Growth Optimal Portfolio Selection Strategies with Transaction Cost

László Györfi¹ György Ottucsák István Vajda

¹Department of Computer Science and Information Theory Budapest University of Technology and Economics Budapest, Hungary

September 24, 2007

e-mail: gyorfi@szit.bme.hu www.szit.bme.hu/~gyorfi www.szit.bme.hu/~oti/portfolio

Györfi, Ottucsák, Vajda Growth Optimal Port. Sel. Strategies with Transaction Cost

イロト イポト イヨト イヨト

investment in the stock market d assets $s_n^{(j)}$ price of asset j at the end of trading period (day) n initial price $s_0^{(j)} = 1, j = 1, \dots, d$

・同・ ・ヨ・ ・ヨ・

investment in the stock market d assets $s_n^{(j)}$ price of asset j at the end of trading period (day) n initial price $s_0^{(j)} = 1, j = 1, \dots, d$

$$x_n^{(j)} = rac{s_n^{(j)}}{s_{n-1}^{(j)}}$$

 $\mathbf{x}_n = (x_n^{(1)}, \dots, x_n^{(d)})$ the return vector on trading period n

- * 同 > * 注 > * 注 > - 注

*n*th trading period a portfolio strategy

$$\mathbf{b}_n = (b_n^{(1)}, \ldots, b_n^{(d)}) = \mathbf{b}(\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$$

 $b_n^{(j)} \ge 0$ gives the proportion of the investor's capital invested in stock *j* for trading period $n (\sum_{j=1}^d b_n^{(j)} = 1)$

伺 とう きょう とう とう

nth trading period a portfolio strategy

$$\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)}) = \mathbf{b}(\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$$

 $b_n^{(j)} \ge 0$ gives the proportion of the investor's capital invested in stock *j* for trading period $n (\sum_{j=1}^d b_n^{(j)} = 1)$ for the *n*th trading period, S_{n-1} is the initial capital (it is invested).

$$S_n = S_{n-1} \sum_{j=1}^d b_n^{(j)} x_1^{(j)}$$

向下 イヨト イヨト

nth trading period a portfolio strategy

$$\mathbf{b}_n = (b_n^{(1)}, \ldots, b_n^{(d)}) = \mathbf{b}(\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$$

 $b_n^{(j)} \ge 0$ gives the proportion of the investor's capital invested in stock *j* for trading period $n (\sum_{j=1}^d b_n^{(j)} = 1)$ for the *n*th trading period, S_{n-1} is the initial capital (it is invested).

$$S_n = S_{n-1} \sum_{j=1}^d b_n^{(j)} x_1^{(j)} = S_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle$$

向下 イヨト イヨト

nth trading period a portfolio strategy

$$\mathbf{b}_n = (b_n^{(1)}, \ldots, b_n^{(d)}) = \mathbf{b}(\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$$

 $b_n^{(j)} \ge 0$ gives the proportion of the investor's capital invested in stock *j* for trading period $n (\sum_{j=1}^d b_n^{(j)} = 1)$ for the *n*th trading period, S_{n-1} is the initial capital (it is invested).

$$S_{n} = S_{n-1} \sum_{j=1}^{d} b_{n}^{(j)} x_{1}^{(j)} = S_{n-1} \langle \mathbf{b}_{n}, \mathbf{x}_{n} \rangle = S_{0} \prod_{i=1}^{n} \langle \mathbf{b}_{i}, \mathbf{x}_{i} \rangle$$

向下 イヨト イヨト

nth trading period a portfolio strategy

$$\mathbf{b}_n = (b_n^{(1)}, \ldots, b_n^{(d)}) = \mathbf{b}(\mathbf{x}_1, \ldots, \mathbf{x}_{n-1}) = \mathbf{b}(\mathbf{x}_1^{n-1})$$

 $b_n^{(j)} \ge 0$ gives the proportion of the investor's capital invested in stock *j* for trading period $n (\sum_{j=1}^d b_n^{(j)} = 1)$ for the *n*th trading period, S_{n-1} is the initial capital (it is invested).

