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Abstract. The on-line shortest path problem is considered under par-
tial monitoring scenarios. At each round, a decision maker has to choose
a path between two distinguished vertices of a weighted directed acyclic
graph whose edge weights can change in an arbitrary (adversarial) way
such that the loss of the chosen path (defined as the sum of the weights
of its composing edges) be small. In the multi-armed bandit setting, af-
ter choosing a path, the decision maker learns only the weights of those
edges that belong to the chosen path. For this scenario, an algorithm is
given whose average cumulative loss in n rounds exceeds that of the best
path, matched off-line to the entire sequence of the edge weights, by a
quantity that is proportional to 1/

√

n and depends only polynomially on
the number of edges of the graph. The algorithm can be implemented
with linear complexity in the number of rounds n and in the number of
edges. This result improves earlier bandit-algorithms which have perfor-
mance bounds that either depend exponentially on the number of edges
or converge to zero at a slower rate than O(1/

√

n). An extension to the
so-called label efficient setting is also given, where the decision maker
is informed about the weight of the chosen path only with probability
ε < 1. Applications to routing in packet switched networks along with
simulation results are also presented.

1 Introduction

In a typical sequential decision problem, a decision maker has to perform a
sequence of actions. After each action the decision maker suffers some loss, de-
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pending on the response (or state) of the environment, and its goal is to minimize
its cumulative loss over a sufficiently long period of time. In the adversarial set-
ting no probabilistic assumption is made on how the losses corresponding to
different actions are generated. In particular, the losses may depend on the pre-
vious actions of the decision maker, whose goal is to perform well relative to a
set of experts for any possible behavior of the environment. More precisely, the
aim of the decision maker is to achieve asymptotically the same average loss (per
round) as the best expert.

The basic theoretical results in this topic were pioneered by Blackwell [4] and
Hannan [17], and brought to the attention of the machine learning community in
the 1990’s by Vovk [25], Littlestone and Warmuth [21], and Cesa-Bianchi et al.

[6]. These results show that for any bounded loss function, if the decision maker
has access to the past losses of all experts, then it is possible to construct on-line
algorithms that perform, for any possible behavior of the environment, almost
as well as the best of N experts. Namely, for these algorithms the per round cu-
mulative loss of the decision maker is at most as large as that of the best expert
plus a quantity proportional to

√
ln N/n for any bounded loss function, where

n is the number of rounds in the decision game. The logarithmic dependence
on the number of experts makes it possible to obtain meaningful bounds even if
the pool of experts is very large. However, the basic prediction algorithms, such
as weighted average forecasters, have a computational complexity that is pro-
portional to the number of experts, and they are therefore practically infeasible
when the number of experts is very large.

In certain situations the decision maker has only limited knowledge about
the losses of all possible actions. For example, it is often natural to assume that
the decision maker gets to know only the loss corresponding to the action it has
made, and has no information about the loss it would have suffered had it made
a different decision. This setup is referred to as the multi-armed bandit problem,
and was solved by Auer et al. [1] and Cesa-Bianchi and Lugosi [7], who gave
an algorithm whose average loss exceeds that of the best expert at most by an
amount proportional to

√
N ln N/n. Note that, compared to the full information

case described above where the losses of all possible actions are revealed to the
decision maker, there is an extra

√
N term in the performance bound, which

seriously limits the usefulness of the algorithm if the number of experts is large.

Another interesting example for the limited information case is the so-called
label efficient decision problem, in which it is too costly to observe the state of
the environment, and so the decision maker can query the losses of all possible
actions for only a limited number of times. A recent result of Cesa-Bianchi,
Lugosi, and Stoltz [8] shows that in this case, if the decision maker can query
the losses m times during a period of length n, then it can achieve O(

√
ln N/m)

average excess loss relative to the best expert.

