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Abstract

A simple on-line procedure is considered for the predictba real valued sequence. The algorithm
is based on a combination of several simple predictors.efséquence is a realization of an unbounded
stationary and ergodic random process then the averageuafest|errors converges, almost surely, to
that of the optimum, given by the Bayes predictor. An analesult is offered for the classification of

binary processes.
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. INTRODUCTION

We study the problem of sequential prediction of a real wdhlsequence. At each time instant=
1,2, ..., the predictor is asked to guess the value of the next outagroé a sequence of real numbers
Y1, Y2, - - - With knowledge of the pastgi’1 = (y1,...,%-1) (Wwherey denotes the empty string) and
the side information vectors! = (x1,...,2;), wherex; € R¢ . Thus, the predictor’s estimate, at time

t, is based on the value of and y{‘l. A prediction strategy is a sequenge= {g;};2, of functions
t
g - (Rd) xR SR

so that the prediction formed at tintes gt(xtl,yfl).
In this paper we assume thdtei,y1), (z2,y2),... are realizations of the random variables

(X1,Y1),(X2,Y2),... such that{(X,,,Y,,) }>°, is a jointly stationary and ergodic process.
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After n time instants, thenormalized cumulative prediction erras
n

L _ l Xt Yt—l Y, 2

n(g) - nZ(gt( 1,41 ) t) :
t=1

The results of the paper are given in an autoregressive frarkewhat is, the valug’; is predicted
based onX} and Yffl. The fundamental limit for the predictability of the sequercan be determined
based on a result of Algoet [2], who showed that for any ptéexicstrategyg and stationary ergodic
process{(X,, Y,)}> .,

liminf L, (g) > L* almost surely, 1)

n—oo

where

L= 2{ (¥ - B[ X°. v L))}

is the minimal mean squared error of any prediction for theievaof Y, based on the infinite past
X%, Y~!. Note that it follows by stationarity and the martingale wengence theorem (see, e.g., Stout

[22]) that
L = lim B{ (Y - E{Ya|x7,Y7""'})*}

n—oo
This lower bound gives sense to the following definition:
Definition 1: A prediction strategyg is called universally consistent with respect to a clagsof

stationary and ergodic process¢sX,,,Y,,)}>, if for each process in the class,

lim L,(g9) = L* almost surely

Universally consistent strategies asymptotically aohithe best possible loss for all ergodic processes
in the class. Algoet [1] and Morvai, Yakowitz, and @i [17] proved that there exists a prediction strategy
universal with respect to the class of all bounded ergodicesses. However, the prediction strategies
exhibited in these papers are either very complex or havenegagonably slow rate of convergence even
for well-behaved processes.

Lugosi and G¥rfi [11] introduced several simple prediction strategiekich are universally consistent
with respect to the class of bounded, stationary and ergodicesses. In this paper we extend the results
of [11] to unbounded processes. The algorithms build on a odelbgy worked out in recent years
for prediction of individual sequences, see Feder, Merhad, Gutman [9], Littlestone and Warmuth
[13], Cesa-Bianchi and Lugosi [6], Singer and Feder [20], Merliad Feder [14] for a survey. Most of

the result in individual framework holds on for fixed time tm, which does not suit the asymptotic
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analysis. Accordingly, the main ingredients of our proo&iemma which allows us to extend the above
cited methods for the asymptotic studies in a simple way. &¥erito Nobel [18], Singer and Feder [20],
[21] and Yang [25] to recent closely related work. A distieoincept, memory universality is studied by
Modha and Masry [15] for bounded and exponentially stromgiying random process, where the decay
coefficients is known.

In Section Il we introduce an universally consistent stratieg unbounded ergodic processes which is
based on a combination of partitioning estimates. In Sedtlome consider the) — 1 loss, i.e., construct

a recursive pattern recognition scheme for stationary agddéc process.

Il. UNIVERSAL PREDICTION BY PARTITIONING ESTIMATES

The prediction strategy is defined, at each time instant, asngegocombination ofelementary
predictors where the weighting coefficients depend on the past perfocmaf each elementary predictor.
We define an infinite array of elementary predictét$?), k,¢ = 1,2,... as follows. LetP, =

{Arj,j =1,2,...,my} be a sequence of finite partitions Bf and letQ, = {B,;,j = 1,2,...,m}}

be a sequence of finite partitions &f. Introduce the corresponding quantizers:

Fo(y) =7, ifye Ay

and

Gy(z) =7, if x € By .

