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Abstract. In sequential prediction (decision) problems in general, a
forecaster has to make a sequence of decisions. After each decision the
forecaster suffers some loss, depending on the response of the environ-
ment, and the goal of the forecaster is to minimize its cumulative loss
over a sufficiently long period of time. In the adversarial setting no proba-
bilistic assumption is made on how the loss of the forecaster is generated,
and the goal of the forecaster is to perform well relative to a set of ex-
perts. To solve this problem, the forecaster has access to the decisions
of the experts before making his own. Although it is impossible to know
in advance the performance of the experts, under general conditions the
experts’ advice can be combined such that the forecaster’s average loss
is asymptotically not larger than that of the best expert.
These combination algorithms are usually based on the past performance
of the experts. However, in certain type of problems it is not possible to
obtain all the losses corresponding to the decisions of the experts. In the
so called multi-armed bandit problem the forecaster has only information
on the loss of the chosen action, and no information is available about
the loss it would have suffered had it made a different decision. Another
example is label efficient prediction where it is expensive to obtain the
losses of the experts, and therefore the forecaster has the option to query
this information. In this paper we investigate the combination of the la-
bel efficient and the multi-armed bandit problem, where after choosing
a decision, the forecaster learns its own loss if and only if it asks for it,
which cannot be done too often. This combination is motivated by adap-
tive routing applications in certain packet networks, such as cognitive
packet networks.

1 Introduction

In sequential decision (prediction) problems in general, a decision maker has to
make a sequence of decisions. After each decision the decision maker suffers some



loss, depending on the response of the environment, and the goal of the decision
maker is to minimize its cumulative loss over a sufficiently long period of time.
In the adversarial setting no probabilistic assumption is made on how the loss of
the decision maker is generated, and the goal of the decision maker is to perform
well relative to a set of experts. More precisely, the aim of the decision maker
is to achieve asymptotically the same average loss as the best experts. To solve
this problem, the decision maker has access to the decisions of the experts before
making his own, and hence can combine them. However, it is impossible to know
in advance the performance of the experts.

The first theoretical results concerning sequential prediction are due to Black-
well [1] and Hannan [2], but they were rediscovered by the learning community
only in the 1990’s, see, for example, Vovk [3], Littlestone and Warmuth [4] and
Cesa-Bianchi et al. [5]. These results show that it is possible the construct al-
gorithms for sequential (online) prediction that predict almost as well as the
best expert. The main idea of these algorithms is the same: after observing the
past performance of the experts, in each step the decision of a randomly chosen
expert is followed such that experts with superior past performance are chosen
with higher probability.

However, in certain type of problems it is not possible to obtain full infor-
mation on the past performance of the experts. For example, in many situations
the decision maker has only information on the loss of the chosen action, and no
information is available about the loss it would have suffered had it made a differ-
ent decision. This is called the multi-armed bandit problem. Another example is
when it is expensive to obtain the losses of the experts, and therefore the decision
maker has the option to query this information. In typical cases this corresponds
to the response of the environment, also called as outcome or label, from which it
is possible to compute the loss of each expert. This type of problem is called label
efficient prediction. In all of these problems, including the full information case,
when the loss of each expert is revealed after the decision of the decision maker,
algorithms whose cumulative loss in n steps exceed the cumulative loss of the
best of N experts by an amount of O(

√
nN log N/m), where m is the average

number of the experts whose loss is revealed to the decision maker in one round.
That is, in the full information case this bound becomes O(

√
n log N), for the

multi-armed bandit problem it is O(
√

nN log N), and for the label efficient pre-
diction problem with m query in n rounds is O(n

√
log N/m) (for a good survey

on this topic, the reader is referred to, e.g., the recent book of Cesa-Bianchi and
Lugosi [6]).

The routing problem in communication networks can naturally be fitted in
the above prediction framework.

Example 1. The Cognitive Packet Networks (CPN) is introduced by Gelenbe et
al. [7, 8] in which capabilities for routing and flow control are concentrated in the
packets, rather in the nodes and protocols there are three types of the packets:
smart packets, dumb packets and acknowledgements. The smart packets explore
the network (only the chosen path) but they do not transport any data. The
dumb packets are given the path to follow to their destination by the source (no
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gather information) but they transport data. Let the possible paths be between
two dedicated nodes the experts and the decision maker who would like to find
the path with the smallest delay to the destination.

