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Abstract. In this paper the sequential prediction problem with expert
advice is considered when the loss is unbounded under partial monitoring
scenarios. We deal with a wide class of the partial monitoring problems:
the combination of the label efficient and multi-armed bandit problem,
that is, where the algorithm is only informed about the performance
of the chosen expert with probability ε ≤ 1. For bounded losses an
algorithm is given whose expected regret scales with the square root of
the loss of the best expert. For unbounded losses we prove that Hannan
consistency can be achieved, depending on the growth rate of the average
squared losses of the experts.

1 Introduction

In on-line (often referred also as sequential) prediction problems in general, an
algorithm has to perform a sequence of actions. After each action, the algo-
rithm suffers some loss, depending on the response of the environment. Its goal
is to minimize its cumulative loss over a sufficiently long period of time. In the
adversarial setting no probabilistic assumption is made on how the losses corre-
sponding to different actions are generated. In particular, the losses may depend
on the previous actions of the algorithm, whose goal is to perform well relative
to a set of experts for any possible behavior of the environment. More precisely,
the aim of the algorithm is to achieve asymptotically the same average loss (per
round) as the best expert.

⋆ The authors would like to thank Gilles Stoltz and András György for useful com-
ments.

⋆⋆ György Ottucsák is eligible for the “E.M. Gold Award”.



In most of the machine learning literature, one assumes that the losses are
bounded, and such a bound is known in advance, when designing an algorithm.
In many applications, including regression problems (Györfi and Lugosi [9]) or
routing in communication networks (cf. György and Ottucsák [11]) the loss is
unbounded. The main aim of this paper is to show Hannan consistency of on-line
algorithms for unbounded losses under partial monitoring.

The first theoretical results concerning sequential prediction (decision) are
due to Blackwell [2] and Hannan [12], but they were rediscovered by the learning
community only in the 1990’s, see, for example, Vovk [15], Littlestone and War-
muth [14] and Cesa-Bianchi et al. [3]. These results show that it is possible to
construct algorithms for on-line (sequential) decision that predict almost as well
as the best expert. The main idea of these algorithms is the same: after observ-
ing the past performance of the experts, in each step the decision of a randomly
chosen expert is followed such that experts with superior past performance are
chosen with higher probability.

However, in certain type of problems it is not possible to obtain all the losses
corresponding to the decisions of the experts. Throughout the paper we use this
framework in which the algorithm has a limited access to the losses. For example,
in the so called multi-armed bandit problem the algorithm has only information
on the loss of the chosen expert, and no information is available about the loss
it would have suffered had it made a different decision (see, e.g., Auer et al. [1],
Hart and Mas Colell [13]). Another example is label efficient prediction, where
it is expensive to obtain the losses of the experts, and therefore the algorithm
has the option to query this information (see Cesa-Bianchi et. al [5]). Finally the
combination of the label efficient and the multi-armed bandit problem, where
after choosing a decision, the algorithm learns its own loss if and only if it asks
for it (see György and Ottucsák [11]).

Cesa-Bianchi et. al. [7] studied second-order bounds for exponentially weighted
average forecaster and they analyzed the expected regret of the algorithm in the
full monitoring case when the bound of the loss function unknown. They indi-
cated their results in partial monitoring case.

2 Sequential prediction and partial monitoring models

The on-line decision problem considered in this paper is described as follows.
Suppose an algorithm has to make a sequence of actions. At each time instant
t = 1, 2, . . ., an action at ∈ A is made, where A denotes the action space. Then,
based on the state of the environment yt ∈ Y, where Y is some state space,
the algorithm suffers some loss ℓ(at, yt) with loss function ℓ : A × Y → R

+.
The performance of the algorithm is evaluated relative to a set of experts, and
its goal is to perform asymptotically as well as the best expert. Formally, given
N experts, at each time instant t, for every i = 1, . . . , N , expert i chooses an
action fi,t ∈ A, and suffers loss ℓ(fi,t, yt). We assume that the action space
is finite, therefore we consider algorithms that follow the advice of one of the
experts, that is, fIt,t for some It, where It ∈ {1, . . . , N} is a random variable.
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The distribution of It is generated by the algorithm. It only depends on the past
losses ℓ(fi,t−1, yt), . . . , ℓ(fi,1, y1) for all i and the earlier choices of the algorithm
It−1, . . . , I1. For convenience we use the notations ℓi,t instead of ℓ(fi,t, yt) and
ℓIt,t instead of ℓ(fIt,t, yt).