$$S_n = S_{n-1} \sum_{j=1}^d b_n^{(j)} x_1^{(j)} = S_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = S_0 \prod_{i=1}^n \langle \mathbf{b}_i, \mathbf{x}_i \rangle = S_0 e^{nW_n(\mathbf{b})}$$

with the average growth rate

$$W_n(\mathbf{B}) = \frac{1}{n} \sum_{i=1}^n \log \langle \mathbf{b}_i, \mathbf{x}_i \rangle.$$

$$\frac{1}{n}\log S_n \approx \frac{1}{n}\sum_{i=1}^n \mathbf{E}\{\log\left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \mathbf{X}_i\right\rangle \mid \mathbf{X}_1^{i-1}\}$$

Györfi, Ottucsák, Vajda Growth Optimal Port. Sel. Strategies with Transaction Cost

▲口> ▲圖> ▲注> ★注> 「注」

$$\frac{1}{n}\log S_n \approx \frac{1}{n}\sum_{i=1}^n \mathbf{E}\{\log\left\langle \mathbf{b}(\mathbf{X}_1^{i-1}), \, \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1}\}$$

 $\quad \text{and} \quad$

$$\frac{1}{n}\log S_n^* \approx \frac{1}{n}\sum_{i=1}^n \mathbf{E}\{\log\left\langle \mathbf{b}^*(\mathbf{X}_1^{i-1}), \, \mathbf{X}_i \right\rangle \mid \mathbf{X}_1^{i-1}\}$$

・ロン ・回 と ・ ヨン ・ ヨン

= 900

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle$$

・同・ ・ヨ・ ・ヨ・

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \left< \mathbf{b}_n \,, \, \mathbf{x}_n \right>$$

Calculate the transaction cost for selecting the portfolio \mathbf{b}_{n+1} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle$$

Calculate the transaction cost for selecting the portfolio \mathbf{b}_{n+1} . Before rearranging, at the *j*-th asset there is $b_n^{(j)} x_n^{(j)} N_{n-1}$ dollars.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle$$

Calculate the transaction cost for selecting the portfolio \mathbf{b}_{n+1} . Before rearranging, at the *j*-th asset there is $b_n^{(j)} x_n^{(j)} N_{n-1}$ dollars. After rearranging, we need $b_{n+1}^{(j)} N_n$ dollars.

伺い イヨト イヨト

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \langle \mathbf{b}_n \,, \, \mathbf{x}_n \rangle$$

Calculate the transaction cost for selecting the portfolio \mathbf{b}_{n+1} . Before rearranging, at the *j*-th asset there is $b_n^{(j)} x_n^{(j)} N_{n-1}$ dollars. After rearranging, we need $b_{n+1}^{(j)} N_n$ dollars.

If $b_n^{(j)} x_n^{(j)} N_{n-1} \ge b_{n+1}^{(j)} N_n$ then we have to sell and the transaction cost at the *j*-th asset is

$$c\left(b_{n}^{(j)}x_{n}^{(j)}N_{n-1}-b_{n+1}^{(j)}N_{n}\right),$$

伺 とう きょう とう とう

 $S_0 = 1$, gross wealth S_n , net wealth N_n for the *n*th trading period, N_{n-1} is the initial capital

$$S_n = N_{n-1} \langle \mathbf{b}_n \,, \, \mathbf{x}_n \rangle$$

Calculate the transaction cost for selecting the portfolio \mathbf{b}_{n+1} . Before rearranging, at the *j*-th asset there is $b_n^{(j)} x_n^{(j)} N_{n-1}$ dollars. After rearranging, we need $b_{n+1}^{(j)} N_n$ dollars.

If $b_n^{(j)} x_n^{(j)} N_{n-1} \ge b_{n+1}^{(j)} N_n$ then we have to sell and the transaction cost at the *j*-th asset is

$$c\left(b_{n}^{(j)}x_{n}^{(j)}N_{n-1}-b_{n+1}^{(j)}N_{n}\right),$$

otherwise we have to buy and the transaction cost at the j-th asset is

$$c\left(b_{n+1}^{(j)}N_n-b_n^{(j)}x_n^{(j)}N_{n-1}\right).$$

Let x^+ denote the positive part of x.