With some abuse of notation, for any and yi € R", we write Fy(yy) for the sequence
Fi(y1), ..., Fy(yn), and similarly, forz} € (R%)", we write G,(27) for the sequenc€y(x1), .. ., Ge(xy,).
Fix positive integersk, ¢, and for eachk + 1-long string z of positive integers, and for eadklong

string s of positive integers, define the partitioning regressiorcfiom estimate

~

2tk Golat_ )=z, Fu(y!~h)=s} Yt
Egk,@)(x?,y?—lj,z’s) {k<t<n:Go(xi_,)=2, Fe(y,Z,)=s}

N ’{k‘ <t<n: Gg(xi_k) =z, Fg(yfili) = s}”
for all n > k + 1 where0/0 is defined to be).

Introduce the truncation function
n if z>nd
To(z) = =2 if |z| <nd
—nd if 2 < —n?,
where

0<d0<1/8.
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Define the elementary predictaf®*) by

PEO @,y ™) = T (B (@, ™ Gl ) Byl h) )

forn=1,2,.... That is,hff’é) guantizes the sequen@@,y}“l according to the partition®, and Py,

and looks for all appearances of the last seen quantizewystt,(z]_, ) of lengthk + 1 and Fg(y;t:]i)
of length & in the past. Then it predicts according to the truncation efdlierage of the;’s following
the string.

The proposed prediction algorithm proceeds as follows{dgl;} be a probability distribution on the

set of all pairs(k, £) of positive integers such that for &l ¢, g, , > 0. Forn, > 0, and define the weights

W ke = Gk ee*m(t*l)L“l(h(M))

and their normalized values

Wt k.0

Dik,t =
Wy

where

o]
Wt: E wtﬂ;,j.

i,j=1
The prediction strategy is defined by

gt(xtb yiil) = Z pt,k’,fh(kj) (xtb yiil) 3 t= 17 2a cee (2)

k=1
Theorem 1:Assume that
(a) the sequences of partitidfy is nested, that is, any cell %, is a subsetofacell P, { =1,2,..
(b) the sequences of partitio, is nested,;
(c) the sequences of partitid®, is asymptotically fine, i.e., if
diam(4) = sup [« - y]|
T,yeA

denotes the diameter of a set, then for each spHerentered at the origin

lim max diam(A.;) =0;
l—00 j:Ap ;NSH#D ’

(d) the sequences of partitia, is asymptotically fine;

and choosing parameter of the algorithm as

m =

<l
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Then the prediction schemg defined above is universally consistent with respect to thasscbf all
ergodic processes such that
E{Y}'} < .

Here we describe two results, which are used in the analybis first lemma is a modification of the
analysis of Aueret al. [3], which allows of the handling the case when the parametehe algorithm
(n:) is time-dependent and the number of the elementary predics infinite.

Lemma 1:Let k) h(?)_ ... be a sequence of prediction strategies (experts){i,et be a probability

distribution on the set of positive integers. Denote themadized loss of the expeft = (hy, ha,...) by

Lalh) = 5 S th)
t=1

where

b (h) = €(he, Yr)
and the loss functior is convex in its first argumerit. Define
(t=1)Li-1(R™)

Wy = qre "

wheren; > 0 is monotonically decreasing, and

P Wtk
tk = 71,
Wy
where
(o]
Wt = Zwt,k .
k=1

If the prediction strategy = (g1, g2, ... ) is defined by
g = puhi?  t=12..
k=1

then for everyn > 1,

. In ¢ 1 & >
Ln(g) <inf ( L,(h®)) — > +— (R,
(@) < int (Lo - 2 g 2o a0 )

Proof. Introduce some notations:
! i1 (t=1)L;—1 (R
wy . qre Me—1( JLi—1( )7

which is the weightw, ;, wheren; is replaced byy;_; and the sum of these are
(o)
k=1
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We start the proof with the following chain of bounds:

1 tl+1 1 1 Eliil wtvke_ntﬁt(h(k))
—In—/—/—="—"1In
m Wi mt Wy

1 o
k
= — ln E pt’ke_ntet(h( ))
U —

1, «— 2
77* ant k <1 — by (hF)) + n;@(h(k))>
k=1

because o™ * <1 —x + x2/2 for x > 0. Moreover,

1 In Wi
e Wy
1 x e
k=1 k=1
< - ;pt,k&(h(’“)) - % Zpt,kf?(h(k)) (3)
= — Zpt’kﬁ( ") Y + 77t Zpt kG (h
k=1
< (Z pt,khﬁk), Yt) + % ankﬁf(h(k)) (4)
k=1
= (g Zpt kgt ()

where (3) follows from the fact thai(1 + z) < z for all z > —1 and in (4) we used the convexity of

the loss/(h,y) in its first argument.. From (5) after rearranging we obtain

1 w/
l(g) < ——In t“ﬂtzmﬂ h®))

Up Wy 1
Then write a telescope formula:
1 1 1 1
—lnl/Vt——anVt’_H = <1HWt—1nWt+1>
Up Up m Ni+1

1
+ <ln Wi — — ln Wt+1)
M+1

= (A) + (By).
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We have that

zn:At == Zn: <1111Wt - 11HWt+1>
t=1

=1 \Tit Tt+1

1 1
=—mhW; -
m Tn+1

1 [e%S)
= — In Z qke_nnJrl'”Ln(h(k))
15

In Wn+1

In sup le_""“"l’" (h)

Th+1 k

1
= - sup (ln Qe — "7n+1nLn(h(k))>
TIn+1 k&

= inf (nLn(h(k)) - ln%> .
k Mn+1

< —

% < 1, therefore applying Jensen’s inequality for concave fiangtwe get that

oo

- tLy(h®

Wi :ZQie M atLe (P10
i—1

Nt+1

o0 ——
S (e
i=1

Ne41

> amyy "
< [ gremmtrae)
i=1

Nt+1

- (W)
Thus,
1 1 ,
Bt = 711’1Wt+1 - *th—H
Mt+1 m

T m / 1 /
< — " InW,,, ——InW,
TOM1 M oy, .

We can summarize the bounds:

. In gy, 1 & >
L,(g) < inf ( L, (h®) — — 2(hR)y
(9) < in ( (A7) nnn+1) t3, ;m ;pt,k i (h")

The next lemma is due to Breiman [5], and its proof may also bmdoin Gyorfi et al. [10].
Lemma 2:Let Z = {Z;}>, be a stationary and ergodic time series. [[étdenote the left shift

operator. Letf; be a sequence of real-valued functions such that for somgidunf, f;(Z) — f(2)
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almost surely. Assume th& sup, |fi(Z)| < co. Then
1 « A
o1 (T —
Jim_ ~ ;L(T Z) =Ef(2)
1=
almost surely.

Proof of Theorem 1. Because of (1), it is enough to show that

limsup L, (g) < L* a.s.

n—oo

By a double application of the ergodic theorem,mas> oo, a.s.,

EFO (X2 Y 2, s)
Z{k<t<n Gu(Xt_, )=z Fu(Y!~)=s} Yt
LIk <t<n: GuX!,) =z FY'!) = s}
E{Yoliq,x0, )=z my(v-)=s} )
P{G/(X%,) = 2, Fi(Y7 ) = s}
= E{Yo|Gi(X?)) =z, F(YZ}) = s},

and therefore for alk and s
T (BEO (XY 205)) = B{Y | Gl(X,) = 2, F(YT)) = s},

By Lemma 2, as1 — oo, almost surely,

Ly (h*0)
1 ¢ _
= > (I Y - v
t=1
1 " k,0) . 2
== 1( (B XY Gl L) R(Y) ) 1)

S B{(Yo — E{Yy | Go(X°,), (Y- )%

E{Yy | Go(X°,), Fu(Y )} is a martingale indexed by the pdit, ¢), since the partition$, and Q,
are nested. Thus, the martingale convergence theorem (geeStut [22]) and assumptions (c) and (d)

for the sequences of partitions implies that

i]?ffk,l = kleim €k = E{(YO ~E{Yy|X° . _010})2} =L

| H—00
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(cf. Gyorfi and Lugosi [11]). Apply Lemma 1 with choicg; = X and for the squared logs(h) =

Y
(ht — Y;)?, then the square loss is convex in its first argumigngo

i 2Inqg,
L,(g) < inf [ L,(Rk0) - 220t
@) < i (La(000) - 220
+i n i i ptkg(h(k’e)(Xf Yt—l) _ }/;)4
2n t=1 t k=1 h o