Formally, at each time instance t = 1, 2, . . .,

1. the environment decides on the losses ℓi,t ≥ 0 of the experts i ∈ {1, . . . , N},
2. the algorithm chooses an expert It ∈ {1, . . . , N},
3. the algorithm suffers loss ℓIt,t,
4. the algorithm receives some feedback about his loss and the losses of the

experts.

After n rounds the loss of the algorithm and the losses of the experts are denoted
by

L̂n =
n∑

t=1

ℓIt,t and Li,n =
n∑

t=1

ℓi,t,

and the performance of the algorithm is measured by its regret, L̂n −mini Li,n,

or by its regret per round, 1
n

(
L̂n − mini Li,n

)
. An algorithm is Hannan consis-

tent [12], if

lim sup
n→∞

1

n

(
L̂n − min

i
Li,n

)
≤ 0 a.s.

The performance of any expert algorithm obviously depends on how much
information is available to the algorithm about the experts’ and its own perfor-
mance. Next we show the most important classes of partial monitoring according
to the amount of the information available to the algorithm.

– Full information (FI) case: the algorithm has access to the losses ℓi,t of all
experts.

– Multi-armed bandit (MAB) problem: only the loss of the chosen expert
is revealed to the algorithm, i.e., only ℓIt,t is known.

– Label efficient (LE) setting: the algorithm tosses a coin St whether to query
for the losses.4 If St = 1 (with probability εt) then the algorithm knows all
ℓi,t, i = 1, . . . , n, otherwise it does not.

– Combination of the label efficient and multi-armed bandit (LE+MAB)
setting: the algorithm queries with probability εt only about the loss of the
chosen expert, ℓIt,t.

Throughout the paper we focus on problem LE+MAB because all of the other
problems mentioned above are “easier”, in the sense that if an algorithm is
Hannan consistent for problem LE+MAB, then it is Hannan consistent for the
other cases, too.

4 It is easy to see that in order to achieve a nontrivial performance, the algorithm
must use randomization in determining whether the losses should be revealed or not
(cf. Cesa-Bianchi and Lugosi [4]).
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3 The algorithm

In problem LE+MAB, the algorithm learns its own loss only if it chooses to query
it, and it cannot obtain information on the loss of any other expert. For querying
its loss the algorithm uses a sequence S1, S2, . . . of independent Bernoulli random
variables such that

P(St = 1) = εt,

and asks for the loss ℓIt,t of the chosen expert It if St = 1, which for constant
εt = ε is identical to the label efficient algorithms in Cesa-Bianchi et al. [5]. We
denote by LE(εt) the label efficient problem with time-varying parameter εt.

We will derive sufficient conditions for Hannan consistency for the com-
bination of the time-varying label efficient and multi-armed bandit problem
(LE(εt)+MAB) and then we will show that this condition can be adapted
straightforwardly to the other cases.

For problem LE(εt)+MAB we use algorithm Green with time-varying learn-
ing rate ηt. Algorithm Green is a variant of the weighted majority (WM) algo-
rithm of Littlestone and Warmuth [14]. Denote by pi,t the probability of choosing
action i at time t in case of the original WM algorithm, that is,

pi,t =
e−ηt

eLi,t−1

∑N
j=1 e−ηt

eLj,t−1

,

where L̃i,t is so called cumulative estimated loss, which we will specify later. Al-
gorithm Green uses modified probabilities p̃i,t which can be calculated from pi,t,

p̃i,t =

{
0 if pi,t < γt,

ct · pi,t if pi,t ≥ γt,

where ct is the normalizing factor and γt ≥ 0 is a time-varying threshold. Finally,
the algorithm uses estimated losses which are given by

ℓ̃i,t =

{
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise,

based on György and Ottucsák [11]. Therefore, the estimated loss is an unbiased
estimate of the true loss with respect to its natural filtration, that is,

Et

[
ℓ̃i,t

]
def
= E

[
ℓ̃i,t

∣∣St−1
1 , It−1

1

]
= ℓi,t.

The cumulative estimated loss of an expert is given by L̃i,n =
∑n

t=1 ℓ̃i,t. The
resulting algorithm is given in Figure 1.
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Algorithm Green

Let η1, η2, . . . > 0, ε1, ε2, . . . > 0 and γ1, γ2, . . . ≥ 0.