In many applications the set of experts has a certain structure that may be ex-
ploited to construct efficient on-line decision algorithms. The construction of such
algorithms has been of great interest in computational learning theory. A partial
list of works dealing with this problem includes Herbster and Warmuth [19],



Vovk [26], Bousquet and Warmuth [5], Helmbold and Schapire [18], Takimoto
and Warmuth [24], Kalai and Vempala [20], György, Linder, and Lugosi [12–14].
For a more complete survey, see Cesa-Bianchi and Lugosi [7, Chapter 5].

In this paper we discuss the on-line shortest path problem, a representative
example of structured expert classes that has received attention in the literature
for its many applications, including, among others, routing in communication
networks, see, e.g., Takimoto and Warmuth [24], Awerbuch et al. [2], or György
and Ottucsák [16], and adaptive quantizer design in zero-delay lossy source cod-
ing, see, György, Linder, and Lugosi [12, 13, 15]. In this problem, given is a
weighted directed (acyclic) graph whose edge weights can change in an arbitrary
manner, and the decision maker has to pick in each round a path between two
given vertices, such that the weight of this path (the sum of the weights of its
composing edges) be as small as possible.

Efficient solutions, with time and space complexity proportional to the num-
ber of edges rather than to the number of paths (the latter typically being
exponential in the number of edges), have been given in the full information
case, where in each round the weights of all the edges are revealed after a path
has been chosen, see, e.g., Mohri [23], Takimoto and Warmuth [24], Kalai and
Vempala [20], and György, Linder, and Lugosi [14].

In the bandit setting, where only the weights of the edges composing the
chosen path are revealed to the decision maker, if one applies the general bandit
algorithm of Auer et al. [1], then the resulting bound will be too large to be of
practical use because of its square-root-type dependence on the number of paths
N . On the other hand, utilizing the special graph structure in the problem,
Awerbuch and Kleinberg [3] and McMahan and Blum [22] managed to get rid of
the exponential dependence on the number of edges in the performance bound by
extending black box predictors, and specifically the follow-the-perturbed-leader
algorithm of Hannan [17] and the exponentially weighted average predictor [21],
to the multi-armed bandit setting. However, their bounds do not have the right
O(1/

√
n) dependence on the number of rounds.

In this paper we provide an extension of the bandit algorithm of Auer et al.

[1] unifying the advantages of the above approaches, with performance bound
that is only polynomial in the number of edges, and converges to zero at the
right O(1/

√
n) rate as the number of rounds increases.

In the following, first we define formally the on-line shortest path problem
in Section 2, then extend it to the multi-armed bandit setting in Section 3. Our
new algorithm for the shortest path problem in the bandit setting is given in
Section 4 together with its performance analysis. The algorithm is extended to
solve the shortest path problem in a combined label efficient multi-armed bandit
setting in Section 5. Simulation results are presented in Section 6.

2 The shortest path problem

Consider a network represented by a set of nodes connected by edges, and assume
that we have to send a stream of packets from a source node to a destination
node. At each time slot a packet is sent along a chosen route connecting source



and destination. Depending on the traffic, each edge in the network may have a
different delay, and the total delay the packet suffers on the chosen route is the
sum of delays of the edges composing the route. The delays may change from
one time slot to the next one in an arbitrary way, and our goal is to find a way
of choosing the route in each time slot such that the sum of the total delays over
time is not significantly more than that of the best fixed route in the network.
This adversarial version of the routing problem is most useful when the delays on
the edges can change very dynamically, even depending on our previous routing
decisions. This is the situation in the case of ad-hoc networks, where the network
topology can change rapidly, or in certain secure networks, where the algorithm
has to be prepared to handle denial of service attacks, that is, situations where
willingly malfunctioning nodes and links increase the delay, see, e.g., Awerbuch
et al. [2].