On the one hand, almost surely,

21
lim sup ing <Ln(h(k,5)) _ nqk,g>

n—oo s \/ﬁ
inflimsup ( L, (h*9) — 2In gy
p n \/ﬁ

kL n—oo

IN

= inflimsup L, (h5*)
k’é n—oo

= infe
k.l kL

= lim ey

kf—o0

= L*
On the other hand,
Ly S O V) — vt
nig Vi A
5 z”: L > prie (h(k’e) (X1, ! Ht+ Yf)
niZ Vi A

8w 1
< =YY e (P4 YY)
niZ Vi o,

_ Sy
nim o Vi

therefore, almost surely,

, 1A 1 B
lim sup — Z . Zpt,k,@(h(k7£)(X{, }/115 1) _ 1/%>4

n—oo M4 Vi k¢
R
< limsup — —t
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where we applied thaE{Y;}} < co and0 < § < % Summarizing these bounds, we get that, almost

surely,
limsup L, (g) < L*

n—o0

and the proof of the theorem is finished.

Corollary 1: Under the conditions of Theorem 1,

1 n
lim — > (B{Y; | X' o, Y/ U} — (X}, Y] =0 as.
n—oo n
t=1
Proof. By Theorem 1,

R t yt—1y)2 *
lim - ;_1 (Vi — (X1, Y1) =L a.s.
and by the ergodic theorem we have

t—1 t—1 *
gggonZE{ (Vi — B{Y: | X, VI | XL YR = L
almost surely. Now we may write as— oo, that

1 o - ~1)2
~Y (B XYY - g YY)
t=1

1 n
EZE{(YE_gt(Xiyltil)) |X—oo’Yt !
t=1

Ytl

—00)

——ZE{Yt E{Y, | X', V' 1)? | X!

1 o .
= gZE{(Yt—gt(Xf,Yf 02Xt vt
t=1
l - t yt—1y)2
_nZ(Yt_gt(XhYl )) +0o(1)
t=1
1 o - )
= 23 (XL YTV - BV | X, YD)
t=1

IS R E2 XY ) +o() as.
n
where (10) holds because of (8) and (9). The second sum is
1y 2 1
nZ( ~E{Y? | XL Y ) -0 as.
by the ergodic theorem. Put
Zi = g(X1, Y (Y - E{Y: | XL VIO D).
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In order to finish the proof it suffices to show
1l
lim — E Zy=0. (12)
n—oo N
t=1

Then
E{Z | Xt Y} =0,

—0o0) T —00

for all t, so theZ;'s form a martingale difference sequence. By the strong lawa@e numbers for
martingale differences due to Chow [7] (see also Stout [22ofidra 3.3.1]), if{Z;} is a martingale

difference sequence with
> EZ?

n2
n=1

< 00, (12)

then
1 n
nh—{go - tz:; Z; =0 a.s.
We have to verify (12). By the construction gf,

-0 T —00

n yn— n n— 2
E{Z;} = E{(gn(Xl,Yl (Yo — E{Y, | X", Y"'})) }
< E{ga (X7, Y)Y}
< n?E{Y{},
therefore (12) is verified, (11) is proved and the proof of theottary is finished. 0

Remark. CHOICE OF ¢; 0. Theorem 1 is true independently of the choice of ¢hg’s as long as these
values are strictly positive for alt and/. In practice, however, the choice gf , may have an impact
on the performance of the predictor. For example, if therithistion {q; (} has a very rapidly decreasing
tail, then the term-1n g, ,/+/n will be large for moderately large values bfand/, and the performance
of ¢ will be determined by the best of just a few of the elementamdiztorsi(*:*). Thus, it may be
advantageous to chooge; .} to be a large-tailed distribution. For examplg,, = cok™2¢72 is a safe

choice, wherey is an appropriate normalizing constant.

[ll. PREDICTION FOR BINARY LABELS

In this section we apply the same ideas to the seemingly miffieutt classification (or pattern
recognition) problem. The setup is the following: {gtX,,, Y,,) }>°,, be a stationary and ergodic sequence

of pairs taking values iiR? x {0, 1}. The problem is to predict the value B}, given the datd X7, " !).
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We may formalize the prediction (classification) problem @kivs. The strategy of the classifier is a

sequencef = { f;}¢2, of decision functions

I (]Rd)t % {0,131 = {0,1}

so that the classification formed at timés f;(X?,Y{™'). Thenormalized cumulativé — 1 lossfor any