We assume that the decision maker knows the topology of the network, but
the delays on the edges are dynamically changes. In that case the physical size
of smart packet is the cost of the information.

If only smart packets are sent in each rounds then the decision maker obtain
the bandit setting, but does not send any useful information through the network.
So in practice the proportion to the smart packets have to be decreased, i.e., the
decision maker sends smart packet only if it queries the ”label”. Thus, the CPN
is the combination of the label efficient and bandit setting.

2 The model

The sequential prediction problem is characterized by a set Y of outcomes, by
D the decision space, by the experts {fi,t}1≤i≤N,1≤t≤n and by a loss function ℓ.
The advice of expert i is fi,t ∈ D at t for all i = 1, . . . , N . The performance of the
decision maker and the experts are scored using a loss function ℓ : D×Y → [0, 1].
The loss of expert i is ℓ(fi,t, yt) and loss of the decision maker is ℓ(fIt,t, yt), where
It ∈ 1, . . . , N is a random variable (an expert is chosen by the decision maker at
t). It only depends on the past outcomes yt−1, . . . , y1 and the earlier choice of
the decision maker It−1, . . . , I1.

Throughout the paper we assume that the experts are static, i.e., fi,t = i ∈
{1, . . . , N} for all t. For convenience we use the notations ℓi,t instead of ℓ(fi,t, yt)
and ℓIt,t instead of ℓ(fIt,t, yt). The cumulative loss of the decision maker is

L̂n =

n∑

t=1

ℓIt,t,

and the cumulative loss of the expert i up to n is

Li,n =
n∑

t=1

ℓi,t.

The aim of the learning algorithm is to find a decision maker for which

L̂n − min
i=1,...,N

Li,n

is small universally for all possible sequence of {yt}.

2.1 The case of full information: exponentially weighted average

algorithm

In full information case the decision maker allows to observe the performance of
each experts after each rounds (Algorithm 1).
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Algorithm 1 (Full Information) Fix η > 0.
Initialization: wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
For each round t = 1, 2, . . .

(1) Select an expert It ∈ {1, . . . , N} according to the probability dis-
tribution pt = (p1,t, . . . , pN,t);

(2) Update the weights wi,t = wi,t−1e
−ηℓi,t ;

(3) Calculate the updated probability distribution

pi,t+1 =
wi,tPN

j=1
wj,t

, i = 1, . . . , N.

Fig. 1. Exponentially weighted average algorithm in full information case

The maximum difference between the cumulative loss of the decision maker
and cumulative loss of the best expert is O(

√
n lnN) was proved by Kivinen and

Warmuth [4]:

Theorem 1. Let n,N ≥ 1 and 0 < δ < 1. The exponentially weighted average
algorithm (Algorithm 1) with η =

√
8 ln N/n satisfies, with probability at least

1 − δ,

L̂n − min
i=1,...,N

Li,n ≤
√

n ln N

2
+

√
n

2
ln

1

δ
.

2.2 Partial information: label efficient prediction

In case of label efficient prediction after choosing its action at time t, the decision
maker decides whether to query the ”label” yt. For query a label the decision
maker uses i.i.d. sequence S1, S2, . . . , Sn of Bernoulli random variables such that
P {St = 1} = ǫ and asks label yt if St = 1. With knowing yt one can calculate
all ℓi,t for all i = 1, . . . , N . Typically, ǫ ≈ m/n, so the number of the revealed
labels during n rounds is approximately m, where m ≤ n.

In order to apply the exponential weighted average decision maker in this
case the losses have to been modified namely if St = 1 then the decision maker
gets all of the information, if St = 0 then gets no information. In the Algorithm
2 estimated losses are used instead of observed losses

ℓ̃i,t =

{
ℓi,t

ǫ , if St = 1,

0, otherwise,

which is an unbiased estimate of the true losses (ℓi,t)

E

[
ℓ̃i,t

∣∣St−1
1 , It−1

1

]
= ℓi,t.