Initialization : eLi,0 = 0 for all i = 1, . . . , N .

For each round t = 1, 2, . . .

(1) Calculate the probability distribution

pi,t =
e−ηt

eLi,t−1

PN

i=1
e−ηt

eLi,t−1

i = 1, . . . , N .

(2) Calculate the modified probabilities

epi,t =

(
0 if pi,t < γt,

ct · pi,t if pi,t ≥ γt,

where ct = 1/
P

pi,t≥γt
pi,t .

(3) Select an action It ∈ {1, . . . , N} according to ept = (ep1,t, . . . , epN,t).
(4) Draw a Bernoulli random variable St such that P(St = 1) = εt.
(5) Compute the estimated loss for all i = 1, . . . , N

eℓi,t =

(
ℓi,t

epi,tεt
if It = i and St = 1;

0 otherwise.

(6) For all i = 1, . . . , N update the cumulative estimated loss

eLi,t = eLi,t−1 + eℓi,t.

Fig. 1. Algorithm Green for LE(εt)+MAB

4 Bounds on the expected regret

Theorem 1. If ℓ2i,t ≤ tν and εt ≥ t−β for all t, then for all n the expected loss

of algorithm Green with γt = 0 and ηt = 2
√

ln N
N · t−(1+ν+β)/2 is bounded by

E

[
L̂n − min

i
Li,n

]
≤ 2
√

(N lnN)(n + 1)(1+ν+β)/2.

If the individual losses are bounded by a constant, a much stronger result can
be obtained.

Theorem 2. If ℓi,t ∈ [0, 1] and εt = ε for all t, then for all n with mini Li,n ≤ B
the expected loss of algorithm Green with γt = γ = 1

N(Bε+2) and ηt = η =

2
√

ln N
N

ε
B is bounded by

E

[
L̂n − min

i
Li,n

]
≤ 4

√
B

ε
N lnN +

N lnN + 2

ε
+

ln(εB + 2)

ε
.
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Remark 1. The improvement in Theorem 2 is significant, since it bounds the
regret of the algorithm in terms of the loss of the best action and not in respect
to the number of rounds. For example, Theorem 1 is void for mini Li,n ≪ √

n
whereas Theorem 2 still gives a nearly optimal bound5.

Remark 2. If the magnitude of the losses is not known a-priori, the doubling
trick can be used to set the parameter ν in Theorem 1 and the parameter B
in Theorem 2 with no significant change in the bounds. The generalization of
Theorem 2 to losses in [a, b] is straightforward.

For the proofs we introduce the notations

ℓ̌t =

N∑

i=1

p̃i,tℓ̃i,t, ℓt =

N∑

i=1

pi,tℓ̃i,t, and Ln =

n∑

t=1

ℓt.

Then

L̂n − min
i

Li,n =
(
L̂n − Ln

)
+
(
Ln − min

i
L̃i,n

)
+
(
min

i
L̃i,n − min

i
Li,n

)
. (1)

Lemma 1. For any sequence of losses ℓi,t ≥ 0,

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.

Proof. Since pIt,t/p̃It,t = 1/ct =
∑

j:pj,t≥γt
pj,t = 1−∑j:pj,t<γt

pj,t ≥ 1−Nγt

we have

ℓt =
N∑

i=1

pi,tℓ̃i,t = pIt,tℓ̃It,t ≥ (1 − Nγt)p̃It,tℓ̃It,t = (1 − Nγt)ℓ̌t.

Thus

L̂n − Ln =

n∑

t=1

ℓIt,t −
n∑

t=1

ℓt ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t.

2

For bounding Ln − mini L̃i,n we use of the following lemma.

Lemma 2 (Cesa-Bianchi et al. [6]). Consider any nonincreasing sequence

of η1, η2, . . . positive learning rates and any sequences ℓ̃1, ℓ̃2, . . . ∈ R
N
+ of loss

vectors. Define the function Φ by

Φ(pt, ηt,−ℓ̃t) =

N∑

i=1

pi,tℓ̃i,t +
1

ηt
ln

N∑

i=1

pi,te
−ηt

eℓi,t ,

where pt = (p1,t, p2,t, . . . , pN,t) the probability vector of the WM algorithm. Then,

for Algorithm Green

Ln − min
i

L̃i,n ≤
(

2

ηn+1
− 1

η1

)
lnN +

n∑

t=1

Φ(pt, ηt,−ℓ̃t).

