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Abstract

A simple on-line procedure is considered for the predictionof a real valued sequence. The algorithm

is based on a combination of several simple predictors. If the sequence is a realization of an unbounded

stationary and ergodic random process then the average of squared errors converges, almost surely, to

that of the optimum, given by the Bayes predictor. An analog result is offered for the classification of

binary processes.
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I. I NTRODUCTION

We study the problem of sequential prediction of a real valued sequence. At each time instantt =

1, 2, . . ., the predictor is asked to guess the value of the next outcomeyt of a sequence of real numbers

y1, y2, . . . with knowledge of the pastsyt−1
1 = (y1, . . . , yt−1) (wherey0

1 denotes the empty string) and

the side information vectorsxt
1 = (x1, . . . , xt), wherext ∈ R

d . Thus, the predictor’s estimate, at time

t, is based on the value ofxt
1 andyt−1

1 . A prediction strategy is a sequenceg = {gt}∞t=1 of functions

gt :
(
R

d
)t

× R
t−1 → R

so that the prediction formed at timet is gt(x
t
1, y

t−1
1 ).

In this paper we assume that(x1, y1), (x2, y2), . . . are realizations of the random variables

(X1, Y1), (X2, Y2), . . . such that{(Xn, Yn)}∞−∞ is a jointly stationary and ergodic process.
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After n time instants, thenormalized cumulative prediction erroris

Ln(g) =
1

n

n∑

t=1

(gt(X
t
1, Y

t−1
1 ) − Yt)

2.

The results of the paper are given in an autoregressive framework, that is, the valueYt is predicted

based onXt
1 andY t−1

1 . The fundamental limit for the predictability of the sequence can be determined

based on a result of Algoet [2], who showed that for any prediction strategyg and stationary ergodic

process{(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (1)

where

L∗ = E

{(
Y0 − E

{
Y0

∣∣X0
−∞, Y −1

−∞
})2}

is the minimal mean squared error of any prediction for the value of Y0 based on the infinite past

X0
−∞, Y −1

−∞. Note that it follows by stationarity and the martingale convergence theorem (see, e.g., Stout

[22]) that

L∗ = lim
n→∞

E

{(
Yn − E

{
Yn

∣∣Xn
1 , Y n−1

1

})2}
.

This lower bound gives sense to the following definition:

Definition 1: A prediction strategyg is called universally consistent with respect to a classC of

stationary and ergodic processes{(Xn, Yn)}∞−∞, if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Universally consistent strategies asymptotically achieve the best possible loss for all ergodic processes

in the class. Algoet [1] and Morvai, Yakowitz, and Györfi [17] proved that there exists a prediction strategy

universal with respect to the class of all bounded ergodic processes. However, the prediction strategies

exhibited in these papers are either very complex or have an unreasonably slow rate of convergence even

for well-behaved processes.

Lugosi and Gÿorfi [11] introduced several simple prediction strategies,which are universally consistent

with respect to the class of bounded, stationary and ergodicprocesses. In this paper we extend the results

of [11] to unbounded processes. The algorithms build on a methodology worked out in recent years

for prediction of individual sequences, see Feder, Merhav, and Gutman [9], Littlestone and Warmuth

[13], Cesa-Bianchi and Lugosi [6], Singer and Feder [20], Merhav and Feder [14] for a survey. Most of

the result in individual framework holds on for fixed time horizon, which does not suit the asymptotic
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analysis. Accordingly, the main ingredients of our proof isa lemma which allows us to extend the above

cited methods for the asymptotic studies in a simple way. We refer to Nobel [18], Singer and Feder [20],

[21] and Yang [25] to recent closely related work. A distinctconcept, memory universality is studied by

Modha and Masry [15] for bounded and exponentially stronglymixing random process, where the decay

coefficients is known.

In Section II we introduce an universally consistent strategy for unbounded ergodic processes which is

based on a combination of partitioning estimates. In SectionIII we consider the0−1 loss, i.e., construct

a recursive pattern recognition scheme for stationary and ergodic process.

II. U NIVERSAL PREDICTION BY PARTITIONING ESTIMATES

The prediction strategy is defined, at each time instant, as a convex combination ofelementary

predictors, where the weighting coefficients depend on the past performance of each elementary predictor.