The upper bound of the difference of the best expert and label efficient de-
cision maker is O(n

√
ln(4N/δ)/m) was proved by Cesa-Bianchi et al. [9]:

4



Algorithm 2 (Label Efficient) Fix η > 0 and 0 < ǫ ≤ 1.
Initialization: wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
For each round t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} according to the probability dis-
tribution pt = (p1,t, . . . , pN,t);

(2) Draw a Bernoulli random variable St such that P {St = 1} = ǫ;
(3) if St = 1 then obtain ℓi,t for all i and compute the estimated loss

(eℓi,t)

eℓi,t =

(
ℓi,t

ǫ
, if St = 1,

0, otherwise;

(4) Update the weights wi,t = wi,t−1e
−ηeℓi,t ;

(5) Calculate the updated probability distribution

pi,t+1 =
wi,tPN

j=1
wj,t

i = 1, . . . , N.

Fig. 2. Label efficient exponentially weighted average algorithm

Theorem 2. Let n,N ≥ 1 and 0 < δ < 1. The label efficient exponentially
weighted average algorithm (Algorithm 2) with parameters

ǫ = max

{
0,

m −
√

2m ln(4/δ)

n

}
and η =

√
2ǫ ln N

n
.

Then, with probability at least 1 − δ,

L̂n − min
i=1,...,N

Li,n ≤ 2n

√
lnN

m
+ 6n

√
ln(4N/δ)

m
,

where m is the average number of the revealed labels.

Corollary 1. Let n,N ≥ 1 and 0 < δ < 1. For any n ≥ 2 ln(4/δ) the label
efficient exponentially weighted average forecaster (Algorithm 2) with parameters

0 < ǫ ≤ 1 −
√

2 ln(4/δ)

n
and η =

√
2ǫ ln N

n
.

Then with probability at least 1 − δ,

L̂n − min
i=1,...,N

Li,n ≤ 2

√
n ln N

ǫ
+ 6

√
n ln(4N/δ)

ǫ
.

2.3 Partial information: multi-armed bandit problem

In the multi-armed bandit problem the forecaster after choosing an expert, learns
the own loss ℓIt,t, but not the other value of the losses ℓi,t. Thus, the forecaster

5



does not have access to the losses it would have suffered if it had chosen a dif-
ferent expert. It means that the forecaster observes only a piece of information
per rounds. The lack of the information implies a natural strategy namely at the
beginning of the game the forecaster has to explore the losses of the experts (ex-
ploration phase) and then may keep choosing the expert with smallest estimated
loss for the remaining time (the exploitation phase).

In the classical formulation of multi-armed bandit problems (see, e.g., Rob-
bins [10]) it is assumed that, for each action, the losses are randomly and inde-
pendently drawn with respect to a fixed but unknown distribution. This version
is stochastic multi-armed bandit problem. Here we investigate a more challenge
problem is analyzed by Auer et al. [11], when the outcomes are generated in an
adversary opponent (non-stochastic or adversarial multi-armed bandit problem).

There are three modifications according to the full information case. First of
all, the modified strategy uses estimated gains instead of losses. We introduce
notation

gi,t = 1 − ℓi,t,

and similarly to the label efficient prediction here is used the estimated gain:

g̃i,t =

{ gi,t

pi,t
, if It = i,

0, otherwise.

It is an unbiased estimation of the true gain, i.e

E
[
g̃i,t

∣∣It−1
1

]
= gi,t.

The second modification is that instead of an unbiased estimate, a slightly larger
quantity is used by the strategy:

g′i,t = g̃i,t +
β

pi,t
.

The third change is a parameter γ which is taken into account in the exploration
phase. With the γ it is guaranteed a lower bound for pi,t for all i = 1, . . . , N :

pi,t+1 = (1 − γ)
wi,t∑N

j=1 wj,t

+
γ

N
, i = 1, . . . , N.

Instead of the pure probability distribution via weighted average, the forecaster
uses a mixture of the weighted average and the uniform distribution. The fore-
caster strategy is defined as a follows:

Theorem 3. (Auer et al. [11]) For any 0 < δ < 1 and for any n ≥ 4N ln (N/δ),
if the forecaster for the multi-armed bandit problem (Algorithm 3) is run with
parameters

0 ≤ η ≤ γ

2N
and

√
ln(N/δ)

nN
≤ β ≤ 1
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Algorithm 3 (Multi-Armed Bandit) Fix η > 0, 0 < β < 1,
0 < γ < 1.
Initialization: wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
For each round t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} according to the probability dis-
tribution pt = (p1,t, . . . , pN,t);

(2) Calculate the estimated gains

g′

i,t = egi,t +
β

pi,t

=

(
gi,t+β

pi,t
, if It = i,

β

pi,t
, otherwise;

(3) Update the weights wi,t = wi,t−1e
ηg′

i,t ;
(4) Calculate the updated probability distribution

pi,t+1 = (1 − γ)
wi,tPN

j=1
wj,t

+
γ

N
, i = 1, . . . , N.