This problem can be naturally cast as a sequential decision problem in which
each possible route is represented by an action. However, the number of routes is
typically exponentially large in the number of edges, and therefore computation-
ally efficient algorithms are called for. Two solutions of very different flavors have
been proposed. One of them is based on a follow-the-perturbed-leader forecaster,
see Kalai and Vempala [20], while the other is based on an efficient computation
of the exponentially weighted average forecaster, see, for example, Takimoto and
Warmuth [24]. Both solutions have different advantages and may be generalized
in different directions.

To formalize the problem, consider a (finite) directed acyclic graph with a
set of edges E = {e1, . . . , e|E|} and a set of vertices V . Thus, each edge e ∈ E
is an ordered pair of vertices (v1, v2). Let u and v be two distinguished vertices
in V . A path from u to v is a sequence of edges e(1), . . . , e(k) such that e(1) =
(u, v1), e(j) = (vj−1, vj) for all j = 2, . . . , k − 1, and e(k) = (vk−1, v), and let
R = {i1, . . . , iN} denote the set of all such paths. For simplicity, we assume that
every edge in E is on some path from u to v and every vertex in V is an endpoint
of an edge.

In each round t = 1, . . . , n of the decision game, the decision maker chooses
a path It among all paths from u to v. Then a loss `e,t ∈ [0, 1] is assigned to
each edge e ∈ E. We write e ∈ i if the edge e ∈ E belongs to the path i ∈ R,
and with a slight abuse of notation the loss of a path i at time slot t is also
represented by `i,t (however, the meaning of the subscript of ` will always be
clear from the context). Then `i,t is given as

`i,t =
∑

e∈i

`e,t

and therefore the cumulative loss of each path i takes the additive form

t∑

s=1

`i,s =
∑

e∈i

t∑

s=1

`e,s

where the inner sum on the right hand side is the loss accumulated by edge e
during the first t rounds of the game.



It is well known that for a general loss sequence, the decision maker must
be allowed to use randomization to be able to achieve the performance of the
best expert, see, e.g., Cesa-Bianchi and Lugosi [7]. Therefore, the path I t is
chosen according to some distribution pt over all paths from u to v. We study
the normalized regret

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)

where the minimum is taken over all paths i from u to v.
For example, the exponentially weighted average forecaster [21], calculated

over all possible paths, yields regret bound of the form

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)
≤ K

(√
ln N

2n
+

√
ln(1/δ)

2n

)

with probability at least 1 − δ, where N is the total number of paths from u to
v in the graph and K is the length of the longest path.

3 The multi-armed bandit setting

In this section we discuss the “bandit” version of the shortest path problem. In
this, in many applications more realistic problem, the decision maker has only
access to the losses of those edges that are on the path it has chosen. That is,
after choosing a path It at time t, the value of the loss `e,t is revealed to the
forecaster if and only if e ∈ It. For example, in the routing problem it means
that information is available on the delay of the route the packet is sent on, and
not on other routes in the network.

Formally, the on-line shortest path problem in the multi-armed bandit setting
is given as follows: at each time slot t = 1, . . . , n, the decision maker picks a path
It ∈ R form u to v. Then the environment assigns loss `e,t ∈ [0, 1] to each edge
e ∈ E, and the decision maker suffers loss `It,t =

∑
e∈It

`e,t, and the losses `e,t

are revealed for all e ∈ It. Note that `e,t may depend on I1, . . . , It−1, the earlier
choices of the decision maker.

For the general multi-armed bandit problem, Auer et al. [1] gave an algo-
rithm, based on exponential weighting with a biased estimate of the gains de-
fined, in our case, as gi,t = K−`i,t, combined with uniform exploration. Applying
an improved version of this algorithm due to Cesa-Bianchi and Lugosi [7] to the
on-line shortest path problem in the bandit setting results in a performance that
can be bounded with probability at least 1− δ for any 0 < δ < 1 and fixed time
horizon n as

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)
≤ 11K

2

√
N ln(N/δ)

n
+

K ln N

2n
.