We define an infinite array of elementary predictorsh(k,ℓ), k, ℓ = 1, 2, . . . as follows. LetPℓ =

{Aℓ,j , j = 1, 2, . . . , mℓ} be a sequence of finite partitions ofR, and letQℓ = {Bℓ,j , j = 1, 2, . . . , m′
ℓ}

be a sequence of finite partitions ofR
d. Introduce the corresponding quantizers:

Fℓ(y) = j, if y ∈ Aℓ,j

and

Gℓ(x) = j, if x ∈ Bℓ,j .

With some abuse of notation, for anyn and yn
1 ∈ R

n, we write Fℓ(y
n
1 ) for the sequence

Fℓ(y1), . . . , Fℓ(yn), and similarly, forxn
1 ∈ (Rd)n, we writeGℓ(x

n
1 ) for the sequenceGℓ(x1), . . . , Gℓ(xn).

Fix positive integersk, ℓ, and for eachk + 1-long stringz of positive integers, and for eachk-long

string s of positive integers, define the partitioning regression function estimate

Ê(k,ℓ)
n (xn

1 , yn−1
1 , z, s) =

∑
{k<t<n:Gℓ(xt

t−k)=z, Fℓ(y
t−1
t−k)=s} yt

∣∣{k < t < n : Gℓ(x
t
t−k) = z, Fℓ(y

t−1
t−k) = s}

∣∣ ,

for all n > k + 1 where0/0 is defined to be0.

Introduce the truncation function

Tn(z) =






nδ if z > nδ

z if |z| < nδ

−nδ if z < −nδ,

where

0 < δ < 1/8.
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Define the elementary predictorh(k,ℓ) by

h(k,ℓ)
n (xn

1 , yn−1
1 ) = Tn

(
Ê(k,ℓ)

n (xn
1 , yn−1

1 , Gℓ(x
n
n−k), Fℓ(y

n−1
n−k))

)
,

for n = 1, 2, . . . . That is,h(k,ℓ)
n quantizes the sequencexn

1 , yn−1
1 according to the partitionsQℓ andPℓ,

and looks for all appearances of the last seen quantized stringsGℓ(x
n
n−k) of lengthk + 1 andFℓ(y

n−1
n−k)

of lengthk in the past. Then it predicts according to the truncation of the average of theyt’s following

the string.

The proposed prediction algorithm proceeds as follows: let{qk,ℓ} be a probability distribution on the

set of all pairs(k, ℓ) of positive integers such that for allk, ℓ, qk,ℓ > 0. Forηt > 0, and define the weights

wt,k,ℓ = qk,ℓe
−ηt(t−1)Lt−1(h(k,ℓ))

and their normalized values

pt,k,ℓ =
wt,k,ℓ

Wt
,

where

Wt =
∞∑

i,j=1

wt,i,j .

The prediction strategyg is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑

k,ℓ=1

pt,k,ℓh
(k,ℓ)(xt

1, y
t−1
1 ) , t = 1, 2, . . . (2)

Theorem 1:Assume that

(a) the sequences of partitionPℓ is nested, that is, any cell ofPℓ+1 is a subset of a cell ofPℓ, ℓ = 1, 2, . . .;

(b) the sequences of partitionQℓ is nested;

(c) the sequences of partitionPℓ is asymptotically fine, i.e., if

diam(A) = sup
x,y∈A

‖x − y‖

denotes the diameter of a set, then for each sphereS centered at the origin

lim
ℓ→∞

max
j:Aℓ,j∩S 6=∅

diam(Aℓ,j) = 0 ;

(d) the sequences of partitionQℓ is asymptotically fine;

and choosing parameter of the algorithm as

ηt =
1√
t

.
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Then the prediction schemeg defined above is universally consistent with respect to the class of all

ergodic processes such that

E{Y 4
1 } < ∞.

Here we describe two results, which are used in the analysis.The first lemma is a modification of the

analysis of Aueret al. [3], which allows of the handling the case when the parameterof the algorithm

(ηt) is time-dependent and the number of the elementary predictors is infinite.

Lemma 1:Let h(1), h(2), . . . be a sequence of prediction strategies (experts). Let{qk} be a probability

distribution on the set of positive integers. Denote the normalized loss of the experth = (h1, h2, . . . ) by

Ln(h) =
1

n

n∑

t=1

ℓt(h),

where

ℓt(h) = ℓ(ht, Yt)

and the loss functionℓ is convex in its first argumenth. Define

wt,k = qke
−ηt(t−1)Lt−1(h(k))

whereηt > 0 is monotonically decreasing, and

pt,k =
wt,k

Wt

where

Wt =

∞∑

k=1

wt,k .