Fig. 3. Exponentially weighted average forecaster for multi-armed bandit problem

then, with probability at least 1 − δ,

L̂n − min
i=1,...,N

Li,n ≤ n (γ + η(1 + β)N) +
lnN

η
+ 2βnN.

In particular, choosing β =
√

ln(N/δ)/(nN), γ = βN and η = γ/(2N),

L̂n − min
i=1,...,N

Li,n ≤ 5
√

nN ln(N/δ).

3 The Combination of the Label Efficient and the

Multi-Armed Bandit Problem

In this section we introduce the combination on label efficient and the multi-
armed bandit problem. Recall that St is a i.i.d. Bernoulli random variable such
that P {St = 1} = ǫ. In that case the forecaster, after choosing an expert, learns
the own loss ℓIt,t if and only if it queries the ”label”, i.e., St = 1.

The modified gain function of the algorithm is:

g̃i,t =

{ gi,t

pi,tǫ
, if It = i and St = 1,

0, otherwise.

which is also an unbiased estimation of the observed loss gi,t

E
[
g̃i,t|St−1

1 , It−1
1

]
= gi,t.
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The biased version of the gain is

g′i,t = g̃i,t + St
β

pi,tǫ
.

Algorithm 4 Fix η > 0, 0 < β < 1, 0 < γ < 1 and 0 < ǫ ≤ 1.
Initialization: wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .
For each round t = 1, 2, . . .

(1) Select an action It ∈ {1, . . . , N} according to the probability dis-
tribution pt = (p1,t, . . . , pN,t);

(2) Draw a Bernoulli random variable St such that P {St = 1} = ǫ;
(3) If St = 1 then obtain gIt,t and compute the estimated gains (g′

i,t)

g′

i,t = egi,t + St
β

pi,tǫ
=

8
><
>:

gi,t+β

pi,tǫ
, if It = i, St = 1,

β

pi,tǫ
, if It 6= i, St = 1,

0 otherwise;

(4) Update the weights wi,t = wi,t−1e
ηg′

i,t ;
(5) Calculate the updated probability distribution

pi,t+1 = (1 − γ)
wi,tPN

j=1
wj,t

+
γ

N
, i = 1, . . . , N.

Fig. 4. Combination of the label efficient and the multi-armed bandit exponentially
weighted average forecaster

The next theorem is a joint extension of Corollary 1 and Theorem 3.

Theorem 4. For any 0 < δ < 1, 0 < ǫ ≤ 1 and for any n ≥ 4N
ǫ ln (2N/δ) and

parameters
√

ln (2N/δ)

nNǫ
≤ β ≤ 1

2N
, βN ≤ γ ≤ 1

2
and 0 < η ≤ γǫ

2N
,

the performance of the Algorithm 4 can be bounded with probability at least 1− δ
as

L̂n − min
i=1,...,N

Li,n ≤n

(
γ +

η(1 + β)N

ǫ

)
+ 5βnN +

lnN

η

+ 3

√
n ln (2/δ)

2ǫ
+

ln (2/δ)

ǫ
.

In particular, choosing β =
√

ln(2N/δ)
nNǫ , γ = βN and η = γǫ

2N ,

L̂n − min
i=1,...,N

Li,n ≤ 9

√
nN ln(2N/δ)

ǫ
+ 3

√
n ln (2/δ)

2ǫ
+

ln (2/δ)

ǫ
.
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Introduce the notations

G′
i,n =

n∑

t=1

g′i,t, Gi,n =

n∑

t=1

gi,t and Ĝn =

n∑

t=1

gIt,t.

The proof of the theorem depends on following lemma, which can be proved
exactly same way as in Auer et al. [11].