・ロト ・回 ト ・ヨト ・ヨト

Let x^+ denote the positive part of x. Thus,

$$N_{n} = S_{n} - \sum_{j=1}^{d} c \left(b_{n}^{(j)} x_{n}^{(j)} N_{n-1} - b_{n+1}^{(j)} N_{n} \right)^{+} \\ - \sum_{j=1}^{d} c \left(b_{n+1}^{(j)} N_{n} - b_{n}^{(j)} x_{n}^{(j)} N_{n-1} \right)^{+},$$

・ロト ・回 ト ・ヨト ・ヨト

Let x^+ denote the positive part of x. Thus,

$$N_{n} = S_{n} - \sum_{j=1}^{d} c \left(b_{n}^{(j)} x_{n}^{(j)} N_{n-1} - b_{n+1}^{(j)} N_{n} \right)^{+} - \sum_{j=1}^{d} c \left(b_{n+1}^{(j)} N_{n} - b_{n}^{(j)} x_{n}^{(j)} N_{n-1} \right)^{+},$$

or equivalently

$$S_n = N_n + c \sum_{j=1}^d \left| b_n^{(j)} x_n^{(j)} N_{n-1} - b_{n+1}^{(j)} N_n \right|.$$

Dividing both sides by S_n and introducing ratio

$$w_n = \frac{N_n}{S_n},$$

 $0 < w_n < 1$,

回 と く ヨ と く ヨ と

Dividing both sides by S_n and introducing ratio

$$w_n = \frac{N_n}{S_n},$$

 $0 < w_n < 1$, we get

$$1 = w_n + c \sum_{j=1}^d \left| \frac{b_n^{(j)} x_n^{(j)}}{\langle \mathbf{b}_n, \mathbf{x}_n \rangle} - b_{n+1}^{(j)} w_n \right|.$$

回 と く ヨ と く ヨ と

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = S_{n-1} w_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = \prod_{i=1}^n [w(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{x}_{i-1}) \langle \mathbf{b}_i, \mathbf{x}_i \rangle]$$

Györfi, Ottucsák, Vajda Growth Optimal Port. Sel. Strategies with Transaction Cost

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = S_{n-1} w_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = \prod_{i=1}^n [w(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{x}_{i-1}) \langle \mathbf{b}_i, \mathbf{x}_i \rangle]$$

Introduce the notation

$$g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1},\mathbf{x}_i) = \log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1})\langle \mathbf{b}_i,\mathbf{x}_i \rangle),$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

$$S_n = N_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = S_{n-1} w_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle = \prod_{i=1}^n [w(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{x}_{i-1}) \langle \mathbf{b}_i, \mathbf{x}_i \rangle]$$

-

Introduce the notation

$$g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1},\mathbf{x}_i) = \log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1})\langle \mathbf{b}_i,\mathbf{x}_i \rangle),$$

then the average growth rate becomes

$$\frac{1}{n}\log S_n = \frac{1}{n}\sum_{i=1}^n \log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1})\langle \mathbf{b}_i,\mathbf{x}_i\rangle)$$
$$= \frac{1}{n}\sum_{i=1}^n g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{x}_{i-1},\mathbf{x}_i).$$

回 と く ヨ と く ヨ と

In the sequel \mathbf{x}_i will be random variable and is denoted by \mathbf{X}_i . Let's use the decomposition

$$\frac{1}{n} \log S_n$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbf{E} \{ g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) | \mathbf{X}_1^{i-1} \}$$

$$+ \frac{1}{n} \sum_{i=1}^n (g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) - \mathbf{E} \{ g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) | \mathbf{X}_1^{i-1} \}),$$

・ 回 と く ヨ と く ヨ と

In the sequel \mathbf{x}_i will be random variable and is denoted by \mathbf{X}_i . Let's use the decomposition

$$\frac{1}{n} \log S_n$$

$$= \frac{1}{n} \sum_{i=1}^n \mathbf{E} \{ g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) | \mathbf{X}_1^{i-1} \}$$

$$+ \frac{1}{n} \sum_{i=1}^n (g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) - \mathbf{E} \{ g(\mathbf{b}_{i-1}, \mathbf{b}_i, \mathbf{X}_{i-1}, \mathbf{X}_i) | \mathbf{X}_1^{i-1} \}),$$

therefore

$$\frac{1}{n}\log S_n \approx \frac{1}{n}\sum_{i=1}^n \mathbf{E}\{g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{X}_{i-1},\mathbf{X}_i)|\mathbf{X}_1^{i-1}\}$$