If the prediction strategyg = (g1, g2, . . . ) is defined by

gt =
∞∑

k=1

pt,kh
(k)
t t = 1, 2, . . .

then for everyn ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,kℓ
2
t (h

(k)).

Proof. Introduce some notations:

w′
t,k = qke

−ηt−1(t−1)Lt−1(h(k)),

which is the weightwt,k, whereηt is replaced byηt−1 and the sum of these are

W ′
t =

∞∑

k=1

w′
t,k.
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We start the proof with the following chain of bounds:

1

ηt
ln

W ′
t+1

Wt
=

1

ηt
ln

∑∞
k=1 wt,ke

−ηtℓt(h(k))

Wt

=
1

ηt
ln

∞∑

k=1

pt,ke
−ηtℓt(h(k))

≤ 1

ηt
ln

∞∑

k=1

pt,k

(
1 − ηtℓt(h

(k)) +
η2

t

2
ℓ2
t (h

(k))

)

because ofe−x ≤ 1 − x + x2/2 for x ≥ 0. Moreover,

1

ηt
ln

W ′
t+1

Wt

≤ 1

ηt
ln

(
1 − ηt

∞∑

k=1

pt,kℓt(h
(k)) +

η2
t

2

∞∑

k=1

pt,kℓ
2
t (h

(k))

)

≤ −
∞∑

k=1

pt,kℓt(h
(k)) +

ηt

2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (3)

= −
∞∑

k=1

pt,kℓ(h
(k)
t , Yt) +

ηt

2

∞∑

k=1

pt,kℓ
2
t (h

(k))

≤ −ℓ

( ∞∑

k=1

pt,kh
(k)
t , Yt

)
+

ηt

2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (4)

= −ℓt(g) +
ηt

2

∞∑

k=1

pt,kℓ
2
t (h

(k)) (5)

where (3) follows from the fact thatln(1 + x) ≤ x for all x > −1 and in (4) we used the convexity of

the lossℓ(h, y) in its first argumenth. From (5) after rearranging we obtain

ℓt(g) ≤ − 1

ηt
ln

W ′
t+1

Wt
+

ηt

2

∞∑

k=1

pt,kℓ
2
t (h

(k)) .

Then write a telescope formula:

1

ηt
lnWt −

1

ηt
lnW ′

t+1 =

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

+

(
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

)

= (At) + (Bt).
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We have that
n∑

t=1

At =
n∑

t=1

(
1

ηt
lnWt −

1

ηt+1
lnWt+1

)

=
1

η1
lnW1 −

1

ηn+1
lnWn+1

= − 1

ηn+1
ln

∞∑

k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1
ln sup

k

qke
−ηn+1nLn(h(k))

= − 1

ηn+1
sup

k

(
ln qk − ηn+1nLn(h(k))

)

= inf
k

(
nLn(h(k)) − ln qk

ηn+1

)
.

ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we get that

Wt+1 =
∞∑

i=1

qie
−ηt+1tLt(h(i))

=
∞∑

i=1

qi

(
e−ηttLt(h(i))

) ηt+1

ηt

≤
( ∞∑

i=1

qie
−ηttLt(h(i))

) ηt+1

ηt

=
(
W ′

t+1

) ηt+1

ηt .

Thus,

Bt =
1

ηt+1
lnWt+1 −

1

ηt
lnW ′

t+1

≤ 1

ηt+1

ηt+1

ηt
lnW ′

t+1 −
1

ηt
lnW ′

t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h(k)) − ln qk

nηn+1

)
+

1

2n

n∑

t=1

ηt

∞∑

k=1

pt,kℓ
2
t (h

(k)) .

�

The next lemma is due to Breiman [5], and its proof may also be found in Gÿorfi et al. [10].

Lemma 2:Let Z = {Zi}∞−∞ be a stationary and ergodic time series. LetT denote the left shift

operator. Letfi be a sequence of real-valued functions such that for some function f , fi(Z) → f(Z)
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almost surely. Assume thatE supi |fi(Z)| < ∞. Then

lim
n→∞

1

n

n∑

i=1

fi(T
iZ) = Ef(Z)

almost surely.