Lemma 1. For any 0 < δ < 1, 0 < ǫ ≤ 1 and
√

ln (2N/δ)
ǫnN ≤ β ≤ 1 we have

P
{
Gi,n > G′

i,n + 4βnN
}
≤ δ

2N
, i ∈ {1, . . . , N}.

Proof. For any u > 0 and c > 0 the Chernoff bounding technique (see, e.g., [12])
implies

P
{
Gi,n > G′

i,n + u
}
≤ e−cu

Eec(Gi,n−G′

i,n). (1)

Letting u = 4βnN and c = βǫ/4, therefore from (1):

e−cu
Eec(Gi,n−G′

i,n) = eβ2nNǫ
Eec(Gi,n−G′

i,n) ≤ e− ln(2N/δ)
Eec(Gi,n−G′

i,n)

=
δ

2N
Eec(Gi,n−G′

i,n),

where the inequality comes from
√

ln (2N/δ)
ǫnN ≤ β. Thus it suffices to prove that

Eec(Gi,n−G′

i,n) ≤ 1.

For t = 1, . . . , n, introducing, a random variable

Zt = ec(Gi,t−G′

i,t),

we clearly have

Zt = ec(gi,t−g′

i,t)Zt−1.

Next, for t = 2, . . . , n, we bound E[Zt|I1, S1, . . . , It−1, St−1] = E
[
Zt|It−1

1 , St−1
1

]

as follows. Note that c(gi,t − g′i,t) < 1 because

c

(
gi,t − g̃i,t − St

β

pi,tǫ

)
≤ c

(
1 − g̃i,t − St

β

pi,t

)
< 1 − cg̃i,t − cSt

β

pi,t
≤ 1,

where the second inequality comes from c = βǫ/4 ≤ ǫ/4 < 1. Moreover, for x ≤ 1

ex ≤ 1 + x + x2, (2)

therefore

E[Zt|I1, S1, . . . , It−1, St−1]

= Zt−1E

[
e
c

“
gi,t−egi,t−St

β
pi,tǫ

”∣∣∣∣∣I
t−1
1 , St−1

1

]

≤ Zt−1E

[
1 + c

(
gi,t − g̃i,t − St

β

pi,tǫ

)
+ c2

(
gi,t − g̃i,t − St

β

pi,tǫ

)2
∣∣∣∣∣I

t−1
1 , St−1

1

]
.

(3)
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Since
E
[
gi,t − g̃i,t|It−1

1 , St−1
1

]
= 0

and

E
[
(gi,t − g̃i,t)

2|It−1
1 , St−1

1

]
≤ E

[
g̃2

i,t|It−1
1 , St−1

1

]
≤ 1

pi,tǫ
,

we get from (3) that

E[Zt|I1, S1, . . . , It−1, St−1]

≤ Zt−1E

[
1 − cβ

pi,t
+ c2 (gi,t − g̃i,t)

2
+ c2St

β

pi,tǫ

(
2g̃i,t − 2gi,t +

β

pi,tǫ

) ∣∣∣∣∣I
t−1
1 , St−1

1

]

≤ Zt−1E

[
1 − cβ

pi,t
+

c2

pi,tǫ
+ c2St

β

pi,tǫ

(
2g̃i,t − 2gi,t +

β

pi,tǫ

) ∣∣∣∣∣I
t−1
1 , St−1

1

]

≤ Zt−1

[
1 +

c

pi,t

(
−β +

c

ǫ
+ cβ

(
2

ǫ
− 2 +

β

pi,tǫ

))]
, (4)

where the last step we used that

E

[
St

ǫ
(g̃i,t − gi,t)

∣∣∣∣I
t−1
1 , St−1

1

]
= E

[
gi,t

(
I{It=i}St

pi,tǫ2
− St

ǫ

) ∣∣∣∣I
t−1
1 , St−1

1

]
≤ 1

ǫ
− 1.

Since c = βǫ/4 we obtain from (4):

−β +
c

ǫ
+ cβ

(
2

ǫ
− 2 +

β

pi,tǫ

)
= −β +

β

4
+

β2ǫ

4

(
2

ǫ
− 2 +

β

pi,tǫ

)

≤ −3β

4
+

β2

2
+

β3

4pi,t

≤ −β

4
+

β3

4pi,t

≤ −β

4
+

β3N

4γ
,

where the last inequality comes from γ/N ≤ pi,t. γ ≥ βN ≥ β2N , therefore

−β +
c

ǫ
+ cβ

(
2

ǫ
− 2 +

β

pi,tǫ

)
≤ −β

4
+

β

4
= 0. (5)

Combining (4) and (5) we get that

E[Zt|I1, S1, . . . , It−1, St−1] ≤ Zt−1.