5 For ε = 1 optimality follows from the lower bound on the regret in [1].
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Lemma 3. With the notation of Lemma 2 we get for algorithm Green,

Φ(pt, ηt,−ℓ̃t) ≤
ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t.

Proof.

Φ(pt, ηt,−ℓ̃t) =

N∑

i=1

pi,tℓ̃i,t +
1

ηt
ln

N∑

i=1

pi,te
−ηt

eℓi,t

≤
N∑

i=1

pi,tℓ̃i,t +
1

ηt
ln

N∑

i=1

pi,t

(
1 − ηtℓ̃i,t +

η2
t ℓ̃2i,t
2

)
(2)

≤
N∑

i=1

pi,tℓ̃i,t +
1

ηt
ln

(
1 − ηt

N∑

i=1

pi,tℓ̃i,t +
η2

t

2

N∑

i=1

pi,tℓ̃
2
i,t

)

≤ ηt

2

N∑

i=1

pi,tℓ̃
2
i,t ≤ ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t (3)

where (2) holds because of e−x ≤ 1 − x + x2/2 for x ≥ 0, and (3) follows from

the fact that ln(1 + x) ≤ x for all x > −1, and from the definition of ℓ̃i,t in
algorithm Green. 2

Lemma 4. For any sequence of ℓi,t the loss of algorithm Green is bounded by

E

[
L̂n − min

i
Li,n

]
≤ N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1
+

N∑

i=1

n∑

t=1

ηtE

[
ℓi,tℓ̃i,t

]

2εt
(4)

= N

n∑

t=1

γtE[ℓIt,t] +
2 ln N

ηn+1
+

N∑

i=1

n∑

t=1

ηtE
[
ℓ2i,t
]

2εt
.

Proof. From (1) and Lemmas 1–3, we get

L̂n − min
i

Li,n ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t +

(
2

ηn+1
− 1

η1

)
lnN

+

n∑

t=1

ηt

2εt

N∑

i=1

ℓi,tℓ̃i,t +
(
min

i
L̃i,n − min

i
Li,n

)
.

Since Et[ℓIt,t] =
∑N

i=1 p̃i,tℓi,t =
∑N

i=1 p̃i,tEt

[
ℓ̃i,t

]
= Et

[
ℓ̌t

]
and E

[
mini L̃i,n

]
≤

E

[
L̃i∗,n

]
≤ E[Li∗,n] for i∗ = arg mini Li,n, taking expectations gives (4). The

second line of the lemma follows from Et

[
ℓ̃i,t

]
= ℓi,t. 2
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Proof of Theorem 1. By simple calculation from Lemma 4. 2

Proof of Theorem 2. Let Ti = max{0 ≤ t ≤ n : pi,t ≥ γ} be the last round

which contributes to L̃i,n. Therefore,

γ ≤ pi,Ti
=

e−ηeLi,Ti

∑N
j=1 e−ηeLj,Ti

<
e−ηeLi,Ti

e−ηeLi∗,n

,

where i∗ = arg mini Li,n. After rearranging we obtain

L̃i,Ti
≤ L̃i∗,n +

ln(1/γ)

η

and since L̃i,n = L̃i,Ti
we get that L̃i,n ≤ L̃i∗,n + ln(1/γ)

η . Plugging this bound

into (4) and using ℓi,t ∈ [0, 1] we get

E

[
L̂n − Li∗,n

]
≤ γNE

[
L̂n

]
+

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)
.

Solving for E

[
L̂n

]
we find

E

[
L̂n

]
≤ 1

1 − γN

[
E[Li∗,n] +

2 ln N

η
+ N

η

2ε

(
E[Li∗,n] +

ln(1/γ)

η

)]
.

For γ = 1
N(εB+2) we have

Li∗,n

1−γN ≤ Li∗,n + 2
ε and 1

1−γN ≤ 2, which implies

E

[
L̂n

]
≤ Li∗,n +

2

ε
+

4 ln N

η
+ N

η

ε

(
Li∗,n +

lnN

η
+

ln(εB + 2)

η

)
.

and, by simple calculation, the statement of the theorem. 2

5 Hannan consistency

In this section we derive the sufficient conditions of Hannan consistency under
partial monitoring for algorithm Green using time-varying parameters in case
when the bound of the loss is unknown in advance, or when the loss is unbounded.