However, this bound is unacceptable in our scenario because, unlike in the
full information case when a simple usage of the exponentially weighted aver-
age forecaster yielded a good performance bound, here the dependence on the



number of all paths N is not merely logarithmic. In order to achieve a bound
that does not grow exponentially with the number of edges of the graph, it is
imperative to make use of the dependence structure of the losses of the different
actions (i.e., paths). Awerbuch and Kleinberg [3] and McMahan and Blum [22]
attempted to do this by extending low complexity predictors, such as the follow-
the-perturbed-leader forecaster [17], [20] to the bandit setting. However, the
obtained bounds do not have the right O(1/

√
n) decay in terms of the number

of rounds.

4 A bandit algorithm for shortest paths

In the following we describe a carefully defined variant of the bandit algorithm
of [1] that achieves the desired performance for the shortest path problem in the
bandit setting. The new algorithm utilizes the fact that when the losses of the
edges of the chosen path are revealed, then this also provides some information
about the losses of each path sharing common edges with the chosen path.

For each edge e ∈ E, introduce gains ge,t = 1− `e,t, and for each path i ∈ R,
similarly to the losses, let the gain be the sum of the gains of the edges of the
path, that is, let gi,t =

∑
e∈i

ge,t. The conversion from losses to gains is done in
order to facilitate the subsequent performance analysis, see, e.g. [7]. To simplify
the conversion, we assume that each path i ∈ R is of the same length K for
some K > 0. Note that although this assumption may seem to be restrictive at
the first glance, from each acyclic directed graph (V,E) one can construct a new
graph with adding at most (K−2)(|V |−2)+1 vertices and edges (with constant
weight zero) to the graph without modifying the weights of the paths such that
each path from u to v will be of length K, where K denotes the length of the
longest path of the original graph. As typically |E| = O(|V |2), the size of the
graph is usually not increased substantially.

A main feature of the algorithm below is that the gains are estimated for
each edge and not for each path. This modification results in an improved upper
bound on the performance with the number of edges in place of the number of
paths. Moreover, using dynamic programming as in Takimoto and Warmuth [24],
the algorithm can be computed efficiently. Another important ingredient of the
algorithm is that one needs to make sure that every edge is sampled sufficiently
often. To this end, we introduce a set C of covering paths with the property that
for each edge e ∈ E there is a path i ∈ C such that e ∈ C. Observe that one can
always find such a covering set of cardinality |C| ≤ |E|.

Note that the algorithm of [1] is a special case of the algorithm below: For any
multi-armed bandit problem with N experts, one can define a graph with two
vertices u and v, and N directed edges from u to v with weights corresponding
to the losses of the experts. The solution of the shortest path problem in this
case is equivalent to that of the original bandit problem, with choosing expert
i if the corresponding edge is chosen. For this graph, our algorithm reduces to
the original algorithm of [1].



A BANDIT ALGORITHM FOR SHORTEST PATHS

Parameters: real numbers β > 0, 0 < η, γ < 1.
Initialization: Set we,0 = 1 for each e ∈ E, wi,0 = 1 for each i ∈ R,
and W 0 = |R|. For each round t = 1, 2, . . .

(a) Choose a path It according to the distribution pt on R, defined
by

pi,t =

{
(1 − γ)

wi,t−1

W t−1

+ γ
|C| if i ∈ C

(1 − γ)
wi,t−1

W t−1

if i 6∈ C.

(b) Compute the probability of choosing each edge e as

qe,t =
∑

i:e∈i

pi,t = (1 − γ)

∑
i:e∈i

wi,t−1

W t−1

+ γ
|{i ∈ C : e ∈ i}|

|C| .

(c) Calculate the estimated gains

g′e,t =

{
ge,t+β

qe,t
if e ∈ It

β
qe,t

otherwise.

(d) Compute the updated weights

we,t = we,t−1e
ηg′

e,t

wi,t =
∏

e∈i

we,t = wi,t−1e
ηg′

i,t

where g′
i,t =

∑
e∈i

g′e,t, and the sum of the total weights of the
paths

W t =
∑

i∈R

wi,t.