Proof of Theorem 1. Because of (1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, asn → ∞, a.s.,

Ê(k,ℓ)
n (Xn

1 , Y n−1
1 , z, s)

=

1
n

∑
{k<t<n: Gℓ(Xt

t−k)=z, Fℓ(Y
t−1

t−k )=s} Yt

1
n

∣∣{k < t < n : Gℓ(X
t
t−k) = z, Fℓ(Y

t−1
t−k ) = s}

∣∣

→
E{Y0I{Gℓ(X0

−k)=z, Fℓ(Y
−1
−k )=s}}

P{Gℓ(X
0
−k) = z, Fℓ(Y

−1
−k ) = s}

= E{Y0 | Gℓ(X
0
−k) = z, Fℓ(Y

−1
−k ) = s},

and therefore for allz ands

Tn

(
Ê(k,ℓ)

n (Xn
1 , Y n−1

1 , z, s)
)
→ E{Y0 | Gℓ(X

0
−k) = z, Fℓ(Y

−1
−k ) = s}.

By Lemma 2, asn → ∞, almost surely,

Ln(h(k,ℓ))

=
1

n

n∑

t=1

(h(k,ℓ)(Xt
1, Y

t−1
1 ) − Yt)

2

=
1

n

n∑

t=1

(
Tt

(
Ê

(k,ℓ)
t (Xt

1, Y
t−1
1 , Gℓ(X

t
t−k), Fℓ(Y

t−1
t−k ))

)
−Yt

)2

→E{(Y0 − E{Y0 | Gℓ(X
0
−k), Fℓ(Y

−1
−k )})2}

def
= ǫk,ℓ.

E{Y0 | Gℓ(X
0
−k), Fℓ(Y

−1
−k )} is a martingale indexed by the pair(k, ℓ), since the partitionsPℓ andQℓ

are nested. Thus, the martingale convergence theorem (see, e.g., Stout [22]) and assumptions (c) and (d)

for the sequences of partitions implies that

inf
k,l

ǫk,l = lim
k,ℓ→∞

ǫk,ℓ = E

{(
Y0 − E{Y0|X0

−∞, Y −1
−∞}

)2}
= L∗
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(cf. Györfi and Lugosi [11]). Apply Lemma 1 with choiceηt = 1√
t

and for the squared lossℓt(h) =

(ht − Yt)
2, then the square loss is convex in its first argumenth, so

Ln(g) ≤ inf
k,ℓ

(
Ln(h(k,ℓ)) − 2 ln qk,ℓ√

n

)

+
1

2n

n∑

t=1

1√
t

∞∑

k,ℓ=1

pt,k,ℓ

(
h(k,ℓ)(Xt

1, Y
t−1
1 ) − Yt

)4
. (6)

On the one hand, almost surely,

lim sup
n→∞

inf
k,ℓ

(
Ln(h(k,ℓ)) − 2 ln qk,ℓ√

n

)

≤ inf
k,ℓ

lim sup
n→∞

(
Ln(h(k,ℓ)) − 2 ln qk,ℓ√

n

)

= inf
k,ℓ

lim sup
n→∞

Ln(h(k,ℓ))

= inf
k,ℓ

ǫk,ℓ

= lim
k,ℓ→∞

ǫk,ℓ

= L∗.

On the other hand,

1

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ(h
(k,ℓ)(Xt

1, Y
t−1
1 ) − Yt)

4

≤ 8

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ

(
h(k,ℓ)(Xt

1, Y
t−1
1 )4 + Y 4

t

)

≤ 8

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ

(
t4δ + Y 4

t

)

=
8

n

n∑

t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑

t=1

1√
t

∑

k,ℓ

pt,k,ℓ(h
(k,ℓ)(Xt

1, Y
t−1
1 ) − Yt)

4

≤ lim sup
n→∞

8

n

n∑

t=1

Y 4
t√
t

= 0,
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where we applied thatE{Y 4
1 } < ∞ and 0 < δ < 1

8 . Summarizing these bounds, we get that, almost

surely,

lim sup
n→∞

Ln(g) ≤ L∗

and the proof of the theorem is finished. �

Corollary 1: Under the conditions of Theorem 1,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (7)