Then taking expectations on both sides of the inequality we get E[Zt] ≤ E[Zt−1]
and since E[Z1] ≤ 1, we obtain E[Zn] ≤ 1.

⊓⊔
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Proof of Theorem 4. For the proof of theorem the quantity of ln Wn

W0
is

bounded, where

Wt =

N∑

i=1

wi,t, t ≥ 1

and

W0 = N.

The lower bound is

ln
Wn

W0
= ln

(
N∑

i=1

eηG′

i,n

)
− lnN

≥ ln

(
max

i=1,...,N
eηG′

i,n

)
− lnN

= η max
i=1,...,N

G′
i,n − lnN. (6)

For the upper bound note first that the conditions β ≤ 1 and η ≤ γǫ
2N imply that

ηg′i,t ≤ 1 for all i and t, therefore

ln
Wt

Wt−1
= ln

N∑

i=1

wi,t−1∑N
j=1 wj,t−1

eηg′

i,t

= ln

N∑

i=1

pi,t − γ/N

1 − γ
eηg′

i,t

≤ ln
N∑

i=1

pi,t − γ/N

1 − γ
(1 + ηg′i,t + η2g′2i,t) (7)

≤ ln

(
1 +

η

1 − γ

N∑

i=1

pi,tg
′
i,t +

η2

1 − γ

N∑

i=1

pi,tg
′2
i,t

)
(8)

≤ η

1 − γ

N∑

i=1

pi,tg
′
i,t +

η2

1 − γ

N∑

i=1

pi,tg
′2
i,t (9)

where (7) holds because of (2), (8) follows from the definition of pi,t and (9)
holds by the inequality ln(1 + x) ≤ x for all x > −1.

Next we bound the sums in (9). On the one hand,

N∑

i=1

pi,tg
′
i,t =

N∑

i=1

pi,t

(
I{It=i}St

gi,t

pi,tǫ
+ St

β

pi,tǫ

)
=

St

ǫ
(gIt,t + Nβ) .
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On the other hand,

N∑

i=1

pi,tg
′2
i,t =

N∑

i=1

pi,tg
′
i,t

(
I{It=i}St

gi,t

pi,tǫ
+ St

β

pi,tǫ

)

=
g′It,t

gIt,t

ǫ
St +

N∑

i=1

St
β

ǫ
g′i,t

≤ St

ǫ
(1 + β)

N∑

i=1

g′i,t.

Therefore, we get that

ln
Wt

Wt−1
≤ St

ǫ

(
η

1 − γ
(gIt,t + Nβ) +

η2(1 + β)

1 − γ

N∑

i=1

g′i,t

)
.

Summing over t = 1, . . . , n, we have that

ln
Wn

W0
≤ η

1 − γ

n∑

t=1

St

ǫ
(gIt,t + Nβ) +

η2(1 + β)

(1 − γ)ǫ

N∑

i=1

n∑

t=1

Stg
′
i,t

≤ η

1 − γ

n∑

t=1

St

ǫ
(gIt,t + Nβ) +

η2(1 + β)

(1 − γ)ǫ

N∑

i=1

G′
i,t

≤ η

1 − γ

n∑

t=1

St

ǫ
(gIt,t + Nβ) +

η2(1 + β)

(1 − γ)ǫ
N max

i=1,...,N
G′

i,n.

Combining the upper and the lower bounds for ln Wn

W0
and rearranging we get

n∑

t=1

St

ǫ
(gIt,t + Nβ) ≥

(
1 − γ − η(1 + β)N

ǫ

)
max

i=1,...,N
G′

i,n − (1 − γ)
ln N

η

≥
(

1 − γ − η(1 + β)N

ǫ

)
max

i=1,...,N
G′

i,n − lnN

η
. (10)

Introduce the notation

Xt =
St

ǫ
(gIt,t + Nβ) − (gIt,t + Nβ) ,

t = 1, . . . , n. {Xt} is a martingale difference sequence with respect to It−1
1 and

St−1
1 , i.e.