The analysis of the algorithm is based on that of the original algorithm of
[1] with necessary modifications required to transform parts of the argument
for edges from paths, and to utilize the connection between the gains of paths
sharing common edges.

Theorem 1. For any δ ∈ (0, 1) and parameters 0 ≤ γ < 1/2, 0 < β ≤ 1, and

η > 0 satisfying 2ηK|C| ≤ γ, the performance of the algorithm defined above can

be bounded with probability at least 1 − δ as

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)
≤ Kγ + 2ηK2|C| + K

nβ
ln

|E|
δ

+
ln N

nη
+ |E|β.



In particular, choosing β =
√

K
n|E| ln |E|

δ
, γ = 2ηK|C|, and η =

√
ln N

4nK2|C| yields

for all n ≥ max
{

K
|E| ln |E|

δ
, 4|C| ln N

}
,

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)
≤ 2

√
K

n

(
√

4K|C| ln N +

√
|E| ln |E|

δ

)
.

Sketch of the proof. The proof of the theorem follows the main ideas of [1]. As

usual, we start with bounding the quantity ln W n

W 0

. The lower bound is obtained
as

ln
Wn

W 0

= ln
∑

i∈R

eη
� n

t=1
g′

i,t − ln N ≥ η max
i∈R

n∑

t=1

g′
i,t − ln N (1)

where we used the fact that wi,n = eη
�

n
t=1

g′

i,t .
On the other hand, from the conditions of the theorem it follows that ηg′

i,t ≤ 1
for all i and t, and so using the inequalities ln(x + 1) ≤ x for all x > −1 and
ex < 1 + x + x2 for all x ≤ 1, one can show for all t ≥ 1 that

ln
W t

W t−1

≤ η

1 − γ

∑

i∈R

pi,tg
′
i,t +

η2

1 − γ

∑

i∈R

pi,tg
′2
i,t. (2)

The sums on the right hand side can be bounded as
∑

i∈R

pi,tg
′
i,t = gIt,t + |E|β and

∑

i∈R

pi,tg
′2
i,t ≤ K(1 + β)

∑

e∈E

g′e,t. (3)

Summing (2) for t = 1, . . . , n, and combining it with (1) and (3), it follows that

n∑

t=1

gIt,t ≥ (1 − γ − ηK(1 + β)|C|) max
i∈R

n∑

t=1

g′
i,t −

1 − γ

η
ln N − n|E|β. (4)

Now one can show based on [7, Lemma 6.7] that for any δ ∈ (0, 1), 0 < β ≤ 1,
and for all e ∈ E we have

P

(
n∑

t=1

ge,t >

n∑

t=1

g′e,t +
1

β
ln

|E|
δ

)
≤ δ

|E| . (5)

Then, applying the union bound, one can replace
∑n

t=1 g′
i,t in (4) with

∑n
t=1 gi,t

as

n∑

t=1

gIt,t ≥ (1 − γ − ηK(1 + β)|C|)
(

max
i∈R

n∑

t=1

gi,t −
K

β
ln

|E|
δ

)
− ln N

η
− n|E|β

which holds with probability at least 1 − δ. Then, applying the conversions

n∑

t=1

`It,t = Kn −
n∑

t=1

gIt,t and

n∑

t=1

`i,t = Kn −
n∑

t=1

gi,t,



after some algebra one obtains the first statement of the theorem. The second
statement follows by substituting the optimized parameters given in the theorem.

ut
The algorithm can be implemented efficiently with time complexity O(n|E|)

and space complexity O(|E|). The two complex steps of the algorithm are steps
(a) and (b), both of which can be computed, similarly to Takimoto and Warmuth
[24], using dynamic programming. To be able to perform these steps efficiently,
first we have to order the vertices of the graph. Since we have an acyclic directed
graph, its nodes can be labeled (in O(|E|) time) from 1 to |V | such that if
(v1, v2) ∈ E then v1 < v2, and u = 1 and v = |V |. For any pair of vertices
u1 < v1 let Ru1,v1

denote the set of paths from u1 to v1, and for any vertex
s ∈ V , let

Ht(s) =
∑

i∈Rs,v

∏

e∈i

we,t

and
Ĥt(s) =

∑

i∈Ru,s

∏

e∈i

we,t.