The next result shows sufficient conditions of Hannan consistency of Algo-
rithm Green.

Theorem 3. Algorithm Green is run for the combination of the label efficient

and multi armed bandit problem. Assume that for each n

max
1≤i≤N

1

n

n∑

t=1

ℓ2i,t < cnν ,

where c < ∞ and 0 ≤ ν < 1. For some ρ > 0 choose the parameters of the

algorithm as:
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γt = t−α/N ; (ν + ρ)/2 ≤ α ≤ 1,

ηt = t−1+δ; 0 < δ ≤ 1 − ν − α − β − ρ

and

εt = ε0t
−β ; 0 < ε0 ≤ 1 and 0 ≤ β ≤ 1 − ν − α − δ − ρ.

Then Algorithm Green is Hannan consistent, that is,

lim sup
n→∞

1

n

(
L̂n − min

i
Li,n

)
≤ 0 a.s.

Remark 3. (Unknown ν) If ν is unknown in advance, then define a set of infinite
number of experts. The experts use Algorithm 1 with different parameter ν.
Since 0 ≤ ν < 1, instead of ν we can use νk, a quantization of the [0, 1) interval.
Let {νk} is a monotonically increasing sequence which goes to 1 and let qk be an
arbitrary distribution over the set of k such that qk > 0 for all k. Then using ex-
ponential weighting with time-varying learning rate in case of unbounded losses,
the difference between the average loss of the (combined) algorithm and the av-
erage loss of the best expert vanishes asymptotically [10][Lemma 1]. Therefore
the algorithm reaches Hannan consistency.

Remark 4. We derive the consequences of the theorem in special cases:

– FI: With a slight modification of the proof we get the following condition
for the losses in full information case:

max
1≤i≤N

1

n

n∑

t=1

ℓ2i,t ≤ O
(
n1−δ−ρ

)
.

– MAB: we fix β = 0 (εt = 1). Choose γt = t−1/3 for all t. Then the condition
is for the losses

max
1≤i≤N

1

n

n∑

t=1

ℓ2i,t ≤ O
(
n2/3−δ−ρ

)
.

– LE(εt): With a slight modification of the proof we get the following condition
for the loss function in label efficient case:

max
1≤i≤N

1

n

n∑

t=1

ℓ2i,t ≤ O
(
n1−β−δ−ρ

)
.

– LE(εt)+MAB: This is the most general case. Let γt = t−1/3. Then the
bound is

max
1≤i≤N

1

n

n∑

t=1

ℓ2i,t ≤ O
(
n2/3−β−δ−ρ

)
.
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Remark 5. (Convergence rate) With a slight extension of Lemma 5 we can re-
trieve the ν dependent almost sure convergence rate of the algorithm. The rate
is

1

n

(
L̂n − min

i
Li,n

)
≤ O(nν/2−1/2) a.s.

in the FI and the LE cases with optimal choice of the parameters and in the
MAB and the LE+MAB cases it is

1

n

(
L̂n − min

i
Li,n

)
≤ O(nν/2−1/3) a.s.

Remark 6. (Minimum amount of query rate in LE(εt)) Denote

µ(n) =

n∑

t=1

εt

the expected query rate, that is, the expected number of queries that can be
issued up to time n. Assume that the average of the loss function has a constant
bound, i.e., ν = 0. With a slight modification of the proof of Theorem 3 and
choosing

ηt =
log log log t

t
and εt =

log log t

t

we obtain the condition for Hannan consistency, such that

µ(n) = log n log log n,

which is the same as that of to Cesa-Bianchi et al. [5].

6 Proof

In order to prove Theorem 3, we split the proof into three lemmas by telescope
as before:

1

n
L̂n − 1

n
min

i
Li,n

=
1

n

(
L̂n − Ln

)

︸ ︷︷ ︸
Lemma 6

+
1

n

(
Ln − min

i
L̃i,n

)

︸ ︷︷ ︸
Lemma 7

+
1

n

(
min

i
L̃i,n − min

i
Li,n

)

︸ ︷︷ ︸
Lemma 8

. (5)

Combine sequentially Lemma 6, Lemma 7 and Lemma 8 to prove Theorem 3.
We will show separately the almost sure convergence of the three terms on the
right-hand side. In the sequel, we need the following lemma which is the key of
the proof of Theorem 3:

Lemma 5. Let {Zt} a martingale difference sequence. Let

htkt ≥ Var(Zt)

10



where

ht = 1/ta

for all t = 1, 2, . . . and

Kn =
1

n

n∑

t=1

kt ≤ Cnb

and 0 ≤ b < 1 and b − a < 1. Then

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.

