORYLESS CHANNEL ZERO-ONE LOSS therefore in order to finish the proof it suffices to show

In this section we apply the same ideas to the seemingly = 1 12 | i1 N
more difficult classification (or pattern recognition) plern. ,}Lnéo n X;E{(Yt —9:(Xy )) ‘X—OO} =L a.s.
t=

We may formalize the prediction (classification) problem as (12)
follows. The strategy of the classifier is a sequernte= By Theorem 1 with squared loss, we have
{ft}:2, of decision functions n

1 2
lim — ) (Y, —g(X{™"))" =L" as.
fe:{0,13" — {0,1} noeen t; '



Thus, for (12), we have to prove that Theorem 2.2 in Devroye, Gyfi and Lugosi [5] implies that

IS (- X)) B - (X)) X)) Ral) — Ral) = IS (P £V X

S (V2 -EB{Y2 X

t=1

3=

1 « _ _
—Qﬁth(Xf Hy, —E{Y; | X' -0 as.
t=1

“P{ff(X10) £ Vi | X150Y)

1 n
215" B | x50 - axi )
t=1

IN

oo
1 — _ —1y|2
Because of assumption (2) <2 ;Z [E{Y: | X525} — go(X17 )]
t=1
1 _ 1 _ 0 as.,
S (P -BP X)) = ) (- B{v | X0 N
t=1 t=1 where in the last step we applied the result of Corollagy 1.
— 0 a.s.
. REFERENCES

and the corollary is proved. ]

(1]

(2]

Proof of Theorem 2Because of (10) we have to show that

limsup R, (f) < R* a.s.
I . . (3]
Introduce the Bayes classification scheme using the infinite

past:
[4]
ciytoty [ 1 P, =1 X5} > 1/2;
fi (X"O)_{ 0 otherwise, Bl
[6]

(7]

and its normalized cumulative — 1 loss:

. 1 n
R, (f") = - Zf{f;(xi;);m}'
t=1

Put e

_ 1 — _ _
Ro(f) == P{R(XTT) £ Y, | XY )

t=1
and [10]
Ra(f) = 2 S P (XY £V | XL (]
i [12]
Because of assumption (2) we have [13]
R.(f) = R.(f)—0 as.
() = Balf) "
and

Rn(f*)_Rn(f*) — 0 a.s.,
moreover, by the Breiman ergodic theorem
Rn(f*) — R* a.s.

so we have to show that

limsup(R,(f) — Rn(f*)) <0 a.s.

n—oo

P. Algoet. Universal schemes for prediction, gamblingd gortfolio
selection.Annals of Probability 20:901-941, 1992.

P. Algoet. The strong law of large numbers for sequentiatisions
under uncertainity]EEE Transactions on Information Theor$0:609—
634, 1994.

L. Breiman. The individual ergodic theorem of informatigheory.
Annals of Mathematical Statistic88:809-811, 1957. CorrectioAnnals

of Mathematical Statistics31:809—-810, 1960.

N. Cesa-Bianchi and G. Lugosi.Prediction, Learning, and Games
Cambridge University Press, Cambridge, 2006.

L. Devroye, L. Gyrfi, and G. LugosiA Probabilistic Theory of Pattern
Recognition Springer-Verlag, New York, 1996.

L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk.A Distribution-Free
Theory of Nonparametric Regressio8pringer, New York, 2002.

L. Gyorfi and G. Lugosi. Strategies for sequential prediction of
stationary time series. In M. Dror, P. LEcuyer, and F. Szigazky,
editors,Modelling Uncertainty: An Examination of its Theory, Mediso
and Applications pages 225-248. Kluwer Academic Publishers, 2001.
L. Gyorfi, G. Lugosi, and G. Morvai. A simple randomized algorithm
for consistent sequential prediction of ergodic time seriefEEE
Transactions on Information Theqr#5:2642—2650, 1999.

L. Gyorfi and Gy. Ottucak. Sequential prediction of unbounded
stationary time serieslEEE Transactions on Information Theory (to
appear) 53, 2007.

G. Morvai, S. Yakowitz, and L. Girfi. Nonparametric inference for
ergodic, stationary time serieénnals of Statistics24:370-379, 1996.
W. F. Stout. Almost sure convergenceAcademic Press, New York,
1974.

V. Vovk. A game of prediction with expert advice. Rroc. Third Annual
Workshop on COLTpages 371-383, San Mateo,CA, 1995. Kaufmann.
T. Weissman and N. Merhav. Universal prediction of bynardividual
sequences in the presence of nois¢EEE Trans. Inform. Theory
47(6):2151-2173, July 2001.

T. Weissman and N. Merhav. Universal prediction of randbinary
sequences in a noisy environmentAnnals of Applied Probability
14(1):54-89, Feb. 2004.