Given the edge weights {we,t}, Ht(s) can be computed recursively for s = |V | −
1, . . . , 1, and Ĥt(s) can be computed recursively for s = 2, . . . , |V | in O(|E|)
time (letting Ht(v) = Ĥt(u) = 1 by definition). In step (a), first one has to
decide with probability γ whether I t is generated according to the graph weights,
or it is chosen uniformly from C. If I t is to be drawn according to the graph
weights, it can be shown that its vertices can be chosen one by one such that
if the first k vertices of It are v0 = u, v1, . . . , vk−1, then the next vertex of It

can be chosen to be any vk > vk−1, satisfying (vk−1, vk) ∈ E, with probability
w(vk−1,vk),t−1Ht−1(vk)/Ht−1(vk−1). The other computationally demanding step,
namely step (b), can be performed easily by noting that for any edge (v1, v2),

q(v1,v2),t = (1 − γ)
Ĥt−1(v1)w(v1,v2),t−1Ht−1(v2)

Ht−1(u)

+ γ
|{i ∈ C : (v1, v2) ∈ i}|

|C| .

5 Shortest path problem for a combination of the label

efficient and the bandit settings

In this section we investigate a combination of the multi-armed bandit and the
label efficient setting problems, where the gain of the chosen path is available
only on request. Just as in the previous section, it is assumed that each path of
the graph is of the same length K.

In the general label efficient decision problem, after taking the action, the
decision maker has the option to query the losses of all possible actions (in
the original problem formulation, the decision maker can query the response of
the environment, referred to as “label”, and can compute all losses from this



information). To query the losses, the decision maker uses an i.i.d. sequence
S1, S2, . . . , Sn of Bernoulli random variables with P(St = 1) = ε and asks for
the losses if St = 1. For this problem, Cesa-Bianchi et al. [8] proved an upper
bound on the normalized regret of order O(K

√
ln(4N/δ)/(nε)) with probability

at least 1 − δ.
We study a combined algorithm which, at each time slot t, queries the loss of

the chosen path with probability ε (as in the label efficient case), and similarly
to the multi-armed bandit case, computes biased estimates g′

i,t of the true gains
gi,t. This combination is motivated by some realistic applications, where the
information is costly in some sense, i.e., the request is allowed only for a limited
number of times.

The model of label-efficient decisions is well suited to a particular packet
switched network model, called the cognitive packet network, which was intro-
duced by Gelenbe et al. [10, 11]. In these networks, capabilities for routing and
flow control are concentrated in packets. In particular, one type of packets, called
smart packets, do not transport any useful data, but are used to explore the net-
work (e.g. the delay of the chosen path). The other type of packets are data
packets, which do not collect information about their paths, but transport use-
ful data. In this model the task of the decision maker is to send packets from the
source to the destination over routes with minimum average transmission delay
(or packet loss). In this scenario, smart packets are used to query the delay of the
chosen path. However, as these packets do not transport information, there is a
tradeoff between the number of queries and the utilization of the network. If data
packets are α times larger than smart packets on the average (note that typically
α � 1), then ε/(ε + α(1 − ε)) is the proportion of the bandwidth sacrificed for
well informed routing decisions.

The algorithm differs from our bandit algorithm of the previous section only
in step (c), which is modified in the spirit of [8]. The modified step is given
below:

MODIFIED STEP FOR THE LABEL EFFICIENT BANDIT
ALGORITHM FOR SHORTEST PATHS

(c’) Draw a Bernoulli random variable St with P(St = 1) = ε, and
compute the estimated gains

g′e,t =





ge,t+β

qe,tε
if e ∈ It and St = 1

β
qe,tε

if e /∈ It and St = 1

0 otherwise.