(1日) (日) (日)

$$\begin{aligned} & \mathsf{E}\{g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{X}_{i-1},\mathbf{X}_i)|\mathbf{X}_1^{i-1}\} \\ &= \mathsf{E}\{\log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{X}_{i-1})\langle \mathbf{b}_i,\mathbf{X}_i\rangle)|\mathbf{X}_1^{i-1}\} \end{aligned}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\begin{aligned} & \mathsf{E}\{g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1},\mathsf{X}_i)|\mathsf{X}_1^{i-1}\} \\ &= \mathsf{E}\{\log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1})\langle \mathbf{b}_i,\mathsf{X}_i\rangle)|\mathsf{X}_1^{i-1}\} \\ &= \log w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}) + \mathsf{E}\{\log \langle \mathbf{b}_i,\mathsf{X}_i\rangle |\mathsf{X}_1^{i-1}\} \end{aligned}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\begin{split} & \mathsf{E}\{g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1},\mathsf{X}_i)|\mathsf{X}_1^{i-1}\} \\ &= \mathsf{E}\{\log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1})\,\langle\mathbf{b}_i\,,\mathsf{X}_i\rangle)|\mathsf{X}_1^{i-1}\} \\ &= \log w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}) + \mathsf{E}\{\log\,\langle\mathbf{b}_i\,,\mathsf{X}_i\rangle\,|\mathsf{X}_1^{i-1}\} \\ &= \log w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}) + \mathsf{E}\{\log\,\langle\mathbf{b}_i\,,\mathsf{X}_i\rangle\,|\mathsf{b}_i,\mathsf{X}_{i-1}\} \\ &\stackrel{\text{def}}{=} v(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}), \end{split}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

$$\begin{split} & \mathsf{E}\{g(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1},\mathsf{X}_i)|\mathsf{X}_1^{i-1}\} \\ &= \mathsf{E}\{\log(w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1})\langle \mathbf{b}_i,\mathsf{X}_i\rangle)|\mathsf{X}_1^{i-1}\} \\ &= \log w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}) + \mathsf{E}\{\log \langle \mathbf{b}_i,\mathsf{X}_i\rangle |\mathsf{X}_1^{i-1}\} \\ &= \log w(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}) + \mathsf{E}\{\log \langle \mathbf{b}_i,\mathsf{X}_i\rangle |\mathbf{b}_i,\mathsf{X}_{i-1}\} \\ &\stackrel{\text{def}}{=} v(\mathbf{b}_{i-1},\mathbf{b}_i,\mathsf{X}_{i-1}), \end{split}$$

therefore the maximization of the average growth rate

 $\frac{1}{n}\log S_n$

is asymptotically equivalent to the maximization of

$$\frac{1}{n}\sum_{i=1}^{n}v(\mathbf{b}_{i-1},\mathbf{b}_i,\mathbf{X}_{i-1})$$

dynamic programming problem

Györfi, Ottucsák, Vajda

Growth Optimal Port. Sel. Strategies with Transaction Cost

empirical portfolio selection

empirical portfolio selection Naive approach

▲御▶ ▲理▶ ▲理▶

empirical portfolio selection Naive approach For the optimization, neglect the transaction cost

▲□ ▶ ▲ □ ▶ ▲ □ ▶

empirical portfolio selection Naive approach For the optimization, neglect the transaction cost kernel based log-optimal portfolio selection

同 ト イヨ ト イヨト

empirical portfolio selection Naive approach For the optimization, neglect the transaction cost kernel based log-optimal portfolio selection Define an infinite array of experts $\mathbf{B}^{(\ell)} = {\mathbf{b}^{(\ell)}(\cdot)}$, where ℓ is a positive integer.

・ 同 ト ・ ヨ ト ・ ヨ ト

empirical portfolio selection

Naive approach

For the optimization, neglect the transaction cost

kernel based log-optimal portfolio selection

Define an infinite array of experts $\mathbf{B}^{(\ell)} = {\mathbf{b}^{(\ell)}(\cdot)}$, where ℓ is a positive integer.