Proof. By the strong law of large numbers for martingale differences due to
Chow [8], if {Zt} a martingale difference sequence with

∞∑

t=1

Var(Zt)

t2
< ∞ (6)

then

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.

We have to verify (6). Because of kt = tKt − (t − 1)Kt−1, and ht

t − ht+1t
(t+1)2 ≥ 0

we have that

n∑

t=1

Var(Zt)

t2
≤

n∑

t=1

htkt

t2
=

n∑

t=1

ht (tKt − (t − 1)Kt−1)

t2

=
hnKn

n
+

n−1∑

t=1

(
ht

t
− ht+1t

(t + 1)2

)
Kt.

≤ n−aCnb

n
+

n−1∑

t=1

(
t−a

t
− (t + 1)−at

(t + 1)2

)
Ctb

which is bounded by conditions. 2

Now we are ready to prove one by one the almost sure convergence of the
terms in (5).

Lemma 6. Under the conditions of the Theorem 3,

lim
n→∞

1

n

(
L̂n − Ln

)
= 0 a.s.

Proof. First we use Lemma 1, that is

L̂n − Ln ≤
n∑

t=1

(
ℓIt,t − ℓ̌t

)
+

n∑

t=1

Nγtℓ̌t =

n∑

t=1

Zt +

n∑

t=1

Nγtℓ̌t. (7)

11



Below we show separately, that both sums in (7) divided by n converge to zero
almost surely. First observe that {Zt} is a martingale difference sequence with
respect to It−1 and St−1. Observe that It is independent from St therefore we
get the following bound for the variance of Zt:

Var(Zt) = E
[
Z2

t

]
= E

[
(ℓIt,t − ℓ̌t)

2
]
≤ 1

εt

N∑

i=1

ℓ2i,t
def
= htkt,

where ht = 1/εt and kt =
∑N

i=1 ℓ2i,t. Then applying Lemma 5 we obtain

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.

Next we show that the second sum in (7) divided by n goes to zero almost surely,
that is,

1

n

n∑

t=1

Nγtℓ̌t =
1

n

n∑

t=1

St

εt
ℓIt,tNγt =

1

n

n∑

t=1

Rt +
1

n

n∑

t=1

ℓIt,tNγt → 0 (n → ∞)

(8)
where Rt is a martingale difference sequence respect to St−1

1 and It
1. Bounding

the variance of Rt, we obtain

Var(Rt) ≤ N2 γ2
t

εt

N∑

i=1

ℓ2i,t.

Then using Lemma 5 with parameters ht = γ2
t /εt and kt =

∑N
i=1 ℓ2i,t we get

lim
n→∞

1

n

n∑

t=1

Rt = 0 a.s.

The proof is finished by showing, that the second sum in (8) goes to zero. i.e.,

lim
n→∞

1

n

n∑

t=1

ℓIt,tNγt = lim
n→∞

N
N∑

i=1

1

n

n∑

t=1

ℓi,tγt = 0.

Introduce Ki,n = 1
n

∑n
t=1 ℓi,t then for all i

1

n

n∑

t=1

ℓi,tγt =
1

n

n∑

t=1

(tKi,t − (t − 1)Ki,t−1)γt

= Ki,nγn +
1

n

n−1∑

t=1

(γt − γt+1) tKi,t

≤ Ki,nγn +
1

n

n−1∑

t=1

γtKi,t (9)

≤
√

c
1

N
nν/2−α +

1

nN

n−1∑

t=1

tν/2−α
√

c → 0 (10)
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where the (9) holds because (γt−γt+1)t ≤ γt and (10) follows from Ki,n ≤
√

cnν ,
the definition of the parameters and α ≥ (ν + ρ)/2. 2

Lemma 7 yields the relation between Ln and mini L̃i,n.