Proof. By Theorem 1,

lim
n→∞

1

n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
= L∗ a.s. (8)

and by the ergodic theorem we have

lim
n→∞

1

n

n∑

t=1

E

{(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞
}

= L∗ (9)

almost surely. Now we may write asn → ∞, that

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1

n

n∑

t=1

E{
(
Yt − E{Yt | Xt

−∞, Y t−1
−∞ }

)2 | Xt
−∞, Y t−1

−∞ }

=
1

n

n∑

t=1

E{
(
Yt − gt(X

t
1, Y

t−1
1 )

)2 | Xt
−∞, Y t−1

−∞ }

− 1

n

n∑

t=1

(
Yt − gt(X

t
1, Y

t−1
1 )

)2
+ o(1) (10)

= 2
1

n

n∑

t=1

gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ })

− 1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | Xt

−∞, Y t−1
−∞ }

)
+ o(1) a.s.

where (10) holds because of (8) and (9). The second sum is

1

n

n∑

t=1

(
Y 2

t − E{Y 2
t | Xt

−∞, Y t−1
−∞ }

)
→ 0 a.s.

by the ergodic theorem. Put

Zt = gt(X
t
1, Y

t−1
1 )(Yt − E{Yt | Xt

−∞, Y t−1
−∞ }).
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In order to finish the proof it suffices to show

lim
n→∞

1

n

n∑

t=1

Zt = 0 . (11)

Then

E{Zt | Xt
−∞, Y t−1

−∞ } = 0,

for all t, so theZt’s form a martingale difference sequence. By the strong law of large numbers for

martingale differences due to Chow [7] (see also Stout [22, Theorem 3.3.1]), if{Zt} is a martingale

difference sequence with
∞∑

n=1

EZ2
n

n2
< ∞, (12)

then

lim
n→∞

1

n

n∑

t=1

Zt = 0 a.s.

We have to verify (12). By the construction ofgn,

E
{
Z2

n

}
= E

{(
gn(Xn

1 , Y n−1
1 )(Yn − E{Yn | Xn

−∞, Y n−1
−∞ })

)2}

≤ E
{
gn(Xn

1 , Y n−1
1 )2Y 2

n

}

≤ n2δ
E
{
Y 2

1

}
,

therefore (12) is verified, (11) is proved and the proof of the corollary is finished. �

Remark. CHOICE OFqk,ℓ. Theorem 1 is true independently of the choice of theqk,ℓ’s as long as these

values are strictly positive for allk and ℓ. In practice, however, the choice ofqk,ℓ may have an impact

on the performance of the predictor. For example, if the distribution {qk,ℓ} has a very rapidly decreasing

tail, then the term− ln qk,ℓ/
√

n will be large for moderately large values ofk andℓ, and the performance

of g will be determined by the best of just a few of the elementary predictorsh(k,ℓ). Thus, it may be

advantageous to choose{qk,ℓ} to be a large-tailed distribution. For example,qk,ℓ = c0k
−2ℓ−2 is a safe

choice, wherec0 is an appropriate normalizing constant.

III. PREDICTION FOR BINARY LABELS

In this section we apply the same ideas to the seemingly more difficult classification (or pattern

recognition) problem. The setup is the following: let{(Xn, Yn)}∞−∞ be a stationary and ergodic sequence

of pairs taking values inRd×{0, 1}. The problem is to predict the value ofYn given the data(Xn
1 , Y n−1

1 ).
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We may formalize the prediction (classification) problem as follows. The strategy of the classifier is a

sequencef = {ft}∞t=1 of decision functions

ft :
(
R

d
)t

× {0, 1}t−1 → {0, 1}

so that the classification formed at timet is ft(X
t
1, Y

t−1
1 ). Thenormalized cumulative0− 1 loss for any

fixed pair of sequencesXn
1 , Y n

1 is now

Rn(f) =
1

n

n∑

t=1

I{ft(Xt
1,Y t−1

1 ) 6=Yt}.