For fixed positive integer ℓ , choose the radius $r_{\ell} > 0$ such that

$$\lim_{\ell\to\infty}r_\ell=0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト
put

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

Györfi, Ottucsák, Vajda Growth Optimal Port. Sel. Strategies with Transaction Cost

◆□ > ◆□ > ◆臣 > ◆臣 > ○

₹ 9 Q (P

put

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

for n > 1, define the expert $\mathbf{b}^{(\ell)}$ by

$$\mathbf{b}_n^{(\ell)} = \operatorname*{arg\,max}_{\mathbf{b} \in \Delta_d} \sum_{\{i < n: \|\mathbf{x}_{i-1} - \mathbf{x}_{n-1}\| \le r_\ell\}} \ln \langle \mathbf{b} \,, \, \mathbf{x}_i \rangle \ ,$$

if the sum is non-void,

3

put

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

for n > 1, define the expert $\mathbf{b}^{(\ell)}$ by

$$\mathbf{b}_n^{(\ell)} = \operatorname*{arg\,max}_{\mathbf{b} \in \Delta_d} \sum_{\{i < n: \|\mathbf{x}_{i-1} - \mathbf{x}_{n-1}\| \le r_\ell\}} \ln \langle \mathbf{b} \,, \, \mathbf{x}_i \rangle \ ,$$

if the sum is non-void, and $\mathbf{b}_1 = (1/d, \dots, 1/d)$ otherwise, where $\|\cdot\|$ denotes the Euclidean norm.

(1) マン・ション・

let $\{q_\ell\}$ be a probability distribution over the set of all positive integers ℓ

回 と く ヨ と く ヨ と

let $\{q_\ell\}$ be a probability distribution over the set of all positive integers ℓ

 $S_n(\mathbf{B}^{(\ell)})$ is the capital accumulated by the elementary strategy $\mathbf{B}^{(\ell)}$ after *n* periods with an initial capital $S_0 = 1$

伺い イヨト イヨト

let $\{q_\ell\}$ be a probability distribution over the set of all positive integers ℓ

 $S_n(\mathbf{B}^{(\ell)})$ is the capital accumulated by the elementary strategy

 $\mathbf{B}^{(\ell)}$ after *n* periods with an initial capital $S_0=1$

• after period *n*, aggregations with the wealths:

$$S_n = \sum_{\ell} q_{\ell} S_n(\mathbf{B}^{(\ell)}). \tag{1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

let $\{q_\ell\}$ be a probability distribution over the set of all positive integers ℓ

 $S_n(\mathbf{B}^{(\ell)})$ is the capital accumulated by the elementary strategy $\mathbf{B}^{(\ell)}$ after *n* periods with an initial capital $S_0 = 1$

• after period *n*, aggregations with the wealths:

$$S_n = \sum_{\ell} q_{\ell} S_n(\mathbf{B}^{(\ell)}). \tag{1}$$

• after period *n*, aggregations with the portfolios:

$$\mathbf{b}_{n} = \frac{\sum_{\ell} q_{\ell} S_{n-1}(\mathbf{B}^{(\ell)}) \mathbf{b}_{n}^{(\ell)}}{\sum_{\ell} q_{\ell} S_{n-1}(\mathbf{B}^{(\ell)})}.$$
 (2)

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

let $\{q_\ell\}$ be a probability distribution over the set of all positive integers ℓ

 $S_n(\mathbf{B}^{(\ell)})$ is the capital accumulated by the elementary strategy $\mathbf{B}^{(\ell)}$ after *n* periods with an initial capital $S_0 = 1$

• after period *n*, aggregations with the wealths:

$$S_n = \sum_{\ell} q_{\ell} S_n(\mathbf{B}^{(\ell)}). \tag{1}$$

• after period *n*, aggregations with the portfolios:

$$\mathbf{b}_{n} = \frac{\sum_{\ell} q_{\ell} S_{n-1}(\mathbf{B}^{(\ell)}) \mathbf{b}_{n}^{(\ell)}}{\sum_{\ell} q_{\ell} S_{n-1}(\mathbf{B}^{(\ell)})}.$$
 (2)

the investor's capital is

$$S_n = S_{n-1} \langle \mathbf{b}_n, \mathbf{x}_n \rangle w(\mathbf{b}_{n-1}, \mathbf{b}_n, \mathbf{x}_{n-1}).$$