Lemma 7. Under the conditions of Theorem 3,

lim sup
n→∞

1

n

(
Ln − min

i
L̃i,n

)
≤ 0 a.s.

Proof. We start by applying Lemma 2, that is,

Ln − min
i

L̃i,n ≤ 2 ln N

ηn+1
+

n∑

t=1

Φ(pt, ηt,−ℓ̃t). (11)

To bound the quantity of Φ(pt, ηt,−ℓ̃t), our starting point is (3). Moreover,

ηt

2

N∑

i=1

pi,tℓ̃
2
i,t =

ηt

2

N∑

i=1

pi,t

ℓ2i,t
p̃2

i,tε
2
t

StI{It=i} ≤ ηt

2γtεt

St

εt
ℓ2It,t ≤

ηt

2γtεt

St

εt

N∑

i=1

ℓ2i,t

(12)

where the first inequality comes from pIt,t ≥ γt. Combining this bound with
(11), dividing by n and taking the limit we get

lim sup
n→∞

1

n

(
Ln − min

i
L̃i,n

)
≤ lim sup

n→∞

2 ln N

nηn+1
+ lim sup

n→∞

1

n

n∑

t=1

ηt

2γtεt

St

εt

N∑

i=1

ℓ2i,t.

Let analyze separately the two terms on the right-hand side. The first term is
zero because of the assumption of the Theorem 3. Concerning the second term,
similarly to Lemma 6 we can split St/εt as follows: let us

St

εt

ηt

2γtεt

N∑

i=1

ℓ2i,t = Zt +
ηt

2γtεt

N∑

i=1

ℓ2i,t, (13)

where Zt is a martingale difference sequence. The variance is

Var(Zt) = E

[
η2

t St

γ2
t ε2

t

(∑N
i=1 ℓ2i,t

)2
]

=
η2

t

εtγ2
t

(∑N
i=1 ℓ2i,t

)2

.

Application of Lemma 5 with ht =
η2

t

εtγ2
t

and kt =
(∑N

i=1 ℓ2i,t

)2

yields

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.

where we used that

1

n

n∑

t=1

kt ≤
1

n

(
n∑

t=1

√
kt

)2

≤ N2c2n1+2ν .
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Finally, we have to prove that the sum of the second term in (13) goes to zero,
that is,

lim sup
n→∞

1

n

n∑

t=1

N∑

i=1

ηt

2γtεt
ℓ2i,t = 0

for which we use same argument as in Lemma 6. Introduce Ki,n = 1
n

∑n
t=1 ℓ2i,t

then we get

1

n

n∑

t=1

ℓ2i,t
ηt

2γtεt
= Ki,n

ηn

2γnεn
+

1

n

n−1∑

t=1

(
ηt

2γtεt
− ηt+1

2γt+1εt+1

)
tKi,t

≤ Ki,n
ηn

2γnεn
+

1

n

n−1∑

t=1

ηt

2γtεt
Ki,t

≤ Ncnν−1+α+β+δ +
1

n

n−1∑

t=1

Nctν−1+α+β+δ → 0

because of Ki,n ≤ cnν and ν < 1 − α − β − δ − ρ. 2

Finally, the last step is to analyze the difference between the estimated loss
and the true loss.

Lemma 8. Under the conditions of Theorem 3,

lim
n→∞

1

n

(
min

i
L̃i,n − min

i
Li,n

)
= 0 a.s.

Proof. First, bound the difference of the minimum of the true and the estimated
loss. Obviously,

1

n

(
min

i
L̃i,n − min

j
Lj,n

)
≤

N∑

i=1

∣∣∣∣∣
1

n

(
L̃i,n − Li,n

) ∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

(ℓ̃i,t − ℓi,t)

∣∣∣∣∣

=

N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣,

where Zi,t is martingale difference sequence for all i. As earlier, we use Lemma
5. First we bound Var(Zi,t) as follows

Var(Zi,t) = Eℓ̃2i,t ≤
∑N

i=1 ℓ2i,t
εtγt

. (14)

Applying Lemma 5 with parameters kt = ℓ2i,t and ht = 1
εtγt

, for each fixed i

lim
n→∞

1

n

n∑

t=1

Zi,t = 0 a.s.

14



therefore

lim
n→∞

N∑

i=1

∣∣∣∣∣
1

n

n∑

t=1

Zi,t

∣∣∣∣∣ = 0 a.s.

2
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