The performance of the algorithm is analyzed in the next theorem, which can
be viewed as a combination of Theorem 1 in the preceding section and Theorem 2
of [8].



Theorem 2. For any δ ∈ (0, 1), ε ∈ (0, 1] and parameters η =
√

ε ln N
4nK2|C| ,

γ = 2ηK|C|
ε

≤ 1/2 and β =
√

K
n|E|ε ln 2|E|

δ
≤ 1 and for all

n ≥ 1

ε
max

{
K2 ln2(2|E|/δ)

|E| ln N
,
|E| ln(2|E|/δ)

K
, 4|C| ln N

}

the performance of the algorithm defined above can be bounded, with probability

at least 1 − δ as

1

n

(
n∑

t=1

`It,t − min
i∈R

n∑

t=1

`i,t

)

≤
√

K

nε

(
4
√

K|C| ln N + 5

√
|E| ln 2|E|

δ
+

√
8K ln

2

δ

)
+

4K

3nε
ln

2N

δ

≤ 25K

2

√
|E| ln 2N

δ

nε
.

Sketch of the proof. The proof of the theorem is a generalization that of
Theorem 1, and follows the same lines with some extra technicalities to handle
the effects of the modified step (c’). Therefore, in the following we emphasize
only the differences. First note that (1) and (2) also hold in this case. Now,
instead of (3), one obtains

∑

i∈R

pi,tg
′
i,t =

St

ε
(gIt,t + |E|β) and

∑

i∈R

pi,tg
′2
i,t ≤

1

ε
K(1 + β)

∑

e∈E

g′e,t

which imply, together with (1) and (2),

n∑

t=1

St

ε
(gIt,t + |E|β ) ≥

(
1−γ− ηK(1 + β)|C|

ε

)
max
i∈R

n∑

t=1

g′
i,t−

1−γ

η
ln N. (6)

To relate the left hand side of the above inequality to the real gain
∑n

t=1 gIt,t,
notice that

Xt =
St

ε
(gIt,t + |E|β) − (gIt,t + |E|β)

is a martingale difference sequence. Then, it can be shown by applying Bern-
stein’s inequality (see, e.g., [9]) that

P

(
n∑

t=1

Xt >

√
8K2n

ε
ln

2

δ
+

4K

3ε
ln

2

δ

)
≤ δ

2
. (7)

Furthermore, similarly to (5) it can be proved that

P

(
n∑

t=1

ge,t >

n∑

t=1

g′e,t +
4βn|E|

K

)
≤ δ

2|E| . (8)



An application of the union bound for (7) and (8) combined with (6) yields, with
probability at least 1 − δ,

n∑

t=1

gIt,t ≥
(

1 − γ − ηK(1 + β)|C|
ε

)(
max
i∈R

n∑

t=1

gi,t − 4βn|E|
)

−1 − γ

η
ln N − βn|E| −

√
8K2n

ε
ln

2

δ
− 4K

3ε
ln

2

δ
.

Using
∑n

t=1 gIt,t = Kn −∑n
t=1 `It,t and

∑n
t=1 gi,t = Kn −∑n

t=1 `i,t, and sub-
stituting the values of η, β, and γ yield, after some algebra, the statement of the
theorem. ut

6 Simulations

To further investigate our new algorithms, simulations were conducted. We
tested our bandit algorithm for shortest paths in a simple communication net-
work shown in Figure 1. The simulation consisted of sending 10000 packets, from
source node u = 1 to destination node v = 6, and our goal was to pick a route for
each packet with small delay. We assumed the infinitesimal user scenario, that
is, our choice for a path does not affect the delay on the links of the network.