E
[
Xt|It−1

1 , St−1
1

]
= 0.

12



Now bound, for all t = 1, . . . , n

E
[
X2

t |It−1
1 , St−1

1

]
= E

[
St

ǫ2
(gIt,t + Nβ)2 + (gIt,t + Nβ)2 − 2

St

ǫ
(gIt,t + Nβ)2

∣∣∣∣I
s−1
1 , Ss−1

1

]

≤ E

[
St

ǫ2
(gIt,t + Nβ)2

∣∣∣∣I
s−1
1 , Ss−1

1

]

≤ (1 + Nβ)2

ǫ

≤ 9

4ǫ

def
= σ2 (11)

where (11) holds by the assumption of the theorem that βN ≤ γ ≤ 1
2 .

We know that

Xt ∈
[
−3

2
,

(
1

ǫ
− 1

)
3

2

]

for all t. Now apply the Bernstein’s inequality for martingale differences (Lemma
2)

P

{
n∑

t=1

Xt > u

}
≤ δ

2
, (12)

where

u =

√
2n

9

4ǫ
ln (2δ−1) +

1

ǫ
ln
(
2δ−1

)
.

We get from (12)

P

{
n∑

t=1

St

ǫ
(gIt,t + Nβ) ≤ Ĝn + βnN + u

}
≥ 1 − δ

2
. (13)

By Lemma 1 and the union bound, we obtain

P

{
max

i=1,...,N
G′

i,n ≥ max
i=1,...,N

Gi,n − 4βnN

}
≥ 1 − δ

2
. (14)

If A and B are events then by the union bound,

P {A ∩ B} = 1 − P {Ac ∪ Bc} ≥ 1 − (P {Ac} + P {Bc}) ,

therefore from (13) and (14) combining (10) at least 1 − δ

Ĝn ≥
(

1 − γ − η(1 + β)N

ǫ

)
max

i=1,...,N
Gi,n −

(
1 − γ − η(1 + β)N

ǫ

)
4βnN,

− lnN

η
− βnN − u.

13



because of the coefficient of the Gi,n is greater than zero, i.e.,

1 − γ − η(1 + β)N

ǫ
≥ 1 − γ − γǫ

2N

(1 + β)N

ǫ
≥ 1 − 2γ

≥ 0

by the assumption of the theorem.

Since L̂n = n − Ĝn and Li,n = n − Gi,n, we have

L̂n ≤
(

1 − γ − η(1 + β)N

ǫ

)
min

i=1,...,N
Li,n + n

(
γ +

η(1 + β)N

ǫ

)

+

(
1 − γ − η(1 + β)N

ǫ

)
4βnN + βnN +

lnN

η
+ u

≤ min
i=1,...,N

Li,n + n

(
γ +

η(1 + β)N

ǫ

)
+ 5βnN +

lnN

η
+ u.

⊓⊔

4 Conclusion

In this paper, we prove worst-case loss bounds for online learning for forecasting
in the extension of the label efficient and multi-armed bandit problems.

Amount of the
Type of the Algorithm

information
Upper bound

Full Information nN O
“√

n ln N
”

Label Efficient nNǫ O
“p

n ln N/ǫ
”

Multi-Armed Bandit n O
“√

nN ln N
”

Label Efficient and
Multi-Armed Bandit

nǫ O
“p

nN ln N/ǫ
”

Table 1. The connection between the upper bounds of the different algorithms and
the amount of information.

The Table 1 implies simple connection between the amount of information
and the upper bound of the algorithms.
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5 Appendix

We recall the Bernstein inequality for martingale differences (Berstein [13]).

Lemma 2. Let X1, . . . ,Xn be a martingale differences such that Xt ∈ [a, b] with
probability one (t = 1, . . . , n). Assume that, for all t,

E
[
X2

t |Xt−1, . . . ,X1

]
≤ σ2 a.s.

Then, for all ǫ > 0,

P

{
n∑

t=1

Xt > ǫ

}
≤ e

−ǫ2

2nσ2+2ǫ(b−a)/3

and therefore

P

{
n∑

t=1

Xt >
√

2nσ2 ln δ−1 + 2 ln δ−1(b − a)/3

}
≤ δ.
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