fixed pair of sequenceX?(, YY" is now

1 n
Ru(f) = n Z I{ft(X{,Yffl)#Yt}'
t=1

In this case there is a fundamental limit for the predicigbidf the sequence, i.e., Algoet [2] proved

that for any classification strategyand stationary ergodic proce$6X,,,Y,)}>2 _ .,

liminf R,(f) > R* a.s., (13)

n—00
where
R*= E{min (P{Yo=1X° ., Y L} P{Yo=0/X° ., Y L )},
therefore the following definition is meaningful:
Definition 2: A classification strategy is called Cesaro consistenf for all stationary and ergodic
processeg X,,, Y, }>°,

lim R,(f)=R" almost surely

n—oo

Therefore, Cesaro consistent strategies asymptoticallieae the best possible loss for all ergodic
processes. The first question is, of course, if such a strategiseOrnstein [19] and Bailey [4] proved
the existence of Cesaro consistent predictors. This wasgateralized by Algoet [1]. A simpler estimator
with the same convergence property was introduced by Mpiakowitz, and Gwrfi [17]. Motivated
by the need of a practical estimator, Morvai, Yakowitz, anigo®t [16] introduced an even simpler
algorithm. However, it is not known whether their predicterCesaro consistent. @gfi, Lugosi, and
Morvai [12] introduced a simple randomized Cesaro consigieocedure with a practical appeal. Their
idea was to combine the decisions of a small number of simygerés in an appropriate way.

The same idea was used in Weissman and Merhav [24]. They sttidgeadonsistency in noisy
environment. In their model the past &f is not available for the predictor, it has only access to the
noisy pastX.’j‘l. X, is a noisy function ofY;, that is, X; = u(Y;, Vy), whereuw : {0,1} xR — Ris a
function and{N;} is some noise process. A general loss functioff(X!~!),V;) is considered, where
fl Rt - R and f{(Xffl) is the estimate ofY;. They used an algorithm based on Vovk [23] to

combine the simple experts and used doubling trick to fit tiger&ghm to infinite time horizon. In case
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of 0 — 1 loss, one may easily modify the results in the sequel suct thay can be applied for the
problem of [24].

In this section we present a simple (non-randomized) om-Glassification strategy, and prove its
Cesaro consistency. Consider the partitioning predicﬁdmemegt(X{,Yf‘l) introduced in Section Il
with

hEO @,y ) = ESO @, o Gy vah),

forn =1,2,..., and then introduce the corresponding classification scheme

) 1 if go(XEY Y > 12
ft(XLYlt 1) = . '
0 otherwise.
The main result of this section is the Cesaro consistencyisfsiimple classification scheme:
Theorem 2:Assume that the conditions of Theorem 1 on the sequences titiqgres Q, satisfy and

. Then the classification schenfedefined above satisfies

-

Ny =

lim R,(f)=R* almost surely

n—oo

for any stationary and ergodic proceSsX,,, Y,)}>2

n=—oo"

Proof. Because of (13) we have to show that

limsup R,,(f) < R* a.s.

n—oo

By Corollary 1,

n

: 1 t—1 t—1
nlggon;(E{mX_wY D -aXLYI)) =0 as. (14)

Introduce the Bayes classification scheme using the infinis& pa
1 ifP{Y,=1|X' Y1y >1/2

0 otherwise,

fXt vy =
and its normalized cumulativé — 1 loss:
1 n
== Lpx ey
n t _007 t
t=1

Put
R ZP{ft Xlayt 1) 7& }/t | Xfoo7Yt !

and

1< . _
- Ezp{ft (Xt—oovyjoc}) 7é Y | X—oo7Yt !
t=1
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Then
R.(f) = Rn(f)—0 a.s.

and

Ry(f*) — Ru(f*) — 0 a.s.,
since they are the averages of bounded martingale diffeserMoreover, by the ergodic theorem
R,(f*)— R* as,

so we have to show that

limsup(Ra(f) = Ru(f*)) <0 as.

n—oo

Theorem 2.2 in Devroye, @yfi, and Lugosi [8] implies that
Ry (f) = Ra(f")
1< _ _
= Y (PR YT AV XYY
t=1

—0o0?) T —00

“P{f (X0, VI # Vi | X YL

IN

1 — . -
t=1

IN
DO

1 & . —14]2

S IBY X YD) - (XL YY)
t=1

— 0 a.s.,

where in the last step we applied (14). d
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