Each link has a fixed propagation delay which is 0.1 ms. To generate addi-
tional delays (so called traffic delays), three major flows were considered, with
periodically changing dynamics with period length 1000 time slots. The flow is a
path between two determined nodes (not necessary u and v), which is loaded by
traffic for a limited time period. The first flow, shown by a thick line in Figure 1,
has a constant load, resulting in a constant 20ms traffic delay on all of its edges.
The second flow, denoted by a dashed line, starts sending packets at time slot
200 of each period, and the traffic delays on its edges increase to 20ms by time
slot 400, and stay there until time slot 700, when the flow is stopped, and the
corresponding traffic delays drop back to 0 (we do not consider the transmission
delay on the links). The third flow, denoted by a dotted line, has similar char-
acteristics as the second flow, but it starts at time slot 500 and it reaches 20ms
at time slot 700 and it keeps this level until the end of the period. Finally, the
two thin lines in the graph denote links which are not used by the major flows.

1

2

3

5

4

6

Fig. 1. Topology of the network.

The difficulty in this configuration is that the best fixed path switches 3 times
during a period. From time 0 to time slot 200 there are three paths with the



same performance: path (1, 3, 5, 6), path (1, 3, 4, 6), and path (1, 2, 4, 6). From
time slot 201 to time slot 700, path (1,2,4,6) has the smallest delay, and in the
remainder of the period, path (1, 3, 5, 6) is the best. In the long run these are
the three best fixed paths, with (1, 2, 4, 6) being the best, (1, 3, 4, 6) the second
best, and (1, 3, 5, 6) the third.

In the simulations we ran the bandit algorithm for shortest paths with pa-
rameters optimized for n = 10000. We also ran an infinite horizon version of
the algorithm, in which at each time instant t, the parameters η, β, and γ
are set so that they are optimized for the finite horizon n = t. In this version
we,t = we,t−1 exp(ηtg

′
e,t), where ηt is decreasing in t and therefore this algo-

rithm uses ”reverse-discounted gains”. Although we have not investigated the
theoretical performance of this discounted style version, it can be observed that
the modification substantially improves the performance of the algorithm in this
example, and the modified version outperformed the second best route in the
network. The reason for the good performance is that in the simulation the best
fixed path in the long run does not change because of the periodicity of the flows
and therefore a discounted algorithm can learn faster the best path than a non-
discounted algorithm. We also compared our methods to that of Awerbuch and
Kleinberg [3], and achieved better performance in all situations. The simulation
results are summarized in Figure 2 that shows the normalized regret of the above
algorithms (averaged over 30 runs), as well as the regrets of all fixed paths from
node 1 to node 6 (the periodical small jumps on the curves correspond to the
starting and ending times of the other flows). Note that in Figure 2, there is
only 8 paths instead of 9, because of path (1,2,3,5,6) and path (1,3,4,5,6) have
the same performance, and the curve for the best path (1, 2, 4, 6) coincides with
the x-axis.

7 Conclusions

Efficient algorithms have been provided for the on-line shortest path problem
in the multi-armed bandit setting and in a combined label efficient multi-armed
bandit setting. The regrets of the algorithms, compared to the performance of the
best fixed path, converge to zero at an O(1/

√
n) rate as the time horizon n grows

to infinity, and increases only polynomially in the number of edges (and nodes)
of the graph. Earlier methods for the multi-armed bandit problem either do not
have the right O(1/

√
n) convergence rate, or their regret increase exponentially

in the number of edges for typical graphs. Simulation results showed the expected
performance of the algorithms under realistic traffic scenarios.

Both problems are motivated by realistic problems, such as routing in com-
munication networks, where the nodes do not have all the information about the
state of the network. We have addressed the problem in the adversarial setting
where the edge weights may vary in an arbitrary way, in particular, they may
depend on previous routing decisions of the algorithm. Although this assump-
tion may seem to be very strong in many network scenarios, it has applications
in mobile ad-hoc networks, where the network topology changes dynamically in
time, and also in certain secure networks that has to be able to handle denial of
service attacks.
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