向下 イヨト イヨト

empirical portfolio selection

3

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

▲御▶ ▲注▶ ▲注▶

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

for $n \geq 1$,

$$\mathbf{b}_n^{(\ell)} = \operatorname*{arg\,max}_{\mathbf{b} \in \Delta_d} \sum_{\{i < n: \|\mathbf{x}_{i-1} - \mathbf{x}_{n-1}\| \le r_\ell\}} \left(\ln \langle \mathbf{b} , \mathbf{x}_i \rangle + \ln w(\mathbf{b}_{n-1}^{(\ell)}, \mathbf{b}, \mathbf{x}_{n-1}) \right),$$

if the sum is non-void,

(4回) (1日) (日)

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

for $n \geq 1$,

$$\mathbf{b}_n^{(\ell)} = \operatorname*{arg\,max}_{\mathbf{b} \in \Delta_d} \sum_{\{i < n: \|\mathbf{x}_{i-1} - \mathbf{x}_{n-1}\| \le r_\ell\}} \left(\ln \langle \mathbf{b} , \mathbf{x}_i \rangle + \ln w(\mathbf{b}_{n-1}^{(\ell)}, \mathbf{b}, \mathbf{x}_{n-1}) \right),$$

if the sum is non-void, and $\mathbf{b}_1 = (1/d, \dots, 1/d)$ otherwise.

(4回) (4回) (日)

3

$$\mathbf{b}_1 = \{1/d, \dots, 1/d\}$$

for $n \geq 1$,

$$\mathbf{b}_n^{(\ell)} = \operatorname*{arg\,max}_{\mathbf{b} \in \Delta_d} \sum_{\{i < n: \|\mathbf{x}_{i-1} - \mathbf{x}_{n-1}\| \le r_\ell\}} \left(\ln \langle \mathbf{b} , \mathbf{x}_i \rangle + \ln w(\mathbf{b}_{n-1}^{(\ell)}, \mathbf{b}, \mathbf{x}_{n-1}) \right),$$

if the sum is non-void, and $\mathbf{b}_1 = (1/d, \dots, 1/d)$ otherwise. These elementary portfolios are mixed as before (1) or (2).

→ 同→ → ヨト → ヨト

At www.szit.bme.hu/~oti/portfolio there are two benchmark data set from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years (5651 trading days ending in 1985).
- The second data set contains 23 stocks and has length 44 years (11178 trading days ending in 2006).

・ 同 ト ・ ヨ ト ・ ヨ ト

At www.szit.bme.hu/~oti/portfolio there are two benchmark data set from NYSE:

- The first data set consists of daily data of 36 stocks with length 22 years (5651 trading days ending in 1985).
- The second data set contains 23 stocks and has length 44 years (11178 trading days ending in 2006).

Our experiment is on the second data set.

・ 同 ト ・ ヨ ト ・ ヨ ト

Kernel based log-optimal portfolio selection with $\ell=1,\ldots,10$

$$r_\ell^2 = 0.0001 \cdot d \cdot \ell,$$

(1日) (日) (日)

Kernel based log-optimal portfolio selection with $\ell=1,\ldots,10$

$$r_\ell^2 = 0.0001 \cdot d \cdot \ell,$$

MORRIS had the best AAY, 20%

(4回) (1日) (日)

The average annual yields of the individual experts and of the aggregations with c = 0.0015.

ℓ	<i>c</i> = 0	Algorithm 1	Algorithm 2
1	20%	-18%	-14%
2	118%	-2%	25%
3	71%	14%	55%
4	103%	28%	73%
5	134%	33%	77%
6	140%	43%	92%
7	148%	37%	83%
8	132%	38%	74%
9	127%	42%	66%
10	123%	44%	62%
Aggregation with wealth (1)	137%	40%	83%
Aggregation with portfolio (2)	137%	49%	89%