In this case there is a fundamental limit for the predictability of the sequence, i.e., Algoet [2] proved

that for any classification strategyf and stationary ergodic process{(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (13)

where

R∗= E

{
min

(
P{Y0 = 1|X0

−∞, Y −1
−∞},P{Y0 = 0|X0

−∞, Y −1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 2: A classification strategyf is calledCesaro consistentif for all stationary and ergodic

processes{Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, Cesaro consistent strategies asymptotically achieve the best possible loss for all ergodic

processes. The first question is, of course, if such a strategy exists. Ornstein [19] and Bailey [4] proved

the existence of Cesaro consistent predictors. This was later generalized by Algoet [1]. A simpler estimator

with the same convergence property was introduced by Morvai, Yakowitz, and Gÿorfi [17]. Motivated

by the need of a practical estimator, Morvai, Yakowitz, and Algoet [16] introduced an even simpler

algorithm. However, it is not known whether their predictoris Cesaro consistent. Györfi, Lugosi, and

Morvai [12] introduced a simple randomized Cesaro consistent procedure with a practical appeal. Their

idea was to combine the decisions of a small number of simple experts in an appropriate way.

The same idea was used in Weissman and Merhav [24]. They studiedthe consistency in noisy

environment. In their model the past ofYt is not available for the predictor, it has only access to the

noisy pastXt−1
1 . Xt is a noisy function ofYt, that is,Xt = u(Yt, Nt), whereu : {0, 1} × R → R is a

function and{Nt} is some noise process. A general loss functionℓ(f ′
t(X

t−1
1 ), Yt) is considered, where

f ′
t : R

t−1 → R and f ′
t(X

t−1
1 ) is the estimate ofYt. They used an algorithm based on Vovk [23] to

combine the simple experts and used doubling trick to fit the algorithm to infinite time horizon. In case
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of 0 − 1 loss, one may easily modify the results in the sequel such that, they can be applied for the

problem of [24].

In this section we present a simple (non-randomized) on-line classification strategy, and prove its

Cesaro consistency. Consider the partitioning predictionschemegt(X
t
1, Y

t−1
1 ) introduced in Section II

with

h(k,ℓ)
n (xn

1 , yn−1
1 ) = Ê(k,ℓ)

n (xn
1 , yn−1

1 , Gℓ(x
n
n−k), y

n−1
n−k),

for n = 1, 2, . . ., and then introduce the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =





1 if gt(X

t
1, Y

t−1
1 ) > 1/2

0 otherwise.

The main result of this section is the Cesaro consistency of this simple classification scheme:

Theorem 2:Assume that the conditions of Theorem 1 on the sequences of partitions Qℓ satisfy and

ηt = 1√
t
. Then the classification schemef defined above satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process{(Xn, Yn)}∞n=−∞.

Proof. Because of (13) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.

By Corollary 1,

lim
n→∞

1

n

n∑

t=1

(
E{Yt | Xt

−∞, Y t−1
−∞ } − gt(X

t
1, Y

t−1
1 )

)2
= 0 a.s. (14)

Introduce the Bayes classification scheme using the infinite past:

f∗
t (Xt

−∞, Y t−1
−∞ ) =





1 if P{Yt = 1 | Xt

−∞, Y t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative0 − 1 loss:

Rn(f∗) =
1

n

n∑

t=1

I{f∗

t (Xt
−∞

,Y t−1
−∞

) 6=Yt}.

Put

R̄n(f) =
1

n

n∑

t=1

P{ft(X
t
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

and

R̄n(f∗) =
1

n

n∑

t=1

P{f∗
t (Xt

−∞, Y t−1
−∞ ) 6= Yt | Xt

−∞, Y t−1
−∞ }.
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Then

Rn(f) − R̄n(f) → 0 a.s.

and

Rn(f∗) − R̄n(f∗) → 0 a.s.,

since they are the averages of bounded martingale differences. Moreover, by the ergodic theorem

R̄n(f∗) → R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f) − R̄n(f∗)) ≤ 0 a.s.

Theorem 2.2 in Devroye, Györfi, and Lugosi [8] implies that

R̄n(f) − R̄n(f∗)

=
1

n

n∑

t=1

(
P{ft(X

t
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y t−1
−∞ }

−P{f∗
t (Xt

−∞, Y t−1
−∞ ) 6= Yt | Xt

−∞, Y t−1
−∞ }

)

≤ 2
1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(X
t
1, Y

t−1
1 )

∣∣

≤ 2

√√√√ 1

n

n∑

t=1

∣∣E{Yt | Xt
−∞, Y t−1

−∞ } − gt(Xt
1, Y

t−1
1 )

∣∣2

→ 0 a.s.,

where in the last step we applied (14). �
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