Györfi, Ottucsák, Vajda

Growth Optimal Port. Sel. Strategies with Transaction Cost

non-empirical strategy

3

non-empirical strategy $0<\delta<1 \text{ denotes a discount factor}$

(本語)と (本語)と (本語)と

non-empirical strategy $0 < \delta < 1 \text{ denotes a discount factor}$ discounted Bellman equation:

$$F_{\delta}(\mathbf{b}, \mathbf{x}) = \max_{\mathbf{b}'} \left\{ v(\mathbf{b}, \mathbf{b}', \mathbf{x}) + (1 - \delta) \mathbf{E} \{ F_{\delta}(\mathbf{b}', \mathbf{X}_2) \mid \mathbf{X}_1 = \mathbf{x} \} \right\}.$$

(1日) (日) (日)

non-empirical strategy $0<\delta<1 \text{ denotes a discount factor} \\ \text{discounted Bellman equation:}$

$$\mathsf{F}_{\delta}(\mathbf{b},\mathbf{x}) = \max_{\mathbf{b}'} \left\{ \nu(\mathbf{b},\mathbf{b}',\mathbf{x}) + (1-\delta)\mathsf{E}\{\mathsf{F}_{\delta}(\mathbf{b}',\mathsf{X}_2) \mid \mathsf{X}_1 = \mathsf{x}\} \right\}.$$

$$\mathbf{b}_1^* = \{1/d, \dots, 1/d\}$$

and

I

$$\begin{split} \mathbf{b}_{i+1}^* &= \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^*, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_i) \mathbf{E} \{ F_{\delta_i}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\}, \end{split}$$
for $1 \leq i$,

▲□ ▶ ▲ □ ▶ ▲ □ ▶

non-empirical strategy $0<\delta<1 \text{ denotes a discount factor} \\ \text{discounted Bellman equation:}$

$$F_{\delta}(\mathbf{b}, \mathbf{x}) = \max_{\mathbf{b}'} \left\{ \nu(\mathbf{b}, \mathbf{b}', \mathbf{x}) + (1 - \delta) \mathbf{E} \{ F_{\delta}(\mathbf{b}', \mathbf{X}_2) \mid \mathbf{X}_1 = \mathbf{x} \} \right\}.$$

$$\mathbf{b}_1^* = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^* = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^*, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_i) \mathbf{E} \{ F_{\delta_i}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \leq i$, where $0 < \delta_i < 1$ is a discount factor such that $\delta_i \downarrow 0$.

・ロト ・回ト ・ヨト ・ヨト

non-empirical strategy $0 < \delta < 1 \text{ denotes a discount factor} \\ \text{discounted Bellman equation:}$

$$F_{\delta}(\mathbf{b}, \mathbf{x}) = \max_{\mathbf{b}'} \left\{ \nu(\mathbf{b}, \mathbf{b}', \mathbf{x}) + (1 - \delta) \mathbf{E} \{ F_{\delta}(\mathbf{b}', \mathbf{X}_2) \mid \mathbf{X}_1 = \mathbf{x} \} \right\}.$$

$$\mathbf{b}_1^* = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^* = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^*, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_i) \mathbf{E} \{ F_{\delta_i}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \leq i$, where $0 < \delta_i < 1$ is a discount factor such that $\delta_i \downarrow 0$. non-stationary policy

・ロト ・回ト ・ヨト ・ヨト

Assume

(i) that $\{X_i\}$ is a homogeneous and first order Markov process,

▲御▶ ▲唐▶ ▲唐▶

Assume

(i) that $\{X_i\}$ is a homogeneous and first order Markov process,

(ii) and there exist
$$0 < a_1 < 1 < a_2 < \infty$$
 such that

$$a_1 \leq X^{(j)} \leq a_2$$
 for all $j = 1, ..., d$.

(1日) (日) (日)

Assume

(i) that {X_i} is a homogeneous and first order Markov process,
(ii) and there exist 0 < a₁ < 1 < a₂ < ∞ such that a₁ ≤ X^(j) ≤ a₂ for all j = 1,..., d.

Choose the discount factor $\delta_i \downarrow 0$ such that

$$(\delta_i - \delta_{i+1})/\delta_{i+1}^2
ightarrow 0$$

as $i \to \infty$, and

$$\sum_{n=1}^{\infty}\frac{1}{n^2\delta_n^2}<\infty.$$

▲圖▶ ★ 国▶ ★ 国▶

Assume

(i) that {X_i} is a homogeneous and first order Markov process,
(ii) and there exist 0 < a₁ < 1 < a₂ < ∞ such that a₁ ≤ X^(j) ≤ a₂ for all j = 1,..., d.

Choose the discount factor $\delta_i \downarrow 0$ such that

$$(\delta_i - \delta_{i+1})/\delta_{i+1}^2
ightarrow 0$$

as $i \to \infty$, and

$$\sum_{n=1}^{\infty} \frac{1}{n^2 \delta_n^2} < \infty.$$

Then, for Strategy 1, the portfolio $\{\mathbf{b}_i^*\}$ with capital S_n^* is optimal in the sense that for any portfolio strategy $\{\mathbf{b}_i\}$ with capital S_n ,

$$\liminf_{n\to\infty}\left(\frac{1}{n}\log S_n^*-\frac{1}{n}\log S_n\right)\geq 0$$

イロト イポト イヨト イヨト 二日

non-empirical strategy

æ

non-empirical strategy For any integer $1 \leq k$, put

$$\mathbf{b}_{1}^{(k)} = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^{(k)} = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^{(k)}, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_k) \mathbf{E} \{ F_{\delta_k}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \leq i$.

(1日) (日) (日)

non-empirical strategy For any integer $1 \le k$, put

$$\mathbf{b}_1^{(k)} = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^{(k)} = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^{(k)}, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_k) \mathbf{E} \{ F_{\delta_k}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \le i$. The portfolio $\mathbf{B}^{(k)} = {\mathbf{b}_i^{(k)}}$ is called the portfolio of expert k with capital $S_n(\mathbf{B}^{(k)})$.

(4回) (4回) (日)

non-empirical strategy For any integer $1 \leq k$, put

$$\mathbf{b}_1^{(k)} = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^{(k)} = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^{(k)}, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_k) \mathbf{E} \{ F_{\delta_k}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \leq i$.

The portfolio $\mathbf{B}^{(k)} = {\mathbf{b}_i^{(k)}}$ is called the portfolio of expert k with capital $S_n(\mathbf{B}^{(k)})$.

Choose an arbitrary probability distribution $q_k > 0$, and introduce the combined portfolio with its capital

$$\tilde{S}_n = \sum_{k=1}^{\infty} q_k S_n(\mathbf{B}^{(k)}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

non-empirical strategy For any integer $1 \leq k$, put

$$\mathbf{b}_1^{(k)} = \{1/d, \dots, 1/d\}$$

and

$$\mathbf{b}_{i+1}^{(k)} = \operatorname*{arg\,max}_{\mathbf{b}'} \left\{ v(\mathbf{b}_i^{(k)}, \mathbf{b}', \mathbf{X}_i) + (1 - \delta_k) \mathbf{E} \{ F_{\delta_k}(\mathbf{b}', \mathbf{X}_{i+1}) | \mathbf{X}_i \} \right\},\$$

for $1 \leq i$.

The portfolio $\mathbf{B}^{(k)} = {\mathbf{b}_{i}^{(k)}}$ is called the portfolio of expert k with capital $S_{n}(\mathbf{B}^{(k)})$.

Choose an arbitrary probability distribution $q_k > 0$, and introduce the combined portfolio with its capital

$$\tilde{S}_n = \sum_{k=1}^{\infty} q_k S_n(\mathbf{B}^{(k)}).$$

stationary policy

Györfi, Ottucsák, Vajda Growth Optimal Port. Sel. Strategies with Transaction Cost

・同・ ・ヨ・ ・ヨ・

Assume (i) and (ii) of Theorem 1.

Assume (i) and (ii) of Theorem 1. Choose the discount factor $\delta_i \downarrow 0$ as $i \to \infty$.

Assume (i) and (ii) of Theorem 1. Choose the discount factor $\delta_i \downarrow 0$ as $i \to \infty$. Then, for Strategy 2,

$$\lim_{n\to\infty}\left(\frac{1}{n}\log S_n^*-\frac{1}{n}\log\tilde{S}_n\right)=0$$

a.s.

・ロン ・回と ・ヨン・
How to construct empirical (data-driven) optimal portfolio selection strategy?

(1日) (日) (日)